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Abstract 

Domestic energy consumption has increasingly become a cause for concern for 

governments, energy suppliers, and individual householders.  Issues surrounding 

gas and electricity used in the home relate to the increasing cost of fuel, the rise in 

the incidence of fuel poverty, carbon dioxide emissions from fossil fuels 

contributing to climate change, security of supply due to geo-political 

disagreement and the age and condition of the existing energy infrastructure. 

While buildings and appliances have become more energy-efficient, usually driven 

by legislation, the energy-consuming behaviour of individuals is very difficult to 

change.  Domestic energy monitoring has so far only been carried out at a 

household level, while the behaviour of individuals within households has 

remained ambiguous.  There is a gap in current knowledge about how people use 

energy at home, mainly because it is very difficult to capture everyday behaviour 

without influencing the behaviour being observed.  Initiatives and campaigns 

targeting domestic energy-consuming behaviour have been based on 

assumptions of how people use energy in their homes, and have been found to be 

ineffective.  There is a need for an unobtrusive method of capturing domestic 

energy behaviour. 

This research presents a technique to deliver this requirement by enabling the 

tracking of people in their homes with a small number of cost-effective RFID 

(Radio Frequency ID) devices.  Using this technique the location of multiple 

individuals wearing RFID tags can be determined, thereby creating an unobtrusive 

RTLS (Real Time Location System).  This technique has been extensively 

evaluated through a series of tests within a typical 1940’s semi-detached house in 

North West England, and has been found to be able to successfully locate 

individuals to room level.  If this RTLS data is matched with appliance level energy 

data, energy-consumption can be attributed to the individuals responsible, and 

personalised everyday energy-consuming behaviour can be established.  . 
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Chapter One 

1 Introduction 

This research is concerned with the gap in current knowledge of how people use 

energy in the privacy of their homes in the UK.  Evidence will be presented to 

show why this is a problem of great significance, and that concentrated effort to 

address this gap is justified and timely.  In order to fulfil the need to capture 

domestic energy-consuming behaviour this thesis sets out the development, 

testing and refining of a technique to enable the tracking of people for domestic 

energy monitoring applications. 

  

1.1  Context 

There are several critical issues surrounding the development of a technique to 

capture data from human behaviour, in this case domestic energy-consuming 

behaviour.  These key areas are presented below and examined in depth in 

Chapter Two. 

1. The everyday 

This relates to the concept of the ordinariness of daily life.  Although it is 

commonly considered mundane and often overlooked, it contains vital 

information.  In this research it is the everyday domestic energy-consuming 

behaviour that is desperately needed and is currently not known. 

 

2. Unobtrusive observation 

Observing domestic energy-consuming behaviour unobtrusively is required 

in order to capture the true, typical behaviour of individuals without 

influencing how people behave.  The method of observation must therefore 

be discreet and acceptable to potential subjects. 

 

3. UK domestic energy consumption 

There are many factors contributing to the problems of domestic energy 

consumption.  These include the construction and energy efficiency of the 

current housing stock, the changes in trends of tenure, and the increasing 
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costs of energy to homes.  Fuel poverty is a growing issue for individuals 

and organisations, and is a key driver for the successful development of a 

technique to enable the understanding of how people use energy at home. 

 

4. Location Determination 

The use of wireless sensor networks to tag and track objects is common.  

There are a variety of standards and protocols depending on the 

application.  Additionally, using wireless sensor networks to track people 

within their own homes helps to reduce the visibility of the system. 

 

5. Wearable technology 

Recently the use of wearable technology has grown rapidly and there are 

many applications, from computer gaming to health and wellbeing monitors.  

Most of these applications are voluntarily selected by the wearer, although 

some are imposed in the interests of safety, such as tags worn by 

vulnerable patients that raise an alarm if they leave a specified area.  

Wearable technologies tend to be small in size, such as tags or wristbands, 

and require connection to a device or system for data transmission.  These 

connections can be in the form of constant communication or occasional 

synchronisation. 

 

1.2  Contribution 

The development of a technique that can successfully locate multiple individuals 

to room level by using a small number of low cost devices that give only coarse-

grained data is a major contribution from this research.   

Using this method of tagging and tracking people within their homes, and 

matching their location to appliance-level energy consumption would allow energy 

use to be attributed to individuals. 

An understanding of personalised energy profiles could drastically alter energy 

supplier operations and future government strategy.  The ability to identify how 

people use energy at home would improve initiatives to help people reduce their 
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energy consumption because these are all currently based on assumptions of 

how and why people use energy.  

This technique would not be limited to concerns about energy efficiency, but could 

be used in many applications in which tracking a person’s location, or movements, 

within an internal environment would be valuable, such as assisted living. 

An additional contribution from this research is the immense amount of real data 

that could be used by other researchers, specifically data collected describing 

Radio Frequency Identification (RFID) signal propagation within a typical post-war 

house and through experiments carried out within the University of Salford’s 

Energy House facility. 

Scope 

The purpose of this research is to develop and present a technique to enable the 

tracking of individuals for domestic energy monitoring applications only.  The 

following are aspects that may be related but are beyond the scope of this 

research and are not included: 

 Gas, oil, coal, or other fuels are not included in this research because 

although there are potential methods to account for these types of fuel, 

they add significant complexity and cost.  In addition, many of these fuels 

would be used for purposes that are for the good of the entire household 

(such as heating and cooking) rather than for personal use (such as 

watching a television or using a computer).  The use of fuels other than gas 

and electricity are non-standard and infrequent. 

 Lighting connected to the home electricity consumer unit is not included 

because this is another use of energy that can be considered for the good 

of the entire household. 

 Smart meters are included in Chapter Two as part of the background to UK 

domestic energy consumption, but are not an integral aspect of this 

research.   

 Providing energy consumption information to people is not covered in this 

research as there are no opportunities for feedback.  Additionally, giving 

feedback in the event of the system being used would negate the 
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unobtrusiveness of any observations made.  There are many researchers 

and organisations examining methods of feedback to energy consumers. 

 Behaviour change and theories of how and why people behave the way 

they do is beyond the remit of this research as the purpose is to enable the 

capture of energy-consuming behaviour only.  

 Although tracking data is collected immediately there is no intention to 

provide real-time location information.  The data is stored, subjected to the 

algorithm to derive location, and matched up with appliance-level energy 

consumption at a later time.  

 

1.3  The Garfield Weston Foundation 

This research was made possible by a generous grant from the Garfield Weston 

Foundation [1].  The Garfield Weston Foundation is a philanthropic trust that has 

supported organisations and charities across the UK for over 50 years.  The 

Foundation’s aims include encouraging effective solutions to help those in most 

need, in this case to further research to alleviate fuel poverty and the problems 

surrounding UK domestic energy consumption. 

 

1.4 Outline of Thesis 

This thesis comprises seven chapters and continues as follows: 

Chapter Two presents a detailed evaluation of the five key aspects identified in 

Section 1.1; the everyday, unobtrusive observation, UK domestic energy 

consumption, location determination, and wearable technology. 

A system design overview of a solution to the research problem is set out in 

Chapter Three.   

Chapter Four describes the experimentation that was employed throughout this 

research.  This chapter sets out how the prototype was developed and goes on to 

detail how the experiments were conducted, the data was collected and the 

results were analysed.  The testing locations are shown, and the types of tests 

that were carried out.  
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Results of the experiments are presented in Chapter Five.  These are in the form 

of signal strength heatmaps, outputs from a Spectrum Analyzer, and charts from 

the testing locations.  There are also comparisons provided with simulations from 

the Ekahau Professional 7.6.4 site surveying software. 

Chapter Six evaluates the resulting data for the ability to provide a location to 

room-level.  This chapter presents signal strength contour maps for the prototype 

and the development of the algorithm to derive location from signal strength data.  

Following testing of the algorithm and improvements made, a further set of data 

was collected and tested the revised algorithm. 

Chapter Seven concludes the thesis, with a detailed discussion of the research, 

contributions, and opportunities for future work. 
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Chapter Two 

2 Literature Review 

This chapter sets out the context and current knowledge relevant to this PhD 

research.  This is broken down into five major areas of concern: the everyday, 

unobtrusive observation, UK domestic energy consumption, location 

determination, and wearable technology. 

2.1  The everyday 

This section explains the concept of the everyday, how it emerged from a socio-

philosophical perspective to become a rich seam for researchers to the present 

day.   

As early as 1832 Scottish philosopher, historian and essayist Thomas Carlyle 

suggested that there was an impending change in the focus of interest from the 

court, the state and battlefields towards everyday life.  He predicted that not only 

“the ‘House wherein our life was led,’ but the Life itself we led there, will be 

inquired into”[2, p.84]. 

Carlyle was correct in that the phenomenon of the quotidian, or everyday life, has 

been a particular interest of many philosophers and sociologists since and 

continues to the present day. 

French sociologist and philosopher Henri Lefebvre stated that the familiar is not 

necessarily known and argued that despite its pervasiveness the everyday is 

widely overlooked and misunderstood [3].  While extraordinary human 

achievements can be compared to magnificent mountains, Lefebvre suggests that 

the everyday is the fertile ground we walk over without noticing.  It is the earth 

beneath that “has a secret life and a richness of its own” [4, p. 87] and should not 

be taken for granted or ignored. 

Lefebvre explains that the everyday has changed significantly from pre-modern 

times, when quotidian activity was closely connected to the cycles and rhythms of 

the natural world and the collective rituals and requirements of community.  In a 

technologically advanced world people are disconnected from community, they 
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have their time clearly defined into productive and leisure time, and they become 

consumers [5]. 

The French social theorist Michel De Certeau expanded on Lefebvre’s ideas to 

further develop a theory of the productive and consumptive elements of everyday 

life [6].  In a consumer society, Certeau argued that there are complex practices 

that people adopt in their everyday life, and also practices that are imposed on 

them, that he names strategies and tactics. 

Strategies are described as visible practices that are imposed on people by 

organisations, institutions or authority, while tactics are hidden, improvised, and 

sometimes anonymous responses to situations.  Tactics can also include small 

acts of resistance, for example; a tactic responding to the strategy of having to 

pay to use a car park could include giving away a partially used parking ticket to 

another motorist. 

In terms of energy consumption, organisations are often concerned that the 

energy consumption of their buildings is much greater than anticipated despite 

specifying energy efficient buildings and equipment, and having highly technical 

energy management systems and professionals [7].  This disparity between the 

predicted and actual energy use is referred to as the Performance Gap and can 

be substantial.  Post-occupancy evaluations of buildings highlight numerous 

potential causes for the actual energy use being much greater or even double the 

prediction, and the behaviour of the people using the buildings is a very important 

factor.  The tactics building users employ can include opening windows and 

propping doors open while the heating system is on, and using additional heaters 

and over-riding heating system settings to improve their own immediate thermal 

comfort. 

In addition to strategies and tactics, Certeau stated that in a consumer society it is 

through consumption that individuals acquire a sense of identity and self-hood, 

and that those needs are defined by the everyday practices and desires of the 

consumers themselves [8]. 

The purpose of this research is to find a way to capture the typical electricity use 

of people in their own homes, to observe the everyday tactics and habits.  
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Observing the everyday has been a focus for sociologists, psychologists, linguists 

and philosophers for a long time. 

Behavioural research is usually carried out for one of two reasons; (1) to 

contribute to theories of human behaviour, or (2) to answer specific questions [9].  

The first type of research is basic research, the second applied research.  

Different behavioural research techniques are used depending on the focus of the 

research, for instance, to find out how people behave in public the researcher 

would watch them whereas to investigate how people behave in private, diaries 

and self-reporting would be used. 

One of the longest studies of the everyday is the British Mass Observation Project 

(M-O) [10].  The original M-O began as a study of everyday life of ordinary British 

people in 1937.  Volunteers were recruited nationally to keep diaries and respond 

to regular open-ended questions.  The first M-O ran until the early 1950’s. 

In his review of the M-O, Hubble [11] argues that although the initial purpose of 

the project was merely to provide an anthropology of the British people, the 

responses actually influenced changes in society.  Data from the surveys 

contributed to the 1941 Budget, informed the introduction of the welfare state, and 

was used by the Ministry of Information to judge the morale and opinions of the 

public. 

In 1981 the contemporary Mass Observation Project (MOP) was revived and 

continues to the present day.  The MOP still relies on a representative panel of 

volunteers to submit their candid opinions and experiences in response to 

questions three times a year.  Academics from a wide range of disciplines can 

apply for particular subjects to be included in the questions and the resulting data 

are a unique and valuable qualitative resource. 

Adams and Raisborough [12] commissioned questions about ethical consumption 

to be included in the MOP.  Specifically, respondents were asked to reflect on 

how their consumption was influenced by their ethical and personal values.  The 

researchers struggled with the wide range of responses, in terms of quantity and 

interpretation of the wording of the questions, and felt the inability to probe more 
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deeply was a hindrance.  Overall, respondents generally articulated a commitment 

to ethical consumption but mentioned many barriers and often felt overwhelmed.  

Another example of examining contemporary everyday lives in Great Britain are 

the Time Use Surveys (TUS) carried out by the Office for National Statistics (ONS)  

[13].  The most recent time use survey was carried out in 2005 and the data 

comes from 5443 interviews carried out and 4941 diaries returned from a 

representative sample of households.  The interviews and diaries were carried out 

on four days throughout the year in the months of February, June, September and 

November.  The diaries detail activity of the household for every 10 minutes 

throughout the selected days. 

Women spend more time on domestic and caring activities than men, and this 

remains true for women in full-time employment.  Figure 2.1 shows the time spent 

in minutes on housework by sex and Figure 2.2 shows the time spent on care-

giving activities by sex. 

The three main activities carried out by people were sleeping, working, and 

watching TV and videos/DVDs or listening to music.  Together these three 

activities accounted for 13 hours and 38 minutes out of the 24 hour period. 

 

 

Figure 2.1.Time spent on housework by sex, 2005.  Data from Office for National Statistics: 

July 2006 
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The use of computers was recorded, and for those that did use computers outside 

of the workplace (16% of the population) the time spent computing increased from 

the last Time Use Survey in 2000 from 96 minutes per day to 120 minutes per day 

in 2005.  The coding of the diaries attempted to distinguish between primary and 

secondary activities, so that using the computer would be designated the 

secondary activity while also recording the primary purpose of using the computer 

(shopping, banking, games, or socialising).  This was seen to be potentially 

problematic as during each time slot of 10 minutes several activities could be 

carried out on a computer.  The significant increase of internet enabled devices 

and mobile technology since TUS2005 and makes the allocation of time spent 

using a computer even more unclear.  The UK communications regulator, Ofcom, 

reported in 2014 that the average adult in the UK spends more time engaged in 

digital media or communication activity everyday than sleeping (8 hours 41 

minutes and 8 hours 21 minutes respectively [14].  

 

Figure 2.2.Time spent on caring activities by sex, 2005.  Data from Office for National 

Statistics: July 2006 

There are other data from surveys and census’ available concerned with a wide 

variety of topics from health, wealth, crime, housing stock, etc., that are not 

concerned with recording the everyday domestic life. 

Some research has been conducted into quotidian domestic energy consumption.  

Durand-Daubin [15] describes an evaluation of the effectiveness of four methods 

of data collection as tools to illustrate how and when three household items were 
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used.  The four methods were: quantitative questionnaire, qualitative interviews, 

activity diaries, and energy consumption monitors.  The three household items 

were the TV, the computer, and the washing machine.  The participants in the 

study were 60 self-selecting households in France. 

The quantitative questionnaire was made up of over a thousand questions and 

covered detailed aspects of socio-demographics, building fabric and heating 

system, appliances, and environmental attitudes.  This was followed by an in-

depth qualitative interview about the household’s energy consumption and 

motivations.  The activity diaries were used for a week and one was dedicated to 

each room of the dwelling.  The participants were required to record all details of 

all activities within each room including: participants, activity, equipment used, 

start and end times.  During the week of the activity diaries metering equipment 

was installed to record the time and quantity of electricity consumed.  

Comparison of the data showed large discrepancies between reported and actual 

electricity consumption, especially for the TV and computer.  The diaries reported 

more frequent and shorter duration of use than the measured consumption 

indicated.  The frequency of use of the washing machine was more consistent 

between diary and metering, although the duration was longer than the 

participants reported.  There were significant difficulties combining the different 

types of data to produce a clear comprehensive description of energy use by the 

individuals involved. 

Although Durand-Daubin’s research attempted to capture the everyday energy 

consumption of individuals involved, and evaluating the reliability of the methods 

used, there are several issues that were not resolved.  Firstly, the participants 

were a small sample group of 60 self-selecting households.  Information is not 

available on their motivation for volunteering for the extensive requirements of the 

study, what their prior experience or knowledge of energy efficiency was, or what 

incentives they may have received – all of which could affect their behaviour 

during the period of study. 

Another important aspect that can and does change people’s behaviour is the 

knowledge that they are being observed.  After answering over one thousand 

questions, taking part in an in-depth interview, and writing down their activity in 
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every room for a week the participants would be very conscious of being under 

scrutiny.  The importance and practice of unobtrusive observation to capture the 

everyday is dealt with in the next section.   

2.2  Unobtrusive Observation 

As described in the previous section, when people know they are being observed 

their behaviour tends to change.  This is a crucial aspect of this research because 

the gap in knowledge this technique aims to fulfil is to find a way to enable the 

capture of typical everyday domestic energy-consuming behaviour.   This section 

describes unobtrusive observation, sets out when and why it is needed, and gives 

examples of how it is carried out. 

A frequently mentioned phrase in research into human behaviour is the 

‘Hawthorne Effect’.  Chiesa and Hobbs [16] reviewed the history and facts of the 

term and found that due to the wide range of contradictory and imprecise 

definitions, and significant criticism of the original work, use of the term is 

inappropriate. 

‘Observation consciousness’ is a better description of the concept of people 

changing their behaviour because they know they are being observed.  The 

changes in behaviour of participants can be conscious or sub-conscious, and is 

widely accepted as an issue in the field of social research [17, 18].  

Observation consciousness is a significant threat to the validity of any research of 

human behaviour and there have evolved many methods to reduce its impact and 

achieve more valid results.  The flipside of unobtrusive observation are concerns 

about ethics and privacy. 

The British Psychological Society sets out in its Code of Human Research Ethics 

2014 [19] that sometimes deception necessary in order to obtain valid data, 

stating that: 

‘Since there are very many psychological processes that are modifiable by 

individuals if they are aware that they are being studied, the statement of 

the research in focus in advance of the collection of data would make much 

psychological research impossible.’ (p.24) 
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The code goes on to state that researchers must provide as much information as 

possible (without compromising their research) in advance to participants, and 

any deception should be fully disclosed as soon as possible afterwards.  The well-

being, dignity and privacy of the participants remain the highest ethical concern. 

Gaby Judah, a researcher in the Department of Disease Control at the London 

School of Hygiene and Tropical Medicine, has a special interest in habit formation 

in relation to health behaviours and uses unobtrusive observation through 

wireless sensor networks to capture everyday behaviour [20]. 

Judah [21] describes one project designed to evaluate whether exposure to 

different messages displayed at the entrance to restrooms affects the rate of 

handwashing of the travelling public in an English motorway service station.  Over 

the course of the study data was collected on almost 200,000 restroom uses over 

32 days.  Infra-red sensors recorded the number of people entering and leaving 

the two restrooms, and sensors inside the soap dispensers recorded each soap 

use. 

The results showed that there was a marked gender difference in the effects of 

the types of messages on the rate of handwashing, and Judah concludes that: 

‘Unobtrusive monitoring allowed us to avoid the biases inherent in 

structured observation or self-reporting of behaviour and provided a reliable 

means of data collection.’ (2009: p.S409) 

A follow on project involved installing wireless sensor networks in the bathrooms 

of participant’s homes.  For four months, 120 participants in 60 private homes 

wore a sensor on their wrist and were told they were evaluating a system 

designed to monitor whether elderly people are capable of taking care of 

themselves. Two location sensors near the bathroom sink and toilet were installed, 

along with several object sensors placed on the following items; toothpaste, 

toothpaste cup, floss box, soap, taps, vitamin C bottle, toilet flush, toilet roll holder, 

and shower/shower door.      

The actual aim of Judah’s research was to investigate psychological predictors of 

habit formation.  In order to ensure validity of the research data, this was 

disclosed to the participants once the project had ended. 
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Although this research does not include user trials or observations of participants, 

it is necessary to be mindful of unobtrusive observation in order to develop 

technology that is unobtrusive.  This section is important for driving design 

decisions only, not for defining a programme of research with participants. 

2.3  UK Domestic Energy Consumption 

The English Housing Survey (EHS) is an examination of the conditions and 

energy efficiency of homes in England.  Data from the 2012-2013 EHS 

Households report are based on a sample of 13,652 households [22].  There are 

an estimated 22.0 million households in England and while the majority are owner 

occupied (65%, 14.3m), significant numbers are privately rented or socially rented 

(18%, 4,0m, and 17%, 3.7m respectively). 

Private renters tend to be younger people while owner occupiers tend to be older.  

People with mortgages were typically middle-aged and outright owners were from 

older age groups.  Social renters are spread evenly over the age categories.  The 

average time people have lived at their current address for owner occupiers, 

social renters and private renters is 17 years, 11 years, and 4 years respectively. 

The EHS Energy Efficiency of English Housing report, 2012 is based on physical 

inspections of 12,763 dwellings [23].  The report finds that 16.6 million dwellings 

(73% of the housing stock) could benefit from at least one energy improvement 

measure, such as; installing a condensing boiler, cavity wall insulation, loft 

insulation.  If all the recommended (and cost-effective) energy efficiency 

measures were installed in all the homes that needed them, this could reduce fuel 

bills by an average of 14%, and save 21.2 million tonnes/year of CO2 emissions. 

Newer properties tend to be more energy efficient, while over half of the least 

energy efficient homes were built before 1919 (52%).  There are 2.4 million 

households (11% of the total number of households) that are unable to keep their 

living room comfortably warm during cold winter weather.  Of these inadequately 

heated households; 20% were couples with children, 15% were lone parents, 36% 

were households with a person who had a long term illness or disability, and 24% 

were households in poverty.  Half of households unable to heat their homes 
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adequately were aged 16-44 years, and households over 65 years were under-

represented. 

The economics of energy is an important aspect of domestic energy consumption.  

As can be seen from Figure 2.3 the cost of fuel to UK households has increased, 

particularly sharply from 2004.  This is a major factor in the growing incidence of 

fuel poverty.  The need to address fuel poverty, and the difficulty of doing this, is a 

key driver for this research.  The lack of knowledge of how people use energy in 

their own homes is an obstacle to identifying and tackling real-life energy 

inefficient behaviour.  

 

Figure.2.3. The cost of natural gas and electricity to UK households, in pence per unit, from 

1978-2013.  Dataset from International Energy Agency (2014) [24] 

In August 2013 the UK Government changed the definition of fuel poverty from 

meaning a household that needed to spend more than 10% of its income on fuel 

to maintain satisfactory conditions to a household that has above average fuel 

costs and if it were to spend that amount they would have a residual income 

below the official poverty line [25].   

Following the change in definition 1 million households were removed from the 

category, and the UK Government dropped the commitment to eradicate fuel 

poverty by 2016.  Fuel poverty particularly affects low income households and 
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those who spend a lot of time at home, such as the long term sick, disabled 

people, young families, and the unemployed. 

The Annual Fuel Poverty Statistics Report, 2014 [26] stated that the number of 

fuel poor households in England was around 2.28 million representing 10.4% of 

all English households.  Due to the calculation of fuel poverty being dependant on 

income, fuel bills, and consumption, the report struggled to isolate absolute 

reasons for the drop of 5% from the previous review, but it did suggest that the 

reduction happened mainly due to increases in income for the higher income fuel 

poor households.  All fuel poor households came from the bottom four income 

decile groups, with at least 30% of all unemployed households being fuel poor.  

Private renters were more likely to be fuel poor and owner occupiers were the 

least likely. 

Under the previous 10% indicator, 4.50 million households would be designated 

as living in fuel poverty, 17% of all households.  Increasing energy costs is 

expected to lead to an increase in fuel poverty in the next review. 

In 2011, the Building Research Establishment (BRE) collected further data from a 

sub-set of households that took part in the 2010/2011 English Housing Survey 

(EHS).  The purpose of this investigation was to update modelling assumptions 

about how energy is used in the home and resulted in the 2011 Energy Follow-Up 

Survey (EFUS 2011) published in 2013 [27]. 

The EFUS consisted of an interview survey of 2,616 homes, a temperature 

monitoring survey of 823 homes, meter readings data from 1,345 homes, and 

electricity profiling of 79 homes.  The data was scaled and weighted to represent 

the 21.9 million households in England. 

EFUS 2011 shows that gas consumption is closely associated with dwelling type 

and size whereas electricity consumption is strongly influenced by the number of 

people in the household.  Annual median electricity consumption for single person 

households and households with at least five people are 2,400 kWh and 6,000 

kWh respectively.  Analysis of households by tenure showed that owner occupiers 

tended to consume more gas than any other household type and more electricity 

than households in the privately rented or local authority sector.  There were no 
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significant differences between rates of gas and electricity consumption for renting 

households, whether private or social. 

While 6% of households find it difficult to heat the living room to a comfortable 

standard during the heating season, 20% of households report having at least one 

room that cannot be kept comfortably cool during a typical summer.  Use of air 

conditioning systems is rare (less than 3%) but 43% of all households use 

portable fans and 9% use fixed fans.  

Analysis of domestic appliance ownership shows that owner occupiers have more 

(and newer) appliances than renting households.  The survey suggests that there 

are considerable numbers of appliances over 10 years old (2.1m washing 

machines, 2.6m tumble dryers, 5m refrigeration appliances, and 4.5m ovens). 

Approximately 67% of all households are categorised as ‘underspending’, that is 

defined as spending less on gas and electricity than is expected by the current 

fuel poverty methodology predicted necessary to provide adequate energy for 

heating and other uses in the home.  While 35% of all households are 

underspending by more than 25% of the required fuel bill, 8% of households are 

underspending by more than 50%. 

Underspending households have lower mean internal temperatures and report 

heating for fewer hours per day than households that are not underspending.  

Around 80% of fuel poor households (using the new Low Income High Costs 

definition) underspend compared to 65% of households not in fuel poverty. 

A major change in the domestic energy sector is the national roll-out of ‘smart 

meters’ across the UK which will replace around 53 million gas and electricity 

meters.  Most households will have their traditional gas and electricity meters 

replaced with ‘smart meters’ between 2015 and 2020.  Smart meters 

communicate directly with energy suppliers so that accurate bills can be 

generated and so that manual readings and estimated bills will cease.  In addition, 

changing energy suppliers is anticipated to be a more straightforward process for 

properties with smart meters, enabling householders to more easily switch to 

cheaper tariffs and save money.  
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The most recent quarterly statistics released by the UK Government [28] reports 

that a total of 621,600 domestic smart meters had been installed by 30 September 

2014.  Of these 543,900 smart meters were operating in ‘smart mode’ (i.e. 

communicating with the energy supplier) which represents 1.2% of all domestic 

meters operated by the larger suppliers. 

Energy suppliers are entirely responsible for planning and delivering the 

installation of smart meters to their customers however suits them as long as they 

complete the roll-out by the end of 2020. 

Smart meter installation programmes have already begun in many countries 

around the world with varying degrees of success.  There has been considerable 

resistance from householders to smart meters, particularly in the USA [29] and 

Australia [30].  The backlash has resulted in legal challenges against deployment 

programmes, residents defending their properties (sometimes while armed), law 

enforcement involvement, and a change of fortune for many politicians associated 

with smart meters.  Media coverage of lawsuits against energy suppliers, arrests 

of homeowners, and a distrust of utility companies swelled the ranks of dissenters 

and had a major impact on the deployment of smart meters.  This “Bakersfield 

Effect”, named after the Californian city where the campaign began, has halted 

installation programmes and taken governments and energy suppliers by surprise. 

The objections to smart meters include (but are not limited to); increasing the cost 

of energy, negative effects on health from electromagnetic fields and wi-fi, 

concerns that the government or other agencies are spying on residents, the data 

being sold to third parties, the meters causing fires, hacking resulting in stolen 

data and/or loss of energy to the household.  The Institute of Directors in the UK is 

an organisation that has been supporting businesses and the people who run 

them since 1903.  They recently reviewed the planned UK rollout of smart meters 

to all homes and small businesses and called for the scheme to be “halted, 

altered, or scrapped” [31] based on the technology being used, the experience of 

smart meter projects in other countries and past issues with major IT projects from 

the UK Government.  

In the UK, in addition to smart meters, householders will also be given an In-

Home Display (IHD) that shows how much gas and electricity has been used and 
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the cost of that fuel consumption over different time-scales, such as over the last 

day, month, or year.  

The inclusion of IHDs in the UK smart meter rollout is expected to reduce 

domestic energy consumption because people will be more aware of how much 

energy they are using and as a direct result reduce their consumption. Darby’s [32] 

comprehensive review of trials of consumer feedback showed that single 

interventions have limited success in reducing energy consumption unless the 

recipients are already motivated and knowledgeable in their use of IHD.  A ‘fit and 

forget’ attitude is prevalent among the majority of consumers unless they are 

subject to additional motivational interventions, such as advice or community 

programmes.   

This highlights the difficulties of attempting to change the everyday energy-

consuming behaviour of people when that behaviour is not understood.  If 

personalised energy-consuming behaviour was known, aspects of that behaviour 

and the factors that contribute to it could be challenged in a more targeted and 

potentially effective manner.  This research presents a technique that enables the 

capturing of the unknown behaviour on which better strategies to reduce domestic 

energy consumption could be based.      

2.4  Location Determination 

Systems designed to locate individuals or objects can approach the problem by 

using a smart device or a smart environment.  Smart devices determine their 

location in relation to other known positions, for example a GPS device computes 

its location from its relative distances from at least four GPS satellites.  When 

smart environments are used the device itself is dumb and does not have the 

complexity to determine its location.  In this case the environment is smart and 

there are a number of sensors or readers that are used to locate the device. 

Smart devices are more complex than dumb ones, require more power and host 

the locating capability and all data.  Due to the increased complexity and battery 

power (and weight) smart devices are not being used for this research.  A crucial 

requirement of the locating system is that it must be unobtrusive, lightweight and 

robust.  If a mobile dumb device is damaged or lost it can be easily replaced with 
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minimal consequences for the system as a whole but if a smart device is 

damaged or lost the consequences for the system and data collection would be 

catastrophic. 

A system that tracks an aspect of human behaviour needs a method of collecting 

data.  In order to do this without changing the behaviour being observed the 

system must be unobtrusive as described in the previous section.  This requires 

the minimum of obvious peripherals, such as cables and memory storage devices. 

Ideal methods of collecting and transmitting data unobtrusively with compact 

devices are those that use wireless sensor networks.  This section explains 

wireless sensor networks, the benefits of several wireless protocols, and how they 

have been used in location systems. 

The wireless in Wireless Sensor Networks (WSN) refers to the transmission of 

information via modulation of waves in the electromagnetic spectrum [33].  This 

variation of properties of a waveform with a modulating signal allows information 

to be transmitted without the use of physical wires.  These were previously known 

as Radio Systems and were used primarily by the military, space agencies, and 

Citizen’s Band (CB) enthusiasts.  The development of wireless systems has been 

significant since the 1970’s, when a modem would cost the equivalent of 

$300,000 and be as big as a microwave oven [34]. 

The trend in wireless communication has been towards miniaturisation and 

ubiquity, with wireless access to the internet widely used every day by people at 

work, at home and through internet enabled smartphones and other devices.  This 

increasing connection of equipment, appliances, and sensors to the internet is 

termed The Internet of Things (IoT) and describes diverse uses from autonomous 

vehicles to livestock management [35].  IoT devices are generally small hardware 

units that can sense one or more aspects of its location and/or perform a task in 

that environment, such as open or close a window or switch lights or a heating 

system on or off. 

Devices either provide a basic service as a sensor or actuator and need to 

communicate over a Local Area Network (LAN) to another device, or they can be 

more advanced and communicate over the web as well as provide the sensing 
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and/or task required.  The basic devices are smaller, have a lower energy 

demand, and need a gateway or base unit locally to communicate with. 

Wireless communication between devices, and between devices and base units, 

is possible using a variety of protocols suited to different applications.  Examples 

of wireless communication protocols, or ‘standards’, include Bluetooth, ZigBee, 

RFID, and DECT.  These are considered below.  

2.4.1 Bluetooth 

Bluetooth operates in the 2.4 to 2.485GHz frequency band and is a popular 

method of connecting devices wirelessly over a short range, such as wireless 

headsets to mobile phones.  Until recently Bluetooth had a slow connection speed 

and high energy demand, although there is now Bluetooth Low Energy (BLE) 

which consumes 10 to 20 times less energy than the original technology [34].   

2.4.2 ZigBee 

ZigBee can operate at frequencies of 868MHz and 2.4GHz and is an example of a 

Wireless Local Area Network (WLAN).  ZigBee forms a mesh network using a 

number of nodes with no one central transmitter/receiver.  ZigBee is widely used 

in control and monitoring applications, including domestic automation systems.  

An advantage of ZigBee is low power consumption and longer battery life, but 

object tracking is problematic as the accuracy is poor [35]. 

2.4.3 RFID 

Radio Frequency Identification (RFID) is currently used for many tracking 

applications.  Examples include tagging marathon runners, shopping trolleys, 

livestock, luggage, and merchandise.  RFID tags can be active and have their 

own power supply so that they can transmit a signal, or they can be passive 

without a power supply and need to be in close proximity to a transceiver to be 

read.  Oktem and Aydin [36] designed a system to guide visually impaired people 

through an environment with obstacles using RFID tags placed in a grid.   

2.4.4 DECT 
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Digital Enhanced Cordless Telecommunications (DECT) is primarily used in 

cordless telephones, although it has been used in wireless microphones and 

home care pendants.  Advantages of DECT include the range and compatibility of 

existing products available, but the power consumption is heavily influenced by 

the frequency of wake-up events and is not suitable for applications with a high 

incidence of trigger events [37]. 

When using WSNs to determine location there are several methods to consider.  

These include proximity, trilateration, hyperbolic lateration, triangulation, 

fingerprinting, and dead reckoning [38].  These approaches are set out below. 

2.4.5 Proximity 

Proximity, or presence detection, can indicate when a device is close to a known 

reference point.  This is a simple method and detects the presence of the device 

but not necessarily the identity or any other details.  In the case of a 

communication system with a very small range, it can be used to assume that the 

device is at the same location as the reference point.  In systems with greater 

ranges and multiple reference points, the device location can be estimated from 

the locations of all the reference points it is within range of. 

2.4.6 Trilateration 

With this method, the location of the device is derived from measuring the 

distance of the device from several reference points at known locations.  One way 

of measuring the distance from the device to the reference points requires the 

ability to very accurately measure the time for a signal to travel between the 

device and the reference points.  From the differences between the times taken it 

is possible to compute the location of the device.  This method requires numerous 

reference points and very precise synchronisation. 

2.4.7 Hyperbolic Lateration 

This technique uses the Time Difference of Arrival (TDOA) of a signal from the 

device to three or more reference points.  This requires reference point nodes with 

a very accurate timer and a mechanism to detect an emitted pulse from the device.  

A very high level of synchronisation is required. 
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2.4.8 Triangulation 

Triangulation uses the Angle of Arrival (AOA) of a signal emitted by the device to 

reference points to estimate the device location.  When the angle of the signal to 

the reference points is known, the lines along each AOA intersect where the 

device is located.  Triangulation can be attempted in 2D with two reference points 

but is more accurate with more reference points.  Directional antennae or an 

antenna array is required, usually at the reference points and not the mobile 

device.  

2.4.9 Fingerprinting 

Fingerprinting relies on specific properties of radio waves, for RF these are 

temporal stability and spatial variability.  Temporal stability is the stability of the 

radio signal at one point over time, and spatial variability is the change in signal 

strength at different locations.  Fingerprinting requires prior knowledge of the 

signal profiles at different locations, and the accuracy is heavily dependent on the 

spatial variability because signal strengths should be similar on different days and 

weeks.  This method does not model radio propagation so numerous 

measurements must be taken in advance so that the location of the device can be 

determined from comparison with previous signal strengths recorded. 

2.4.10 Dead Reckoning 

Computing the location of a device based on its previously known location, 

direction, speed of movement, or other data is called Dead Reckoning.  It is a way 

of filling in gaps and inferring location from what is already known and sensible 

possibilities.  The accuracy of this method can be improved by using accurate 

data, such as accelerometers on the device, or extrapolating data from two or 

more previous known locations.  

Holler et al [39] draw attention to the fact that the experience of real-world 

deployment of IoT devices is often very different from the expectations resulting 

from laboratory tests.  Devices in real-world situations are subject to a multitude of 

external factors that are not present in laboratories, such as electromagnetic 

influences and environmental elements (temperature, humidity, behaviour and 



24 
 

presence of people, etc.).  Potential sources of errors arising in location systems 

include inadequate clock synchronisation and multipath issues when a signal can 

take numerous paths to the destination due to interaction with obstacles.    

Faragher [40] argues that the best solution to indoor positioning is by using 

smartphones and has presented a technique based on opportunistic sensing and 

machine learning techniques, such as Simultaneous Localization and Mapping 

(SLAM) used in the robotics industry.  The technique for smartphones, named 

SmartSLAM, uses the patterns of radio signal strength measurements (WiFi, 

cellular signals, etc.) at any location to determine its location without the need for 

extensive mapping beforehand.  A further smartphone technique has been 

developed using BLE beacons as opposed to relying on existing WiFi 

infrastructure [41].  

Although these new techniques are providing positive results during tests, the use 

of smartphones as part of a RTLS for this research is not feasible due to the costs 

and uncertainty related to compatibility with changes to operating systems.  As 

smart devices are not being pursued in this research, a smart environment with 

dumb devices is required.  To capture the location of individuals it is necessary to 

have dumb devices that people can wear.   

2.5  Wearable Technology 

There are many examples of systems that track an aspect of human behaviour 

using wearable technologies.  When connected to an appropriate wireless sensor 

network these systems can monitor and collect a great deal of data.  This is a key 

requirement of this research. 

Tagging systems are currently used for a wide variety of purposes, from 

monitoring compliance with Home Detention Curfews to health traceability of 

livestock and improved stock control and logistics [42].  Competitive runners can 

purchase commercial RFID wristbands that not only accurately log their timings, 

but also store their bib number, name, gender, age, medical information and 

emergency contacts.  Wearable tags can be used in medical settings to both give 

a quick and accurate identification of patients, their medical history and allergies, 

etc. but also to give warnings when they are leaving the environment.  This has 
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been successfully used to reduce instances of potentially life-threatening cases of 

confused patients leaving hospital grounds [43]. 

There have also been several systems developed to locate and track people and 

objects within closed environments [44, 45].  These systems frequently use 

triangulation and multi-lateration methods using light, ultrasound or radio signals.  

The purpose of indoor positioning systems is to locate people and/or objects in 

large buildings, such as offices and hospitals. 

The Active Badge system was the first indoor location sensing system developed 

by AT&T [46].  This is an infrared positioning system as every person wears a 

small infrared beacon that emits a unique code identifier every 15 seconds.  The 

network of IR sensors within the building detects these transmissions and sends 

the information to a central data bank.  In contrast the Active Bat system is an 

ultrasonic system and the users are tagged with ultrasonic tags that emit signals 

that are picked up by receivers.  Active Bats performed better than Active Badges 

but required a large number of sensors mounted in the ceiling. 

Wearable RFID is increasingly being developed to improve interactivity with 

computer gaming.  Two wearable RFID systems developed by Intel Research 

Seattle include the iGlove and the iBracelet [47].  While the iGlove has the 

components mounted on the hand of the glove and the antennae wire sewn into 

the palm, the iBracelet has everything encased in a hard plastic shell around the 

wrist of the wearer.  The technology is being developed to reduce the size and 

there are several games already being developed specifically for RFID interaction. 

In addition to the world of computer gaming, wearable technology has become 

popular with people wanting to tag themselves voluntarily.  There are several 

models available from several manufacturers and the functions range from basic 

pedometers to wristbands that log different intensity activities, distance and steps, 

quality and quantity of sleep, heart rate, GPS location, and idle alerts.  These 

devices communicate with apps on smart phones to provide numerous ways of 

presenting the data collected, set goals and include the ability to add further data 

manually, such as food and water intake.  The smartphones also act as a gateway 

to social media and other users of the devices. 
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The medical community also see opportunities for wearable technology, to not 

only observe and manage conditions, but also to aid diagnosis.  Mackinnon [48] 

argues that wearable sensors could assist the diagnosis of movement disorders.  

Conditions, such as Parkinson’s Disease, have symptoms that are highly episodic 

and so may not be reliably captured by clinicians.  If sensors monitor symptoms 

over a period of time this would greatly help physicians both diagnose and assess 

the efficacy of a treatment plan. 

Sahakian [49] suggests that wearable technology could, and should, be exploited 

in the interests of brain health and wellbeing.  There are many existing health 

apps [50] including those that use sensors and Sahakian argues that it is 

imperative that these technologies are applied to brain health.  An example is a 

wearable sensor that can recognise when a person’s behaviour alters, which 

could indicate the onset of an episode of poor mental health.  In this instance, a 

professional would be alerted to intervene at a much earlier stage than currently 

happens, and then be able to prevent an escalation to crisis point.  This would 

save considerable resources and the involvement of numerous agencies, and 

minimise mental distress of the person being helped. 

One common cause for concern of wearable technologies is that of privacy of the 

wearer’s data.  There is an interesting paradox revealed by experiments that 

shows that the more control people have over publishing their private data the 

more likely they are to share it [51].  In contrast, when people have less control 

over their personal information the more concerns they have about privacy, and 

the less willing they are to have their information published.  People consistently 

tend to share very personal information, in this case on social media, even when 

they are aware that strangers could access that information.   

2.6 Summary 

This chapter presented detailed information on the five key issues of this research.  

Section 2.1 set out how the everyday is ubiquitous and yet often elusive.  

Common methods of recording daily life, including the Mass Observation Project 

and Time Use Survey, require the co-operation of fully-informed participants.  A 

challenge in capturing truly typical quotidian behaviour is that people under 

scrutiny behave differently when they are aware of being observed. 
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Section 2.2 introduced the technique of unobtrusive observation.  Although this 

research did not include working with participants, the requirement to discreetly 

monitor human behaviour was a critical design objective. 

There are many sources of data concerning UK domestic energy consumption, 

including extensive data on housing stock and households.  The increasing cost 

of energy to domestic consumers is a major contributory factor in the rise in the 

incidence of fuel poverty, which is a key motivation for this research.  The gap in 

knowledge of how people use energy at home means that initiatives aimed at 

reducing consumption are based on assumptions and are found to be ineffective 

over the long-term.  If personalised energy consuming profiles were known, 

advice and initiatives could be better focused to understand and change energy 

inefficient behaviours. 

Most people in the UK come into contact with wireless networks every day, at 

work, home, while travelling, and in many other locations.  Ofcom reported that in 

2014 the average adult spends more time each day on digital media and 

communications than sleeping.  Most, if not all of this is through wireless networks.  

Wireless protocols that enable devices to communicate with each other were 

presented in Section 2.4 Location Determination, followed by methods and 

examples of deriving location.   

As shown in Section 2.5, wearable technologies are increasingly being used by 

individuals to monitor their own health and activity levels.  When a wearable 

technology is combined with an appropriate wireless sensor network, the ability to 

capture a great deal of data is possible. 

This literature review has shown that there is an imperative to find new ways to 

address the growing problem of domestic energy consumption in the UK.  While 

capturing everyday human behaviour is difficult, by using wearable technology 

connected to a wireless network it is possible to develop a system that 

unobtrusively observes people as they use energy at home if they wear dumb 

devices in a smart environment. 
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Chapter Three 

3 System Design Overview 

As has been described in Chapter One, this research is proposed to address the 

development of a technique to enable the capture of personalised, domestic 

electricity consuming behaviour.  Chapter Two has set out the key issues, and this 

chapter explains the requirements of this technology in order to fulfil the need for 

information on how people use energy at home. 

The fundamental requirements of this technique must include: 

1. The ability to locate individuals to room-level 

2. Accurate recording of the location, an individual’s identity, and the time 

3. Appliance level electricity consumption data, also recorded with time and 

location 

Matching an individual’s location data with the energy consumption data from 

appliances will allow the energy used at that location at that time to be attributed 

to the person or persons present.  Rules of attribution are included at the end of 

this chapter to ensure household members with care-giving responsibilities are 

not unfairly held responsible for energy use that is for the good of the household. 

Chapter Two clearly showed the need for discretion when observing human 

behaviour.  Although it could be possible to use cameras to record whoever is in 

the location when energy is being used, this is problematic for several reasons.  

Using cameras in private homes without the householder’s fully informed consent 

would be at the very least unethical, and with consent would make the system 

obtrusive and therefore unreliable as a method of observing typical behaviour.  

Additionally, the camera recordings would have to be monitored and the 

individuals matched to the energy consumption manually.   

Chapter Two highlighted the use of wireless sensor networks and wearable 

technology to monitor human behaviour.  By using small unobtrusive devices 

worn by people in their home that transmit data wirelessly a system can be 

developed to provide location data.  The system must be effective and reliable, 

acceptable to people, and able to capture the everyday energy consuming 
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behaviour without influencing it.  It has been shown in the previous chapter that 

this kind of system does not currently exist. 

Previous research of indoor tracking systems show that they have significant 

differences from the one needed for this research.  These include a mobile home-

care system that uses RFID to enable health workers to access real-time 

physiological data (blood pressure and heart rate) of a patient remotely [52].  In 

this case the patient is static and connected to a health monitor in one location 

and the health worker receives the data via RFID. 

Further examples of wireless sensor network location tracking systems used in 

non-open spaces have used numerous RFID readers in a grid pattern or near 

doorways [53, 54].  The use of multiple readers helps to increase confidence in 

location inference due to the many readings of close proximity to the large number 

of readers, but having a large number of readers in a person’s home would render 

the system highly visible.   

In the interests of keeping the system as unobtrusive as possible, a limited 

number of fixed readers are needed to determine the location of householders 

wearing mobile tags.  The entire system must also be cost-effective, and easy to 

retrofit to properties.  Additional essential characteristics of the wearable tags, 

fixed readers and the controlling base system are set out in Table 3.1. 
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System Element Essential Characteristics Rationale 

wearable tags lightweight To record the everyday energy 
consuming behaviour the tags 
must be as unobtrusive as 
possible.  This is unlikely if the 
wearable tags are heavy, 
uncomfortable, or cause 
irritation to the person wearing 
one.  

comfortable to wear 

low allergen 

water resistant The tags do not record energy 
consumption in wet rooms but it 
is possible that they could 
come into contact with moisture 
through normal domestic 
activities. 

child and animal-safe Although children are not 
tagged, reasonable efforts must 
be made to ensure the tags do 
not present a danger to 
children or animals in the 
household. 

low energy demand If tags require very regular 
battery changes by the wearer 
this increases the attention to 
the tags and therefore reduces 
the unobtrusiveness and 
effectiveness as a method of 
capturing the everyday. 
Tags that stop working due to 
battery failure poses a risk of 
loss of data. 

fixed sensors and 
base station 

no sound, light or 
vibration emitted 

Any sound, light or vibration 
from the base station increases 
awareness of the system and 
reduces the unobtrusiveness. 

low energy demand People should not have to use 
an excessive amount of energy 
in order to have their energy 
consumption monitored.  

quick to install A complex installation 
potentially increases 
annoyance with, and 
awareness of the system. 

flexibility  Flexibility is required so that the 
reader antenna can be 
positioned in the optimum 
location and orientation to 
avoid obstruction by furniture 
and building elements. 

Table 3.1 The essential characteristics of tags and base station 
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3.1  Energy Consumption 

The majority of previous research into domestic energy consumption monitored 

household energy use only.  This is adequate as a measure of whole house 

characteristics but inadequate for personalised energy monitoring.  Appliance 

level electricity monitoring is required so that when an appliance is used, and the 

location of the appliance and individuals are known, it is possible to directly link 

the electricity use with the individuals at that location. 

Plugwise Energy Management and Control System 

Plugwise is an energy management and control system for monitoring individual 

appliances in buildings.  The Plugwise system is based on a wireless mesh 

network (Zigbee 2.4 Hz).  

The Plugwise system has been used in previous energy monitoring research by 

the University of Salford, and the Plugwise company donated an advanced 

licence for the purposes of this investigation.  The system is straightforward to set 

up and several test networks were evaluated over a period of six months in which 

the units performed well and reliably recorded energy consumption of the 

appliances they were monitoring.  

 

Figure 3.1 Hourly Energy Consumption pattern over  several days for a refrigerator 
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An example of the graphical output from the system is presented in Figure 3.1, 

this shows the hourly energy consumption of a refrigerator over several days.  

In addition to the graphical outputs from Plugwise, with the enhanced donated 

licences the raw data can be exported in csv format.  The maximum number of 

Plugwise devices, and therefore appliances being monitored, in any single 

network is 65.  Further details of the energy monitoring system can be found in 

Appendix A. Energy Monitoring System. 

3.2  Real Time Location System 

A Real Time Location System (RTLS) is a group of devices that when used 

together can capture data from which the location of the object or person being 

tracked can be derived.  As previously discussed in Chapter Two there are 

different communication protocols and location derivation methods currently in 

use.  Two potential locating devices are described in this section.  These are the 

Texas Instruments eZ340-Chronos Development Tool and the Loc8tor device. 

In addition to units that obtain data for computing location, a RTLS requires a 

gateway, or base station.  Communication between the base station and location 

sensors is an essential element as this is how the sensors are controlled, data is 

received and accurate timings achieved.  Although some RTLS systems can feed 

back near-instantaneous location data to individuals or organisations, such as 

GPS or high specification security applications, this is not always required.  For 

the purposes of this research, it is only necessary to record time-stamped location 

data so that this can later be matched with time-stamped energy consumption 

data to obtain the identity of the person or persons present when that energy was 

being consumed. 

3.2.1 Locating Systems 

Texas Instruments eZ430-Chronos Development Tool 

The eZ430-Chronos software development tool is a wearable system that is 

based on the CC430F6137 microcontroller with sub 1 GHz wireless transceiver.  

The design is based on a sports watch and includes a three-axis accelerometer, 

pressure sensor, temperature sensor and battery voltage sensor. 
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The watch can act as a central hub for nearby wireless sensors, such as 

pedometers or heart rate monitors.  Included is also an eZ430-RF USB emulator 

that connects the eZ430-Chronos to a PC for programming and debugging.  The 

watch has to be disassembled to be reprogrammed with custom applications.  

There is an active online community of enthusiasts investigating the capability of 

the watch and documenting their successes and failures. 

 

Figure 3.2 The Texas Instruments eZ430-Chronos Development Tool 

(image from Texas Instruments) 

The watch could be programmed as an RFID transceiver emitting an RF signal 

periodically to a network of RF receivers in fixed locations within a building to 

potentially form part of a RTLS.  From RSSI or TDOA calculations this could give 

the location of the individual in the property.   

The Chronos watch was considered as a potential element of the location system.  

The watch has many functions including the one that is required, but a major 

concern was that the watch was large.  Whether someone was an existing watch-

wearer or not, wearing the Chronos watch would be a constant reminder that your 

behaviour was being observed.   
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Figure 3.3 Chronos watch (left), UK 5 pence (centre), and Loc8tor tag (right) 

The software that controls the Chronos watch is proprietary and is incompatible 

with many devices which restricted communication with anything other than a 

standard computer or laptop.  For these reasons the Chronos was discounted as 

a component in the locating system. 

Loc8tor 

The Loc8tor is a UK made RFID homing device.  It is relatively inexpensive and 

marketed as a method of helping people find mislaid possessions, pets, and other 

people.  The system comprises of a handheld unit and up to four tags.  The 

Loc8tor works on the 2.45GHz frequency band, and the handheld unit and tags 

both transmit and receive signals. 

 
Figure 3.4 The Loc8tor Lite handheld unit with two tags 

(image from Loc8tor.com) 

Each active tag has a unique identifying signal and must be registered with the 

handheld unit and allocated to one of the four numbered buttons.  The process for 

finding tags is shown in Figure 3.5. 
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Figure 3.5 User actions and corresponding Loc8tor activity during search-mode 

The handheld unit has eight LEDs that indicate the signal strength.  There are two 

red, three amber and three green lights.  Up to three lights are active at a time in 

general search-mode giving a series of nine patterns to indicate signal strength.  

These are shown in Figure 3.6 along with the Signal Strength Number (SSN) 

these patterns have been assigned for this research. 

 

In addition to the nine identified Signal Strength Numbers and corresponding 

pattern of LED activity, the Loc8tor system does have an additional ‘zooming-in’ 

mode.  In this mode all the lights are active when the searched-for tag is very 

close to the handheld unit.  This only happens when the tag is closer than 30cms 

and is not relevant for the purpose of tracking people’s location around their 

homes. 

Although the handheld unit and the tags come with integral speakers to give an 

audio signal when searching for tags, these can be easily disabled. 
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Visual signal from 
Loc8tor Lite handheld 

unit 

Signal Strength 
Number 
(SSN) 

LED# lit up at that 
signal strength 

 

1 
 
- 

 

2 1 

 

3 1,2 

 

4 1,2,3 

 

5 2,3,4 

 

6 3,4,5 

 

7 4,5,6 

 

8 5,6,7 

 

9 6,7,8 

Figure 3.6 The patterns of signal strength and allocated Signal Strength Number (SSN) 

The tags are not waterproof but there are water-resistant wristbands available and 

plastic covers for attaching tags to pet collars.  The handheld unit can register a 

maximum of four tags, and each tag can only be registered to one handheld unit.  

Discussions with the company that manufactured the Loc8tor revealed that the 

PCB’s could be cloned which would enable the tags to be registered to more than 

one unit.   

3.2.2 Base Station 

The base station of the RTLS controls the sensors in the network, receives data 

from the sensor network, and manages the storage of data, either locally or by 

transmission to a server.  Judah recommends, from experience, that remote 
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access to the sensor networks is vital so that any errors or malfunctions can be 

quickly identified and rectified. 

Tablet computers and mobile phones could potentially act as a base station, 

although there are several disadvantages to this, including; the risk of theft, the 

expense of purchasing the equipment and ongoing costs, and compatibility issues 

between the different operating systems of the devices.  In addition, tablet 

computers and mobile phones are over-engineered for the application as a base 

station as only a small proportion of their capabilities would be used. 

A cost-effective solution is the Raspberry Pi (RPi) computer.  This is a credit-card 

sized computer that has been designed and made cheaply to encourage more 

people, especially children, to learn programming.  The Model B Raspberry Pi has 

256Mb RAM, 2 USB ports and an Ethernet port.  The RPi boots up from an SD 

card pre-loaded with the choice of several operating systems and communicates 

with a wide variety of devices and sensors via a choice of coding packages, such 

as Python. 

The RPi is very economical because it consists of the bare PCB with very little 

additional components.  It is necessary to have additional components to work 

with the RPi.  These include: a powered USB hub, keyboard, mouse, HDMI 

monitor or HDMI connector to use a non-HDMI monitor. There is no wireless or 

Bluetooth connectivity on board the RPi but dongles can be used if required.  

 An additional benefit of the RPi as a base station is the small size, enabling a 

compact RTLS to be developed.  Figure 3.10 shows the RPi with a UK five pence 

coin for scale. 
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Figure 3.7 Top (left) and underside (right) of the Raspberry Pi (RPi) computer, with a UK 5 

pence coin for scale 

3.3  Rules of Attribution 

Rules of attribution must be applied to appropriately attribute energy consumption 

to the correct individuals.  For example: 

1. Individuals in the same location at the same time share responsibility for 

the energy being consumed in that location at that time. 

2. If an individual is present and alone when energy consumption increases 

in one location and then moves to another location without the energy 

consumption decreasing, it will be assumed that the person turned on an 

appliance and left it on when they left the location.  In this case they will be 

responsible for the energy consumed in their absence until another person 

comes into the location.  The new person will become responsible for the 

energy consumption of the appliance. 

In the interests of gender equality and to avoid unfairly attributing excess energy 

consumption to the individuals within households that have care-giving 

responsibilities, all the energy that is consumed within the kitchen is assumed to 

be for the good of the entire household and is not monitored and attributed to 

individuals.  Due to the lack of appliances present and the damp environment, 

bathrooms and wet rooms are not monitored.  The energy consuming behaviour 

of children is not monitored.  In this case this refers to the UK age of majority, 

which is 18 years of age. 
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3.4  Summary 

The appliance-level electricity monitoring system from Plugwise was considered 

to be a well-established and reliable method of recording the energy use of 

household appliances.  The generous donation of the professional licences for 

this research by the Plugwise company ensured that the consumption data could 

be exported in csv format.  This enhances the task of matching location data of 

individuals to electricity consumed at the same time and location.  

This chapter has explained why previous attempts to tag and track objects are not 

suitable for this project due to the large number of readers required and the fact 

this would significantly increase the visibility of the system. 

The Chronos watch was over-engineered for the purposes of this research and 

could only communicate with a limited number of devices due to software 

incompatibilities.  In addition the size and conspicuous form of the watch was 

seen not to be an ideal candidate for inclusion of this research. 

The Loc8tor tags however are small and lightweight and could be worn on a 

lanyard, attached to a belt or item of clothing, or worn on a wristband to suit the 

preferences of household members in the event of the system being used in trials.  

This would be similar to the forms of id employees wear and are often visible 

when people forget to take them off outside of their employment. 

The Loc8tor system is less complex than the Chronos watch and designed for the 

only purpose that is required by this project.  The ability to clone the units is an 

additional potential benefit when more than one reader is required in a home.  For 

these reasons the Loc8tor system was selected for use in this research. 

The Rapsberry Pi computer was selected as the base station due to its size, 

simplicity, and cost-effectiveness.  The RPi is inherently flexible with a great deal 

of choice of software to run on the computer and GPIO pins to make physical 

connections.  RPis can connect and synchronise to a Local Area Network via a 

wi-fi dongle, and can read and write to USB memory drives. 

By using the Plugwise system, Loc8tor RFID tags and reader, and the RPi as a 

base station the fundamental requirements of accurate recording of an individual’s 
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location and appliance level electricity consumption are met.  The remaining 

requirement for the ability to locate individuals by room-level was to be 

determined through thorough experimentation.  Chapter Four and Appendix A set 

out how the prototype was developed, and once proof of concept was obtained, 

how the experiments with the system were carried out and the data analysed to 

investigate whether room-level location identification was possible. 
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Chapter Four 

4 Experimentation 

This chapter explains how the experimental phase of this research was carried 

out and the data was collected and analysed.   Details of the RTLS prototype 

development are included, the equipment used and testing procedure for all the 

tests set out.  Information about the testing locations and their form and 

construction are included, and methods of data collection and analysis.  The 

design and purpose of specific types of tests are also presented. 

4.1  Prototype Development 

This section briefly summarises the development of the prototype until proof of 

concept was achieved.  More details of the manufacture of the prototype are 

included in Appendix A. Prototype Manufacture. 

The Printed Circuit Board (PCB) of the Loc8tor handheld unit was released from 

its protective casing and each of the circuits related to the eight LEDs were 

identified and connected to the GPIO header of the RPi.  A computer programme, 

written in the Python coding language, was written that controlled the tags, 

interpreted which LED circuits were active, time-stamped and stored the data to a 

USB memory stick.  The Python programme is included in Appendix B. Python 

Programme. 

The resulting prototype and code enabled the capture and storage of data from 

the tags recording the specific tag, time, and signal strength. 

4.2  Experimental Set-up 

The following equipment was used in all the experiments conducted in this 

research: 

 Prototype: four complete prototypes were built from four Loc8tor handheld 

units, with additional elements to connect to a RPi.  

 RPi: Each prototype was connected to and controlled by a dedicated RPi. 

 Loc8tor tags: Up to four tags were linked to each prototype. 
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 Powered USB Hub: RPis have two USB ports only.  The powered USB 

hub was necessary to enable each RPi to be connected to a monitor, 

keyboard, mouse, and USB memory stick. 

 Monitor, keyboard, and mouse: In order to load, amend, and view the 

Python code and data being collected. 

 USB memory stick: For local storage of the resulting data from the 

prototype. 

 USB wi-fi dongle: Connection to a wi-fi network enabled accurate time-

stamping of data. 

 1 metre stand: In order to ensure all signal strength readings were taken 

at a consistent height above floor level, and at a height similar to that which 

would result from the tag being worn on a person’s wrist, a 1 metre stand 

was used on which the tags were placed.  

As well as all tag readings being taken at a height of 1 metre above floor level, 

each testing location was marked out in advance with a grid of 1 metre squares 

and each sampling point was individually named.  Some experiments were also 

carried out with a Rohde & Schwarz FSH3 Handheld Spectrum Analyzer in order 

to investigate the signals between the prototype and tags.  Figure 4.1 shows an 

experimental set-up with the spectrum analyzer. 

 

Figure 4.1 Experimental Set-up with Spectrum Analyzer (from l-r monitor, keyboard, 

powered USB hub, RPi, prototype, spectrum analyzer, mouse) 
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4.3  Test Procedure 

For each test, the prototype and RPi were placed in the required location in the 

testing location.  With the Python programme running and the prototype activated, 

the tags were moved to the sampling points, placed on the 1 metre stand, and the 

signal strength readings were recorded.  Tests were carried out in the Salford 

Energy House and a house in Stockport, Greater Manchester. 

4.3.1 Testing Locations 

The Salford Energy House 

The Energy House at the University of Salford is a full scale house built inside an 

environmental chamber.  The house is a fully furnished two-bedroomed solid wall 

end terrace from 1919.  It was rebuilt inside a laboratory in 2011 using traditional 

methods and materials, and represents 21% of UK housing stock [55].   

              

Figure 4.2 The front (left) and rear (right) elevations of the Salford Energy House with the 

full-height 1/3 width house next door visible 
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Figure 4.3 Layout of the Salford Energy House ground floor (left) and first floor (right) 

As can be seen from the floorplans in Figure 4.3 the house is of a traditional two-

up two-down design.  There is an additional full-height and 1/3-width house built 

adjacent to the property (the conditioning void) to correspond to the energy house 

being an end terraced dwelling. 

Prior to testing, a 1 metre grid was marked out and each sampling point given a 

unique identifier.  The location of these sampling points is shown in Figure 4.4.   

 

Figure 4.4 The 222 sampling points at the Salford Energy House ground floor (left) and first 

floor (right) 
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In total there were 222 unique sampling points used, comprised of the following: 

 146 on the ground floor: 

o Living room – 36 

o Stairs – 4 

o Kitchen – 29 

o External – 52 

o Conditioning void - 25 

 76 on the first floor: 

o Bedroom 1 – 36 

o Stairs – 3 

o Bathroom – 6 

o Bedroom 2 – 14 

o Conditioning void – 17 

Images from the Salford Energy House tests can be found in Appendix D. Salford 

Energy House tests. 

Home1 

Home1 is a three-bedroomed semi detached house in Stockport, Greater 

Manchester, and is typical of the houses built in the early post-war (1945-1964) 

social housing building boom [56].  At this time there was a great demand for 

homes to replace those destroyed and damaged during the war.  There was a 

shortage of construction materials and skilled workers so houses from this era 

have less ornamentation than previous periods, such as bay windows, resulting in 

a more basic ‘boxy’ design.  Common features include solid concrete floors, cavity 

walls and chimneys.  Homes built in this period account for over 22% of the 

existing English housing stock [57]. 

              

Figure 4.5 Front elevation of Home1, a typically constructed early post-war three 

bedroomed semi-detached house in Stockport, Greater Manchester 
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The layout of Home1 is shown in Figure 4.6 below.  The property is fully furnished 

and occupied by a family.  The ground floor comprises a large living room, a 

kitchen and entrance hall and on the first floor are three bedrooms.  There is a full 

height chimney breast located centrally in the house. 

 

Figure 4.6.  The layout of Home 1 ground floor (left) and first floor (right) 

Due to Home1 being filled with a lot more furniture than the unoccupied Energy 

House, there were some restrictions on the selection of sampling points.  A total 

of 171 unique sampling points were used.  These are shown in Figure 4.7. 

 

Figure 4.7. The 171 unique sampling points in Home1, ground floor (left) and first floor 

(right) 
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The 171 sampling points in Home1 comprises: 

 97 sampling points on the ground floor: 

o Living room - 65 

o Kitchen - 13 

o Hall - 16 

o Stairs - 3 

 74 sampling point on the first floor: 

o Bedroom 1 - 29 

o Bedroom 2 - 13 

o Bedroom 3 – 13 

o Landing - 11 

o Toilet - 2 

o Bathroom - 3 

o Stairs - 3 

Naming Convention of the Sampling Points 

In order to aid the accurate recording and analysis of data, a consistent naming 

convention was applied to all the sampling points.  Each sampling point was 

numbered and had a prefix that indicated the location of the room it was in.  An 

initial prefix of G indicated that the location was on the ground floor, and F 

indicated first floor.  Additional letters were also used to indicate the specific room, 

such as K for kitchen, L for living room, etc.  Table 4.1 shows the prefixes used 

and Figure 4.8 shows the locations these codes applied to. 

Testing Location Prefix Specific Location 

(floor, room) 

Energy House GL Ground, Living Room 

GK Ground, Kitchen 

GS Ground, Stairs 

GE Ground, External 

GCV Ground, Conditioning Void 

FB1 First, Bedroom 1 

FB2 First, Bedroom 2 

FBA First, Bathroom 

FS First, Stairs 

FCV First, Conditioning Void 

Home1 GL Ground, Living Room 

GK Ground, Kitchen 

GH Ground, Hall 

GS Ground, Stairs 
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FB1 First, Bedroom 1 

FB2 First, Bedroom 2 

FB3 First, Bedroom 3 

FL First, Landing 

FS First, Stairs 

FT First, Toilet 

FBA First, Bathroom 

Table 4.1 Summary of the naming conventions used to identify each sampling point 

 

 

 

 

Figure 4.8 the locations that the naming convention refers to at the Salford Energy House 
(top) and Home1 (above) 
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4.3.2 Types of Tests 

The purposes of the tests varied over the testing period and location.  The specific 

aims and details of these tests are described below. 

Signal Strength 

Although signal strength was recorded throughout all the tests, some initial tests 

were specifically designed to map the signal strength behaviour of the prototypes 

at the testing locations.  This was to derive a baseline understanding of how the 

prototypes behaved and to determine the effects of fixed and common building 

elements present, such as the centrally located chimney in Home1. 

Orientation 

The orientation tests were carried out to investigate the effect on signal strength of 

tilting the reader antenna in different orientations.  This was in order to ensure the 

optimum orientation for the reader when deriving location from signal strength 

readings.  

Examples of orientation tests include taking entire sets of readings with the RPi in 

the same location but at different orientations, such as at 45o towards the floor, 

horizontal, and at 45o towards the ceiling.    

Environmental effects 

Previous research [58] has suggested that environmental factors, such as 

temperature and humidity, have a significant impact on the performance of RFID 

systems.   Tests were carried out in Home1 to investigate the effect of expected 

variations in temperature and humidity on the prototype in a domestic setting. 

During these tests, the tags were placed in specified locations over a period of 

many hours and the signal strength was time-stamped and recorded to USB 

memory stick.  During analysis the data was examined for changes in signal 

strength and compared to changes in local temperature, humidity, and weather 

conditions.   

Home1 is not in a climate-controlled condition, unlike the Energy House, and does 

not include unusual or non-domestic activities that are expected to significantly 
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affect the internal temperature and humidity levels.  There is adequate natural 

ventilation and no damp or mould present. 

The testing period was not taking place in the domestic heating season and some 

windows were usually open during the tests.  Local meteorological conditions 

were most likely to influence the temperature and humidity within Home1.   

The Met Office is the UK’s national weather and climate service.  As well as 

generating forecasts for the Public Weather Service and National Severe Weather 

Warning Service the organisation carries out a significant amount of research and 

records over 10 million weather observations every day. 

The Met Office provides a wide range of data for researchers through their 

DataPoint scheme.  For the purposes of these tests the UK hourly observations 

for the nearest observation station was obtained.  The data provides hourly 

recorded information on nine parameters and 30 weather types available in xml 

format.  The data variables recorded are shown in Table 4.2. 

Parameter units Weather Type 

Wind Gust mph NA Not available 15 Heavy rain 

Temperature C 0 Clear night 16 Sleet shower (night) 

Visibility m 1 Sunny day 17 Sleet shower (day) 

Wind Direction  2 Partly cloudy (night) 18 Sleet 

Wind Speed mph 3 Partly cloudy (day) 19 Hail shower (night) 

Pressure hpa 4 Not used 20 Hail shower (day) 

Pressure Tendency Pa/s 5 Mist 21 Hail 

Dew Point C 6 Fog 22 Light snow shower (night) 

Screen Relative Humidity % 7 Cloudy 23 Light snow shower (day) 

 8 Overcast 24 Light snow 

9 Light rain shower 

(night) 

25 Heavy snow shower 

(night) 

10 Light rain shower 

(day) 

26 Heavy snow shower (day) 

 

11 Drizzle 27 Heavy snow 

12 Light rain 28 Thunder shower (night) 

13 Heavy rain shower 

(night) 

29 Thunder shower (day) 

 

14 Heavy rain shower 

(day) 

30 Thunder 

 

Table 4.2. The nine parameters and 30 weather types available from the Met Office 

DataPoint hourly observations 
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The nearest Met Office observation station to Home1 was Rostherne No 2.  The 

differences between the locations of Home1 and Rostherne No 2 are shown in 

Table 4.3.  The differences between the two locations were considered to be 

minor and Rostherne No 2 was selected as the observation station to use 

observation data from. 

 Home1 Rostherne No.2 

location 53.4065, -2.1574 53.3598, -2.38053 

altitude above mean 
sea level 

67m 35m 

distance between 
locations 

10 miles 

Table 4.3 location differences between Home1 and Met Office observation station 

Rostherne No.2 

The Met Office DataPoint observation data uses Greenwich Mean Time (GMT).   

Triple Point Positioning of Prototypes 

An essential element of the tests was to determine the optimum location and 

orientation of prototypes in order to locate the tag to an accuracy of room-level.  In 

a cube the best locations for three sensors to be placed in order to determine the 

location of a tag within the cube is shown in Figure 4.9.  Each of the three 

antennae is directed towards the opposite diagonal corner of the cube. 

 

Figure 4.9 The ideal locations for readers when using triple points to locate tags within the 

cube. 

Home1 can be considered to be a cube with a square footprint of 6.5 metres by 

6.5 metres.  Taking into account the practical limitations of the layout of Home1 
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the actual locations of the triple point positions for the RPi’s are shown in Figure 

4.10. 

 

Figure 4.10.The nearest to ideal locations for the Rpi’s for the triple point tests in Home1 

 

Figure 4.11 shows the layout of Home 1 with the uses of those rooms. 

  

Figure 4.11.The layout of Home1 showing room usage on the ground floor (left) and first 

floor (right)    

The actual locations of the three RPis during the triple tests in Home1 are shown 

in Figure 4.12.  RPi1 was placed in bedroom 2, RPi2 in bedroom 3 (currently in 

use as an office), and RPi3 was located on the ground floor in the living room.  
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Figure 4.12 The actual locations of the RPi’s within Home1 for the triple tests 

During the triple tests, a RPi and prototype was placed in one of the specified 

triangulation points and communicated with one tag.  The tag was moved 

between a reduced selection of sampling points that were chosen to cover the 

extents and space within the rooms.  The 40 sampling points used in the 

triangulation tests is shown in Figure 4.13. 

 

Figure 4.13.Map of sampling points used for triple tests 

RPi3 

RPi2 

RPi1 
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The test was repeated in each of the three RPi positions with the same RPi, 

prototype and tag.  This was to reduce variances of performance between the 

tags and the readers.  The resulting data from these tests provide three signal 

strength readings for each RPi triple point position for the 40 sampling points. 

Mobile walk-through 

In addition to tests with the tags at specific sampling points, a mobile walk-through 

was carried out in which the tag was worn by a person walking a specific route 

around Home1 while the signal strength was being continuously collected by the 

prototypes.  The walk-through took 17 minutes to complete and included several 

pause points.  The route and pause points are shown in Figure 4.14. 

 

 

Figure 4.14 The walk-through route and 12 pause points at Home1, ground floor (left) and 
first floor (right) 

The walk-through route was used in conjunction with the RPi triple point positions.  

The resulting data provides three signal strength readings (related to each RPi 

position) for the 12 known pause points and several more for the gaps between 

the pause points. 

 

4.4  Data Collection 

Signal strength data from the prototypes during experiments was recorded either 

manually with the sampling point location, or was saved in csv format locally to a 
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USB memory stick connected to the RPi and time-stamped.  Data from the 

spectrum analyzer was recorded manually, and examples of the signal behaviour 

captured and saved on the device. 

When the signal strength readings were saved to USB memory stick, the output 

from the RPi presents ten readings and ten timestamps for each tag on each line 

before moving on to the next tag.  The form and timings of this output data is 

described in Table 4.4. 

  

18 seconds from Tag1 timestamp1 to Tag1 timestamp10 

        |                                                                                                                          | 

 

Tag1 r1 t1 r2 t2 r3 t3 r4 t4 r5 t5 r6 t6 r7 t7 r8 t8 r9 t9 r10 t10 -- 

| 

8 seconds between Tag1 timestamp10 and Tag2 timestamp1 

                    | 

Tag2 r1 t1 r2 t2 r3 t3 r4 t4 r5 t5 r6 t6 r7 t7 r8 t8 r9 t9 r10 t10 

Tag3 r1 t1 r2 t2 r3 t3 r4 t4 r5 t5 r6 t6 r7 t7 r8 t8 r9 t9 r10 t10 

Tag4 r1 t1 r2 t2 r3 t3 r4 t4 r5 t5 r6 t6 r7 t7 r8 t8 r9 t9 r10 t10 

  

87 seconds between Tag1 timestamp10 to the next Tag1 timestamp1 

        | 

Tag1 r1 t1 r2 t2 r3 t3 r4 t4 r5 t5 r6 t6 r7 t7 r8 t8 r9 t9 r10 t10  

where:                   

r = signal strength reading 

t = time-stamp                   

Table 4.4. the form of the lines of the output file with timings indicated 

Reading the tags over an extended period of time results in multiple lines.  The 

output from 24 hours results in 833 lines of results and returns 8330 signal 

strength readings for each tag. 
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When the Rohde & Schwarz FSH3 Handheld Spectrum Analyzer was used during 

tests, the signal was observed and recorded manually.  An example of the signal 

transmitted from a tag is shown in Figure 4.15.  The signal can be seen to be 

symmetrical with a central frequency of 2.445GHz and a span of approximately 

2.4MHz.  The peak signal strength occurred at the central frequency and this was 

recorded at each sampling point. 

 

Figure 4.15 Output from the spectrum analyzer showing a peak tag signal at  

-71dBm during tests at the Salford Energy House 

 

4.5  Data Analysis 

From the recorded signal strength data, heatmaps were constructed as CAD 

drawings using different colours to indicate the signal strength at each sampling 

point.  Figure 4.16 shows a heatmap from one of the tests at the Salford Energy 

House.  This shows that the majority of the sampling points inside the house gave 

a signal strength reading of SSN5 to SSN8, with the remaining three interior 

locations closest to the RPi giving a SSN9.  It can also be seen that the signal 

remains very strong on the first floor.  
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Figure 4.16.  Example of a heatmap from a test at the Salford Energy House (ground floor 

(left) and first floor (right)).  The RPi position and reader direction indicated as in the 

kitchen and towards the opposite corner of the house. 

The heatmaps show the effect on signal strength of distance from the RPi, and 

obstructions between the reader and the tag.  Heatmaps constructed from 

experimental data was also compared with anticipated signal strength heatmaps 

from signal modelling software.  Figure 4.17 shows a model of the same test at 

the Salford Energy House. 

     

Figure 4.17.  Heatmap of the Salford Energy House ground floor (left) and first floor (right) 
using Ekahau ESS Pro 7.6.4 software. 

The software used to model heatmaps at the testing locations was the Ekahau 

ESS Pro 7.6.4 site surveying software from Ekahau, Inc.[59].  This licensed 

software, which was generously donated for the purposes of this research, allows 

the user to upload floorplans and add specific details, such as wall, ceiling and 

floor construction.  There is a great deal of flexibility in choice and placement of 

SSN9 

SSN8 

SSN7 

SSN6 

SSN5 

SSN4 

SSN3 

SSN2 

SSN1 

 

Legend  RPi 
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Access Point, and in multifloor buildings the signal is predicted throughout all 

floors wherever the Access Point is placed.   

There are 976 Access Point antennae to choose from in the software.  The one 

used in the modelling for this project was the Motorola ML-2499-BYGA2-01R 

2.4GHz 15 dBi 35 Degree Yagi because this has the most similar attenuation 

profile to the prototype.  Azimuth and elevation patterns of the selected antenna 

can be found in Appendix E. 

In addition to the location of the Access Point, the height above floor level and 

orientation were specified.  The modelled signal strength indicated on the 

heatmaps is what signal would be expected at a height of 1 metre above floor 

level.   

As well as the data being used to produce signal strength heatmaps, the resulting 

data was also manipulated in csv format, subject to smoothing algorithms, and 

used to create relevant charts and graphs for analyses. 

4.6 Summary  

This chapter has set out how the prototype was developed and how the 

equipment was used.  Detailed information of the testing locations and their 

construction has been presented.  It has been shown that the testing protocol was 

consistent across locations and different types of tests.  All stationary sampling 

points were placed on a 1 metre grid and at a height of 1 metre above floor level.  

The resulting signal strength data was recorded either manually or automatically 

saved to USB memory stick depending on the type of test being carried out. 

Information has been presented to validate the choice of environmental data from 

the nearest Met Office observation station, and the methods of data analysis 

discussed.  Manipulation of the data and production of signal strength heatmaps 

and simulations were executed in a consistent manner throughout the tests in 

order to absent the researcher as much as possible to avoid potential influence 

and increase comparability between datasets.  
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Chapter Five 

5 Test Results Analysis 

This chapter presents the results of the testing carried with the prototype.  Section 

5.1 details the results of the spectrum analyzer and Sections 5.2 and 5.3 show the 

results from the Salford Energy House and Home1 respectively. 

Section 5.4 sets out the results of the tests investigating potential environmental 

factors that could influence the signal strength, including temperature, humidity, 

occupation, and the effects of having more than one prototype active at the same 

time. 

Results from placing the prototypes in the previously defined triple point positions 

(Chapter Four) are presented in Sections 5.5 and 5.6.  Data collected from 

stationary sampling points are presented in addition to data from a mobile walk-

through test.  This chapter closes with a summary of the findings from the 

investigations in Section 5.7. 

5.1 Spectrum Analyzer 

Signal strength heatmaps from three tests using the spectrum analyzer at the 

Salford Energy House are presented in Figures 5.1, 5.2, and 5.3.  In the 

heatmaps the location of the RPi and prototype are indicated and the signal 

strength is colour coded.  The sampling points that are the brightest green 

indicates the strongest signal and dark red indicates the weakest or no discernible 

signal present, as shown in Table 5.1. 

Sampling Point Colour Signal Strength 
(dBm) 

 

-50 to -54 
-55 to -59 
-60 to -64 
-65 to -69 
-70 to -74 
-75 to -79 

-80 
-------------------------- 

No discernible signal 

Table 5.1. Legend to the Spectrum Analyzer signal strength heatmaps 
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During Test 1 the prototype was located in the living room and directed 

downwards.  The resulting spectrum analyzer heatmap shows that the signal 

strength in the living room is very strong, and reduces considerably further away.  

The signal strength in the kitchen, bedroom 2 and bathroom was very weak. 

 

Figure 5.1. Spectrum analyzer results from Test 1 at the Salford Energy House, ground floor 

(left) and first floor (right) 

The prototype was located in the same position in the living room and directed 

diagonally across the house towards the back door in Test 2.  Figure 5.2 shows 

that the resulting signal strength continues to be strongest in the same room and 

that the signal strength in the kitchen, bedroom 2 and bathroom is improved. 

 

Figure 5.2. Spectrum analyzer results from Test 2 at the Salford Energy House, ground floor 

(left) and first floor (right) 
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Placing the prototype in the kitchen and directing the antenna towards the 

opposite diagonal corner of the house gave the results shown in Figure 5.3.  In 

this case the signal strength is strongest in the same room, and in the rooms 

directly above, as the prototype.  The results in the living room suggest a 

disruption of the signal strength, in the form of a shadow cast by the storage 

space under the stairs. 

 

Figure 5.3. Spectrum analyzer results from Test 3 at the Salford Energy House, ground floor 

(left) and first floor (right) 

Figure 5.4 shows a comparison of the simulated signal strength by the Ekahau 

software and the actual results from the spectrum analyzer.  This shows that the 

observed actual signal strength behaviour is very different from the heatmap 

predicted by the modelling software.  Possible causes of the difference between 

the modelled and actual signal strength patterns include the inability to model the 

fact that the Energy House is built within another building.  The surrounding 

construction and metallic elements around the Energy House appear to cause a 

great deal of disturbance on signal propagation within the house, resulting in the 

high incidence of no discernible signal received by the spectrum analyzer 

(indicated by red signal strength testing points). 
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Figure 5.4 Comparison of the spectrum analyzer results (top) and Ekahau modelling of the 

Energy House, ground floor (left) and first floor (right) 

While using the spectrum analyzer the broad spectrum signal transmitted by the 

Loc8tor PCB to the tags was captured and is shown in Figure 5.5.  This signal 

was how the Loc8tor receiver activated the tags in order to commence reading the 

signal strength from the tags.  The wake-up signal peaked at almost -40dBm at a 

centre frequency of 2.445GHz.  
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Figure 5.5 Example of the broad spectrum signal from the Loc8tor handheld unit to activate 

a tag 

During testing there were several occasions when the signal strength from the tag 

was not distinguishable from the background.  A typical example of this is shown 

in Figure 5.6. 

 

Figure 5.6 Example of Spectrum Analyzer with no distinguishable signal strength visible 

above the background 
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5.2 Salford Energy House 

The purpose of the Energy House tests was to gain knowledge of the 

performance and characteristics of the prototype, and to investigate the potential 

to locate the tag by room level with one or more prototypes. 

This section presents the resulting signal strength heatmaps from three tests at 

the Salford Energy House, and analysis of two of the tests with regards to using 

the combined signal strength readings to determine tag location.  The legend for 

the SSN heatmaps is shown in Table 5.2. 

Sampling Point Colour RPi signal strength 
(SSN) 

 

9 
8 
7 
6 
5 
4 
3 
2 
1 

Table 5.2 Legend for the SSN heatmaps 

During the first test at the Energy House the prototype was placed in the living 

room as indicated in the heatmap (Figure 5.7) and was aimed towards the floor.  

The signal strength results show that while the strongest signal strengths, SSN7 

and SSN8, were found in the living room close to the RPi these were also found in 

the conditioning void and external areas through a brick wall.  

Strong signal strengths of SSN7 and SSN6 were also found on the first floor in the 

bedroom directly above the living room, and on the first floor of the conditioning 

void.  The weakest signal strength during this test was SSN1 in the kitchen 

despite being on the same floor level as the RPi. 
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Figure 5.7.  RPi results from Test 1 at the Salford Energy House, ground floor (left) and first 

floor (right) 

During Test 2 the prototype was in the same location as Test 1, in the living room, 

and was pointed horizontally diagonally across the house towards the back door, 

as shown in Figure 5.8. 

The resulting heatmap indicates stronger signals than Test 1 in the whole of the 

living room, with all the sampling points being SSN9, SSN8, or SSN7 compared to 

most points being SSN5, SSN6, and SSN7 in Test 1.  The signal strength in 

bedroom 1 is also stronger and mostly SSN7 with some SSN8 and SSN6 

compared to signal strengths of SSN3, SSN4, SSN5, SSN6, and SSN7 during 

Test 1.  

The same area of the kitchen remains a weak signal strength zone, although the 

lowest signal is SSN3 rather than SSN1 observed in the previous test.  It is 

however more apparent that the obstruction under the stairs casts a shadow that 

significantly reduces signal strength in the kitchen during Test 2.  The cause of the 

signal disturbance was a bank of 14 meters and submeters located in the storage 

space under the stairs. 
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Figure 5.8.  RPi results from Test 2 at the Salford Energy House, ground floor (left) and first 

floor (right) 

During Test 3 the prototype was located in the kitchen, with the antenna horizontal 

and directed diagonally across the house towards the corner of the living room 

that was the location of the previous test.   

The resulting heatmap (Figure 5.9) shows that the meters and sub-meters under 

the stairs obstruct the signal strength in the living room.  Signal strength in the 

kitchen, in the same room as the prototype, is the only location that SSN9 is 

observed.  The second strongest signal strength, SSN8, is also observed in the 

kitchen and other locations (ground floor conditioning void, stairs, and bedroom 2). 

The dominant signal strengths throughout the house are SSN7 (kitchen, stairs, 

living room, bedroom 2, bathroom) and SSN6 (stairs, living room, bedroom 1, 

bedroom 2, bathroom).  SSN5 occurs mostly in bedroom 1. 

14 electricity 

meters and 

sub meters 

installed in 

under stairs 

storage 

space 
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Figure 5.9.  RPi results from Test 3 at the Salford Energy House, ground floor (left) and first 

floor (right) 

In order to evaluate the viability of using data from two tests to determine the tag 

location to room level, the results of Test 2 and Test 3 were analysed further.  

Combining the signal strengths so that each sampling point had two signal 

strengths in the following format: (a, b) where a was the signal strength from Test 

2, and b was the signal strength from Test 3.  This allowed identification of 

locations with the same combinations. 

Figure 5.10 shows the locations of the most commonly occurring combinations 

from Test 2 and Test 3.  Unlike previous heatmaps, these colours are not an 

indication of signal strength but rather each colour denotes locations with the 

same signal strength combinations.   
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Figure 5.10 all the locations of the most commonly occurring signal strength combinations 

from the Energy House tests 2 and 3. 

As can be seen from the mapping of the eight most common combinations, 143 of 

the sampling points (equivalent to 70% of the total number of sampling points) are 

represented.   

The most frequent combination was (7, 5) and resulted from a signal strength of 

SSN7 in Test 2 and SSN5 in Test 3.  These account for 36 sampling points, which 

is 18% of the total number of sampling points.  The locations that this combination 

occurred are shown in Figure 5.11. 

 

Figure 5.11 the most common combination (7, 5) occurred at 36 sampling points 

Signal strength combination (7, 5) occurred most often in bedroom 1, but was also 

found in the living room and first floor stairs.  The second most common 

combination was (6, 7) and occurred at 24 sampling points (12% of the total 

sampling points).  The locations of these points is shown in Figure 5.12. 
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Figure 5.12 the locations of signal strengths (6, 7) 

(6, 7) is most likely to occur in the kitchen, but it also found in the bathroom, 

bedroom 2 and ground floor stairs.  The location of 21 sampling points (10% of 

total) with a combination of (5, 7) is shown in Figure 5.13.. 

 

Figure 5.13 The 21 locations with a combination of (5, 7)  

(5, 7) could indicate tag location of kitchen, bathroom, bedroom 2, or ground floor 

stairs.  Figure 5.14 shoes the nineteen sampling points that shared a combination 

of (7, 6).  This could indicate a tag location of living room, bedroom 1 or first floor 

stairs. 
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Figure 5.14 Nineteen sampling points share a combination of (7,6) 

Another nineteen sampling points shared a combination of (6, 5), as shown in 

Figure 5.15.  This combination could locate a tag in bedroom 1 or the first floor 

stairs. 

 

Figure 5.15 Nineteen sampling points with a combination of (6,5) 

The only combinations that only occurred in one location were (8, 6) and (8, 7).  

There were twelve each of these combinations and they all occurred in the living 

room.  This is shown in Figure 5.16. 
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Figure 5.16 (8, 6) and (8, 7) only occurred in the living room 

Further analysis of the combinations showed that there were 22 sampling points 

that resulted in the same signal strength reading from both tests.  These are 

shown in Figure 5.17.   The 22 sampling points that had the same signal strength 

were spread across the kitchen, living room, bedroom 2 and first floor stairs. 

 

Figure 5.17. Twenty two sampling points that had the same signal strength in both tests 

Comparison of the results obtained in Energy House Test 2 and the model 

generated by the Ekahau software (Figure 5.18) shows that the shadow cast by 

the meters and sub-meters located in the Energy House is not replicated in the 

simulated signal strength heatmap. 
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Figure 5.18 Comparison of modelled signal strength (bottom) and actual signal strength 

(above) at the Salford Energy House, ground floor (left) and first floor (right) 

 

Analysis of the signal strengths obtained with the spectrum analyzer and from the 

prototype was carried out to discover the relationship between dBm and SSN.  As 

can be seen from Figure 5.19 the comparison shows a great deal of overlap and 

does not allow identification of the actual signal strength ranges indicated by the 

SSNs.  The only SSN that correlates with a dBm range that does not occur with 

other SSNs is SSN9 that is present when the spectrum analyzer signal strength 

results are between -50 to -54dBm. 
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Figure 5.19. Comparison of spectrum analyzer and prototype signal strength 

 

5.3 Home1 

The Home1 tests were carried out to investigate how the prototype behaved in a 

typical residential location as opposed to the laboratory conditions of the Salford 

Energy House.  The heatmaps were produced using the existing protocol.  

Sampling Point Colour RPi signal strength 

 

9 
8 
7 
6 
5 
4 
3 
2 
1 

Figure 5.3 Legend for the Home1 signal strength heatmaps 

The results for the tests in Home1 are presented here in the order they were 

carried out. In Test 4 the prototype was placed in the living room, horizontal and 

directed diagonally towards the front door, as shown in Figure 5.20. 
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Figure 5.20 Home1 Test 4 with the RPi placed in the living room, horizontal and directed 

towards the front door.  Ground floor (left) and first floor (right) 

With the prototype horizontal in the living room the strongest signal strengths 

(SSN9 and SSN8) are only found in the same room.  SSN7 is commonly found 

throughout the ground floor and in locations directly above the RPi on the first 

floor.  The weakest signal (SSN3) was only found on the first floor, and generally 

clustered in the furthest sampling points from the RPi position.  During Home1 

Test 5 the RPi was placed in the same position and at the same direction as the 

previous test and inclined 45o upwards towards the ceiling. 

 

Figure 5.21 The results of Home1 Test 5, ground floor (left) and first floor (right) 

Figure 5.21 shows that the effect of inclining the reader 45o towards the ceiling 

greatly increases the number of the highest signal strength readings in the living 

room, and has a general influence to increase the signal strengths on the first 

floor.  The weakest signal observed is SSN4, and seen in fewer locations that in 

Horizontal  

45
o 

upwards 
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the previous test.  The effect of the full height brick built chimney breast in the 

centre of the house is seen to affect the signal strengths found in bedroom 3 and 

the ground floor stairs in both Test 4 and 5. 

Test 6 was the first test with the prototype placed on the first floor, as indicated in 

Figure 5.22.  The RPi was horizontal and directed towards the opposite diagonal 

corner of the house. 

 

Figure 5.22. Heatmap of Home1 Test 6, ground floor (left), first floor (right) 

With the prototype horizontal and on the first floor, the signal strengths are lowest 

(SSN3) at the bottom left hand corner of the house, in the living room.  Figure 

5.23 shows the resulting heatmap from Home1 Test 7, in which the RPi was 

placed on the first floor and inclined at 45o upwards.   

 

Figure 5.23 Home1 Test 7 ground floor (left), first floor (right) 

Inclining the RPi 45o upwards has the effect of increasing the number of low 

signal strength readings on the ground floor. 
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For Test 8 and Test 9, the prototype was located in the previous positions, ground 

floor and first floor respectively, and inclined 45o towards the floor.  The resulting 

heatmaps for Test 8  and Test 9 are shown in Figures 5.24 and 5.25. 

 

Figure 5.24. Heatmap from Test 8. 

Inclining the RPi 45o downwards on the ground floor tends to reduce the signal 

strengths obtained on the first floor.  Despite this, there are many SSN7 and 

SSN6 results upstairs in bedroom 1, bedroom 2, first floor landing, bathroom, 

stairs and throughout the ground floor. 

 

Figure 5.25. Heatmap from Test 9. 

Inclining the RPi on the first floor downwards reduces the number of low signal 

strengths on the ground floor, with the lowest readings being SSN4.  The effect of 

the chimney can be identified in both Test 8 and 9. 

A further two signal strength tests were carried out to examine if the use of an 

attenuation tube connected to the prototype antenna helped to focus the signal to 
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better enable location detection.  The resulting heatmaps from these tests are 

shown in Figures 5.26 and 5.27. 

 

 

Figure 5.26 Resulting heatmaps from Test 10 with attenuation (top) and Test 4 without 

attenuation (bottom) 

Comparison of the resulting heatmaps from Test 10 (with attenuation) and Test 4 

(without attenuation) shows that the attenuation tube reduces the incidence of 

higher signal strengths on the first floor.  Without attenuation signal strengths of 

SSN8 and SSN7 are present on the first floor whereas with attenuation the 

highest signal strength upstairs is SSN6. 
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Figure 5.27. Resulting heatmaps from Test 11 with attenuation (top) and Test 6 without 

attenuation (bottom) 

When attenuation was used in Test 11 on the first floor, this also reduced the 

incidence of higher signal strengths on the ground floor.  Without attenuation (Test 

6) five occurrences of SSN8 were found on the ground floor, with attenuation this 

reduced to zero.  The use of an attenuation tube was seen to be beneficial to 

differentiate the signal strength between floors, and was used in all the following 

tests. 

5.4 Environmental Effects Tests 

In addition to the previous tests, further tests and analyses were carried out in 

Home1 to determine the effects of changes in the local environment, specifically 

in temperature and humidity.  Three tests were run in Home1 in which the tags 

Horizontal 

with 

attenuation 



79 
 

remained stationary for long periods of time and any variation in received signal 

strength analysed and compared with environmental changes.   

Environmental Effects Test 1 

The first environmental effects test used one RPi communicating with four tags 

over a period of 24 hours.  The RPi was located on the ground floor as shown in 

Figure 5.28.  Two tags were fixed in place at ground floor locations, and two in 

fixed locations on the first floor. 

 

Figure 5.28. Plan of Home1 ground floor (left) and first floor (right) showing the location of 

the RPi and four tags. 

The approximate distances from the tags to the RPi and intervening fixed 

obstructions were as follows: 

Tag location approximate distance 

from RPi 

(m) 

Fixed obstructions 

between tag and 

RPi 

1 ground floor, Living Room GL67 5 none 

2 ground floor, Hall GH14 3 10cm internal wall 

3 first floor, Bedroom1 FB106 5 internal floor 

4 first floor, Bedroom2 FB213 7 internal floor and 

wall 

Table 5.4 Approximate distances from tags to RPi and details of obstructions 

Tag1 was in the same room as the RPi with no fixed obstructions between it and 

the RPi.  The three other tags have at least one internal wall or floor between 

them and the RPi.  The weather conditions over this 24 hour period were obtained 

and the temperature and humidity are shown in Figure 5.29. 

RPi 

Tag 4 
Tag 3 

Tag 1 

Tag 2 
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Figure 5.29 The humidity and temperature observations during the period of Environmental 

Effects Test 1 

During this period of testing the temperature ranged from 8.4 to 20oC and the 

humidity varied between 47.8 and 96.6%.  There was little change in the weather 

and it was mainly cloudy, partly cloudy, or overcast.  

Time 
 

Humidity 
% 

Temp 
oC 

Weather Time Humidity 
% 

Temp 
oC 

Weather 

16:00 47.8 20 Cloudy 05:00 96.6 8.6 Sunny day 

17:00 50.1 19.9 Cloudy 06:00 96.1 12.2 Cloudy 

18:00 
 

53 
 

19 
 

Partly cloudy 
(day) 

07:00 
 

81 
 

14.6 
 

Partly cloudy 
(day) 

19:00 56.8 17.7 Cloudy 08:00 69 17.4 Cloudy 

20:00 
 

59.4 
 

16.8 
 

Overcast 09:00 
 

62.1 
 

19.5 
 

Partly cloudy 
(day) 

21:00 69.9 15 Cloudy 10:00 61.2 19.6 Cloudy 

22:00 86.3 12.3 Clear night 11:00 59.3 20 Cloudy 

23:00 91.1 11.5 Cloudy 12:00 62.6 19.9 Overcast 

00:00 93.5 10.5 Clear night 13:00 72.9 18.1 Overcast 

01:00 
 

94.7 
 

9.8 
 

Partly cloudy 
(night) 

14:00 
 

77.8 
 

17.8 
 

Cloudy 

02:00 
 

94.6 
 

9.3 
 

Partly cloudy 
(night) 

15:00 
 

77.8 
 

18.2 
 

Cloudy 

03:00 95.4 8.7 Clear night 16:00 76.9 18.8 Cloudy 

04:00 
 

95.9 
 

8.4 
 

Partly cloudy 
(night) 

17:00 
 

78 
 

19.2 
 

Cloudy 

Table 5.5. Observed weather type and data over the 24 hours of testing 

Collecting signal strength data for 24 hours resulted in a considerable number of 

readings, over 8,300 for each tag.  The raw data for Tag 1 was cleaned to remove 

errors and gaps, and presented as a 10 period moving average trendline. 
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Figure 5.30 Tag 1 over 24 hours with a 10 period moving average 

The signal strength from Tag 1 displayed a steady value of SSN6 as shown in 

Figure 5.30 over the first half of the test before dropping to SSN5 and becoming 

very disruptive over the last 6 hours. 

 

Figure 5.31.Tag 2 over 24 hours 

As shown in Figure 5.31 Tag 2 gave a consistent signal strength of SSN7 

throughout the 24 hours of the test. 
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Figure 5.32 Tag 3 over 24 hours 

Similarly to Tag 2, the signal strength of Tag 3 as shown in Figure 5.32 remained 

constant at SSN7 throughout the test with no observed disruption. 

 

Figure 5.33 Tag 4 with 10 period moving average over 24 hours 

 

Similar to Tag 1, Tag 4 as shown in Figure 5.33 displayed several disruptive 

events in signal strength during the test.  These periods of disruption do not 

correlate with each other, or with periods of high or low temperature or humidity.  

The signal from Tag 4 was the most disturbed of any of the tags during the test.  

Possible reasons for this include this tag being the furthest distance from the RPi 

and having the most construction element obstructions between the tag and 

reader (an internal floor and wall). 
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Environmental Effects Test 2 

 

This test used two RPi’s, one located on the ground floor and the other on the first 

floor.  The ground floor RPi communicated with tags 1, 2, 3 and 4.  The RPi 

located on the first floor communicated with tags 5, 6, 7 and 8.  The eight tags 

were stationary throughout the test and placed in one of four locations.  Each tag 

location had one tag from the ground floor RPi and one tag from the first floor RPi 

as shown in Figure 5.33. 

 

 

Figure 5.33. The RPi and tag locations during the Environmental Effects Test 2 

 

Further details of the tags and the fixed obstructions between them and their 

corresponding RPi are shown in Table 5.6. 

 

 

 

 

 

 

RPi1 

Tags 

1 & 5 

Tags 

2 & 6 

Tags 

3 & 7 

Tags 

4 & 8 

RPi2 
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Tag RPi Tag location approximate 
distance to RPi 

(m) 

Fixed 
obstructions 
between tag and 
RPi 

1 1 – ground floor ground floor, Living 
Room GL1 

5 none 

2 1 – ground floor ground floor,  
Hall GH14 

3 internal wall 

3 1 – ground floor first floor,  
Bedroom1 FB106 

5 internal floor 

4 1 – ground floor first floor,  
Bedroom2 FB213 

3 internal floor and 
wall 

5 2 – first floor ground floor,  
Living Room GL1 

5 internal floor and 
wall 

6 2 – first floor ground floor,  
Hall GH14 

3 internal floor 

7 2 – first floor first floor,  
Bedroom1 FB106 

5 internal wall 

8 2 – first floor first floor,  
Bedroom2 FB213 

7 two internal walls 

Table 5.6. The tag distances from and obstructions between them and their corresponding 

RPi during Environmental Effects Test 2 

 

The test ran for six hours and during the time there was very little variation in 

humidity, temperature and local weather conditions as can be seen from Figures 

5.34 and Table 5.7.   The weather conditions over the testing period was light rain 

or overcast, the temperature ranged between 11.9 and 13.2oC and humidity 

varied between 78.3 and 93.6%. 

 

 

Figure 5.34. The temperature and humidity conditions during Environmental Effects Test 2 
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Time 
 

Humidity 
% 

Temperature 
oC 

Weather Type 
 

19:00 87.1 12.7 overcast 

20:00 78.3 13.2 overcast 

21:00 78.8 13.1 light rain shower (night) 

22:00 87.5 11.9 light rain 

23:00 93.6 12.6 light rain 

00:00 87.7 13.1 overcast 

01:00 86.5 13.2 light rain shower (night) 

02:00 81.4 13.2 overcast 

Table 5.7.  The temperature, humidity and weather condition observations from Met Office 

DataPoint  

In addition to recording weather, temperature and humidity data during the test, 

periods of occupation of the rooms the tags were located in was also recorded.  

This is indicated by shading in the tables, and a summary of this data for each of 

the tags is shown in the following figures. 

 

 
Signal Strength 

hour time most max min 

1 19:11 - 19:59 6 7 5 

2 20:00 - 20:59 6 7 5 

3 21:00 - 21:59 6 
 

5 

4 22:00 - 22:59 6 
 

5 

5 23:00 - 23:59 6 7 
 6 00:00 - 00:59 6 

 
5 

7 01:00 - 01:20 6 
  Figure 5.35.  Resulting signal strength of Tag 1 during Environmental Effects Test 2 and 

periods of occupation 

Figure 5.35 shows that the signal strength of Tag1 does not appear to be 

influenced by the periods of occupation within the same room during hours 1 to 4.  

During periods of occupation the most common, maximum and minimum signal 

strength readings remain the same as the period when the room is not occupied, 
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hours 5 to 7.  The most common signal strength remains as SSN6 throughout the 

test. 

 

 
Signal Strength 

hour time most max min 

1 19:11 - 19:59 7 
 

6 

2 20:00 - 20:59 6 7 
 3 21:00 - 21:59 7 

 
6 

4 22:00 - 22:59 7 
 

6 

5 23:00 - 23:59 6 7 
 6 00:00 - 00:59 7 

 
6 

7 01:00 - 01:20 7 
 

6 

Figure 5.36. Resulting signal strength of Tag 2 during Environmental Effects Test 2 

Figure 5.36 shows that Tag 2 does not have indicated periods of occupancy as 

this tag was located in a hallway and not in a room.  Tag 2 was fluctuating 

between SSN6 and SSN7 throughout the testing period.   

Figure 5.37 show that Tag 3 shows a wider variation in signal strength, ranging 

from a maximum of SSN6 to a minimum of SSN 3 in hours 1 and 2.  The range 

changes slightly to between a maximum of SSN6 and minimum of SSN4 during 

hours 4, 5, and 6. 
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Signal Strength 

hour time most max min 

1 19:11 - 19:59 5 6 3 

2 20:00 - 20:59 5 6 3 

3 21:00 - 21:59 5 6 
 4 22:00 - 22:59 5 6 4 

5 23:00 - 23:59 5 6 4 

6 00:00 - 00:59 5 
 

4 

7 01:00 - 01:20 5 
  Figure 5.37. Resulting signal strength of Tag3 during Environmental Effects Test 2 and 

periods of occupation 

Figure 5.38 shows that Tag 4 fluctuated between SSN6 and SSN7, with 

occasional SSN5 results occurring during hours 2 and 3.  The signal strength 

does not appear to be influenced by periods of occupation. 

 

 

 
Signal Strength 

hour time most max min 

1 19:11 - 19:59 7 
 

6 

2 20:00 - 20:59 7 
 

5 

3 21:00 - 21:59 7 
 

5 

4 22:00 - 22:59 7 
 

6 

5 23:00 - 23:59 7 
 

6 

6 00:00 - 00:59 7 
 

6 

7 01:00 - 01:20 7 
 

6 

 

Figure 5.38. Resulting signal strength of Tag4 during Environmental Effects Test 2 and 

periods of occupation 

Figure 5.39 shows that Tag 5 fluctuated between SSN2 and SSN3.  The periods 

of occupation, during hours 1 to 4, does not appear to have influenced the signal 

strength. 
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Signal Strength 

hour time most max min 

1 19:11 - 19:59 2 3 
 2 20:00 - 20:59 2 3 
 3 21:00 - 21:59 2 3 
 4 22:00 - 22:59 2 3 
 5 23:00 - 23:59 2 3 
 6 00:00 - 00:59 2 

  7 01:00 - 01:20 2 
  Figure 5.39. Resulting signal strength of Tag 5 during Environmental Effects Test 2, and 

periods of occupation 

Figure 5.40 shows that Tag 6 showed very little variation from fluctuating between 

SSN6 and SSN7 except for one dip to SSN5 during hour 5.  There is no indication 

of occupancy for Tag 6 as this was located in the hallway and not a room. 

 

 
Signal Strength 

hour time most max min 

1 19:11 - 19:59 7 
 

6 

2 20:00 - 20:59 7 
 

6 

3 21:00 - 21:59 7 
 

6 

4 22:00 - 22:59 7 
 

6 

5 23:00 - 23:59 7 
 

5 

6 00:00 - 00:59 7 
 

6 

7 01:00 - 01:20 7 
 

6 

Figure 5.40. Resulting signal strength of Tag 6 during Environmental Effects Test 2 
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Figure 5.41 shows that Tag 7 had a wider variation of signal strengths, down to as 

low as SSN3 occasionally.  These dips in signal strength occur equally in 

occupied and unoccupied periods.  Although there is one spike of signal strength 

to SSN6 at 00:58, there does not appear to be a relationship between occupancy 

and signal strength. Tag 7 was located in an adjacent room to the RPi with one 

internal wall between the tag and its reader. There is no evidence to suggest what 

the cause of the anomalous SSN6 result was. 

 

 
Signal Strength 

hour time most max min 

1 19:11 - 19:59 5 
 

3 

2 20:00 - 20:59 5 
 

4 

3 21:00 - 21:59 5 
 

3 

4 22:00 - 22:59 5 
 

3 

5 23:00 - 23:59 5 
 

4 

6 00:00 - 00:59 5 6 3 

7 01:00 - 01:20 5 
 

4 

Figure 5.41. Resulting signal strength of Tag 7 during Environmental Effects Test 2 and 

periods of occupation 

Figure 5.42 shows that theTag 8 signal strength varied greatly during this test.  

The variation was not indicative of a period of transition from one dominant signal 

strength to another, or of a signal strength bordering two signal strengths, but was 

due to the signal strength spanning three SSNs.  During the first hour and a half 

the signal strength spanned SSN2, SSN3, and SSN4.  Over the remaining period 

of testing the signal strength generally spanned SSN3, SSN4, and SSN5 with 

occasional SSN2 events.  During most of the testing period the room was 

occupied, during hours 2 – 7, so it was not possible to infer an influence of 

occupancy on signal strength. 
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Signal Strength 

hour time most max min 

1 19:11 - 19:59 4 
 

2 

2 20:00 - 20:59 4 5 2 

3 21:00 - 21:59 4 5 3 

4 22:00 - 22:59 4 5 3 

5 23:00 - 23:59 4 5 2 

6 00:00 - 00:59 4 5 2 

7 01:00 - 01:20 4 5 3 

Figure 5.42. Resulting signal strength of Tag 8 during Environmental Effects Test 2 and 

periods of occupation 

The tags were stationary and placed in pairs in one of the four tag locations.  

Comparison of the signal strength behaviour of tags in the same location are 

shown in Figures 5.43-5.46.  Tag 1 and Tag 5 were both located on the ground 

floor in the living room at testing point GL1.  Tag1 communicated with the RPi 

located in the same room, and Tag 5 was controlled by the RPi located on the first 

floor. 

Both Tag 1 and Tag 5 gave steady results for the most commonly occurring signal 

strength, Tag 1 being SSN6 and Tag 5 being SSN2.  While Tag1 ranged from a 

maximum of SSN6 to a minimum of SSN5, Tag 5 only ranged +1 SSN to SSN3. 

 

0

2

4

6

8

1 2 3 4 5 6 7Si
gn

al
 S

tr
e

n
gt

h
 S

SN
 

Time Period in hours 

Tag 8



91 
 

  

Figure 5.43. Tag 1 and Tag 5 signal strength behaviour at the same location during 

Environmental Effects Test 2 

Tag 2 and Tag 6 were co-located in the ground floor hallway, at testing point 

GH14.  Tag 2 communicated with the ground floor RPi and Tag 6 with the RPi on 

the first floor.  As can be seen from Figure 5.44 Tag 2 fluctuated between SSN6 

and SSN7.  Tag 6 was generally steady throughout the testing period, remaining 

at SSN7 with a minimum of SSN6, although there was one hour in which the 

minimum signal strength reduced to SSN5. 

  

Figure 5.44. Tag 2 and Tag 6 signal strength behaviour at the same location during 

Environmental Effects Test 2 

Tag 3 and Tag 7 were located on the first floor in Bedroom1 at testing point 

FB106.  Tag 3 communicated with the ground floor RPi and Tag 7 with the first 

floor RPi.  Results from both tags gave a steady SSN5 for the most common 

signal strength throughout the period of testing.  Both tags had minimum values of 

signal strength of SSN3 and maximum values of SSN6, although at different times 

during the test. 
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Figure 5.45. Tag 3 and Tag 7 signal strength behaviour at the same location during 

Environmental Effects Test 2 

Tag 4 and Tag 8 were placed on the first floor in Bedroom 2 at testing position 

FB213.  Tag 4 was controlled by the ground floor RPi and Tag 8 communicated 

with the first floor RPi.  Results from both tags show a steady most common 

signal strength, SSN7 for Tag 4 and SSN4 for Tag 8.  Both tags also dipped to a 

minimum signal strength by 2SSN, to SSN5 for Tag 4 and to SSN2 for Tag 8.  

These events happened at different times for the tags.   

While the signal strength from Tag 4 did not increase above the most common, 

SSN7, Tag 8 did report a +1SSN maximum.  This would indicate that what was 

influencing the changes in range in signal strength in the two tags was different 

and more likely related to the relationship between the tag and its corresponding 

RPi rather than a direct result of an event or factor at the tag location. 

  

Figure 5.46. Tag4 and Tag8 signal strength behaviour at the same location during 

Environmental Effects Test 2 

All the tags reported a steady most common signal strength over the period of 

testing.  The ranges from minimum to maximum did alter over time but these 
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events were not replicated by co-located tags at the same location as they 

happened at different times.  There does not appear to be a correlation between 

the signal strengths reported by partner tags.  Occupancy does not appear to 

influence the signal strength.   

Environmental Effects Test 3 

Following the previous 6 hour test, this investigation ran for an extended period of 

time to enable a more comprehensive analysis of the signal strength over three 

days.  The eight tags and two RPi’s were placed in the same locations as in 

Environmental Effects Test 2 and signal strength data was collected for over 72 

hours. 

 

Figure 5.47. Hourly temperature and humidity observation data for the 72 hour testing 

period 

Figure 5.47 shows that the three day testing period enabled observation of signal 

strength through a wider range of temperature, humidity and weather types.  Over 

the 3 days humidity ranged between 59% and 93.6%, the temperature between 

11oC and 18.1oC, and several weather types were observed that had not been 

observed in previous tests, such as periods of heavy rain.   

The extended period of testing also increased the opportunity to observe the 

effect on signal strength of the tag batteries failing and to learn how long the 

batteries would last when being used in this unexpected way. 
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Time 
 

Humidity 
% 

Temp 
o
C 

Weather  
Type 

Time Humidity 
% 

Temp 
o
C 

Weather 
Type 

19:00 62.3 16.3 sunny day 08:00 92.5 14.7 overcast 

20:00 68.2 15 clear night 09:00 86.1 14.8 overcast 

21:00 75.3 14.3 partly cloudy (night) 10:00 85.7 16.7 cloudy 

22:00 76.8 14.1 partly cloudy (night) 11:00 80.8 16 overcast 

23:00 80.4 13.3 clear night 12:00 77.7 16.5 overcast 

00:00 83.1 12.9 clear night 13:00 75.2 16.9 overcast 

01:00 84.2 12.6 clear night 14:00 71.9 17.1 overcast 

02:00 85.1 11.8 clear night 15:00 66.1 18.1 overcast 

03:00 84.1 11.7 clear night 16:00 69.2 17.5 overcast 

04:00 84.6 11.3 clear night 17:00 70.2 18.1 overcast 

05:00 86.8 11 sunny day 18:00 81.8 15.9 heavy rain shower (day) 

06:00 84.6 11.6 sunny day 19:00 89.5 14.5 heavy rain shower (day) 

07:00 82 12.9 cloudy 20:00 87.7 14.2 cloudy 

08:00 74.3 14.2 cloudy 21:00 87.7 13.7 cloudy 

09:00 71 14.8 cloudy 22:00 91.8 12.4 clear night 

10:00 65.5 15.1 cloudy 23:00 92.3 12.7 clear night 

11:00 59 16.2 overcast 00:00 91.2 12.6 cloudy 

12:00 64 15.7 cloudy 01:00 90.5 12.4 overcast 

13:00 72 15 
light rain shower 

(day) 02:00 91 11.9 overcast 

14:00 74.6 16.3 overcast 03:00 92.4 11.7 cloudy 

15:00 69.2 18.2 overcast 04:00 92.3 11.9 cloudy 

16:00 68.5 16.9 cloudy 05:00 93.6 11.3 cloudy 

17:00 64.7 17.5 cloudy 06:00 92.4 12.4 cloudy 

18:00 60.8 16.5 cloudy 07:00 90.6 12.9 cloudy 

19:00 69.2 15.2 
light rain shower 

(day) 08:00 85.5 15.2 sunny day 

20:00 73 15.1 overcast 09:00 84.3 14.1 heavy rain shower (day) 

21:00 77.4 14.5 overcast 10:00 86.1 14.9 cloudy 

22:00 83.8 13.6 overcast 11:00 73.6 16.5 cloudy 

23:00 88.8 13.3 
heavy rain shower 

(night) 12:00 85.6 15.7 cloudy 

00:00 92.4 12.8 overcast 13:00 92.5 15 light rain shower (day) 

01:00 91.2 12.9 overcast 14:00 74.6 16.3 overcast 

02:00 89.4 12.7 overcast 15:00 69.2 18.2 overcast 

03:00 89.4 12.6 cloudy 16:00 68.5 16.9 cloudy 

04:00 91.2 12.4 
light rain shower 

(night) 17:00 64.7 17.5 cloudy 

05:00 93.6 12.7 overcast 18:00 67.7 17.1 cloudy 

06:00 93 12.5 overcast 19:00 74.9 15.6 cloudy 

07:00 93 12.8 overcast 
     

Table 5.8.  Humidity, temperature and weather type observation data for the three day 

testing period of Environmental Effects Test 3 

Collecting data from the tags continuously for 72 hours results in 24,830 signal 

strength readings per tag.  The first stage of cleaning the data was to combine 
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and average each ten readings.  This reduced dataset of 2,483 readings was 

further manipulated to remove instances of no signal received, and is presented in 

the following figures.  A 10 period moving average is also included to further 

smooth the data. 

 

Figure 5.48 Tag 1 signal strength over 72 hours in the Environmental Effects Test 3 

Figure 5.48 shows the signal strength performance of Tag 1 in a stationary 

position over 72 hours.  There are periods of disruption during day 1 and day 3 

while day 2 remains mostly steady with a signal strength of SSN5.   

 

Figure 5.49 Tag 2 signal strength over 72 hours in the Environmental Effects Test 3 

Figure 5.49 presents the resulting signal strength from Tag 2.The signal from Tag 

2 was less disrupted than Tag 1 and tends to remain at SSN7 throughout the 

three days of the test.  . 
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Figure 5.50.Tag 3 over 72 hours in Environmental Effects Test 3 

Figure 5.50 shows the results from Tag 3. The Tag 3 signal strength shows some 

variation on all three days of the observation.  The predominant signal strength is 

SSN5.   

 

Figure 5.51.Tag 4 over 63 hours in Environmental Effects Test 3 

Figure 5.51 shows the results from Tag 4.Tag 4 ceased responding after 63 hours.  

The signal strength results show some variability on all three days of the test, with 

a dominant signal strength of SSN7. 

1

3

5

7

9

1
7

9
1

5
7

2
3

5
3

1
3

3
9

1
4

6
9

5
4

7
6

2
5

7
0

3
7

8
1

8
5

9
9

3
7

1
0

1
5

1
0

9
3

1
1

7
1

1
2

4
9

1
3

2
7

1
4

0
5

1
4

8
3

1
5

6
1

1
6

3
9

1
7

1
7

1
7

9
5

1
8

7
3

1
9

5
1

2
0

2
9

2
1

0
7

2
1

8
5

2
2

6
3

2
3

4
1

2
4

1
9

SS
N

 

Time = 72 hours 

Tag 3 

Tag 3 moving average

1

3

5

7

9

1

6
9

1
3

7

2
0

5

2
7

3

3
4

1

4
0

9

4
7

7

5
4

5

6
1

3

6
8

1

7
4

9

8
1

7

8
8

5

9
5

3

1
0

2
1

1
0

8
9

1
1

5
7

1
2

2
5

1
2

9
3

1
3

6
1

1
4

2
9

1
4

9
7

1
5

6
5

1
6

3
3

1
7

0
1

1
7

6
9

1
8

3
7

1
9

0
5

1
9

7
3

2
0

4
1

2
1

0
9

SS
N

 

Time = 63 hours 

Tag 4 

Tag 4 moving average



97 
 

 

Figure 5.52.Tag 5 over 72 hours in Environmental Effects Test 3 

Figure 5.52 shows that the signal from Tag 5 had few events of signal disruption 

and gave a general reading of SSN2 throughout the test.   

 

Figure 5.53 Tag 6 over 33 hours in Environmental Effects Test 3 

Tag 6 failed after 33 hours and the results are shown in Figure 5.53. Tag 6 

showed little disruption throughout the 33 hours it was active and gave a steady 

signal strength of SSN7 throughout.   
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Figure 5.54 Tag 7 over 72 hours in Environmental Effects Test 3 

Figure 5.54 shows that the signal strength from Tag 7 was a dominant SSN5 with 

several fluctuation events on all three days of the test. 

 

Figure 5.55 Tag 8 over 35 hours in Environmental Effects Test 3 

Figure 5.55 shows that Tag 8 resulted in a greater variability of signal strength 

during the first 15 hours of the test.  Following this the signal strength remained 

fairly steady at SSN5 before becoming disrupted again before ceasing to respond 

after 35 hours. 

In order to investigate whether the variation in temperature and humidity matched 

the signal strength variation over the period of the test, a series of charts were 

produced for each Tag.  Figure 5.56 shows the dominant signal strength from Tag 

1 over each hour of the testing period with error bars indicating the maximum and 

minimum signal strength readings over that hour.  Comparison with the 
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temperature and humidity over the same period is provided for each of the eight 

tags although only Tag 1 is shown here. The complete set of graphs for all 8 tags 

is in Appendix F. Environmental Effects Test 3 Results Detail. 

Tag 1 

 

 

Figure 5.56 Comparison of Tag 1 with the environmental conditions 

Figure 5.56 shows that on one occasion at hour 22 when the temperature is at 

one of the highest values, the most common signal strength dips to SSN4.  This 

does not occur at other high temperature peaks, at hours 46 and 70.  Therefore 

the signal strength of Tag 1 cannot be said to be directly related to the local 

temperature during this test.  Likewise, the peaks and troughs of relative humidity 

does not correlate with increases or decreases in signal strength.  Comparison of 

the temperature and humidity data with signal strength from all 8 tags showed no 
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apparent relationship between the signal strength and variability in temperature 

and humidity. 

 

 

 

 

Figure 5.57 Comparison of resulting signal strengths from co-located tags 
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A final analysis of the resulting data from this test was carried out to compare the 

signal strength behaviour of the paired tags at the same location.  Each pair of 

tags was comprised of one that communicated with the ground floor prototype and 

one that communicated with the prototype on the first floor.  Figure 5.57 shows 

the resulting signal strengths of the co-located tags. 

There is no indication of a relationship between the signal strengths of the tags 

that were located in the same position during the test.  From observing the time 

the batteries failed in Tags 4, 6, and 8, and the length of time of previous tests it 

was found that the tag life of the batteries was between 111 and 120 hours of 

continuous use.  

Environmental Effects Test 4 

 

This test was designed to investigate the effect of having two detection systems 

active at the same time.  The total time of this test was 6 hours and each 

prototype was active for four hours.  As can be seen from Figure 5.58 there was a 

two hour overlap when both prototypes and eight tags were active.  The eight tags 

that were used during this test were stationary throughout. 

Hour Tag1 Tag2 Tag3 Tag4 Tag5 Tag6 Tag7 Tag8 

1 
ground floor RPi and 4 tags only on 

    

2     

3 
both RPi’s and all tags on 

4 

5     
first floor RPi and 4 tags only on 

6     
Figure 5.58 The process of Environmental Effects Test 4 

The resulting signal strengths of the tags communicating with the ground floor 

prototype are shown in Figure 5.59, and those connected to the first floor 

prototype are presented in Figure 5.60. 
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Figure 5.59 The signal strengths of Tags 1, 2, 3, and 4 during hours 1 – 4 

The data showed that there was positive disruption of the signal strength of the 

four tags during the second half of their active period compared to the first half.  

Whilst the disruption observed from Tag 4 is not conclusive evidence of a 

continuous disruption and could be considered a single event, the change in 

stability of the signals from Tags 1, 2, and 3 are a strong indicator that the activity 

of the second prototype is responsible for the disruption. 

The results for Tags 5, 6, 7, and 8 are presented in Figure 5.60.  These tags were 

controlled by the second prototype and were active from hours 2 to 6 of the test. 
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Figure 5.60 The signal strengths of Tags 5, 6, 7, and 8 during hours 2 - 6 

The results from Tags 5, 6, and 7 showed a greater level of disruption during the 

first half of the test when the other prototype was also active.  Tag 6 was variable 

throughout the test but is seen to be more disturbed in the first two hours.  Tag 7 

is not conclusively affected by a persistent disruption and Tag 8 is very disruptive 

throughout. 

5.5 Triple Points  

Three sets of readings were taken with the prototype placed in the triple points 

described in Chapter Four.  Following investigation into the effect of having more 

than one prototype active at the same time and causing disturbance only one 

prototype was used at a time.  The same prototype and tags were used for all the 

triple point tests to reduce potential variation between individual units. 

The resulting signal strength readings were recorded and used to create the 

heatmaps in Figure 5.61.  From this it can be seen that the lowest signal strengths 

obtained are SSN3 and occurred with RPi2 and RPi3.  The lowest signal strength 

from RPi1 was SSN4.  The maximum signal strength, SSN9, was clustered in 

close proximity to each RPi position. 
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Figure 5.61 The three triple point resulting heatmaps at Home 1, ground floor (left) and first 

floor (right) 

The signal strengths from the three tests are shown with the locations in Figure 

5.62.  Twenty six of the 40 sampling points had a unique combination of signal 
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strengths and seven signal strength combinations occur twice.  These 14 

sampling points are indicated on the location map. 

 

Figure 5.62 The triple point signal strength combinations 

The maximum distance between two sampling points that share the same signal 

strength combination is 1.5 metres. 

Figure 5.63 shows the 3D scatter plot of the triple point results and indicates that 

the signal strength combinations in different rooms are dissimilar.  This increases 

the confidence of being able to use the results from three prototypes in the 

triangulation positions to locate the tag to room-level.  The results from the toilet 

(FT) and bathroom (FBA) can be seen to be outliers, separate from the majority of 

the other results.  The plots from the same rooms tend to cluster with other points 

from the same room, and differ from results from other rooms. 

 

Figure 5.63.  3D scatter plot of the triple point results 
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5.6 Mobile Walk-through 

 

 

Figure 5.64 The walk-through route in Home1 with pause points 

Figure 5.64 shows the path and pause points that were used in a walk-through 

test.  Using the same prototype and tag, three sets of readings were collected by 

the prototype at each of the three triple points.  The use of pause points allowed 

the data from the three tests to be coordinated.  This resulted in 12 signal strength 

combinations for the 12 known pause point locations, and an additional 22 

combinations relating to the intermediate unknown locations.  

The 34 signal strength combinations that were obtained during the test are shown 

in Figure 5.65.  Analysis of the data was carried out into the changes in signal 

strength throughout the mobile walk-through.  The majority of consecutive signal 

strength readings varied by 1SSN or zero.  Changes in consecutive signal 

strength readings of greater than 1 SSN were highlighted and investigated further. 
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Figure 5.65 The signal strength combinations obtained during the mobile walk-through test 

Figure 5.65 shows that from each set of results the signal tends to rise and fall in 

a smooth manner with no jumps from a high signal strength to a low one from one 

reading to the next.  There was however fourteen instances when the signal 

increased or decreased greater than +/-1SSN between readings, and these were 

explored to determine possible causes of these events. 
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Analysis of events giving rise to a signal strength variation greater than 1SSN: 

From RPi1: 

 moving from position 5 to 6 meant moving from directly under the RPi to the 

furthest distance from the RPi and then going upstairs towards the RPi.  This 

resulted in changes of signal strength of -2SSN and then a +3SSN. 

 moving from position 6 to position 7 involved moving to a location with two 

internal walls between the tag and the RPi and resulted in a decrease of -

2SSN. 

 moving from position 8 to position 9 meant moving from the bathroom with one 

internal wall obstruction towards the RPi with no internal walls between the tag 

and RPi.  This resulted in an increase of +2SSN. 

From RPi2: 

 moving from position 1 to position 2 involved moving from directly below the 

RPi in the hall to the kitchen with significant building element obstructions 

between the tag and RPi.  The obstructions included a brick wall and electricity 

meter, and resulted in a loss of signal of -2SSN. 

 Between position 8 and position 9 the tag moved from a mostly unobstructed 

position in the bathroom to the furthest corner in bedroom 2 with several 

obstructions including two internal walls and the chimney breast.  This resulted 

in a weakening of signal strength of -3SSN. 

 Moving from position 10 to position 11 the tag moved from a room adjacent to 

the room with the RPi directly towards the RPi, resulting in a signal gain of 

+2SSN. 

 position 11 to position 12 involved moving away from close proximity to the 

RPi to the top of the stairs and ending in the hall directly under the RPi.  This is 

responsible for a signal loss of -2SSN followed by a gain of +2SSN. 

From RPi3: 

 the route from position 6 to position 9 required the tag to move from a position 

unobstructed by the chimney breast to one that was (toilet) and then towards 

another obstructed position (bathroom) and ending in bedroom 2.  These 

moves resulted in signal loss of -2SSN, followed by a further loss of -2SSN 

and ending with a gain of +2SSN. 
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The mobile walk-through tests gave 102 signal strength readings and the majority 

of consecutive signal strength readings varied within +/-1SSN. Of the 14 signal 

strengths that differed more than 1SSN from the previous reading, all can be 

accounted by the change in obstructions between the tag and the RPi position. 

5.7 Summary 

Spectrum Analyzer 

The experiments with the spectrum analyzer in the Salford Energy House showed 

that there was considerable background signal in the 2.45GHz frequency range.  

This resulted in many occurrences when no discernible signal from the prototype 

was obtained.  When signal strength was detected, communication between the 

Loc8tor handheld unit and tags was observed.  These tests gave the first 

indication of disruption to signal from elements within the Energy House and 

potential causes of the disparity between the modelled signal behaviour and the 

actual results. 

Salford Energy House 

The signal strength results from testing the prototype in the Energy House clearly 

demonstrated the effect of the substantial metering equipment located in the 

space under the stairs.  The monitoring equipment reduced the signal strength 

markedly when it was between the tag and the prototype, in the form of a shadow 

that was identifiable in the resulting signal strength heatmaps. 

Combining the signal strength results of two tests in order to determine tag 

location showed that the eight most frequent combinations accounted for 70% of 

the total number of sampling points.  These combinations could not be used to 

locate the tag reliably as most occurred in several different rooms. 

Comparison of the simulated and actual signal strength behaviour varied 

noticeably.  The Energy House was designed and built to replicate thermal 

behaviour of domestic properties and is located inside a laboratory with extensive 

metallic and building elements surrounding it.  It is not analogous to the way 

signals travel through ordinary homes. 
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Home 1 

The signal behaviour at Home 1 was observed to be less disturbed than at the 

Energy House.  The disruption from internal elements, such as the central full 

height brick chimney, was more apparent and the orientation tests showed that 

changes in direction of the antenna could be used to improve the signal strength, 

and hence the differentiation to within rooms to assist location detection.  The use 

of an attenuation tube to focus the signal improved the differentiation of signal 

strength between floor levels. 

 Environmental Effects Tests 

Investigations into potential environmental effects on signal propagation through 

the house showed that the humidity and temperature changes experienced did 

not correlate with variation in signal strength.  Environmental Effects Test 2 also 

showed that occupation of the rooms in which the tag was placed also did not 

affect the resulting signal strength.  Environmental Effect Test 4 however did show 

a clear disruption to signal when two prototypes were active at the same time.  

The battery life of the tags was found to be between 111 and 120 hours of 

continuous use.   

Triple Point Positions 

The use of the triple point positions to collect signal strength data provided 40 

combinations with the clearest ability to identify tag location to room level.  These 

results are further evaluated in Chapter Six in order to develop an algorithm to 

detect location from signal strength data. 

Mobile Walk-Through 

Walking through the house while collecting signal strength data from the triple 

point positions resulted in a set of 34 signal strength combinations.  While twelve 

of these combinations occurred in known positions (the pause points) the 

remaining 22 combination locations was not known, and could relate to any 

location between pause points.  In Chapter Six, this dataset is used to test the 

algorithm developed from the stationary tests to ensure reliability with real-life 

mobile results. 

A detailed analysis of the results presented in this chapter is given in Chapter 6. 
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Chapter Six 

6 Test Results Evaluation 

This chapter expands on the results presented in the previous chapter.  The triple 

point method, using three prototypes at three corners of the house (two on the 

first floor and one on the ground floor) gave the best differentiation of results 

between rooms.  These results are used to produce signal strength contour maps 

for the prototypes and to develop an algorithm to determine room location by 

signal strength.  Data from the mobile walk-through was then used to test and 

refine the algorithm.  The mobile test was then repeated and the new data 

subjected to the algorithm to evaluate the success of deriving tag location by room. 

6.1 Contour Maps 

In order to produce contour maps for the prototypes, the results from the triple 

point tests were compared with the Ekahau simulations.  This was to ensure the 

placement of contours reflects how signals are expected to behave with respect to 

the actual obstructive influences present in the house, such as the chimney. 

The limitations of the Ekahau software is apparent when it comes to modelling the 

effect the chimney structure has on signal propagation through the house.  

Although the chimney is represented as a combination of brick walls this does not 

adequately reflect the impact observed in tests.  Additionally, there are other 

factors present in Home 1, such as items of furniture, which influences the 

strength of signal received by the prototype.  Examples of these incidences are 

highlighted in the following comparisons. 

RPi1 

Figure 6.1 shows the simulated and actual signal strength results with the 

prototype at position 1, on the first floor.  The experimental results vary from the 

modelled prediction when the chimney structure is between the tag and reader, 

for instance the SSN4 observed in the ground floor hall.  There are also a number 

of SSN5 results present in the living room and bedroom 1 that do not correspond 

to the model.  The remaining results broadly correlate with the simulation. 
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Figure 6.1 The simulated signal contour map (above) and actual signal strength results 

(bottom) from triple point position 1 at Home1, ground floor (left) first floor (right) 

RPi2 

The comparison of the triple point position 2 is shown in Figure 6.2.  This shows 

that the lowest signal strength result of SSN3 occurred in bedroom 1.  This is an 

atypical result because the prototype is on the same floor, in the next room and 

directed towards the sampling point.  This signal strength is not obstructed by the 

chimney and must be affected by other obstructions, most likely a metal filing 

cabinet in bedroom 3. 

Apart from one incidence of SSN3, the other low strengths were found in the living 

room, SSN4, and the furthest away from the prototype position on the other side 

of the chimney structure.  Similarly to the results from RPi1, there are three 
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outliers of SSN5, in this case in the living room and hall, where higher signal 

strength could reasonably be expected. 

                

 

Figure 6.2 The simulated signal contour map (above) and actual signal strength results 

(bottom) from triple point position 2 at Home1, ground floor (left) first floor (right) 

RPi3 

Figure 6.3 shows the results from RPi position 3 have the lowest signal strengths 

in the first floor toilet and bathroom, SSN3 and SSN4 respectively.  These points 

are the furthest away from the RPi position and have internal walls, floor and 

chimney obstructions between them and the receiver.  These low signal areas 

correlate with expected low signals in the simulation. 

Disturbance in the model from the brick pantry and electricity meter in the kitchen 

had less effect on the actual results, and the kitchen points remained high at 
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SSN7 and SSN8.  Signal strength results on the first floor were found to be more 

diverse than expected, with several strengths more affected by the furniture than if 

the signal was travelling through only the wall structures that could be modelled. 

                

 

Figure 6.3 The simulated signal contour map (above) and actual signal strength results 

(bottom) from triple point position 3 at Home1, ground floor (left) first floor (right) 

From evaluating how the actual and predicted signal strengths differed, and the 

factors that influenced this divergence, a set of contour maps for the prototype at 

the three triple point positions was developed.  These signal strength contour 

maps show the general areas of signal strength without the atypical readings due 

to the fixtures and fittings present in the house.  These contour maps are shown in 

Figure 6.4.  
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Figure 6.4 The signal strength contour maps of the prototype 

The contour maps are useful to show how the signal between the tag and receiver 

generally behaves, but is not appropriate to base an algorithm on because the 

atypical signal strengths that do not fit neatly into the contours must be taken into 
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account.  The following section describes how the algorithm was developed from 

all the actual signal strength results. 

6.2 Algorithm Development 

To develop an algorithm that can derive tag location to room-level from a 

combination of three signal strength readings with the receivers in the triple point 

positions, it was necessary to clarify the room locations in which each SSN was 

observed.  This is shown in Table 6.1.  The signal strength readings are denoted 

as a, b, or c from RPi positions 1, 2, and 3 respectively. 

 signal strength locations present 

a = SSN4 GH 

a = SSN5 GH, GK, GL, FB1 

a = SSN6 GK, GL, FB3, FL 

a = SSN7 GL, FB3, FB1, FL, FT, FBA, FB2 

a = SSN8 FB2, FL 

a = SSN9 FB2 

b = SSN3 FB1 

b = SSN4 GL 

b = SSN5 GH, GL, GK, FB1 

b = SSN6 GL, GK, FB1, FB2, FT 

b = SSN7 GL, GH, GK, FL, FBA, FB1, FB2 

b = SSN8 GH, FL, FB3 

b = SSN9 FB3, FL 

c = SSN3 FT 

c = SSN4 FBA 

c = SSN5 FB3 

c = SSN6 FB3, FL, FB1, FB2 

c = SSN7 GH, GK, GL, FB3, Fl, FB1, FB2 

c = SSN8 GH, GL, GK, FB1 

c = SSN9 GL 
Table 6.1 the rooms signal strengths a, b, or c were present 

There were eight signal strengths that only occurred in one room; these were 

when the signal strength was the strongest (SSN9) and the weakest (SSN3 and 

SSN4) for each RPi position.  SSN7 was present in seven rooms from all three 

RPi positions.  To derive location from the values of a, b, and c, a decision tree 

was developed from all of the values combined and their associated possible 

locations.  Figure 6.5 presents the process when the signal strength from RPi1 is 

SSN4. 
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Figure 6.5 Decision tree for a = SSN4 

In the figures of the decision trees, the box with the value for a, b, or c, also shows 

all the locations that value was observed in, i.e. one room for a = 4, seven rooms 

for b = 7, etc.  Also included are the resulting signal strength combinations that 

can indicate location in one room.   

Although a = SSN4 only occurs at location GH, the process of the deriving the 

combinations of signal strength to determine room location is shown in full.  The 

method started with the value for a, and then continues to the only possible values 

from b and c.  This is repeated for all the other values of signal strength. 

Combinations can only confirm a room location if a, b, and c all occur in that 

location.  As can be seen from the decision tree when a = SSN5, Figure 6.6, in 

additions to signal combinations that specify one room, there are also 

combinations that can be attributed to two or more rooms.  Details of the room 

combinations that suggest more than one room are valuable data and can be 

used to determine probable and possible locations in circumstances where there 

is doubt. 

a = 4 
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b = 5 

GH, GL, GK, FB1 
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FL, FB1, FB2 

c = 8 

GH, GL, GK, FB1 
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GL, GH, GK, FL, 
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c = 7 

GH, GK, GL, FB3, 
FL, FB1, FB2 

c = 8 

GH, GL, GK, FB1 

b = 8 

GH, GL, FB3 

c = 7 

GH, GK, GL, FB3, 
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GH, GL, GK, FB1 

GH 
4, 5, 7 
4, 5, 8 
4, 7, 7 
4, 7, 8 
4, 8, 7 
4, 8, 8 



118 
 

 

Figure 6.6. Decision tree for a = SSN5 

a = 5 

GH, GK, GL, FB1 

b = 3 

FB1 

c = 6 

FB1, FL, FB2, FB3 

c = 7 

GH, GK, GL, FB3, FL, FB1, 
FB2 

c = 8 

GH, GL, GK, FB1 

b = 4 

GL 

c = 7 

GH, GK, GL, FB3, FL, FB1, 
FB2 

c = 8 

GH, GL, GK, FB1 

c = 9 

GL 

b = 5 

GH, GL, GK, 
FB1 

c = 6 

FB1, FL, FB2, FB3 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

c = 8 

GH, GL, GK, FB1 

c = 9 

GL 

b = 6 

GL, GK, FB1, 
FB2, FT 

c = 6 

FB1, FL, FB2, FB3 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

c = 8 

GH, GL, GK, FB1 

c = 9 

GL 

b = 7 

GL, GH, GK, 
FL, FBA, FB1, 

FB3 

c = 6 

FB1, FL, FB2, FB3 
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GH, GK, GL, FB3, FL, 
FB1, FB2 
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GH, GL, GK, FB1 

c = 9 

GL 

b = 8 

GH, GL, FB3 
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GH, GK, GL, FB3, FL, 
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c = 8 

GH, GL, GK, FB1 
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Figure 6.7 Decision tree for a = SSN6 

a = 6 

GH, GL, FL, 
FB3 

b = 4 

GL 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

c = 8 

GH, GK, GL, FB1 

c = 9 

GL 

b = 5 

GH, GL, GK, 
FB1 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

c = 8 

GH, GL, GK, FB1 

c = 9 

GL 

b = 6 

GL, GK, FB1, 
FB3, FT 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

c = 8 

GH, GL, GK, FB1 

c = 9 

GL 

b = 7 

GL, GK, GH, 
FB1, FB2, 
FBA, FL 

c = 6 

FB1, FL, FB2, FB3 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

c = 8 

GH, GL, GK, FB1 

c = 9 

GL 

b = 8 

GH, FL, FB3 

c = 5 

FB3 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, 
FL, FB1, FB2 

b = 9 

FB3, FL 

c = 5 

FB3 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, 
FL, FB1, FB2 

GL 

6, 6, 8 

6, 6, 9 
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a = 7 

GL, FB3, 
FB1, FL, 
FT, FBA, 

FB2 

b = 3 

FB1 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, FL, FB1, FB2 

c = 8 

GH, GL, GK, FB1 

b = 4 

GL 

c = 7 

GH, GK, GL, FB3, FL, FB1, FB2 

c = 8 

GH, GK, GL, FB1 

c = 9 

GL 

b = 5 

GH, GL, 
GK, FB1 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, FL, FB1, FB2 

c = 8 

GH, GL, GK, FB1 

c = 9 

GL 

b = 6 

GL, GK, 
FB1, FB2, 

FT 

c = 3 

FT 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, FL, FB1, FB2 

c = 8 

GH, GL, GK, FB1 

c = 9 

GL 

b = 7 

GL, GK, 
GH, FB1, 
FB2, FBA, 

FL 

c = 4 

FBA 

c = 6 

FB1, FL, FB2, FB3 

c = 7 

GH, GK, GL, FB3, FL, FB1, FB2 

c = 8 

GH, GL, GK, FB1 

c = 9 

GL 

b = 8 

GH, FL, FB3 

c = 5 

FB3 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, FL, FB1, FB2 

b = 9 

FB3, FL 

c = 5 

FB3 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, FL, FB1, FB2 

FB1 

7, 3, 6 

7, 3, 7 

7, 3, 8 

 

GL 

6, 7, 9 

 

GL 

7, 4, 7 

7, 4, 8 

7, 4, 9 

 

 
FB1 

7, 5, 6 

GL 

7, 5, 9 

 

FT 

7, 6, 3 

 

GL 

7, 6, 9 

 

FB3 

7, 8, 5 

7, 9, 5 

 

 

FBA 

7, 7, 4 

 

GL 
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Figure 6.8 Decision tree for a = SSN7 
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Figure 6.9 Decision tree for a = SSN8 

 

Figure 6.10 Decision tree for a = SSN9 

a = 8 

FB2, FL 

b = 6 

GL, GK, FB1, FB2, FT 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

b = 7 

GL, GK, GH, FB1, 
FB2, FBA, FL 

c = 6 

FB1, FL, FB2, FB3 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

b = 8 

GH, FL, FB3 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

b = 9 

FB3, FL 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, FL, 
FB1, FB2 

a = 9 

FB2 

b = 6 

GL, GK, FB1, FB2, 
FT 

c = 6 

FB3, FL, FB1, FB2 

c = 7 

GH, GK, GL, FB3, 
FL, FB1, FB2 

b = 7 

GL, GK, GH, FB1, 
FB2, FBA, FL 

c = 6 

FB1, FL, FB2, FB3 

c = 7 

GH, GK, GL, FB3, 
FL, FB1, FB2 

FL 

8, 8, 6 

8, 8, 7 

8, 9, 6 

8, 9, 7 

 

FB2 

8, 6, 6 

8, 6, 7 

 

 

FB2 

9, 6, 6 

9, 6, 7 
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It is apparent that there are a greater number of combinations from mid-range 

signal strength (SSN5 to SSN7) than at the high and low signal strengths.  As can 

be seen from the decision trees, there are combinations that denote one room, 

and others that indicate one or more rooms.  These combination types can be 

arranged into the hierarchy as shown in Table 6.2. 

combination type indicates location 
in 

number of 
combinations 

Group 1 one room 50 

Group 2 two rooms 19 

Group 3 three rooms 6 

Group 4 four rooms 4 
Table 6.2 The groups of signal combinations 

Group 1 combinations give the greatest confidence of the tag being present in the 

room indicated as they indicate one room only.  These signal strength 

combinations are the most abundant, at 2 ½ times the number of Group 2 

combinations.  The locations relating to Group 1 combinations are shown in Table 

6.3. 

rooms Group 1 combinations 

GH 4, 5, 7 4, 5, 8  

 4, 7, 7 4, 7, 8  

 4, 8, 7 4, 8, 8  

FB1 5, 3, 6 5, 3, 7 5, 3, 8 

 5, 5, 6 5, 6, 6  

 7, 3, 6 7, 3, 7 7, 3, 8 

 7, 5, 6   

GL 5, 4, 7 5, 4, 8 5, 4, 9 

 5, 5, 9 5, 7, 9  

 6, 4, 7 6, 4, 8 6, 4, 9 

 6, 5, 9   

 6, 6, 8 6, 6, 9  

 6, 7, 9   

 7, 4, 7 7, 4, 8 7, 4, 9 

 7, 5, 9 7, 6, 9 7, 7, 9 

FL 6, 7, 6   

 8, 8, 6 8, 8, 7  

 8, 9, 6 8, 9, 7  

FB3 6, 8, 5 6, 9, 5  

 7, 8, 5 7, 9, 5  

FT 7, 6, 3   

FBA 7, 7, 4   

FB2 8, 6, 6 8, 6, 7  

 9, 6, 6 9, 6, 7  

 9, 7, 6 9, 7, 7  

Table 6.3 Group 1 combinations 
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The only room in Home 1 that does not have any Group 1 signal combinations is 

GK (Ground floor, Kitchen).  As shown in Table 6.4, GL (Ground floor, Living room) 

has the highest number of Group 1 combinations at 18, twice as many as the 

second highest in Bedroom 1 at 9. 

room location number of Group 
1 combinations code floor room 

GL Ground living room 18 

FB1 First bedroom 1 9 

FB2 First bedroom 2 6 

GH Ground hall 6 

FL First landing 5 

FB3 First bedroom 3 4 

FT First toilet 1 

FBA First bathroom 1 

GK Ground kitchen 0 

  Total 50 
Table 6.4 Number of Group 1 combinations by room 

The locations and signal strengths of the Group 2, 3, and 4 combinations shown 

in Table 6.5 shows that of the combinations that occur in more than one room, 19 

indicate two rooms, 6 three rooms, and 4 in four rooms.  GK is associated with 

two Group 3 and four Group 4 combinations. 

 rooms indicated combinations present 

Group 2 GH GL   5, 8, 7 5, 8, 8  
     6, 5, 7 6, 5, 8  
     6, 7, 8   

 GL FB3   6, 6, 7   

 FL FB3   6, 8, 6 6, 9, 6 6, 9, 7 
     7, 8, 6 7, 8, 7  
     7, 9, 6 7, 9, 7  

 GL FB1   7, 5, 7 7, 5, 8 7, 7, 8 

 FB1 FB2   7, 6, 6   

 FL FB2   8, 7, 6 8, 7, 7  
        

Group 3 GK GL FB1  5, 6, 7 5, 6, 8  

 GL GH FL  6, 7, 7   

 GH FB3 FL  6, 8, 7   

 FB1 FB2 FL  7, 7, 6 7, 7, 7  
        

Group 4 GH GK GL FB1 5, 5, 7 5, 5, 8  
     5, 7, 7 5, 7, 8  
        

Table 6.5. Group 2, 3, and 4 combinations by type and room 



124 
 

Using the signal strength from each set of readings that only occur in one room, it 

was possible to develop the first stage of an algorithm, as shown in Figure 6.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11.  Stage 1 of the algorithm 
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Removing the signal strength combinations that overlap with those in Stage 1 and 

contain the eight single signal strengths that indicate one room only significantly 

reduces the number of combinations in Group 1.  The remaining 11 Group 1 

combinations were used to construct the second stage of the algorithm.  This is 

shown in Figure 6.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12.  Stage 2 of the algorithm 
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cannot indicate one single room, but occur in two, three, or four rooms.  The 

following section explains how the algorithm was tested with the results from the 

mobile walk-through. 

6.3 Algorithm Testing 

Analysis of the algorithm applied to the mobile walk-through test is shown in Table 

6.6.  Of the 34 readings, five are correctly identified to a room when Stage 1 of the 

algorithm is used.  A further two readings (17 & 20) are incorrectly allocated to 

bedroom 3 when this is not possible because the route of the walk-through is 

known.  This erroneous allocation indicates that the assumption c = 5 occurs only 

in bedroom 3 is incorrect. 

There is one location derived by applying Stage 2 of the algorithm, at reading 33, 

suggesting the tag was located in bedroom 1.  Again this is known to be incorrect 

because the reading took place between pause points 11 and 12, and could only 

be in bedroom 3, the landing, or the hall.  This shows that in this case (5, 5, 6) did 

not occur in bedroom 1. 

Eighteen of the readings were compared with the Group 2, 3, and 4 combinations 

during Stage 3 of applying the algorithm.  Fifteen of these indicate the correct 

room in one of the locations the tag could be present in.  Three of these readings 

(5, 6, & 32) did not have their room location as one of the ones suggested.  

The remaining eight readings (7, 9, 10, 11, 13, 15, 25 & 26) did not generate any 

location suggestions.  On five of these occasions the signal strength combination 

was the same (7, 6, 7) and was present when the tag was known to be in the 

living room and between bedroom 1 and bedroom 3.  Additionally, the kitchen was 

not indicated at all. 

These results are indicated in the table by; highlighting the correct predicted room 

location in bold, striking through incorrect room predictions, and differentiating the 

results that correlate with Stage 1 in green, Stage 3 in amber, and previously 

unseen combinations in red. 
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reading 
number 

RPi1 
SSN 

RPi2 
SSN 

RPi3 
SSN 

pause 
point 

Stage 
1 

Stage 
2 

Stage 3 actual 
room 

1 5 7 7 1   GH, GK, GL, FB1 GH 

2 4 7 7  GH    

3 6 7 8    GH, GL  

4 6 7 7    GL, GH, FL  

5 6 5 7 2   GH, GL GK 

6 6 5 7    GH, GL  

7 6 6 6 3    GK 

8 6 7 7    GL, GH, FL  

9 7 6 7 4    GL 

10 7 6 8      

11 7 6 7      

12 7 5 8 5   GL, FB1 GL 

13 7 6 7      

14 5 7 8    GH, GK, GL, FB1  

15 8 7 8 6    FL 

16 7 7 6    FB1, FB2, FL  

17 5 7 5 7 FB3   FT 

18 6 8 3  FT    

19 6 8 4 8 FBA   FBA 

20 8 5 5  FB3    

21 9 6 7 9 FB2   FB2 

22 9 7 8  FB2    

23 7 7 8    GL, FB1  

24 7 7 7 10   FB1, FB2, FL FB1 

25 7 6 7      

26 7 6 7      

27 8 7 7    FL, FB2  

28 7 9 6 11   FL, FB3 FB3 

29 7 9 7    FL, FB3  

30 7 9 6    FL, FB3  

31 7 7 7    FB1, FB2, FL  

32 6 6 7    GL, FB3  

33 5 5 6   FB1   

34 5 7 7 12   GH, GK, GL, FB1 GH 
Table 6.6 First test of the algorithm with the mobile walk-through results 

These results clearly indicated that the algorithm derived from stationary data 

needed refining to properly identify tag location to room-level.  In order to improve 

the algorithm it was necessary to identify where the predictions correlated with the 

results and where they diverged.  This analysis of Stage 1 of the algorithm is 

shown in Table 6.7.  Of the eight conditions in Stage 1, four were confirmed, one 

was denied, and three were not tested as they were not present in the data from 

the mobile walk-through. 
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Stage 1 
conditions 

confirmed 

a = 4 -> GH  Yes  

a = 9 -> FB2  Yes  

b = 3 -> FB1 not tested   

b = 4 -> GL not tested   

c = 3 -> FT  Yes  

c = 4 -> FBA  Yes  

c = 5 -> FB3   No 

c = 9 -> GL not tested   
Table 6.7 Result of testing the Stage 1 conditions 

Only the Stage 1 conditions that were confirmed would go on to be included in the 

improved algorithm.  Stage 2 conditions that were not met consist of eight signal 

strength combinations that were either incorrectly allocated to a room or were not 

recognised by the algorithm.  These are shown in Table 6.8. 

combination predicted location actual location 

(5, 5, 6) FB1 FL or GH 

(6, 5, 7) GH or GL GK 

(6, 6, 6) - GK 

(7, 6, 7) - GL 

(7, 6, 8) - GL 

(8, 7, 8) - FL 

(5, 7, 5) FB3 FT 

(6, 6, 7) GL or FB3 FL or GH 
Table 6.8 Stage 2 conditions that were not met 

Creation of decision trees from the known locations the signal strengths occurred 

in the mobile walk-through tests were developed and are shown in Figures 6.13 – 

6.16.  Decision trees for a = 4 and a = 9 were not created because these 

conditions were confirmed during the algorithm test to correctly identify tag 

location in the hall and bedroom 2 respectively. 
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Figure 6.14 Decision tree for a = 6 from mobile data 
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Figure 6.15 Decision tree for a = 7 from the mobile data. 

 

Figure 6.16 Decision tree for a = 8 from the mobile data 
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Tables 6.9 and 6.10 show that analysis of the mobile walk-through data resulted 

in an additional 19 Group 1 combinations that could be used to locate the tag to 

one room, and 4 Group 2 combinations that indicate two possible rooms.  These 

were added to the existing Group 1 and 2 combinations.   

rooms Group 1 combinations 

GH 5, 7, 6 5, 7, 7 5,7, 8 

FB1 5, 3, 6 5, 3, 7 5, 3, 8 

 5, 5, 6 5, 6, 6  

 7, 3, 6 7, 3, 7 7, 3, 8 

 7, 5, 6   

GL 5, 4, 7 5, 4, 8 5, 4, 9 

 5, 5, 9 5, 7, 9  

 6, 4, 7 6, 4, 8 6, 4, 9 

 6, 5, 9   

 6, 6, 8 6, 6, 9  

 6, 7, 9   

 7, 4, 7 7, 4, 8 7, 4, 9 

 7, 5, 9 7, 6, 9 7, 7, 9 

 7, 5, 7 7, 5, 8  

 7, 6, 7 7, 6, 8  

FL 6, 7, 6   

 7, 7, 6 7, 7, 8  

 8, 7, 6 8, 7, 7 8, 7, 8 

 8, 8, 6 8, 8, 7  

 8, 9, 6 8, 9, 7  

FB3 6, 8, 5 6, 9, 5  

 7, 8, 5 7, 9, 5  

 7, 9, 6 7, 9, 7  

FT 7, 6, 3 6, 7, 5  

FB2 8, 6, 6 8, 6, 7  

GK 6, 5, 6 6, 5, 7  

 6, 6, 6 6, 6, 7  
Table 6.9 Group 1 combinations by room 

 The kitchen is now indicated by four Group 1 combinations. 

 

 

 

 

 



132 
 

 rooms indicated combinations present 

Group 2 GH GL   5, 8, 7 5, 8, 8  
     6, 5, 8 6, 7, 8  

 FL FB3   6, 8, 6 6, 9, 6 6, 9, 7 
     7, 8, 6 7, 8, 7  

 FB1 FB2   7, 6, 6   

 FL FB1   7, 7, 7   

 GH FL   6, 7, 6 6, 7, 7  

 FT FBA   6, 8, 5   
        

Group 3 GK GL FB1  5, 6, 7 5, 6, 8  

 GH FB3 FL  6, 8, 7   

        

Group 4 GH GK GL FB1 5, 5, 7 5, 5, 8  
        

Table 6.10 Group 2, 3, and 4 combinations 

Removing the conditions that were not confirmed by the test of the algorithm 

reduces Stage 1 of the algorithm from 8 conditions to 4, as shown in Figure 6.17. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17.  Updated Stage 1 of the algorithm 
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Stage 2 of the algorithm was expanded to include the results of analysing the 

mobile data, and those combinations had previously been covered by the four 

conditions that were removed, i.e, all the combinations that include b= 3 or c = 5.  

The improved Stage 2 of the algorithm is shown in Table 6.11. 

if (a, b, c) equals: tag location is: 

code room 

5, 7, 6 5, 7, 7 5, 7, 8  GH hall 
      

5, 3, 6 5, 3, 7 5, 3, 8  FB1 bedroom 1 
5, 5, 6 5, 6, 6     
7, 3, 6 7, 3, 7 7, 3, 8 7, 5, 6   

      

5, 4, 7 5, 4, 8 5, 4, 9  GL living room 
5, 5, 9 5, 7, 9     
6, 4, 7 6, 4, 8 6, 4, 9 6, 5, 9   
6, 6, 8 6, 6, 9 6, 7, 9    
7, 4, 7 7, 4, 8 7, 4, 9 7, 5, 9   
7, 6, 9 7, 7, 9     
7, 5, 7 7, 5, 8 7, 6, 7 7, 6, 8   

      

6, 7, 6 7, 7, 6 7, 7, 8  FL landing 
8, 7, 6 8, 7, 7 8, 7, 8    
8, 8, 6 8, 8, 7 8, 9, 6 8, 9, 7   

      

6, 8, 5 6, 9, 5 7, 8, 5 7, 9, 5 FB3 bedroom 3 
7, 9, 6 7, 9, 7     

      

7, 6, 3    FT toilet 
      

8, 6, 6 8, 6, 7   FB2 bedroom 2 
      

6, 5, 6 6, 5, 7 6, 6, 6 6, 6, 7 GK kitchen 
      

Table 6.11 Improved Stage 2 of the algorithm 

Applying the updated algorithm to the mobile walk-through data gave the following 

results in Table 6.12.  The resulting room indication was improved.  Twenty three 

of the thirty four readings were correctly located by Stage 1 and Stage 2 of the 

algorithm to a single room and a further five readings (3, 4, 8, 24 & 31) gave the 

correct location in one of two rooms.  Two readings (25 & 26) gave a false reading 

of the living room when they were in the room above in bedroom 1 and four 

readings (17, 20, 32 & 33) did not return any locations.   
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Unlike the previous algorithm that failed to identify the kitchen at any reading, the 

kitchen was correctly identified in three instances (readings 5, 6, and 7) by the 

improved algorithm. 

reading 
number 

RPi1 
SSN 

RPi2 
SSN 

RPi3 
SSN 

pause 
point 

Stage 
1 

Stage 
2 

Stage 3 actual 
room 

1 5 7 7 1  GH  GH 

2 4 7 7  GH    

3 6 7 8    GH, GL  

4 6 7 7    GH, FL  

5 6 5 7 2  GK  GK 

6 6 5 7   GK   

7 6 6 6 3  GK  GK 

8 6 7 7    GH, FL  

9 7 6 7 4  GL  GL 

10 7 6 8   GL   

11 7 6 7   GL   

12 7 5 8 5  GL  GL 

13 7 6 7   GL   

14 5 7 8   GH   

15 8 7 8 6  FL  FL 

16 7 7 6   FL   

17 5 7 5 7    FT 

18 6 8 3  FT    

19 6 8 4 8 FBA   FBA 

20 8 5 5      

21 9 6 7 9 FB2   FB2 

22 9 7 8  FB2    

23 7 7 8   FL   

24 7 7 7 10   FB1, FL FB1 

25 7 6 7   GL   

26 7 6 7   GL   

27 8 7 7   FL   

28 7 9 6 11  FB3  FB3 

29 7 9 7   FB3   

30 7 9 6   FB3   

31 7 7 7    FB1,  FL  

32 6 6 7      

33 5 5 6      

34 5 7 7 12  GH  GH 
Table 6.12. Application of improved algorithm on the original walk-through test results 

 To further test the improved algorithm a repeat of the walk-through test was 

carried out and new data was collected.  The resulting data comprises 35 

readings and is shown in Table 6.13.  The improved algorithm was applied to the 

new data and the resulting indication of tag location was greatly improved.  

Twenty nine of the thirty five readings were correctly allocated to one room and 
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four were predicted to be in either the correct room or one other location.  The 

location of these four readings (4, 18, 26, & 29) could be derived by dead 

reckoning, i.e. reviewing the previous and following locations to determine which 

of the two rooms would be right.   For instance reading 4 could be in GH or GL 

while readings 1, 2, and 3 are in GH and readings 5, 6, and 7 were in GK, 

therefore reading 4 can be attributed to GH rather than GL. 

reading 
number 

RPi1 
SSN 

RPi2 
SSN 

RPi3 
SSN 

pause 
point 

Stage 
1 

Stage 
2 

Stage 3 actual 
room 

1 5 7 7 1  GH  GH 

2 4 6 7  GH    

3 4 6 7  GH    

4 6 7 8    GH, GL  

5 6 5 7 2  GK  GK 

6 6 5 7   GK   

7 6 6 6 3  GK  GK 

8 6 7 6   FL   

9 7 6 7 4  GL  GL 

10 7 6 8   GL   

11 7 6 7   GL   

12 7 5 8 5  GL  GL 

13 7 5 8   GL   

14 5 7 6   GH   

15 5 6 8 6    FL 

16 8 7 7   FL   

17 8 7 6   FL   

18 6 8 5 7   FT, FBA FT 

19 6 7 3  FT    

20 6 7 4  FBA    

21 6 8 4 8 FBA   FBA 

22 6 8 4  FBA    

23 9 7 5  FB2    

24 8 6 6 9  FB2  FB2 

25 9 6 6  FB2    

26 7 7 7    FL, FB1  

27 7 5 6 10  FB1  FB1 

28 7 5 6   FB1   

29 7 7 7    FL, FB1  

30 7 9 6 11  FB3  FB3 

31 8 9 6   FL   

32 6 8 7    FL, FB3, GH  

33 5 7 6   GH   

34 5 7 7   GH   

35 5 7 7 12  GH  GH 
Table 6.13 Improved algorithm applied to the new mobile walk-through data 

The least straightforward readings were readings 15 and 32.  These either gave 

no indication of a room or the choice of three rooms.  It is significant that both 
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these readings occurred between the ground floor and the first floor.  This 

indicates that the stairs are a problematic area and the signal strengths are not as 

easily identifiable as when the tag is in a room.   

6.4 Summary 

Contour maps 

The Ekahau modelling software is a very useful tool to visualise how signal 

behaves generally.  The limitations of the software include the narrow range of 

wall and floor structures available to represent the location being modelled.  The 

biggest restriction however is that Ekahau models signal loss through building 

elements and cannot replicate how signals reflect off surfaces. 

The contour maps were developed with reference to the Ekahau modelling of 

Home 1 and show the effects of the chimney structure in the centre of the house.  

The contour maps also show that while most of the signal strength readings fit 

within the contour lines, there are many examples of signal strength outliers.  

These signal strengths are the result of reflection off and disruption caused by 

elements and obstructions, such as furniture, present in the house. 

Algorithm development and testing 

The development of the algorithm took into account all the signal strengths 

observed in the triple point tests, not just those that fit into contour lines, because 

it was essential to base the algorithm on the signal’s actual behaviour rather than 

its best behaviour. 

Initially the algorithm was based on the stationary signal strengths and was found 

to have many flaws.  Among these was the lack of ability to locate the tag within 

the kitchen.   The kitchen represented the only corner of Home 1 without an RPi 

position as the three RPi positions were located in the other three corners of the 

house, one at ground level and two on the first floor. 

Application of the algorithm to the data from the mobile walk-through test showed 

a high level of failure to identify the correct tag location.  This first test of the 

algorithm only identified the correct room on 5 occasions.  This required a 
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significant evaluation of signal strength results from the mobile walk-through and 

resulted in major changes to the tag location procedure. 

Using the mobile data, a large number of additional signal strength combinations 

and their locations were developed and added to the algorithm.  When the 

improved algorithm was tested against the original mobile walk-through data the 

resulting identification of tag location by room was improved and the kitchen was 

included in rooms that were identified, unlike in the previous test of the original 

algorithm. 

To more fully evaluate the accuracy of the improved algorithm a repeat of the 

mobile walk-through test was carried out and new data was collected.  When this 

data was subjected to the improved algorithm the results were greatly improved 

and twenty-nine of the thirty-five readings were located to the correct rooms 

immediately.  Four of the six remaining readings were identified as being in one of 

two rooms, and in all these cases the correct room could be determined by dead 

reckoning.  This meant that in 33 of the 35 readings the tag location could be 

correctly identified by room. 

The weakest two readings corresponded with either going upstairs or coming 

downstairs and neither could be identified to one particular room.  The stairs 

therefore form a zone of uncertainty within Home 1.  Due to the fact that people 

do not use energy or spend time on the stairs, having this zone of uncertainty 

does not detract from the acceptability of the use of the system with the improved 

algorithm to monitor personal energy-consuming behaviour. 
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Chapter Seven 

7 Conclusions 

This chapter reviews the research carried out, identifies the contributions made to 

current knowledge and opportunities for future work. 

The Salford Energy House 

The energy house is an excellent resource for modelling the thermal performance 

of homes and testing the effectiveness of methods for improving elements within 

homes.  Unfortunately it was not an ideal location for observing RFID signal 

strength behaviour due to the multiple causes of signal disturbance.  In addition to 

the numerous meters and sub-meters in the house that had a visible impact on 

signal strength, there are multiple sensors in every room.  The energy house is 

also built inside a laboratory and surrounded by metallic and building elements 

that disrupt signal propagation. 

Despite the drawbacks of testing the RFID system in the energy house, important 

lessons were learned about identifying the effects of disruptive elements.  

Observations of communication signals between the tags and reader were 

captured by the spectrum analyzer. 

Home 1 

Having access to a family home was essential to test the location system in a 

typical residential environment.  The construction of Home 1, a three-bedroomed 

semi-detached house, is representative of 22% of current English housing stock 

as an example of an early post-war cavity wall building. 

It was apparent from tests that there were disruptive elements present in Home 1.  

Some were easily identifiable, such as the large brick chimney in the centre of the 

house, which cast a shadow of reduced signal strength readings when it was in 

between the tag and the reader.  Other disruptions were indicated by atypical 

signal readings but were not easy to attribute to any one specific object or 

element.  Multipath errors in RFID systems are caused by reflection of the radio 

signal off surfaces and objects, in the case of Home 1 the fixtures and furniture 

within the home. 
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These multipath errors account for some of the differences between the actual 

results and the simulated model as Ekahau can only predict loss of signal through 

elements.  Other differences are related to the narrow range of walls and floors 

that can be specified in the modelling programme.  Although the software includes 

almost 1,000 antennae to choose from and the one used was selected because it 

was the most similar to the Loc8tor antenna, the simulations could be improved if 

the actual antenna used was included in the modelling software.  Despite the 

limitations of the Ekahau software, the simulations broadly correlated with the 

signal contours of the system.  This implies reliability of the data collected due to 

the systematic, consistent approach of the experimental methodology.  

Factors affecting signal strength 

Many tests were carried out to investigate the influence of environmental factors 

on the signal strength of the system.  It was found that local humidity between 

47.8% and 96.6%, and temperatures between 11oC and 20oC did not affect the 

signal strength readings.  Likewise, occupation of the same room as the tag did 

not change the signal strengths received. 

Tests of co-located tags communicating with different RPis did not exhibit the 

same signal strength behaviour.  This indicated that the local environment of the 

tag was not a factor in its performance, rather what is between the tag and its 

paired RPi is crucial. 

A definite cause of disruption found in the tests occurred when two RPis were 

active at the same time.  The tags clearly exhibited significant disruption 

compared to when the RPis were active in isolation.  This can be eliminated by 

synchronising the base stations to ensure RFID communication is staggered and 

does not occur simultaneously. 

Location Detection 

Results from the tests clearly showed that using one or two RPis did not provide 

adequate differentiation to enable location identification.  Because the Loc8tor 

system converts the received signal strength into a limited number of signal 

strengths indicated by activity of the LEDs, this results in a series of nine Signal 

Strength Numbers (SSNs) from SSN1 (no signal) to SSN9 (the strongest signal).  
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During the experiments it was found that the majority of readings in Home 1 were 

SSN7.  The strongest signal (SSN9) occurred in close proximity to the RPi and 

very low signal strengths of SSN2 never occurred.  SSN1 (no signal) did occur in 

occasional instances due to a lack of communication between the tag and reader.  

Other low signal strengths of SSN3 and SSN4 were observed rarely during the 

tests.  Chapter Five showed that the nine SSN’s from the nine patterns of LED 

activity could not be clearly placed in specific ranges of signal strength dBm. 

When three RPis are placed in three corners of the building and directed towards 

their opposite diagonal corner, the differentiation of the signal strength readings 

was found to be sufficient to enable derivation of tag location to room-level with 

the algorithm.  The final test of the algorithm successfully determined the tag 

location to one room in 83% of readings.  A further 11% of readings were 

allocated to one of two rooms comprising the correct room and one other room.  

In these cases it was clear from the preceding and following locations which of the 

two options were the correct room.  For example during the final walk-through test 

a reading indicated the tag was located in either GH or GL, was preceded by GH, 

GH, GH and followed by GK, GK, GK therefore it was apparent that the tag could 

not be present in GL and had to be in GH.  Including comparison of previous and 

subsequent locations to rule out non-sensible location options in the algorithm 

resulted in a prediction system accuracy of 94%. 

Development of the algorithm had to include all the results from the triple point 

position tests, including the outliers, and not be based on the contour maps only.  

This is because the algorithm had to take into account the impacts of all disrupting 

influences present in the house.  Following testing and refinement of the algorithm 

it was found to be successful when used on a new set of results from a second 

mobile walk-through test.  The only exception to successful location of the tags to 

room-level is when the tag is between floors.  As there are no appliances on the 

stairs and people do not spend a lot of time there this is an acceptable omission. 

The ultimate location method used to achieve 94% success rate of locating the 

tag within the correct room was a combination of proximity and inference from 

preceding and following positions. When united with energy consumption data, 
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the time and location of appliance energy use will provide further data to 

corroborate location. 

In conclusion, the location system and the appliance level monitors together form 

the technique that fulfils the fundamental requirements of this research as set out 

in Chapter Three.  These are: 

1. The ability to locate individuals to room-level 

2. Accurate recording of the location, individual, and time 

3. Appliance level electricity consumption data, also recorded with time and 

location 

The algorithm works by using data from the triple point positions that give the best 

differentiation of signal strength combinations between rooms.  Following this, if 

necessary, interpolation is used to derive location from analysis of preceding and 

following signal strengths to eliminate non-sensible locations.  As a final back up, 

the appliance-level electricity consumption when matched to location data would 

provide an additional location confirmation. 

 

7.1 Contribution 

The primary contribution from this research is the demonstration that this 

technique can successfully locate multiple people to room level by using a small 

number of low-cost devices.  With this technique it has been shown that the real-

time location system can locate an RFID Loc8tor tag to the room it is in with an 

accuracy of 94% from only the coarse-grained data from the devices.  This has 

been proven in a real family home of standard construction, with all the fixtures 

and furniture present. 

The system is capable of locating up to four people at a time, the maximum 

number of RFID tags that can be registered to each handheld reader, and results 

from tests showed that signal strength was not impaired by the presence of 

people or observed variations in temperature or humidity. 

The location data, when combined with Plugwise appliance-level energy 

consumption data, makes possible the capture of personalised domestic energy 
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consuming behaviour of individuals.  The lack of understanding of how people use 

energy at home is a significant gap in current knowledge. 

The ability to determine domestic energy profiles could considerably alter (and 

improve) the approach of energy suppliers and the government to help reduce 

domestic energy consumption, and therefore fuel poverty, in the UK. 

Although the technique was developed with the intention of capturing domestic 

energy consuming behaviour, the location system would be suitable for many 

other applications, such as assisted living.   

An additional contribution is the very large quantity of data from the testing of the 

system that could be used by other researchers.  This data comprises signal 

strength readings from numerous experiments and describes the signal 

propagation through the Salford Energy House and a fully furnished family home 

in Greater Manchester. 

 

7.2 Future Work 

There are inherent difficulties using RFID in non-open spaces due to multipath 

issues.  Predicting signal propagation indoors requires detailed knowledge of the 

location.  The 94% accuracy of location detection obtained followed a period of 

intense experimentation and data collection.  It would be unrealistic to suggest 

this system is ready for immediate deployment in any location. 

Proof of concept and location accuracy has been achieved in one location and in 

order to use this system in other locations it would be necessary to condense the 

information gathering stage of the homes it would be installed in, such as floor 

plans and construction details.  This would enable simulation of the properties 

using software such as Ekahau to predict how the system would behave in those 

homes.   

Therefore an opportunity for future implementation of this technique would be in 

the form of long term testing across several households with a range of family 

occupancies in a new housing development.  In this case the homes could be 

modelled from the architectural drawings in advance of installation of the 
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personalised energy monitoring system.  Deploying the system in a housing 

scheme has the advantages that detailed plans would be readily available, there 

tends to be a repetition of house styles in new developments, and once tenants 

moved in a quick survey could identify the location of potential disruptive 

influences.   

Other opportunities for the real-time location system include additional functions to 

record more data, such as an accelerometer, thermistor, or light-dependent 

resistor.  These functions would make the system a potential solution to health 

and well-being monitors, such as remote home-care systems.  The data could be 

collected and available in real-time and have alerts if specified conditions are met, 

such as periods of inactivity, low temperature or darkness. 
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Appendix A. Energy Monitoring System 

Plugwise Energy Management and Control System 

Plugwise is a Dutch company that supplies wireless energy management and 

control systems for appliances in buildings.  The Plugwise system is based on a 

wireless mesh network (Zigbee 2.4 Hz) and has the following features: 

 Energy efficient components; 

 128-bit AES encryption to ensure security of energy consumption data; 

 Mesh network support – the mesh re-organizes itself, new appliances are 

recognised and incorporated automatically; 

 Open international standard – meaning the system is easily extendable 

with other modules; 

 Individually coded and identifiable components. 

As well as providing details of energy consumption at appliance level, switching 

schemes can be set up so that appliances can be switched on and off at specified 

times.  Appliances can be grouped together by location or type, and can be 

switched on and off as a group.  Each complete Plugwise system consists of a 

Circle+, one or more Circles, a Stick and the Source software.  These elements 

are shown below. 

   

Circle + The Circle+ is the co-ordinator 
of the network.  This module 
contains the clock that the 
other modules use to 
synchronise their time stamps. 

 
Circle This is the basic unit of the 

network.  It measures energy 
consumption through it and 
can switch the connected 
appliance on and off. 
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Stick This is the USB dongle that 
enables communication 
between the Source software 
and the units.  The stick 
receives data from and 
transmits tasks to the modules. 
 

 

Source This is the software that the 
system is controlled by.  
Energy consumption data is 
displayed on diagrams and 
switching schemes can be 
created.   

 
The Elements that make up the Plugwise Energy Management and Control System. (images 

from www.plugwise.com) 

The Plugwise system has been used in previous energy monitoring research by 

the University of Salford, and the Plugwise company donated an advanced 

licence for the purposes of this investigation.  The system is straightforward to set 

up and several test networks were evaluated over a period of six months. Apart 

from the added bulk of the units, which added 4cm to the depth of existing plugs 

and made installation in confined spaces difficult, the units performed well and 

reliably recorded energy consumption of the appliances they were dedicated to. 

 

Example of a graph showing total energy consumption for the network 
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Graphical outputs from the Plugwise system are shown for the total energy 

consumption of a network, and hourly consumption over several days of a 

refrigerator and electric kettle. 

 

 

Hourly Energy Consumption pattern over  several days for a refrigerator  

 

 

Hourly Energy Consumption pattern over  several days for a kettle  

In addition to the graphical outputs from Plugwise, with the enhanced donated 

licences the raw data can be exported in csv format.  The maximum number of 

Plugwise devices, and therefore appliances being monitored, in any single 

network is 65. 
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Appendix B. Prototype Manufacture 

This Appendix explains how the prototype was developed.  It covers the physical 

connection between the Raspberry Pi computer and the Loc8tor circuit board, and 

the development of the Python programme. 

The elements of the Raspberry Pi (RPi) computer are shown below. 

 

 

 

 

Elements of the Raspberry Pi (RPi) computer 

The benefits of the RPi include: 

 Very low power consumption – the RPi operates on 5V 1A power supplied 

by the micro-USB port, 

 The operating system is open source – unlike Microsoft Windows or Apple 

OS X the RPi is designed to run GNU/Linux, 

 Several distributions of the operating system are available to choose from, 

to suit the needs and level of experience of the user, 

 Many common software packages offer a Linux version – this is a crucial 

difference between the RPi and other options for the base station, such as 

mobile phones and tablet computers, 

 There is a very active global community of RPi enthusiasts and developers, 

dedicated to expanding the functionality of the computer, and committed to 

Ethernet port 

Two USB ports 

Yellow RCA 

phono 

connector for 

composite video 

output 

GPIO pins 

Micro USB 

power only 

SD card slot 

(underside) 

HDMI connector 

for high 

definition video 

output 

Broadcom 

BCM2835 

System on Chip 

(SoC) 

Audio output 
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the aims of the Raspberry Pi Foundation by making all their solutions and 

software openly available. 

 Pin # RPi GPIO header Pin #  

3.3V 1 O O 2 5V 

I2C SDA 3 O O 4 5V 

I2C SCL 5 O O 6 Ground 

General Purpose Clock 7 O O 8 UART Transmit 

Ground 9 O O 10 UART Receive 

 11 O O 12  

 13 O O 14 Ground 

 15 O O 16  

3.3V 17 O O 18  

SPI MOSI 19 O O 20 Ground 

SPI MISO 21 O O 22  

SPI SCLK 23 O O 24 SPI Chip Select 0 

Ground 25 O O 26 SPI Chip Select 1 

      

The layout and alternative functions of the GPIO header 

The RPi has 26 ports in two rows of 13 male 2.54mm pins on the GPIO header.  

There are four powered pins, two at 3.3V and two at 5V, and five grounded pins.  

Seven pins are designated as general purpose only, while an additional ten have 

additional functions when used in combination to form particular circuits.  These 

additional functions are as follows: 

 UART Serial Bus – The Universal Asynchronous Receiver/Transmitter 

(UART) serial bus provides a two wire serial interface at pin 8 (transmit) 

and pin 10 (receive). 

 I2C bus – The Inter-Integrated Circuit (I2C) bus is designed to provide 

communications between multiple integrated circuits.  Pin 3 is the Serial 

Data Line (SDA) and pin 5 is the Serial Clock (SCL) signal.   

 SPI bus – The Serial Peripheral Interface (SPI) bus is a synchronous is a 

four wire bus with chip select lines to allow communication with more than 

one target device.  Pin 19 is the SPI Master Output, Slave Input (MOSI) 

signal, pin 21 is the SPI Master Input, Slave Output (MISO) signal, pin 23 is 

the Serial Clock (SLCK) used to synchronise communication and pins 24 

and 25 provide the Chip Select signals for up to two independent slave 

devices. 
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The first step in manufacturing the prototype required the Printed Circuit Board 

(PCB) of the Loc8tor handheld unit to be released from its protective casing.  

Wires were manually soldered to the 8 circuits related to the 8 LEDs that light up 

to indicate signal strength.  Elements of this stage of the manufacture are shown 

below. 

 

 

 

Photograph of the reverse of the Loc8tor handheld unit showing the wires connected to 

LED circuits on the Loc8tor handheld unit.   

Mapping the eight LED circuits required extensive laboratory testing with a 

multimeter or oscilloscope.  The next stage of construction involved connecting 

the wires from the LED circuits to the General Purpose Input Output (GPIO) pins 

from the Raspberry Pi (RPi).  A naming convention for the LEDs was used as 

follows. 

 

 

Wires attached 

to LED circuits   
Speaker wires 

(disconnected) 

Power 

button 
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The naming convention of the LEDs on the handheld unit PCB. 

Wires were connected to the battery holder of the handheld unit to enable the unit 

to be powered directly from the RPi’s 3.3V GPIO pin.  The speaker of the 

handheld unit was disconnected. 

A Python programme was written to take the output from the LED circuits and 

display which LEDs were active.  This programme ran on the RPi and when the 

RPi pins were connected to the LED circuits the programme checked each LED in 

turn and returned a message on screen to indicate which LEDs were lit. 

The Python programme read the inputs from the LEDs as either of two states: 

high (True or 1) if the voltage detected is above 1.7V or low (False or 0) if less 

than 1.7V.  The RPi is based on 3.3V logic and the GPIO pins can deliver an 

output of 3.3V.  The outputs were used to activate the switches to initiate search-

mode. 

In order to have a better representation of the signal strength returned by the 

Python programme, a method of deriving the Signal Strength Number (SSN) by 

manipulating the inputs, rather than merely displaying which LEDs were on, was 

necessary.  The patterns of LED activity is shown as follows. 

 

Naming convention 

of the LEDs 

LED8  (green) 

LED7  (green) 

LED6  (green) 

LED5  (amber) 

LED4  (amber) 

LED3  (amber) 

LED2  (red) 

LED1  (red) 

The four buttons 

that instigate 

search-mode for 

up to four 

registered tags 
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Visual signal from 
Loc8tor Lite handheld 

unit 

Signal Strength 
Number 
(SSN) 

LED# lit up at that 
signal strength 

 

1 
 
- 

 

2 1 

 

3 1,2 

 

4 1,2,3 

 

5 2,3,4 

 

6 3,4,5 

 

7 4,5,6 

 

8 5,6,7 

 

9 6,7,8 

The patterns of LED activity, corresponding SSN and active LEDs in that state 

There are only nine patterns of LED activity during search-mode, although there 

are an additional five LED patterns when the tag being searched for is in very 

close (and increasing) proximity to the handheld unit.  This happens when the tag 

is between 2 and 30 cms away from the handheld unit.  Knowing the additional 

five states when the tag is less than 30cms to 2cms from the unit was not 

considered valuable enough to warrant allocating additional SSNs, so all 

zooming-in modes were treated as being SSN9, as that is the strongest signal 

strength. 

The following table shows the only possible patterns of LED activity available with 

the Loc8tor system.  Nine of these are the search mode patterns and five are the 

additional zooming in mode.  
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SSN LED8 LED7 LED6 LED5 LED4 LED3 LED2 LED1  

1 0 0 0 0 0 0 0 0 

S
e

a
rc

h
-m

o
d
e
 2 0 0 0 0 0 0 0 1 

3 0 0 0 0 0 0 1 1 

4 0 0 0 0 0 1 1 1 

5 0 0 0 0 1 1 1 0 

6 0 0 0 1 1 1 0 0 

7 0 0 1 1 1 0 0 0 

8 0 1 1 1 0 0 0 0 

9 1 1 1 0 0 0 0 0 

 

Z1 1 1 1 1 0 0 0 0 

Z
o

o
m

 i
n
 

m
o

d
e
 

Z2 1 1 1 1 1 0 0 0 

Z3 1 1 1 1 1 1 0 0 

Z4 1 1 1 1 1 1 1 0 

Z5 1 1 1 1 1 1 1 1 

The only possible patterns of active LEDs in the two modes, search mode and zooming 

in, where a ‘1’ indicates that LED is active 

Because there were so few patterns of LED activity it was possible to write a 

Python programme that doesn’t constantly ‘poll’ all the LEDs at once, but to check 

the LEDs in a particular order.  The purpose of doing this was to reduce the 

number of checks needed and to make the programme more efficient. 

The decision flow-chart for the least number of checks on the RPi GPIO pin inputs 

needed in order to determine the Signal Strength Number is shown below.  This 

shows that the number of checks needed ranges from two (to determine SSN of 2) 

to eight (when the SSN is 9).  As stated previously, determination of zoom-in 

modes will return a SSN of 9. 
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Where: 

 

 

 

 

The decision flowchart of the Python programme designed to carry out the least number of 

checks of the LEDs in order to correctly determine the Signal Strength Number (SSN) 

LED1? 

LED3? 

LED2? 

LED4? 

LED4? LED3? LED2? 

LED4? 

LED5? LED4? LED3? 

LED5? 

LED7? LED6? LED5? 

LED6? LED5? 

LED8? LED7? 

LED8? LED7? LED6? 

LED6? 

LED being 
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Result if 

on 

Result if 

off 

SSN7 

Z2 

Z1 

SSN8 

SSN9 

SSN1 
(all are off) 

SSN5 

Z4 

SSN6 

Z3 

SSN3 SSN4 

Z5 
(all are on) 

SSN2 

1 (on) 

0 

(off) 

0 

1 1 1 1 1 

1 

1 1 1 1 

1 1 1 

1 1 1 

1 

1 1 1 1 

1 1 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 
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Further wired connections were made to the PCB so that the reader was powered 

by the RPi, and the four manual switches that activate search mode were 

controlled by the RPi.  The final 14 connections to the RPi GPIO are shown below. 

 Pin# RPi GPIO pins Pin#  

3.3V 1 O O 2  
SWITCH1 3 O O 4  
SWITCH2 5 O O 6  

LED 8 7 O O 8  
 9 O O 10  

LED 7 11 O O 12 LED 4 
LED 6 13 O O 14  
LED 5 15 O O 16 LED 3 

 17 O O 18 LED 2 
SWITCH3 19 O O 20  
SWITCH4 21 O O 22 LED 1 

 23 O O 24  
Ground 25 O O 26  

      
Schematic of the 14 wired connections to the RPi GPIO header 

As can be seen from the schematic above, pins 1 and 25 were the power 

connections (3.3V and ground respectively).  Pins 3, 5, 19, and 21 were 

connected to the four switches and set as outputs.  This means that they were set 

up as having an initial value of 1, equating to 3.3V.  When these pin values were 

changed to zero search-mode for the switch was initiated. 

Pins 7, 11, 12, 13, 15, 16, 18, and 22 were connected to each of the eight LEDs 

and were set up as inputs.  When the Python programme polled these pins and 

read either a high (True or 1) or low (False or 0) value this indicated whether the 

LED was on or off.  High readings relate to a voltage of 1.7V and above, and low 

values are less than 1.7V. 

Thorough laboratory testing was carried out to ensure the GPIO pins accurately 

reflected the signal strengths by comparison with an additional entire Loc8tor 

system.  Extensive testing informed the placement and length of pauses required 

in the Python programme to ensure enough time was allowed for communication 

between the Loc8tor handheld unit and the tags. 

Once proof of concept and reliability was achieved for the prototype, the system 

was installed in different locations for the data collection phase. 
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Appendix C. Python Programme 

# programme to search for all four tags in turn then read the signal strength# 

#timestamp and write to usb# 

 

#setting up the RPi GPIO pins and importing time and datetime# 

import RPi.GPIO as GPIO 

GPIO.setmode(GPIO.BOARD) 

GPIO.setwarnings(False) 

from time import sleep 

import datetime 

GPIO.setup(3, GPIO.OUT, initial=1) 

GPIO.setup(5, GPIO.OUT, initial=1) 

GPIO.setup(19, GPIO.OUT, initial=1) 

GPIO.setup(21, GPIO.OUT, initial=1) 

GPIO.setup(7, GPIO.IN) 

GPIO.setup(11, GPIO.IN) 

GPIO.setup(13, GPIO.IN) 

GPIO.setup(15, GPIO.IN) 

GPIO.setup(12, GPIO.IN) 

GPIO.setup(16, GPIO.IN) 

GPIO.setup(18, GPIO.IN) 

GPIO.setup(22, GPIO.IN) 

 

#function to search for Tag1# 

def searchTag1(): 

    saveFile = open('/media/USB STICK_/out2.txt', 'a') 

    GPIO.output(21, 0) 

    sleep(2) 

    GPIO.output(21, 1) 

    sleep(4) 

    saveFile.write("\n$Tag1,") 
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    saveFile.close() #do I need close here# 

 

#function to search for Tag2# 

def searchTag2(): 

    saveFile = open('/media/USB STICK_/out2.txt', 'a') 

    GPIO.output(19, 0) 

    sleep(2) 

    GPIO.output(19, 1) 

    sleep(4) 

    saveFile.write("\n$Tag2,") 

 

#function to search for Tag3# 

def searchTag3(): 

    saveFile = open('/media/USB STICK_.out2.txt', 'a') 

    GPIO.output(5, 0) 

    sleep(2) 

    GPIO.output(5, 1) 

    sleep(4) 

    saveFile.write("\n$Tag3,") 

 

#function to search for Tag4# 

def searchTag4(): 

    saveFile = open('/media/USB STICK_/out2.txt', 'a') 

    GPIO.output(3, 0) 

    sleep(2) 

    GPIO.output(3, 1) 

    sleep(4) 

    saveFile.write("\n$Tag4,") 

 

#function to read signal strength, timestamp and write to usb# 

def readingSSN(): 
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    for i in range(10): 

        sleep(2) 

        n=datetime.datetime.now() 

        n=str(n) 

        saveFile = open('/media/USB STICK_/out2.txt', 'a') 

      

        input_value_8 = GPIO.input(7) 

        input_value_7 = GPIO.input(11) 

        input_value_6 = GPIO.input(13) 

        input_value_5 = GPIO.input(15) 

        input_value_4 = GPIO.input(12) 

        input_value_3 = GPIO.input(16) 

        input_value_2 = GPIO.input(18) 

        input_value_1 = GPIO.input(22) 

                     

        if input_value_1 ==True and input_value_2 ==True and input_value_3 ==True and 
input_value_4 ==True: 

            saveFile.write("SSN9 - Z5 all on,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==True and input_value_2 ==False: 

            saveFile.write("SSN2,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==True and input_value_2 ==True and input_value_3 ==False: 

            saveFile.write("SSN3,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 
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        elif input_value_1 ==True and input_value_2 ==True and input_value_3 ==True and 
input_value_4 ==False: 

            saveFile.write("SSN4,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==True and input_value_3 ==True 
and input_value_4 ==True and input_value_5 ==True: 

            saveFile.write("SSN9 - Z4,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==True and input_value_3 ==True 
and input_value_4 ==True and input_value_5 ==False: 

            saveFile.write("SSN5,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==False and input_value_3 ==True 
and input_value_4 ==True and input_value_5 ==True and input_value_6 ==False: 

            saveFile.write("SSN6,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==False and input_value_3 ==True 
and input_value_4 ==True and input_value_5 ==True and input_value_6 ==True: 

            saveFile.write("SSN9 - Z3,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==False and input_value_3 ==False 
and input_value_4 ==True and input_value_5 ==True and input_value_6 ==True and 
input_value_7 ==True: 

            saveFile.write("SSN9 - Z2,") 
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            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==False and input_value_3 ==False 
and input_value_4 ==True and input_value_5 ==True and input_value_6 ==True and 
input_value_7 ==False: 

            saveFile.write("SSN7,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==False and input_value_3 ==False 
and input_value_4 ==False and input_value_5 ==True and input_value_6 ==True and 
input_value_7 ==True and input_value_8 ==False: 

            saveFile.write("SSN8,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==False and input_value_3 ==False 
and input_value_4 ==False and input_value_5 ==True and input_value_6 ==True and 
input_value_7 ==True and input_value_8 ==True: 

            saveFile.write("SSN9 - Z1,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==False and input_value_3 ==False 
and input_value_4 ==False and input_value_5 ==False and input_value_6 ==False: 

            saveFile.write("SSN1 - all off,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

        elif input_value_1 ==False and input_value_2 ==False and input_value_3 ==False 
and input_value_4 ==False and input_value_5 ==False and input_value_6 ==True and 
input_value_7 ==True and input_value_8 ==True: 

            saveFile.write("SSN9,") 

            saveFile.write(n) 
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            saveFile.write(",") 

            saveFile.close() 

        else: 

            saveFile.write("error?,") 

            saveFile.write(n) 

            saveFile.write(",") 

            saveFile.close() 

                

#function main program calling the other already defined functions# 

def main(): 

    searchTag1() 

    readingSSN() 

    searchTag2() 

    readingSSN() 

    searchTag3() 

    readingSSN() 

    searchTag4() 

    readingSSN() 

 

#infinite loop# 

while 1==1: 

    main() 
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Appendix D. Salford Energy House tests 

 

 

 

The Salford Energy 

House living room 

(above) and main 

bedroom (left) with 

1 metre grid 

marked out. 
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The interior of the 

conditioning void 

(left) and Salford 

Energy House 

kitchen (below) 
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The gable end of the end terraced Salford Energy House 
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Appendix E. Azimuth and Elevation Patterns of the Motorola ML-

2499-BYGA2-01R 2.4GHz 15 dBi 35 Degree Yagi  

 

Azimuth and Elevation Pattern of the antenna used in the modelling software, from 

Motorola [58] 
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Appendix F. Environmental Effects Test 3 Results Detail 

In order to investigate whether the variation in temperature and humidity matched 

the signal strength variation over the period of the test, a series of charts were 

produced for each Tag.  In the following figures over each hour of the testing 

period the dominant signal strength is plotted and the error bars indicate the 

maximum and minimum signal strength readings over that hour.  Comparison with 

the temperature and humidity over the same period is provided for each of the 

eight tags. 

Tag 1 

 

 

Comparison of Tag 1 with the environmental conditions 

This shows that on one occasion at hour 22 when the temperature is at one of the 

highest values, the most common signal strength dips to SSN4.  This does not 

occur at other high temperature peaks, at hours 46 and 70.  Therefore the signal 
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strength of Tag 1 cannot be said to be directly related to the local temperature 

during this test.  Likewise, the peaks and troughs of relative humidity does not 

correlate with increases or decreases in signal strength. 

Tag 2 

 

 

Comparison of Tag 2 with the environmental conditions. 

The figure above shows very little variation in the signal strength for Tag 2 over 

the three days.  When differences do occur (at hours 4 and 49) this does not 

correspond to high or low values of temperature or humidity. 
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Tag 3 

 

 

Comparison of Tag 3 with environmental conditions 

This comparison shows that the variations in signal strength from Tag 3 do not 

correspond consistently with the temperature or humidity. 
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Comparison of Tag 4 with environmental conditions 

It can be seen that the signal strength of Tag 4 does not correspond consistently 

with temperature or humidity. 

Tag 5 

 

 

Comparison of Tag 5 with environmental conditions 

Although there are occasions when low signal strength of Tag 5 appears at the 

same time as a peak in humidity, this is not replicated for all peaks of high 
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humidity or low signal strength.  There is no apparent co-incidence of signal 

strength and temperature. 

Tag 6 

 

 

Comparison of Tag 6 with environmental conditions 

Tag 6 gave a steady signal strength of SSN7 over the 33 hours it was responding.  

There is no apparent relationship between the tag’s signal strength and the 

temperature or humidity changes during the test. 
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Comparison of Tag 7 with environmental conditions 

The signal strength of Tag 7 does not appear to be related to the temperature and 

humidity conditions during the test. 

Tag 8 

 

 

Comparison of Tag 8 with environmental conditions 

Tag 8 was responsive for 35 hours, and during this time there was no apparent 

relationship between the signal strength and variability in temperature and 

humidity. 
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