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Abstract 

Access to location-based information in mobile devices, is now ubiquitous. This has been mostly 

possible in the outdoor arena via the Global Positioning System (GPS) providing near global coverage, 

barring some natural obstacles and manmade obstructions. The provision of accurate position 

estimations and broad coverage in the indoor environment has however proven somewhat more 

problematic to deliver.  

The most commonly implemented Indoor Positioning Systems (IPSs) use existing Wi-Fi network 

components and infrastructure to locate devices. This technique offers obvious economic rewards, 

utilizing a preinstalled infrastructure. These topologies however were typically designed to provide 

network coverage, rather than deliver an indoor location-based solution.  

Large areas without coverage are common in these networks, because network designers were not 

typically concerned with providing 100% coverage for mobile data. Hallways, toilet areas or other 

general-purpose areas that ordinarily would not require network coverage, were not provided with 

dedicated Wireless Access Points (WAPs). Transient users, navigating these areas of the network were 

therefore, un-locatable using this infrastructure. Furthermore, the indoor arena is an especially noisy 

radio atmosphere as it hosts other wireless devices such as Bluetooth Headsets, Cordless Phones and 

Microwave Ovens which operate at the same frequency as a Wi-Fi signal. Considering users spend 

more time in an indoor environment, the need for a solution is clear.  

The hypothesis of this research is that mobile devices at the boundaries of IPSs which have themselves 

been located by an IPS, can assist in a cooperative fashion, to locate mobile devices beyond the range 

of the IPS but within range of the cooperating devices. The primary research question is whether the 

range of indoor positioning solutions can be extended using cooperating devices at their extremities.  

To solve the hypothesis, this work designed and implemented a framework using cooperative 

techniques using range extension (CAPTURE) which works with any IPS irrespective of the technology 

it utilised to locate. The framework can plug into existing solutions to extend their range into areas of 

indoor environments that cannot be reached without the need for any additional infrastructure. Results 

show CAPTURE can extend the range of an existing IPS by up to 180m using Wi-Fi and Bluetooth.  
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1 Introduction 
 

Navigation or wayfinding is the activity of ascertaining one's position, planning and following a route 

(Willim, 2007). Navigation began with maritime exploration, through the art of seamanship, where 

vessels were directed on the open sea using geometry, astronomy, or special instruments. The starting 

point for any navigation is determining ones starting position as precisely as possible. Localisation is 

“a determination of the place where something is" (Atyabi and Nefti-Meziani, 2016). Positioning and 

Localisation are sometimes used interchangeably however positioning can be more accurately defined 

as determining the position of oneself, whereas location is more related to the position of another object 

(Sharp and Yu, 2018). Another difference between position and location is that position is nearly always 

a precise value while location is not as precise (Kirson, 1992). Location is concerned with locating a 

place on a map e.g. a street address or road while navigation is defining pathways to a position. 

Positioning determines coordinate values. For instance, this is what the ‘P’ in Global Positioning System 

(GPS) and an Indoor Positioning System (IPS) relates to. A tracking system is concerned with 

determining the location of a mobile object with or without the consent of the object being tracked 

(Sharp and Yu, 2018). An example of tracking is using radar to monitor aircraft in the sky. This is 

distinct from the navigation systems used by pilots to control aircraft.  

Navigation and positioning are important for many everyday activities. GPS has unlocked the world of 

accurate navigation by offering near centimeter level accuracy (Bossler et al., 2010). GPS coverage is 

global apart from some obstacles that can impede the signal from a satellite such as the urban canyon 

effect (Xie and Petovello, 2015) where large high rise buildings create urban canyons that block signals 

from satellites impacting coverage. The Global Positioning System is considered a global solution to 

the outdoor positioning problem. However, as the radio signal from a satellite has travelled 

approximately 22,200 kilometers (Kals, 2010) to earth, its signal strength has attenuated to such a 

degree that it cannot penetrate a buildings infrastructure. This renders it unusable for indoor positioning. 

Considering up to 88% of our time is spent indoors, (Matz et al., 2014), the requirement for a solution 

is obvious.  
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Indoor positioning must cope with issues such as multipath errors which are more pronounced inside. 

These signals used to determine range, bounce off themselves as well as any obstacles that are nearby 

(Chen and Guinness, 2014). For instance, the human body is made up of 60% water and radio signals 

commonly operate at frequencies that resonate in water. This causes attenuation issues with the 

propagation of signals. The numerous walls, doors, ceilings, floors and furniture that make up the indoor 

environment are also challenging obstacles for radio signals to propagate through or around. The 

horizontal trajectory of most indoor signals struggle to circumvent most of these obstacles. When 

positioning outdoors, applications can generally function adequately with a reasonable range of location 

errors but the indoor setting typically demands a much more precise position fix.  

Indoor position accuracy is a problem that has mostly been solved (Grossmann et al., 2007; Gezici, 

2008; Gu et al., 2009; Hijikata et al., 2009; Guvenc et al., 2009; Kranz et al., 2010; Chen et al., 2016), 

barring some niche areas that require a fine grain of precision, however the problem of coverage has 

been somewhat overlooked. Indoor positioning solutions can at times struggle to locate devices due to 

positioning blind spots.  

An example of blind spots in an indoor positioning scenario can be seen in Figure 1-1 which shows the 

pre-installed wireless infrastructure that is used to position. The coverage area for each Access Point 

(AP) is illustrated with a different coloured circle.  Mobile Device X located in the stairwell cannot be 

positioned, because only 2 APs can ‘sense’ it while Mobile Device A is covered by 3 of the APs and 

can be positioned by the IPS using Trilateration. Trilateration uses range estimates from reference 

devices (APs) to the lost device (Mobile Device X) to position requiring at least 3 range estimates as 

input. Mobile Device A is within range of Mobile Device X as illustrated with the small circular area 

covering it. The range from Mobile Device A to Mobile Device X can be estimated. This third range 

estimate can be used as input for the Trilateration algorithm. Mobile Device A is thereby cooperatively 

assisting with the positioning of Mobile Device X by becoming a mobile reference point replicating the 

static reference points of the APs. Such a cooperative methodology can be used to overcome the blind 

spot problem. 
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Figure 1-1: Cooperating to Position   

The focus of this work is to identify positioning blind sport situations and solve them using a cooperative 

methodology. The study advocates the use of mobile devices at the boundaries of these areas which 

have already been located, to act as reference devices which in turn locate devices inside these ‘blind 

spots’. This offers a unique contribution within the field of indoor positioning. 

Mobile 

Device A 

Mobile 

Device X 
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1.1 Thesis Hypothesis 

The work presented in this thesis, CAPTURE (Cooperatively Applied Positioning Techniques Utilising 

Range Extensions) aims to provide a solution to the coverage issue in Indoor Positioning Systems. The 

thesis hypothesis is as follows: 

Mobile Devices, at the extremities of an IPS, which have been located, can in turn, assist in the 

determination of the position of devices beyond the range of that Indoor Positioning System. 

The research questions that emanate from this hypothesis focus on the capabilities of mobile devices 

that ‘know’ their position, to locate devices within their range. These are: 

1 Can mobile devices be used to accurately measure range between devices? 

2 What range can these mobile devices reach, i.e. how far can they possibly extend a 

system and can these range estimates be used to position devices? 

3 Can a framework be designed to allow any device within an in-situ IPS, to 

cooperatively assist in the locating of other devices, effectively extending the range of 

the IPS?  

The objectives of this thesis are to: 

• Research current solutions in localising devices, specifically solutions in the IPS arena and by 

doing so, identify areas where further research is required. 

• Investigate current techniques and methods to extend the range of IPSs. 

• Describe the development of a CAPTURE framework in theoretical terms. 

• Implement CAPTURE in a specific test case and to evaluate and measure the effectiveness of 

CAPTURE, therein.  
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1.2  Thesis Motivation  

Location Based Services (LBSs) use information about the geographical position of a device or user, to 

deliver a set of services based on that information (Liu et al., 2010). Many services and sectors can 

incorporate location information to provide a LBS (Yassin and Rachid, 2015) such as, disaster aid, 

agriculture, healthcare monitoring, child tracking, emergency services, and information services, (Zhao 

and Guibas, 2004; Zhao and Nehorai, 2007; Bullo et al., 2009; Corke et al., 2010; Ko et al., 2010; 

Martinez, 2010; Nayak and Stojmenovic, 2010; Hlinka et al., 2013; Nia et al., 2013; Meyer et al., 2015).  

GPS can be used outdoors for accurate positioning information but is unable to provide the same 

functionality for positioning services within indoor environments (Kals, 2010). The demand by users 

for an accurate positioning service indoors (Bekö et al., 2015; Odeh and Hussein, 2016) motivates this 

work. We concentrate within the niche area of indoor positioning coverage as opposed to the more 

common research field of positioning accuracy.  

The solution proposed is heterogeneous in its implementation and provides a plug-in service to an in 

situ positioning system. The system model allows for the establishment of an ad-hoc positioning system, 

where mobile devices could set up a mobile cooperative positioning system in a location where a 

traditional positioning system could not normally exist. The solution also utilises everyday devices such 

as off the shelf smart phones, as positioning infrastructure which offers a more affordable accessible 

solution.
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1.3 Thesis outline 

This thesis is organised into 6 chapters. Chapter 1 introduces the subject area, details the hypothesis and 

the motivation of the thesis, concluding with this outline of the overall thesis document.  

Chapter 2 provides a survey of the current literature in positioning and IPSs and outlines the various 

technologies and techniques used to implement IPSs. Both indoor and outdoor positioning systems are 

appraised, focusing on indoor based solutions. An overview of how things are positioned is provided, 

beginning with an insight into how humans have positioned historically. The chapter explains where 

these practices are mirrored in how technologies are used in today’s positioning systems. Different 

ranging techniques, as well as positioning algorithms such as Trilateration and Triangulation are 

considered in this section.  Some of the issues that affect positioning accuracy in the indoor arena, by 

interfering with the radio signals used to measure range, are investigated along with the performance 

metrics that are employed to evaluate a positioning system. 

Chapter 3 provides an investigation into cooperative based positioning, offering an overview of the 

cooperative positioning methodology that is presented in this thesis. It begins by describing cooperation 

and the benefits therein, as well as cooperation or collaboration in computer systems. The chapter 

continues by outlining some of the issues surrounding a cooperative solution, such as device selection 

strategies and quantifying the truth of a device. The negative consequences for collaborating devices in 

a cooperative methodology is presented. The problem of positioning coverage is also described here, 

accentuating the preliminary experiments that were carried as evidence to back up this issue. This 

chapter concludes by portraying a picture of how CAPTURE can assist in the world of positioning, 

illustrating specific scenarios where it can accomplish this. Some of the inherent flaws with such a 

framework are highlighted, as well as emphasising the novel concept of using devices to extend 

localisation coverage. 

Chapter 4 discusses the design and implementation of the proposed CAPTURE model, defining the 

framework that makes up the CAPTURE platform. The cooperative positioning algorithm used with 
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CAPTURE is also described here. Some of the mobile devices that could be used as part of a cooperative 

solution are defined, while issues with the heterogeneity of devices adopted in a cooperative solution 

are also presented and evaluated. 

CAPTURE is evaluated and tested in Chapter 5. The equipment and preliminary tests are described. 

The main experiments, which attempt to address the research questions and evaluate the overall thesis 

hypothesis are presented. Five unique testing environments used to evaluate CAPTURE are described. 

The results of the experiments are presented. The four environments are areas within the LyIT Campus.  

In Chapter 6, a synopsis of the overall findings and main contributions of this work are provided and 

evaluated as a solution to the indoor ranging problem. Relationships to this work and other research are 

presented. Some further areas of research that have spawned from this investigation are described as 

well as illustrating some novel implementations of CAPTURE. This chapter concludes with an 

appreciation of the limitations of CAPTURE whilst acknowledging its novel contribution to research 

within this field. 

 

 

 



 

5 

 

2 Positioning 
 

This chapter motivates the need for positioning and outlines how human’s position and how many of 

the techniques humans use to position are emulated in many of the positioning technologies employed 

today. The chapter explains why localising or positioning in the indoor arena differs from localising in 

the outdoor arena and highlights some of the obstacles to accurate positioning in an indoor environment. 

Indoor positioning technologies are investigated evaluating their inherent strengths and weaknesses, 

with a focus on the issue of coverage or yield of indoor positioning solutions. These technologies and 

techniques are discussed in relation to cooperative localisation techniques, underlining the benefits such 

an approach offers to indoor positioning.  

2.1 Introduction  

Figure 2-1 shows a 5-layer location stack with the components, technologies, devices, chipsets and 

sensors, operating systems and vendors that can be used when locating devices.  

 

 

 

 

 

 

 

Figure 2-1: Location Technology Stack 
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The applications that use location services to provide location as a context sits at the top of the Location 

Technology Stack. These applications are omnipresent, being found within in-car navigation systems, 

friend finder applications, emergency responder apps and in games such as Pokémon Go. Indoor 

positioning technology providers such as Ekahau and Pole Star and outdoor positioning technologies 

like GPS provide the systems to locate users and devices. The Operating Systems (OS) layer of the 

Location Technology Stack defines the different mobile OS’s which provide access to the hardware 

sensors that are used by the Technology Providers to derive a position fix. The Mobile Devices are 

typically positioned at Layer 2 of the stack and can be used indirectly to position users. Examples 

include Mobile Phones, Fitbits, Wireless headphones, Laptops and Smart Watches. The positioning 

chips reside at the bottom of the stack. These can be purpose-designed positioning sensors or chips that 

are re-purposed for positioning. The Location Technology Stack layers can operate in combination, to 

provide location-based information as is the case with Location Based Services, or independently to 

assist in a Location Based System (LBS).  

2.2 Coordinate Systems  

A positioning system can deliver an object’s location with regard to a spatial reference system or to a 

defined symbolic space, such as a room a hallway or a building (Stojanović and Stojanović, 2014). A 

geometric location can be described in a geographic reference system, such as the World Geodetic 

System (WGS-84) used by GPS or a geometric reference system such as a local coordinate system 

(Kouba et al., 1994). IPSs can use a local coordinate system to position lost devices where the position 

will be described in a 2-dimensional plane of x and y coordinate values. These values can be transferred 

to an IPS and used to track objects or transfer the location of an object onto a map of a building.  

A coordinate system is a way to reference a point on any plane using some type of addressing. The most 

simplistic of these is the number line shown in Figure 2-2.  
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Figure 2-2: Number Line 

A single dimensional location could for instance be the position of a town on a specific stretch of road 

where x would represent the position of the town relative to the road or at a given distance along the 

road. Only one scalar value x is needed to position the town on the road. This is the simplest coordinate 

system, ‘the number line’. To address or position the point X on this coordinate system, a value only 

needs to be applied to X as it appears relative to the line, or 3 in this particular example. 

If the example is scaled up to consider the hypothetical town on a typical road map, consisting of 

multiple intersecting roads, the limitations of our single coordinate value can be imagined. Representing 

a position along two dimensions requires the incorporation of another scalar numerical value, y. This 

allows for the representation of length and breadth within a grid coordinate system. Think of horizontal 

coordinates made up of components such as North and West, latitude and longitude, or the horizontal 

coordinate system of a standard computer screen represented by (x, y). This system is illustrated as a 

Cartesian coordinate system in Figure 2-3.  

Cartesian coordinates are expressed in ordered pairs. Each element of the coordinate pair is the distance 

measured across a flat plane from the point of origin. The origin is the intersection point of the x and y 

axis. Any point to the left of the origin on the x plane is negative and similarly on the y-axis, any point 

south of the origin is negative. The distance is measured along the line parallel with one axis that extends 

to the other axis. If the measurement is parallel with the x-axis, it is called the x-coordinate. If it is 

parallel with the y-axis, it is called the y-coordinate.  
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Figure 2-3: Cartesian coordinate system 

 

Figure 2-3 shows two axes perpendicular to each other labelled as x and y. Point x can be represented 

anywhere along a two-dimensional plane, using both x and y as values within this space. These are the 

fundamentals of any coordinate system. This can be taken one step further however where a position 

on a third dimension can be described.  

In a global coordinate system this height is represented as a value by the height above sea level. In an 

indoor system this could be the x, y coordinate values on a particular floor. A complete interpretation 

of an objects position in a particular space can therefore be concisely described within a three-

dimensional plane using a vector of three-dimensional Cartesian coordinate values. More importantly, 

if these principles are held, then the rules of Euclidean geometry also hold true. The distance between 

two coordinate points can therefore be accurately measured using coordinate geometry, meaning the 

errors of a position estimated via a positioning system can be accurately gauged against its true position 

(Van Sickle, 2010). 
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2.3 Positioning 

A position is a precise value and positioning is determining the precise position of oneself or an object 

(Kirson, 1992); (Sharp and Yu, 2018). Cartesian coordinate values allow for the precise description of 

a position. Positioning is the process of evaluating these coordinate values for an object by utilizing key 

measurements that are functions of the coordinates. Traditional measurements, used to evaluate a 

position are range, differences achieved in range estimates, azimuth and angles of both arrival and 

transmission. An Azimuth is the horizontal angle of a bearing, clockwise from a standard direction, 

such as North (Barrett and Yonge, 1958).  

With the advances in sensor technologies in Smart Phones, more positioning measurements can be 

exploited to assist with localisation. These sensors offer measurements such as velocity and 

acceleration. Accelerometers measure linear acceleration of movement (Nikbakht et al., 2005; Liu et 

al., 2010) and gyroscopes measure the speed of rotational angle (Mischie, 2012; Tang and Li, 2015). 

Magnetometers provide an orientation in relation to the Earth's magnetic field to ascertain direction 

using the earth’s magnetic field (Chen, 2012). On-board barometric sensors measure atmospheric 

pressure which can be used to derive altitude (Zaliva and Franchetti, 2014; Bolanakis et al., 2015; 

Wicaksono et al., 2015). Pedometers can be used to estimate the number of steps taken (Tenmoku et 

al., 2003; Oshin and Poslad, 2013; Sai et al., 2016). Some sensors provide directional querying, which 

can determine what a phone is pointing at. Although this is not explicit positioning information, it can 

be very useful and provides a type of Location Based Service (LBS).  

Sensors not specifically designed to provide positioning information such as microphones and cameras 

can also provide ‘opportunistic’ positioning measurements that can be exploited to help estimate 

position (Dammann et al., 2012; Yang et al., 2014). Received Signal Strength (RSS), proximity, time 

and angles of transmission and reception can be derived from Wi-Fi, Bluetooth and Global System for 

Mobile Communications (GSM) sensors.  
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2.4 Positioning Measurements 

Modern mobile devices offer a multitude of measurements that can be used for positioning purposes. 

Signals transmitted by radio-based chips such as Wi-Fi, Bluetooth and GSM can create positioning 

measurements. A pedometer can also measure the number of steps taken which can be used as input for 

a Pedestrian Dead Reckoning (PDR) positioning system. PDR systems use speed of travel, elapsed time 

and heading, as a method to estimate a position (Chen and Guinness, 2014).   

Inertial sensors are widely used with positioning and navigational systems (Chen et al., 2016). These 

sensors get their name from the fact that they are based on inertia, which references Newton’s first two 

laws of physics. The first, being that an object at rest, tends to stay at rest and secondly an object in 

motion stays in motion. To overcome inertia, a force must be applied such as resistance which will slow 

or stop something already in motion. Inertial Sensors on a mobile phone measure motion via an 

accelerometer and measure rotation through a gyroscope. They can therefore measure these forces to 

ascertain orientation and velocity.  

Inertial Navigation Systems (INS) have been used to provide navigational assistance (Miller and 

Wagner, 1957). Implementations are found in airplanes, ships, missile guidance systems and 

submarines. Magnetometers are built-in sensors found in most modern mobile phones and these sensors 

are most commonly used as digital compasses allowing them to detect their position relative to the 

earth. A magnetometer provides a heading which is a degree of orientation relative to magnetic North 

(Grosz et al., 2016).  

Mobile phones have a variety of on-board wireless communications sensors. Generally, these employ 

some sort of radio frequency signals on mobile networks, Wireless Local Area Networks (WLAN’s) or 

Bluetooth Personal Area Networks (PANs). Typically, the signals transmitted between devices within 

these networks were not initially envisaged to provide positioning information. They do however, 

inherit many characteristics that are spatially correlated, such as RSS, allowing the measuring of such, 

to derive range or range difference. This offers the opportunity to use these radio signals as positioning 
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measurements. As these signals were not originally intended for this use, they are commonly referred 

to as ‘Signals of Opportunity’ (Chen, 2012). These measurements be they opportunistic, or designed 

specifically for measurement or positioning purpose, are derived using some of the different positioning 

technologies currently available.  

2.5 Positioning Technologies 

Many technologies have been employed to assist with positioning for both indoor and outdoor 

environments. The range capability of a technology, its energy efficiency, precision, implementation 

costs, availability in mobile devices, and complexity are all characteristics that need to be evaluated 

when deciding on deployment. The following section describes some of the technologies in use in IPSs 

whilst evaluating their implementation in a cooperative solution.  

2.5.1 Wi-Fi (IEEE 802.11) 

Wi-Fi based positioning systems exploit the Radio Frequency (RF) transmissions that are used during 

wireless network communications from WAPs to mobile devices to help position (Sharp and Yu, 2018). 

Wi-Fi is defined by the IEEE 802.11 standard and uses RF transmissions in both the 2.4 GHz and (less 

frequently used) 5 GHz band (IEEE, 2016). With the proliferation of smartphone devices, tablet form 

factor and the more recent widespread adoption of Wearable Devices, mobile users are now habitually 

attached to Wi-Fi enabled devices. This allows designers of IPSs to interrogate these devices, to 

ascertain the location of these assets, or by association, the position of the users. It also provides the 

ability for designers to incorporate all the preinstalled components of a Wi-Fi infrastructure into an IPS, 

offering a cost-effective solution. Considering Wi-Fi networks are now somewhat ubiquitous in our 

everyday lives, offering connectivity in our offices, shops, towns and homes, the capacity to locate 

indoors using Wi-Fi could also be ubiquitous. As this technology is so pervasive, it lends itself well to 

a cooperative positioning methodology allowing most off the shelf mobile devices to cooperatively 

assist in locating other mobile devices. 
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APs are strategically installed throughout a buildings infrastructure to provide mobile network 

coverage. Time, Angle or Signal Strength based techniques can be used to estimate the position of Wi-

Fi enabled mobile devices relative to these APs. Time based systems use the time it takes a signal to 

travel to and\or from wireless devices to estimate range (Yang and Shao, 2015). Angle based systems 

use the signal angle to triangulate a position (Yang and Shao, 2015). Signal strength-based systems use 

the attenuation of a signals strength to estimate range (Zhuang et al., 2016). Generally, Wi-Fi location 

systems are implemented using the RSS fingerprinting method, which uses pre-recorded RSS readings 

obtained during a sampling phase to ascertain the position of a device based on its current RSS readings 

(Zhuang et al., 2015). This approach was first advocated by the Microsoft Research Labs Radio 

Detection And Ranging (RADAR) project (Bahl and Padmanabhan, 2000). There are however, some 

environmental factors that can cause problems with this process such as the IEEE 802.11 specification 

adopting a radio frequency of 2.4 GHz, which is also the resonant frequency of water (Rowe et al., 

2007). Hence an environment with a high Relative Humidity (RH) level, tends to absorb more power 

from the radio signal than during lower RH levels. Since the average human male body is made up of 

60% water, radio signals travelling around an empty hall will have a higher RSS value than one during 

a busy period. A college campus during the academic year, will provide different RSS values than 

outside the academic year, when no students are around the halls or rooms (Yang et al., 2009).  

Another environmental factor that can have an impact on positioning is the actual indoor infrastructure.  

Doors, for example, by their very nature will open and close, ensuring that during the fingerprinting 

process it can be difficult to predict which door will be open or closed at any one time. It is also difficult 

to know the presence of furniture or items (filing cabinets, bags, suites of furniture, tables, or chairs) 

when the online estimation phase is attempting to locate a device at a later instance (Shih et al., 2010). 

These environmental factors can affect the radio signal propagation from the APs to the target mobile 

devices. This can result in changes in the RSS and can incur location determination errors. This is 

because the existing Wi-Fi based location systems constructs and maintains only one database signature 

of RSS readings, and this database signature is configured by the environmental condition at the time 
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of site survey. When the environmental condition changes later, this static database image will no longer 

reflect the expected RSS values seen in that environment, at that time. 

2.5.2 Infrared (IR) 

Infrared (IR) radiation is electromagnetic radiation with a wavelength that is longer than that of visible 

light. IR light cannot penetrate most objects in a typical room so it can be used to provide room level 

accuracy as a transmitted signal can only be ‘sensed’ inside that room (Xie et al., 2016). One of the 

earliest Infrared based IPSs, was the Active Badge System (Want and Hopper, 1992) which positioned 

by sensing an Infrared signal, in an office environment. IR signals cannot penetrate walls, and do not 

travel far so they generally operate at room level. An IR system uses tags worn or mounted on the 

user\object to be located and receivers to locate the tags. Tags periodically emit signals and when the 

receiver (e.g. ceiling or wall mounted) detects that signal, it can record ‘sensing’ that tag in that 

particular room\hall. Sub-room level accuracy can be achieved using multiple receivers although quite 

a lot of receivers are required given the limited range, which can increase costs. 

IR positioning systems do not suffer from interference from other RF devices because IR uses light 

waves. However, some household devices such as TV\DVD remote controls, Plasma TVs and even 

direct sunlight can interfere with signals (Xiao et al., 2011). There are also IR windows on both 

receivers and tags which need to remain free from dirt or obstruction to prevent them impeding the 

transmission and receiving of signals. If the main requirements for a positioning system is the need for 

room level accuracy and a cheap implementation then IR can be a perfect solution. The main advantage 

of using an IR positioning system is that they are small, lightweight and easy to implement. There are 

also some security and privacy issues with IR positioning systems (Gu et al., 2009). Due to the limited 

availability in modern mobile devices coupled with the limited range and need for LoS, IR is not a 

commonly deployed positioning technology (Casas et al., 2007).    
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2.5.3 Radio Frequency Identification (RFID) 

A Radio Frequency Identification (RFID) positioning system consists of a reader and a tag. When a tag 

can ‘sense’ a reader or vice versa, the positioning of either can be derived based on the transmit range 

of the tag (Huang et al., 2015). RFID as a technology has been around for quite some time, beginning 

as an identification system in World War II. RFID is still used as an identification system today, 

although its main use is in asset tracking, supply chain management and life-cycle management 

applications. Nonetheless, there are and have been notable location-based solutions built around this 

technology (Siddiqui, 2004; Becker et al., 2008; Sanpechuda and Kovavisaruch, 2008).  

An RFID tag is a simple device made up of an antenna and a small amount of memory, making them 

one of the cheapest components in any positioning system. Tags can generally be described as passive 

or active, although semi-passive tags are also available. Active tags have their own radio transmitter 

and battery power allowing them to initiate communication and have a greater range over passive tags. 

However, the advantages provided by the battery can be negated by its need for maintenance and its 

duration can effectively rule it out as a solution in some circumstances. Passive tags need to be woken 

or interrogated by a reader to initiate communication and have a shorter range than active tags, typically 

under 1 metre. Semi-passive tags offer similar capabilities to passive tags, whilst also having a battery 

allowing other environmental conditional monitoring, and a greater read range. Some believe that a 

hybrid solution to RFID localisation is preferable as RFID on its own cannot provide the ‘optimum 

solution’ (Siddiqui, 2004; Sanpechuda and Kovavisaruch, 2008). 

Becker et al (2008) propose an ‘inside-out’ RFID localisation solution, whereby the reader is tracked, 

and the tags are the reference points, which can be read up to 6 metres apart. They demonstrate the 

possibility of localising and tracking a mobile reader in an aircraft cabin. The goal of their application 

is to allow automated maintenance support for aircraft technicians by tracking their position and 

providing location aware information to them at discrete locations throughout the aircraft. Each read 

merely provides ‘detected’ or ‘not detected’ information. The position is estimated based on the position 

where the reader is capable of reading all currently detected tags.  
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Some RFID solutions are developed where centimetre level accuracy does not form any part of a 

requirements analysis. Support systems for emergency responders are an example of this. The important 

consideration here is which room in the building the missing fire-fighter last entered.  “Lost Inside” has 

been identified as a primary cause of traumatic injuries to fire-fighters, by the US National Fire 

Protection Association (NFPA) (Fahy, 2002). 

The Flipside RFID system (Guerrieri et al., 2006) uses an RFID implementation to correct PDR drift. 

Here RFID tags are placed within a building and once a reader reads a tag at a known location, their 

PDR estimated position can be recalibrated given this new information relative to the tag. LocAtioN 

iDentification based on dynamic Active Rfid (LANDMARC) (Ni et al., 2003) is designed to investigate 

RFID technology as a localisation solution to locate objects accurately and cost-effectively.  

The accuracy achieved with an RFID solution can be very precise, due primarily to the limited read 

range of the components used. Once a reader can read a tag (or a tag a reader), the object to be located 

can be placed within the read range of the tag and reader (< 1 metre) with passive tags (Ruiz et al., 

2012). This is before any filtering or location algorithms are employed. Furthermore, the read times in 

RFID are exceptionally fast as low as 100 milliseconds in some implementations. This can make RFID 

a perfect solution in situations where devices being tracked converge or funnel into smaller narrower 

areas.  
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2.5.4 Ultrasound  

Ultrasound based positioning systems typically use a transmitter (speaker) and a receiver (microphone) 

to measure the time it takes a sound to propagate to estimate range and thereby derive a position (Ma et 

al., 2018). The highest frequency of sound that a human ear can detect is approximately 20,000 Hz, 

which is defined as the end of the sonic range and the beginning of the ultrasonic range. Ultrasound is 

acoustic energy that is beyond the range of human hearing. Locating using Ultrasound works similarly 

to the concept of locating using RADAR, and SOund Navigation And Ranging (SONAR). SONAR and 

RADAR were however, primarily used to merely detect the existence or presence of an object, be it a 

school of fish, an airplane, a ship or submarine. Bats, dolphins and whales use SONAR (echolocation) 

to navigate.  

Systems using Ultrasound to locate in the indoor arena generally use beacons (tags) and receivers to 

provide a more accurate means of pinpointing the exact location of objects. The beacons transmit a high 

frequency pulse which is picked up by the receivers, the receivers are simple microphones. Because the 

pulses travel at a known speed – speed of sound (343.2 metres per second), the distance to\from the 

transmitting\receiving devices can be determined using Time of Arrival (ToA) methods. Ultrasonic 

waves cannot penetrate walls and are generally used for room level location, because the transmitted 

pulses from the tags in a room are picked up (heard) only by the microphone (receiver) in that room. 

The receivers can be tuned for direction, providing sub-room level accuracy and this can be further 

honed by installing multiple receivers.  

The most popular examples in literature of successful utilisation of Ultrasound as an indoor location 

system are the Active Bat System (Want and Hopper, 1992) and the Cricket System (Priyantha et al., 

2000). The Active Bat System uses multiple receivers in the ceiling and could locate Bats (beacons) 

with 9cm accuracy, 95% of the time (Hightower and Borriello, 2001). The Cricket implementation 

works in the opposite way to Active Bat, by placing the transmitters in the ceiling and the receivers on 

the mobile device. The transmitters broadcast their position, which is ‘heard’ by the mobile receivers, 

which then calculate their position based on this received location information. Fewer receivers are 

required for Cricket, making it a cheaper alternative to Active Bat, but it cannot match the accuracy of 
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Active Bat. (Filonenko et al., 2010) investigated implementing an Ultrasound IPS, using mobile phone 

speakers and microphones to emit and receive ultrasound. Borriello et al.  (2005) showed it is possible 

to transmit and receive Ultrasonic waves via mobile phones using Wireless Acoustic Location with 

Room Level Resolution using UltraSound (WALRUS). One notable disadvantage of Ultrasound 

positioning, is the fact that interference cannot be heard by the human ear, making it difficult to 

troubleshoot interference issues.  

2.5.5 Ultra-Wideband 

The presence of multipath signals is one of the major contributors to errors when using RF positioning 

systems (Chen and Guinness, 2014). Ultra-Wideband (UWB) offers a method to overcome these errors 

by being able to distinguish between one incoming signal and a second arriving a little while afterwards 

(Di Benedetto, 2006; Jimenez and Seco, 2016).  Furthermore, considering the number of wireless 

devices in use today and considering current and predicted adoption rates, the ability of wireless 

technologies to coexist in the same environment is a fundamental requirement. UWB offers a glimpse 

of a solution to this problem (Cassioli et al., 2005).  

Ultra-Wideband was adopted by IEEE in the IEEE 802.15.4 Wireless Personal Area Network standard, 

for precise localisation, and low data rate and short-range transmissions. Ultra-Wideband positioning 

works similar to other localisation technologies, using tags and receivers in transmissions, that can be 

utilised to calculate a time, distance or angle of transmission to determine position. Wymeersch et al. 

(2009) employ Ultra-Wideband in their Sum-Product Algorithm over a Wireless Network (SPAWN) 

algorithm to prove that “Cooperation among nodes has the potential to dramatically improve 

localisation performance”. One of the primary benefits of Ultra-Wideband, is its ability to engineer 

high data throughputs due to the short duration of the pulses. This leaves it well positioned for short 

distance data intensive applications, such as High Definition Camera\Camcorder data transfer, wireless 

printing, or portable media players.   
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In recent years’ attempts have been made to address some of the limitations of UBW, as a solution to 

the indoor positioning problem. The IEEE 802.15 committee released the 802.15.4-2011 standard, 

which was recently further revised to 802.15.4-2015 (IEEE, 2016). This allowed the range between 2 

Ultra-Wideband devices be measured with a greater deal of precision, using the time that it takes a radio 

wave to travel between the 2 devices. Using this approach, provides much more accurate range 

estimations than RSS. Furthermore, because UWB typically operates at sub 1GHz or between 3.2 and 

4.8GHz or 5.2 and 10.5GHz, the radio waves are impacted less in the presence of noise, in the busy 

5.0GHz channel, where Bluetooth and Wi-Fi operate.  

Ubisense, has been providing UWB positioning solutions since 2002. Examples of UWB providers 

include Ubisense, TimeDomain and Zebra. Decawave, offer development kits for UWB positioning. 

French mobile phone manufacturing company BeSpoon, recently began incorporating miniature IR-

UWB (Impulse Radio - UWB) chips in their SpoonPhone. This proves that the technology can coexist 

alongside currently installed technologies on a modern smartphone.  

A recent study of the performance of Decawave and Bespoon (Jimenez and Seco, 2016) found that they 

could offer range level accuracy of < 5.5cm and 11cm respectively in LoS conditions. Decawave 

advocates a coverage area of 300m while BeSpoon describe ranges of up to 880m, which would put 

this technology far beyond the current capacity of both Bluetooth and Wi-Fi. Most of the higher 

accuracy levels offered by Decawave, can be described by the incorporation of an antenna optimised 

for better signal reception. The smaller scale BeSpoon implementation cannot afford the luxury of such 

a large antenna in the confined space of a smartphone.  

2.5.6 Bluetooth 

Bluetooth can be used to position by estimating the range or angles between devices or using 

fingerprints of RF signals pre-recorded in an off-line stage to then use to position in real-time (Hossain 

et al., 2013), Bluetooth was designed by phone manufacturer Ericsson in 1994 to replace the then ageing 

RS-232 (EIA, 1969) and Infrared interfaces for connecting peripheral devices. It is a proprietary, open, 
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wireless standard for data exchange over short distances ~10m, creating small area networks called 

Personal Area Networks (PANs). It operates at the same 2.4GHz frequency as Wi-Fi and is specified in 

the IEEE 802.15.1 standard. A PAN is made up of smaller clusters of Bluetooth enabled devices, up to 

eight connected devices make up a Piconet and 2 or more Piconets form a Scatternet.  

The overriding benefit of using Bluetooth for indoor positioning is its availability in nearly every mobile 

device in use today. Bluetooth has been historically linked to battery consumption, with smartphone 

users sometimes disabling it. In June 2010, the Bluetooth Special Interest Group (SIG), completed the 

core specification for Bluetooth 4.0. Although earlier versions of Bluetooth have been utilised for 

localisation and indeed cooperative localisation (Kloch et al., 2011a) the introduction of fourth 

generation Bluetooth solves some of the problems relating to battery consumption and range. Bluetooth 

Smart Ready or Bluetooth Low Energy (BLe) is an improvement over its predecessors in its limited 

consumption of battery power and its massively increased coverage ~200m. 

Kloch et al. (2011b) investigate effects in collaborative indoor localisation as an example of self-

organising in ubiquitous sensing systems using Bluetooth to correct PDR drift. They analyse the 

collaborative approach as a solution to the indoor localisation problem and found that when using PDR 

in isolation the variance grows bigger as people are walking. The position estimation becomes less 

accurate the further people being tracked travel. When two people both using PDR estimates come close 

together (close enough to be read by a Bluetooth device), their single position estimates can be used 

together (because how far apart they are, can be calculated) to provide a more accurate position 

estimation.  

2.5.7 Optical - Camera\Vision 

RF based positioning systems suffer from multipath errors and Electro-Magnetic (EM) interference 

(Chen and Guinness, 2014). Indoor lighting such as fluorescent or Light Emitting Diodes (LEDs) do 

not suffer from such issues but can still offer a means to position by being able to distinguish one light 

over another and thereby position a device relative to a light source that it can see (Zhang et al., 2014). 
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Most modern-day mobile devices, such as phones, tablets or laptops come bundled with at least one on-

board camera. Researchers have investigated innovative techniques using these cameras to help 

position, especially in the indoor environment.  

In (Nakazato et al., 2004) a system was developed that uses a camera to derive position from 

georeferenced visual markers which act as frames of reference for wearable computer systems. Hijikata 

et al. (2009) uses the unique pulses of LED to differentiate one LED from another and using their 

preordained position as landmarks or a reference frame to ascertain position. LEDs can be programmed 

to emit specific pulses of light which can be used to differentiate one LED light from another. Each 

light within a building is assigned a unique pulse signature which identifies that light from all other 

lights within the building. A scene analysis, similar to that carried out with RSS fingerprinting is 

recorded to map the location of each of the LED lights with their corresponding light emitting pulses. 

Therefore, as a user navigates the building the camera on their mobile device can ‘see’ the different 

signatures as they pass under the LED lights. The signature can then be used to provide the position of 

that particular light and thereby locate the user of the mobile device that is under that light. 

A fundamental barrier to implementation when using cameras to position is the requirement that the 

camera ‘see’ the environment it is attempting to position in. This means that the mobile device must not 

be concealed in a handbag, backpack or pocket, which is where most mobile devices are stored when a 

user is on the move. One of the benefits of using other positioning technologies is the pervasiveness of 

their implementations. Applications that require location as a context can achieve this without user 

intervention. Accuracy levels can be high with some Camera\Vision implementations, especially the 

LED version. The need to have the camera or mobile device in the hand so that it can see the lights, can 

rule out certain applications, especially cooperative implementations as people typically carry their 

phones in concealed locations.  
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2.6 Fingerprinting 

A location within an environment can be represented by a set of RF signal patterns called a fingerprint 

(Kaemarungsi and Krishnamurthy, 2004; Wigren, 2007; Hossain et al., 2013; Leca et al., 2017). This 

fingerprint is captured as part of a scene analysis, where readings are recorded, typically into a 

fingerprint database at pre-specified locations. This is also referred to as the Offline Training Stage, 

when implementing a fingerprinting based solution. This is where a human operator carries out a site 

survey by sampling RF readings.  

The most common implementation of this is in an indoor environment where the RSS from the WAPs 

located around the building are analysed. These samples are then loaded into a database which stores 

the RSS readings of APs at different preordained sampled points. Then, during the online estimation 

phase, a mobile device’s location is determined in real time by looking up sampled points on the 

database with the closest RSS values to those currently seen on the mobile device.  

The Ekahau (Ekahau, 2016) and Polestar (Pole Star, 2016) systems are examples of IPSs that employ 

this method. In addition to RF readings being recorded from WLAN’s, Bluetooth and RFID fingerprints 

can also be recorded, to allow for this method of positioning to be implemented in these networks. 

Furthermore, fingerprinting is not just used in the indoor arena but radio maps of cellular fingerprints 

can also be recorded in the outdoor environment to help position devices (Wigren, 2007; Ibrahim and 

Youssef, 2010).  

2.7 Sensor Fusion 

Sensor fusion can combine different technologies and techniques to create a superior multi-modal 

system compared to a singular one (Weyn, 2011). (Zaliva and Franchetti, 2014) fused sensor data from 

GPS and Barometric chips to obtain a more accurate altitude reading. Micro-Electro-Mechanical 

Systems (MEMS) sensors in mobile devices can be used to ‘know’ when to change a screen orientation 
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or to count the number of steps a user has made during a given day. Along with providing this 

functionality, these sensors can be used in an opportunistic fashion to assist with positioning.  

When used in isolation, positioning accuracies using these technologies have been typically poor. 

However, there has been some noteworthy successes when using the positioning estimates of different 

sensors and aggregating their results to provide a combined position estimate. (Kloch et al., 2011a) used 

BLe sensors to correct PDR drift which occurred when only using motion sensors. PDR is the process 

of estimating a current position, with reference to a previously known position and altering that position 

based on estimated speeds over an intervening timeframe (Chen and Guinness, 2014).  

 

2.8 Wireless Sensor Networks (WSN) 

The concept of cooperation among wireless devices is not a new phenomenon.  In a Wireless Sensor 

Network (WSN), devices (nodes) collaborate when deployed in an Ad Hoc infrastructure (Bouhdid et 

al., 2017). Nodes generally consist of a processor, memory, an RF transceiver, a power source and a 

sensor, to gather the required sensory data. The nodes, sometimes 100s even 1000s, collaborate, to 

establish a mesh network for communication, sensory, control, and actuation purposes. WSN’s are used 

in Environmental, Industry, Health, Military, Transportation, and Home to monitor sensory data. When 

the data to be collected, or the devices collecting the data, are mobile in a WSN, location can be a key 

ingredient which helps derive a more comprehensive understanding of the context of the collated data. 

This has led to a wealth of research in the area of positioning in WSN.  

Bearing in mind the collaborative nature of the network infrastructure itself and the devices within it, 

considerable research into the area of cooperative positioning has arisen. The Cortina project (Giorgetti 

et al., 2011; Zheng et al., 2011) is a distributed Real-Time Location System (RTLS) designed to track 

assets or people moving indoors.  Using wall-plugged wireless sensors that self-configure, self-heal and 

self-calibrate, Cortina is a cooperative positioning system, that reduces maintenance and deployment 
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costs. People or assets are allocated tags that are localised using RSS measurements from nearby 

reference nodes. In a novel technique, the Cortina System estimates floor levels based on barometric 

readings from on-board sensors, against readings on the wall mounted reference devices on each floor. 

Table 2-1 provides a summary of these positioning technologies, showing their relevant accuracies, 

where they are mostly implemented, their expensive and their complexities. It also provides information 

on each technology’s theoretical transmission range. 

Wi-Fi based positioning is typically used in the indoor arena, although outdoor versions do exist 

(Jinghua et al., 2014; Leca et al., 2017). Implementation complexity and costs are relatively low 

considering most of a wireless networks existing infrastructure can be used. 

Positioning 
Technology 

Accuracy 
Meters 

Range 
Meters 

Cost Complexity Domain 

Wi-Fi <1 1 – 200 Low\Medium Low Indoor/Outdoor  

Infrared <0.5 1 – 5 Low\Medium Low Indoor 

RFID <0.5 1 – 10 Low Low Indoor 

Ultrasound  <1 2 – 10 Medium Low Indoor 

Ultra-Wideband <0.1 1 – 80 Medium Low Indoor 

Bluetooth <10 1 – 200 Low Low Indoor/Outdoor  

Optical <1 1 – 10  High High Indoor 
 

Table 2-1: Positioning Technologies Comparison Table 

 

The range of a Wi-Fi positioning system is constrained by the bounds of the technology itself which is 

in the area of 200 meters (IEEE, 2016) in a Line of Sight (LoS) environment. Accuracy levels under 1 

metre have been achieved (Yang and Shao, 2015; Chen et al., 2016). Hauschildt and Kirchhof (2010) 

developed an Infrared positioning system that uses sensors in the corner of rooms that measure the 

angles from sources, giving accuracy levels under 5-metres. The associated costs of Infrared systems 

are relatively low, but they have a low coverage area and are normally used within rooms due to LoS 

requirements. Ruiz et al. (2012) implemented a low cost IPS using foot mounted passive RFID tags to 

locate pedestrians to within 5-metres. Sonitor (2018) is a commercial ultrasonic positioning system that 

uses ultrasound to position providing room level accuracy albeit with a limited range of less than 18 
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metres. Sato et al. (2011) achieved sub decimetre accuracy levels with their Extended Phase Accordance 

Method (EPAM) range measurement technique.  

Bluetooth implementations are typically low cost and easily implemented due to their availability in 

modern day smart phones. Kranz et al. (2010) demonstrated an RSS fingerprinting method which 

achieved accuracy levels of up to 5-metres using Bluetooth.  Camera based systems can be somewhat 

inexpensive to implement due to the availability of high definition cameras on most modern mobile 

devices. Specialist systems such as the LED system developed by (Hijikata et al., 2009) can be 

expensive implementations due to specialist LED hardware and the complexities of their 

implementations. 

2.9 Ranging Techniques 

The location of a receiving device, relative to a transmitting device, can be measured by estimating 

signal metrics based on the physical waveforms transmitted during communication (Liu et al., 2010). 

These range measurements can be then used as input for a positioning algorithm, to further derive the 

position of a device. Establishing range measurements between mobile devices can be achieved using 

several different techniques.  

These techniques are not necessarily trivial in their implementation, multipath effects where signals 

travel different paths from transmitter to receiver (Chen and Guinness, 2014) are challenging. 

Reflection and refraction where signals bounce off obstacles (Guvenc and Chong, 2009) along with 

other environmental factors (Rowe et al., 2007; Yang et al., 2009) pose unique challenges when 

measuring a radio signal.  

There are numerous ranging techniques that can be employed to gauge the distance between two 

devices, to establish a range. Ranging techniques calculate distance or range, usually in terms of 

centimetres or metres. Each of the techniques discussed next, have their inherent flaws and cannot be 

guaranteed to provide accurate range estimates in all environments and circumstances. It would be 
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considered common practice today, to use a combination of these techniques in a hybrid solution, in 

most situations where a more accurate ranging estimate is required (Siddiqui, 2004; Yassin and Rachid, 

2015; Atyabi and Nefti-Meziani, 2016).  

2.9.1 Received Signal Strength (RSS) 

One of the most popular ranging techniques used in indoor positioning RSS is a measurement of the 

voltage that exists in a transmitted radio signal, which is an indication of the power being received by 

an antenna (Farid et al., 2013). A common misnomer within wireless telecommunications nomenclature 

is that the terms Received Signal Strength (RSS) and Received Signal Strength Indicator (RSSI) can be 

exchanged without impact (Konings et al., 2017).  There is no unit of measurement for RSSI. RSSI is 

unit-less and is always a positive value, which is the RSS represented on a positive scale. RSS on the 

other hand has a unit, typically dBm, dB or wattage and represents the real value of the signal strength 

and are typically represented using negative values. A dBm is a measurement in decibels that describes 

a radio signal relative to 1 Milliwatt (1 thousandth of a Watt). A decibel is a unit of intensity. RSSI 

provides a way to scale these negative values, to make them easier to understand and interpret. This 

came about with the proliferation of mobile phones and mobile broadband, providing manufacturers 

with a more simplified value, to explain this phenomenon to their customers. So, if the maximum RSS 

value was 0 dBm and the minimum was -100 dBm, these can be mapped so that 0 dBm represents 100 

RSSI and -100 dBm is scaled to 0 RSS (Konings et al., 2017).  

When a signal first leaves a transmitting device, the power of the signal drops or attenuates. This is true 

of both wired and wireless transmissions. As a radio signal propagates through the air some of its power 

is absorbed and the signal loses a specific amount of its strength. Therefore, the higher the RSS value 

(or least negative in some devices), the stronger the signal. Knowing the amount of signal loss over a 

given distance, provides a method to calculate the distance from a transmitting device, given an RSS.  

At its most basic level, this allows for the ‘coarse’ positioning or as referred to in other literature, 

‘presence-based localisation’, ‘presence detection’ (Mrazovac et al., 2011) or ‘proximity localisation’ 

(Qiang and Kaplan, 2010) of a device relative to the transmitting device. This can be illustrated by the 
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RSS calculated distance being the radius of a circle and the ‘searching’ device being at the centre of 

that circle. The estimated position of the Lost Device is anywhere on the circumference of that circle.  

In an IEEE 802.11 network, if the locations of WAPs are already known, then the location of Mobile 

Devices traversing the network can be located relative to them, albeit only to the circumference of the 

radius of the calculated distance. Range measurements can be used in conjunction with a positioning 

algorithm, to further derive the precise location of a device. 

 

Figure 2-4: Presence Based Localisation 

 

Figure 2-4 illustrates the coarse positioning of a mobile device, when only one reference device is 

present, or within range of the mobile device. The receiving device can obtain the RSS reading during 

initial communication with the transmitting device. The receiving device can then estimate its distance 

relative to the transmitting device based on the RSS value. With a single range measurement however, 

the position can only be estimated as being somewhere on the circumference of a circle, the centre of 

which is the transmitting device and the radius being the RSS range reading measurement. Further range 

estimates to other reference devices are required to provide a more granular position fix. 

Reference Device 

Transmitting 

Device 

Receiving 
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2.9.2 Proximity  

Proximity-based positioning is a technique of sensing when one is within the ‘vicinity’ of an entity that 

has been associated with a location (Chen and Guinness, 2014). It is a qualitative measure, in that the 

definition of ‘vicinity’ is usually ambiguous. However, sometimes knowing precisely where in an area 

a mobile device resides is not a requirement. Rather, understanding that it is simply in that area can be 

sufficient information for an application to deliver a LBS.  

A shopper moving around a shopping centre could be ‘sensed’ when they come within a given range of 

a specific shop and then be supplied with notifications of a promotion within that shop. Proximity-based 

positioning is not new. GSM and General Packet Radio Service (GPRS) mobile phone networks, have 

used Cell-ID based positioning for some time (Yilin, 2002) to assist with such services as smooth or 

soft handover routines. As the phone user moves between cells within the cellular based mobile 

network, devices can ‘sense’ the Cell-ID of the cell they are currently connected to. Then, if they move 

within the vicinity of another cell, the handoff can be predicted as being to that cell and initial handoff 

procedures can begin to ensure the smooth transition between cells.  

This Cell-ID based localisation strategy is one of the simplest proximity-based positioning techniques. 

A mobile device attaches to a cell tower once it moves into its coverage area, the location of each cell 

tower is already known. Therefore, the mobile device can be located to within the coverage area of the 

RF transmitter of that cell tower. The precision of this technique falls within the transmitting capacity 

of each cell tower, this can be anything from 1 Kilometre up to 35 Kilometres (Rahnema, 1993). 

This strategy has also been employed in the indoor arena, with implementations via Bluetooth, Wi-Fi 

and RFID. Positioning in this environment is not too different from the GSM approach with the only 

notable difference being that the mobile device can have a priori knowledge of the location of each of 

the APs on the network. This allows the device to position itself in the network, once it ‘sees’ the MAC 

address (enters the RF transmission range) of the AP.  

The range or yield of implementations using these technologies, is limited to the transmission capacity 

of the technology itself. This can seem to have negative connotations at first glance, but because their 
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transmission capacity is lower, the corresponding accuracy of this technique with these technologies, is 

also low. When locating a device using proximity-based positioning with either Bluetooth or Wi-Fi the 

error bounds is directly linked to the transmission range of the technology. If a Bluetooth or Wi-Fi 

device can be ‘sensed’ by a reference device, then it must reside within 200 metres of that device.   

One interesting implementation of Bluetooth as a proximity-based positioning technique, is where the 

Bluetooth beacons are configured to lower transmission ranges, thereby upping the accuracy of the 

solution. SITA, an IT solutions company for the airline industry implemented a Bluetooth 4.0 BLE 

solution in Miami Airport (SITA, 2016). The solution uses over 500 Bluvision sensor beacons and 

Bluetooth to Wi-Fi gateways (BluFis) installed throughout the airport, to position passengers and help 

them navigate throughout the terminal. They claimed accuracy levels of greater than 1 metre. The 

Bluetooth beacons can be configured to transmit at lower ranges within the airport, offering greater 

accuracy at these points. RFID implementations are also restricted by their limited transmission 

capacity. Depending on the RFID technology used, this can be a little as inches or up to a maximum of 

a few metres. Again, although this may seem limiting, it can be used to provide information about a 

mobile device entering a given area. RFID tags can be placed on doors to provide room level accuracy, 

or at choke points to ‘sense’ when a mobile device passes that point.   

2.9.3 Time of Arrival (ToA) 

For a signal with a known speed, determining the propagation time can indicate the distance between 

the transmitting device and the receiving device (Liu et al., 2010). Using timing information to ascertain 

position is a concept that has been widely used by navigators for many years. From a conceptual 

perspective, consider having a clock and someone else also having a perfectly remote in sync clock. If 

there was a video link of the other clock and the time difference between the two clocks could be 

viewed, then the time lag is a representation of the time it took the video transmission to travel. If the 

video travelled at the speed of light, then the distance or range between the two clocks can be calculated.  
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Time of Arrival (ToA) is a method used to obtain a range estimate, ToA is the time it takes for a signal 

to travel from the transmitting device to the receiving device (Liu et al., 2010). ToA is calculated using 

the time of transmission plus the delay that is introduced when propagating the signal. The speed of a 

signal travelling through the air is approximately 106 times the speed of sound. As a general rule of 

thumb, radio frequency broadcasts at a speed of 1 foot per nanosecond (Patwari et al., 2005). The 

distance between the transmitting device and the receiving device can therefore be calculated using the 

known speed of propagation and the time it took for the frame to be received as follows:  

     𝑅 = 𝑡𝑖𝑚𝑒 × 𝑠𝑝𝑒𝑒𝑑. (1)  

where R, is the distance between the receiving device and the transmitting device and is derived 

from time, which is the time spent by the frame travelling across the medium, multiplied by speed which 

is the propagation speed of the signal. An outline of the ToA method and how it is determined in an 

Ultra-Wideband network, is provided in (Guvenc and Chong, 2009). 

One obvious drawback of the ToA method, is the fact that the clocks on the transmitting and receiving 

devices must be perfectly synchronised (Chen and Guinness, 2014). Considering the signal travels at 

speeds nearing the speed of light, a small discrepancy in clocks can have a dramatic impact on the 

estimated position.  

Managing and maintaining this precise synchronisation of clocks, in a cooperative paradigm would be 

somewhat troublesome given the heterogeneity of the devices involved. Patwari et al (2005), also 

highlight the further issue of the time delays in the transmitter and receiver hardware and software that 

add to the measured distance. Although the insignificant delays are generally understood, discrepancy 

in hardware specification and response times can be another source of ToA inconsistency (Patwari et 

al., 2005). Again here, the heterogeneous nature of a cooperative localisation scheme, with a disparate 

assortment of hardware providing the cooperation, would introduce hardware and software attenuation 

that could prove difficult to account for, given the precision requirements involved.  
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2.9.4 Time Difference of Arrival (TDoA) 

Time Difference of Arrival (TDoA), attempts to overcome the synchronising of time posed with the 

ToA method. It does this only at the receiving device however, as the synchronising errors are the same 

for both signals. The transmitting devices still need to be synchronised so that their clock offsets can be 

known.  

    
𝑅1

𝑐1
−

𝑅2

𝑐2
= 𝑇𝑜𝐴1 − 𝑇𝑜𝐴2  (2) 

This can be relatively simple to achieve in a network of base stations or fixed sensors, it would be more 

difficult, if not impossible to do this with cooperating mobile devices. It is not too dissimilar to the ToA 

method. In fact, it uses 2 ToA measurements as input. It employs 2 signals received from 2 different 

transmitting devices. The difference in time between these signals, is used to determine the position of 

the transmitting device. 

In (2), c symbolizes the speed of 2 different signals, typically the speed of light in free space. ToA1 and 

ToA2 represent the transmission time of the different signals propagating from the transmitting devices 

to the receiving device, and R1 and R2 are the range or distance between the 2 devices. TDoA effectively 

is the difference between ToA1 and ToA2. This concept is illustrated in Figure 2-5. 

 

Figure 2-5: TDoA Concept 
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Takabayashi et al. (2008) proposed an algorithm using TDoA calculations to estimate the position of a 

device for target tracking and argue that TDoA is a suitable ranging method to use where the number 

of sensors is limited. The barriers to implementation, involve the heterogeneity of devices in a 

cooperative localisation solution which were outlined previously in the ToA method.   

2.9.5 Round Trip Time (RTT) 

Round Trip Time (RTT) range estimation was designed to resolve the clock synchronisation issues of 

ToA and TDoA techniques. The RTT of a signal is calculated as follows:  

    𝑅 =
(𝑡RT−∆)×𝑠𝑝𝑒𝑒𝑑)

2
  (3) 

where tRT, is the time required for a signal to travel from the transmitting device, via the 

receiving device and back to the original transmitting device again. ∆t, is the delay introduced by the 

receiving device before the signal is forwarded on, and speed is the speed of the transmitted signal. 

Only one device records the time taken to transmit the signal and the arrival time of the signal, thereby 

resolving the issue of synchronising two clocks. RTT offers a robust solution to the synchronisation 

issue in other range estimation techniques. This leaves it well situated to operate in a cooperative 

localisation solution. 

2.9.6 Angle of Arrival (AoA) 

With the Angle of Arrival (AoA) or also known as the Direction of Arrival (DoA) ranging method, an 

array of antennas or directional antennas, are used by the receiving devices to calculate the angle from 

which the signal was transmitted (Belloni et al., 2009). The position of the lost device, (Mobile Device 

X in Figure 2-6) is estimated by determining the intersection of two or more propagation paths of the 

transmitted signal. These are illustrated as Mobile Device A and Mobile Device B.  

The principle benefit of AoA is the fact that unlike ToA and TDoA methods, no computational load is 

placed on the receiving and\or transmitting devices, to maintain clock synchronisation. AoA range 
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estimation techniques have been extensively used (Niculescu and Badri, 2003; Hui et al., 2007; Gezici, 

2008).  

The single biggest disadvantage of the AoA method, is that a small error in the angle measured, can 

lead to a catastrophic error, in the positioning estimation of the device to be located. This error rate is 

exponentially related to the distance between the transmitting and receiving devices. Furthermore, AoA 

based ranging techniques, are vulnerable to multipath signalling errors and most implementations 

require LoS between sending and receiving devices. Antenna arrays and directional antennas, although 

becoming more prevalent in smart phones, are not components that are typically found in everyday 

mobile devices. This increases the cost for any implementation and renders it redundant for cooperative 

localisation. 

 

Figure 2-6: Angle of Arrival (AoA) 

 

2.9.7 Pedestrian Dead Reckoning (PDR) 

Dead Reckoning is the process of estimating a current position, with reference to a previously known 

position. It can be as simple as measuring the number of paces that a mobile user has taken in a given 

direction since they initially began to move.  Implementing PDR as a solution incorporates the use of 

speed of travel, elapsed time and heading, to estimate a position (Chen and Guinness, 2014). Early 

navigators used a range of techniques to negotiate unfamiliar environments using dead reckoning, 

employing the sun, moon, stars, wind, tidal drifts, waves and swells as reference points to do so.  
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Consider the situation, where someone is providing directions to navigate to a destination based on a 

focal point that is visible. If the destination lies 200 yards West or to the left of a church that can be 

seen along the journey then as an initial course is set, the church spire can be used as guide or frame of 

reference. This can work perfectly while the church spire is within sight, but problems occur when the 

spire can no longer be seen. In this case, a heading can be maintained in the direction the church is 

perceived to be in but because this frame of reference cannot be seen, it is inevitable that a certain 

amount of ‘drift’ occurs. The further an object travels without the aid of a reference point, the more 

susceptible it is to drift even further off course. When moved to a position where the church spire can 

again be seen, the drift can be corrected, and a course reset, to a new more accurate heading.  

As humans walk, our bodies generate cyclical movement patterns which occur as a result of moving 

our legs. Analysis of these movement patterns provides an estimate of how many steps have been taken. 

Analysis, also known as gait analysis can be evaluated via fused data from Inertial Measurement Unit 

(IMU) sensors on a smartphone.  

Modern day positioning systems use PDR as positioning aids, typically in a hybrid framework, to 

augment other technologies. Kloch et al. (2011a) implemented a PDR positioning solution and found 

that when using PDR in isolation, the variance grows bigger as people are walking. They use Bluetooth 

LE to measure the distances between mobile users (frames of reference), in a cooperative fashion and 

use these distances to correct drift. When travelling in a car and entering a tunnel (when out of range of 

any satellites), most GPS devices use a dead reckoning algorithm based on the previous trajectory, along 

with the average speed of travel, to ‘guestimate’ a position within the tunnel, correcting any errors when 

the car eventually exits. Modern day implementations of PDR use sensors such as accelerometers, 

gyroscopes, magnetometers and barometric altimeters on mobile devices to detect movement and\or 

orientation to help derive position. 
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2.9.8 Azimuth 

A measurement that can be used to help ascertain position when moving is bearing, heading or azimuth. 

An azimuth is typically measured in degrees and denoted by the alpha ‘α’ symbol. It defines a straight 

line of the horizontal angular distance of a point, in a clockwise direction, from the xy plane of the local 

geodetic coordinate system (Chen and Guinness, 2014).  

Geodetic North (true North) is typically used as a fixed reference plane, so East would have an azimuth 

of 900, while South would have an azimuth of 1800. A Magnetometer is one of many sensors in a mobile 

phone that can be used to calculate an azimuth, as a measurement to estimate position. The 

magnetometer in a mobile device can detect the earth’s Magnetic North, albeit with the understanding 

that Magnetic North is not the same as True North. Magnetic declination is the difference between True 

North and Magnetic North and can be mapped onto a mobile device’s representation of North, to 

accurately reflect True or Geodetic North. In fact, magnetic declination can differ based on the position 

of the earth and needs to be updated at periodic intervals (Caruso, 1997).  

Because magnetic fields can be interfered with by basically any ferrous material, this can have a 

dramatic effect on measurements obtained in the indoor environment. Here, any metal objects, such as 

furniture, or even a buildings infrastructure, can have a detrimental effect on measurements obtained 

(Mohri ,1984; Kendell and Lemaire, 2017). Gyroscopes are sensors that also come as standard 

equipment in modern mobile devices and can assist in achieving an azimuth. More particularly they can 

assist with the exact orientation of the device (Jie et al., 2002; Johnson et al., 2010; Ju et al., 2014). 

Gyroscopes can provide the orientation of the device by measuring the pitch, roll and yaw of a device.  

Augmented Reality (AR) applications typically require both the position of a device, as well as its 

orientation, to accurately depict what the user is seeing, relative to where they are at and the orientation 

of the device that is augmenting the world they are viewing. Understanding in which direction a visitor 

is facing in a gallery could define that they are looking at a vertical column of three paintings. 

Understanding the tilt of the mobile device could provide specific information relating to each painting 

in turn as the device pans down through them. Yaw is a measurement which is the value of the rotation 
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against the Z axis. Roll is a measurement that is the value of the rotation against the X axis and Pitch is 

a measurement that is the value of the rotation relative to the Y axis. Each of these measurements, are 

measured in degrees of rotation and are analogous to the Pitch, Roll and Yaw of an aeroplane. It allows 

for the measurement of the position and orientation of a mobile device, through its centre of gravity, in 

a 3D space.   

2.9.9 Altitude 

A sensor that is included in the newest smartphones offers a novel manner to measure Altitude. A 

barometer is a device that is normally associated with Meteorologists estimating weather conditions. A 

rising air pressure reading generally forecasting good weather. However, the measurement that a 

barometer uses to forecast weather, can also be used to estimate altitude. A barometer measures 

atmospheric pressure, the weight or force of the earth’s atmosphere which can vary at different heights. 

It is measured in Pascals and 1 Pascal is roughly around 14.696 pounds per square inch.  

The average air pressure at sea level is 101.325 kPa. By measuring barometric pressure readings on a 

mobile device, the current height above sea level or altitude of the device can be gauged. There has 

been several attempts to solve the challenge of obtaining floor level accuracy in the indoor environment 

(Bai et al., 2013; Moder et al., 2014; Jeon et al., 2015). It is a challenge that remains unsolved. The 

atmospheric pressure readings captured by a barometer, can therefore be used to help estimate position, 

especially within the indoor environment. 

 

2.10 Position Estimation Algorithms 

A position estimation algorithm uses ranging measurements as input, to help predict with as much 

accuracy as possible, a location. Two key components typically make up the estimation of the position 

of a Lost Device. First, range finding techniques as discussed in the previous section, are used to 
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estimate the distance from the transmitting device(s) to the receiving device(s). This is calculated using 

a range measurement, for example the length of time it takes a signal to propagate the distance from the 

transmitter to the receiver (ToA).  

The second component, the position estimation technique, uses range measurements with an estimation 

algorithm (mathematical formulae), to calculate the position of the Lost Device. An estimated position 

can fall into one of two categories, relative or absolute. A relative position is one that is expressed 

relative to another known frame of reference. For example, the position within the context of 

neighbouring devices, or the local environment. This could be the mobile devices position relative to 

an office\room door or a position on an xy plane relative to a given floor within a building. With absolute 

positioning, the position of the mobile device can be expressed relative to a geocentric coordinate 

system, providing an x, y and z position.  In this situation the position achieved via the IPS would be 

mapped to global latitude, longitude and altitude coordinate values (Chen and Guinness, 2014). The 

following sections detail three such position estimation algorithms. 

2.10.1 Triangulation 

Scientist, Engineers and Navigators, have been using triangles to measure distance for some time. 

Triangulation is a geometric calculation, used to find a position based on angles to it from a priori 

positions, at either end of a line of known measurement. To explain this using a cooperative paradigm, 

consider a distant un-localised mobile device (Device X), which is within range of two other mobile 

devices Mobile Device A and B illustrated in Figure 2-7. Mobile Devices A and B have already been 

localised, using the in-house IPS and are separated by a known distance (length 'L'). The base angles 

from A and B to mobile device X, can be calculated using AoA measurements determined using AoA 

techniques. The location of the mobile device can then be derived from the intersection point of two 

lines, drawn at their respective angles from Mobile Devices A and B.  
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This could be further extended to provide a 3D position estimation, using the known point of a third 

Mobile Device C and the distances from it, to the other Mobile Devices (Mobile Device A and Mobile 

Device B), along with the AoA from it to the mobile device. This 3rd plane, could be used to calculate 

floor level within a building, and provide a specific geodetic x,y,z coordinate value within an IPS. 

Triangulation uses the AoA estimation technique which provides an estimate of an angle in degrees. 

This technique, as described earlier provides an estimation of the angle from a reference frame, like all 

estimates it comes with a certain degree of accuracy. This level of accuracy is illustrated in Figure 2-7, 

in the shaded area as the error space with this solution.  

 

 

Figure 2-7: Calculating intersection for positioning 
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2.10.2 Trilateration 

Trilateration is a key component of the GPS position estimation technique. It is a process that can 

estimate the position of a mobile device, given the positions of at least three other objects and the 

distance from those objects to the mobile device. We can illustrate this using a cooperative localisation 

example. Take the basic scenario depicted in Figure 2-8(a) where the circle depicts the distance from 

Mobile Device X, to Mobile Device A. This distance would have been derived, using one of the ranging 

techniques - RSS, TDOA or RTT. All that can be known about the whereabouts of Mobile Device X is 

that it resides somewhere on the circumference of the circle that is constructed using the radius of the 

estimated range between Mobile Device X and Mobile Device A. 

 

  

Figure 2-8: (a) Distance from A                                         (b) second mobile added 

 

A Second Mobile Device B will allow the position of X to be narrowed further, as can be seen in Figure 

2-8(b). Now the range to X has been calculated relative to Mobile Device B. Therefore, considering X 

must be on the circumference of two circles, created from radii defined by the range estimate from 

Mobile Devices A and B to Mobile Device X, there are only 2 possible positions where X might be, at 

the intersections of these two circles.  

 

 

Mobile 

Device A 
Mobile 

Device A 

Mobile 

Device B 

X 



 

39 

 

 

To calculate the exact position of X, a third Mobile Device, Device C is required. When the distance 

from C to X is calculated, the distances from X to A and B are already known. It can then be determined 

that X, can only be at one specific position, to match those three particular distance estimations from 

Mobile Device’s A, B and C – the intersections of the three circles. This can be seen in Figure 2-9. 

 

Typically, using a standard IPS, a range-based position estimation algorithm requires multiple fixed 

reference devices that are within range of the ‘lost’ device to localise. Given these algorithmic 

prerequisites, when there are not enough reference devices within range, a position fix cannot be 

established. Any number of the environmental obstacles that affect indoor positioning could cause this 

to happen. Here, a positioning solution can be implemented, to allow mobile devices act as reference 

devices, providing the required parameters for the algorithm. This illustrates how a positioning solution 

could be used to extend the range of an IPS, when it finds itself in these common scenarios.  

 

Figure 2-9: Trilateration example 
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2.11 Sources of Positioning Error  

How RF waves behave as they travel through the atmosphere is known as radio propagation. Akin to 

any waveform travelling across a given media, radio waves are affected by different phenomena such 

as reflection, refraction, absorption, diffraction, polarisation and scattering. Each of these phenomena 

can have a detrimental effect on positioning errors when using the signals as measurements to estimate 

the range or direction of a signal.  

Positioning errors in the indoor environment caused by these phenomena are non-trivial (Catedra et al., 

1998; Parsons, 2000; Akyildiz et al., 2002; Rappaport, 2002; Rowe et al., 2007; Yang et al., 2009). 

Radio waves operating at different frequencies propagate in different ways, understanding the effects 

of radio propagation is fundamental when designing an IPS that will use measurement of transmitted 

signals as they are received by a device.  

 

2.11.1 Reflection  

When light (waves) hit a reflective object such as a mirror, the light is reflected off at an angle relative 

to the angle at which it struck the object. The same is true for radio waves. When an RF signal 

encounters a solid object, the signal either gets reflected, absorbed or both (Bashore, 2000).  

When using any ranging techniques, reflection of a signal off walls, ceilings, floors or furniture can 

have a dramatic effect on the measurement achieved. If a positioning system were using RSS as shown 

in Figure 2-10, the RSS received would be dramatically different to what the true RSS should be. Here, 

Device B is using the RSS received from the transmission from Device A, to estimate the distance 

between the two devices. 
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Figure 2-10: Reflection Figure 2-11: Scattering 

The RSS value that should be received and should reflect the actual distance of 16 metres, between the 

two devices however the RSS that Device B is receiving is the signal strength measurement that has 

reflected off the wall. This results in a larger (more negative) RSS reading because the signal has 

bounced off the wall and effectively travelled 44-metres instead.   

2.11.2 Scattering 

Scattering, or scatter is defined as an RF signal reflecting in multiple directions when encountering an 

uneven surface (Coleman and Westcott, 2015). It is similar to reflection in that the signal bounces off 

an object or objects which can have a dramatic effect on errors when used to measure range, angle of 

arrival or time of flight. The effect of a scattered radio signal can be seen in Figure 2-11. 

 

 

 



 

42 

 

2.11.3 Refraction  

To understand refraction, we can observe how light travels through glass or water when looking at an 

object in water. For instance, this could be a fishing rod dipped into a pond so that the part of the rod 

immersed in water can appear bent or skewed. This process is known as refraction and can affect radio 

waves in the same way it affects light waves.  Refraction is the bending of an RF signal as it passes 

through a medium with a different density, thereby causing the direction of the wave to change 

(Coleman and Westcott, 2015). 

As signals travel from transmitting satellites, refraction can occur as the signal enters the earth’s 

atmosphere. In the indoor arena when a signal has to travel though an object, refraction can affect its 

measurement, be it time, range or angle based, as can be seen in Figure 2-12.  

 

 

Figure 2-12: Refraction 

When a signal is travelling through an object such as a wall, as in Figure 2-12, the signal is also affected 

by attenuation which can be a cause of large errors in Non-Line of Sight (NLoS) environments where 

LoS  is a requirement (Guvenc and Chong, 2009). Attenuation is the reduction in signal strength, as a 

signal travels from a transmitting device, through the atmosphere to a receiving device. Therefore, when 

an RF signal travels through an object of which there are many in the indoor environment, its positioning 

measurement is affected by both the attenuated signal and the refraction on that signal, making NLoS 

positioning in the indoor arena a challenge which has not been adequately resolved. 

Refraction is where the transmitted 

signal is bent and arrives at the 

receiving device at a different angle or 

taking a different path. 
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2.11.4 Absorption – Path Loss 

Attenuation is a factor of the absorption characteristics of the object or material that a radio signal is 

passing through. Signal attenuation which is measured in decibels (dB), can be evaluated using (4) 

where f is the transmission frequency expressed in MHz, d is the distance expressed in feet and n is the 

path loss exponent in dB: 

In a LoS environment the path loss exponent (n) is 2, when the signal is travelling through the air, but 

in NLoS environments, like most of an indoor environment, the path loss exponent is typically set to 

(2.4 < n < 4). This is because the different materials that a signal has to pass through in an indoor 

environment differ dramatically in the way that they absorb the energy from a radio signal. For example, 

a wall might cause 3-4 dBs of attenuation, whereas the same signal travelling through a shelf or 

bookcase might cause 1-2 dBs. By correctly modelling the environment the Path Loss equation can be 

used to estimate the distance (d) between a transmitting device and a receiving device. 

2.11.5 Diffraction 

Diffraction can occur on any waveform, such as light, sound, water and electromagnetic waves, such as 

radio waves. A rainbow occurring, because of light diffracting at different angles, to provide the colours 

is an example of diffraction in nature. A hologram is another example of light diffracting. When a radio 

signal encounters an obstacle or boundary, such as a corner in a hallway, it bends or diffracts around 

the corner, essentially filling in the shadow (McCune, 2010). This is similar to how a wave comes in to 

a harbour when the water waves spread out after they diffract through the harbour mouth. With 

Path loss (approx) = -38 + 20 * log10(f) + 10 * n * log10(d)  (4) 

 

f = transmission frequency (MHz) 

d = distance (feet) 

n = path loss exponent (dBs) 



 

44 

 

particular reference to radio waves propagating in the indoor environment, this can have an effect on 

range estimates, time and angle measurements, received from a transmitted signal. 

2.12 Performance Metrics 

There are many ways to measure the effectiveness of a positioning system, such as precision, accuracy, 

complexity, robustness, cost and scalability (Hui et al., 2007). Each of these metrics, offer a valuable 

insight, when assessing one technology over another within a specific environment. Performance 

metrics can also be used to set baselines to gauge a systems effectiveness during its lifetime. 

2.12.1 Accuracy 

One of the most important performance metrics when positioning is accuracy, especially when 

considering the impact on user experience. Accuracy is the closeness of agreement between a measured 

quantity value and a true quantity value of a measured (Balazs, 2008). 

Very poor accuracy can dictate the range of suitable application for a particular solution. The accuracy 

of a given position estimate is a function of the average Euclidean distance, between the estimated 

position and its actual position. This is also known as the mean error or the positioning error. Accuracy 

is relative however, as some systems only need a coarse estimate such as determining the vicinity of a 

user within a region. Others require a finer, more precise level of accuracy.  

Quite often a balance needs to be reached with accuracy and other performance metrics, such as 

complexity and cost, depending on the solution to be implemented. 

2.12.2 Precision 

The JCGM define measurement precision as a means to define measurement repeatability, intermediate 

measurement precision, and measurement reproducibility (Balazs, 2008). The precision of a positioning 

system is a measurement of how often a system is accurate, which is usually referenced as a percentage, 
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to within a given distance. Precision can offer a probability of a technology or system being accurate, 

to within a certain bound of error.  

A common way to represent this probability, when measuring the precision of a system is to use 

Cumulative Distribution Functions (CDFs) to equate the precision of one system over another. If a 

system can locate a device 970 times out of 1000 during tests, to within 3 metres of its true position, it 

can be said that that system has a location precision of 97% within 3 metres (CDF is 0.97 for a distance 

error of 3 metres). 

2.12.3 Complexity 

Understanding the complexity of an algorithm used to locate in a positioning system can be an important 

factor when considering whether to implement a centralised or decentralised model. A complex 

algorithm that takes a long time to estimate a position could indicate the need to locate it on a centralised 

server. This server could have the required resources, both hardware and software to achieve an 

optimum response time. Complexity can be difficult to quantify on any system. Time can be a good 

indicator of the complexity of an algorithm (Basili, 1980). The time it takes an algorithm to obtain a 

position fix can be a reasonable estimate of its complexity.  

2.12.4 Robustness 

Non-line-of-sight (NLoS) are radio transmissions through paths that are partially obstructed. This is 

typically as a result of a physical object in the innermost Fresnel zone. Radio signals depend to different 

degrees on LoS between a receiver & transmitter (Li et al., 2015). Obstacles such as buildings, cars, 

trees and mountains can reflect, absorb or scramble the radio frequencies. Ultimately, they limit the use 

of certain types of radio transmissions. The lower the power level, the less likely is the chance of 

receiving a transmission successfully. 

The robustness of a system is the capacity of that system to withstand a situation, where it does not 

receive adequate data to locate a device. A system for example might perform better than another system 
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in a harsher radio environment, when using radio signals if this environment precluded accessing of an 

adequate radio signal due to NLoS by using mitigating techniques.  

For example, an RSS based system that failed over to use PDR techniques when an adequate number 

ranging signals were not available, would offer a level of robustness above a system that would not be 

able to locate in those conditions. Robustness could also mean the durability of a systems infrastructure 

such as a system needing to locate in an environment that was subject to severely high or low 

temperatures. The capacity of such a system to return a location over a system that could not locate 

would define its robustness. These can be important factors when deciding which technology or system 

to use as a solution to the indoor positioning problem.  

2.12.5 Scalability & Cost 

Scalability is the capacity of a system to grow, with reference to the area covered by the IPS, or its 

ability to accommodate larger volume of devices or traffic, at a later stage (Farid et al., 2013). 

Implications for scalability can relate to the wireless channel becoming congested, or an increase in the 

computational load on a device resolving a position estimation.  

The total cost of a positioning system can be evaluated in many ways incorporating many associated 

factors, such as time costs (for installation) or capital costs for hardware and maintenance to keep the 

system functioning (Mautz, 2012). Cost can have mitigating factors, such as time, space, energy 

consumption and weight that need to be considered, when evaluating the performance of one solution 

over another. The time cost of a solution, is the time it costs to install, test and maintain a system. A 

solution using radio fingerprinting, for example, takes time to build and populate a database with radio 

signatures. This also requires time to be updated regularly during the lifetime of the system. If a system 

used tags that a user was required to carry around with them, then the weight and size of the tags, are 

important factors. If a device or tag is in an environment that does not have access to a power supply, 

then energy costs and consumption are important factors that need to be considered here.  
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2.13 Filtering Techniques for Location Estimation  

Positioning of mobile devices within the indoor environment is fraught with difficulties and although 

ranging estimation techniques and positioning algorithms can alleviate some of those issues, they do 

not completely resolve them. Radio signals are notoriously inconsistent in the indoor arena, due to the 

reflection of the signal off objects or the refraction of the signal around corners – known as multipath. 

A signal can take multiple paths from a transmitting device, to a receiving device.  

When gauging the range between two devices, the direct path is the only path that can be used to 

accurately estimate distance. All other signals that have taken alternative routes to the receiving device, 

bouncing or refracting off the many obstacles in the indoor environment, introduce errors.   

Environmental conditions can also have a bearing on a signal. For example, the number of people in 

the vicinity (Yang et al., 2009) or air humidity conditions (Rowe et al., 2007). Considering these 

variables create a randomness of the position estimation.  Filtering techniques can be integrated into a 

location-based system, to refine estimations by filtering out estimation errors and improving the 

accuracy of positioning estimates.   

2.13.1 Bayes Filters 

Bayesian filtering is the most commonly implemented filtering technique used in localisation solutions 

and is used to estimate the chances of something happening, when provided with the likelihood of 

something else occurring. When related to cooperative localisation, Bayesian filters allow the 

measurement of the probability that the estimated position of a device is accurate. Considering the 

propensity for errors in any IPS, it is a fundamental aspect of any solution that the uncertainty in a given 

measurement must first be quantified. This can relate specifically to censoring of information from 

given devices, which is detailed in the following section.  

The ‘truth’ of a devices position can therefore be evaluated before an estimate of another devices’ 

position relative to it are calculated. Considering the nomadic nature of mobile reference devices in 
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cooperative localisation, the ability to minimise the propagation of estimation errors is a key ingredient 

to the development of a cooperative localisation algorithm. Howard et al. (2003) describe a cooperative 

method for relative localization of mobile robot teams, using Bayesian formalism with a particle filter 

implementation.   

2.13.2 Kalman Filters 

Kalman filters are one of the most popular types of Bayesian filter and one of the simpler to implement, 

requiring little processing power to execute. This is an important factor in any implementation, 

particularly a distributed architecture where the computation would be carried out on resource limited 

mobile devices. In (Zhang and Leonard, 2008) a cooperative Kalman filter for cooperative exploration 

uses a set of measurements monitored over a given period. These measurements contain some white 

noise (random variations), along with some additional imprecisions and produce estimations of 

unknown variables, which are found to be more accurate than estimates calculated using only one 

measurement. Kalman filters overcome these inaccuracies using Bayesian interference and estimating 

a joint probability distribution between the variables.  

The Kalman filter is a specific application of Bayesian interference, which uses the Bayes Theorem. 

Bayes theorem is used in statistical analysis to describe the probability of an event happening based on 

prior knowledge of conditions relating to that event (Grossmann et al., 2007). In a real-world example, 

the Bayes theorem could be used to measure temperature from somewhere that a thermometer could 

not be placed by monitoring its surrounding conditions.  

The Kalman Filter is a recursive algorithm and it is considered computationally efficient as it only needs 

to store the previous state of the system to estimate the current system state. The original Kalman Filter 

modelled linear systems and observed statistical noise within these systems. It was primarily designed 

to be used in navigation and guidance systems (Welch and Bishop, 2006). It was used in the Apollo 

space program to reduce statistical noise, sensor noise and other inaccuracies within their navigation 

and guidance systems.  
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National Aeronautics and Space Administration (NASA) and the Ames Research Centre (ARC) worked 

together to extend the Kalman Filter for specific on-board Moon trajectory estimation calculations and 

since then many different versions of the extended Kalman filter have been developed (Grewal and 

Andrews, 2010; St-Pierre and Gingras, 2014; Deng et al., 2015; Moore and Stouch, 2016).  

Kalman Filters use a measurement model and a process model, in the form of matrices, to process the 

linear quadratic estimations. The measurement model consists of the system variables that are observed 

and measured over time, along with the measurement noise covariance matrix. The process model 

consists of a state transition matrix, a control input matrix, a process noise covariance matrix, an error 

covariance matrix and the system state.  

Kalman Filters estimate the current state of the system using two main steps, predict and correct. The 

current state of the system is ‘predicted’ based on the previous state of the system, which is stored in 

memory. Once the prediction has been processed and saved, the system variables must be measured. 

The system measurements are assumed to have noise and errors. As time passes and as the filter is given 

more data, the error covariance will converge on zero. In effect, the longer the filter is running on a set 

of data, the more it ‘learns’ in terms of cancelling out statistical noise. This process of predicting and 

correcting can be repeated indefinitely depending on the size of the system and the number of variables 

involved.  

2.13.3 Maximum Likelihood Estimation (MLE) 

Maximum Likelihood Estimation (MLE), is a statistical technique used to address the issue of 

measurement ambiguity in localisation (Chen and Guinness, 2014). Given most range-based position 

estimation techniques require at least three reference devices during position estimation, the MLE 

method can be considered. It uses n reference devices to calculate the Lost Devices position (generally 

n > 3). Tian et al. (2009) use MLE to estimate the coordinates of ‘lost’ devices for an Indoor WSN 

location-based system and an outdoor Global Navigation Satellite System (GNSS) location-based 

system respectively.  
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2.13.4 Least Squares Estimation 

Least Squares is a statistical method used to solve mathematical equations that are otherwise unsolvable. 

The least squares method does not attempt to solve the unsolvable mathematical equations or functions, 

instead it estimates the MLE.  The least squares method was developed cumulatively during the 

eighteenth century by astronomers and mathematicians. The primary motivation for developing this 

method came from the need to navigate around the globe more accurately and the need to calculate the 

orbits and positions of celestial bodies more accurately (Nievergelt, 2001).  

The least squares method is a popular approach for determining regression equations from other 

mathematical functions. Instead of solving equations precisely, it estimates the best solution by 

minimizing the ‘sum of the squares’ created by the mathematical functions. The least squares method 

can be applied to linear regression equations and with some added complexity, to non-linear regression 

equations. The least squares approach can be used in conjunction with “error-in-variables models” to 

account for known errors in the measurement model being used. The error-in-variables models are 

particularly useful for determining nonlinear least squares solutions where there are no alternative 

solutions available for the given data.  

Implementing the least squares error-in-variables method for trilateration or triangulation will usually 

provide a more robust and less skewered measurement (Fantuzzi et al., 2002; Ren et al., 2015), despite 

measurement errors and other sources of statistical noise that may normally taint the data.  

The examples detailed next examine both linear and non-linear applications of the least squares 

methods. A linear problem will be presented first, explaining the least squares method. The linear 

example will be followed by a non-linear example which closely models a real-world application of the 

least squares method. The use of an error-in-variable measurement model is demonstrated in the non-

linear example to illustrate how the least squares method can benefit by using error-in-variable models. 

Consider three lines as illustrated in Figure 2-13 where we want to find the intersecting point of all three 

lines. However, the intersection point we are trying to find does not exist because there is no place that 

all three lines intersect.  This is a common problem in mathematics and it is considered more desirable 
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to find a solution that is as close as possible, or an approximation, rather than getting no solution 

whatsoever. 

 

Figure 2-13: Linear regression equations represented graphically 

 

The least squares method can be applied to these linear equations to find the ‘closest’ possible solution 

to the problem. The solution will be the closest, in terms of distance, to the hypothetical intersecting 

point, even though the point itself does not exist. The least squares solution intersection point is 

guaranteed to lie within the shaded area between the three lines.  

A similar method can be applied to non-linear regression equations i.e. curves or circles. When 

trilateration is used to position an object, three fixed points are used as reference points. The distance 

from each reference point to the object is measured or estimated and an imaginary circle or arc with a 

radius equal to the distance is drawn on the Cartesian plane. The intersecting point of at least three 

circles is needed to position a ‘lost’ object, and if one of the measurements from the reference points is 

incorrect then the intersecting point will not exist as shown in Figure 2-14.  

The least squares method can be used to find the ‘maximum-likelihood’ solution to this problem. The 

least squares method is quite effective when applied to the non-linear problem as it will always return 

a definitive position for the lost object whereas using trilateration alone may not always yield an objects 

position. 
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Figure 2-14: Non-linear regression equations 

represented graphically 

Figure 2-15:  Error-in-variables model showing 

shaded “maximum-likelihood” area 

 

The least squares method can be built upon to provide a more robust estimation of an objects position 

using error-in-variables measurement models. Let us assume that the error bounds of the reference 

points that are used for measuring the distance to the lost object are known, for example, plus or minus 

1 metre. These known errors can be incorporated into the measurement model to widen the area ‘sensed’ 

by the reference points. This is commonly known as an ‘error-in-variables’ measurement model. This 

model will draw two imaginary circles for each reference point as illustrated in Figure 2-15.  

The first (smaller) circle will have a radius equal to the measured distance minus the lower error limit 

and the second (bigger) circle will have a radius equal to the distance plus the upper error limit. The 

error-in-variables measurement model provides a ‘maximum-likelihood’ area that the least squares 

method can be applied on to give an estimation of the actual position. When this model is applied to the 

least squares method, the estimation position of the object tends to be even closer to the actual position 

of the object than without using this model (Zhou, 2009). 
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2.13.5 Quantifying Error Bounds 

When testing the efficiency of a positioning technique or algorithm, some method must exist to quantify 

the extent of errors that exists within the position estimate. Understanding this allows us to measure the 

effectiveness of one filtering technique over another. The Cramér Rao Bound (CRB) is one technique 

that can be used to evaluate this. It provides a lower bound on the variance achievable by any unbiased 

location estimator (Scholtz,1968).  

In a simulated testing environment such as MatLab, Mobile Devices assisting the estimation of a Lost 

Device could be configured to have incorrect positioning information themselves and the results of the 

position estimates on a Lost Device could be quantified. It could be used as a baseline by designers of 

positioning algorithms that use RSS, ToA or AoA ranging techniques.  

When testing an algorithm using a simulated environment, once the derived lower bound or baseline is 

nearly achieved, then benefits of continued tweaking of the algorithm are negligible. Given the lower 

bounds of the derived Cramér Rao, specific characteristics of localisation techniques can be assessed. 

For example, the behaviour of a cooperative localisation strategy in predefined scenarios can be 

evaluated relative to the deviations from the bounds. 

2.14 Global Positioning System (GPS) 

GPS is providing a global solution to outdoor positioning, although research is still on-going to further 

hone its precision and coverage (Hall et al., 1996; Postorino et al., 2006; Matta, 2000). Some of the 

current limitations of GPS coverage include the indoor arena. The attenuation of GPS signals as they 

propagate (Bossler et al., 2010) from satellite to earth inhibit their capacity to penetrate buildings and 

building materials. This rule GPS negligible as an indoor positioning solution. Given that people spend 

most of their time in indoor situations, designers of IPSs have had to look at different ways to locate 

users in these GPS denied environments. This has inspired localisation research into using techniques 

such as sound (Priyantha et al., 2000; Borriello et al., 2005; Filonenko et al., 2010), camera vision 



 

54 

 

(Comaniciu et al., 2003) light (Want and Hopper, 1992; Scopigno et al., 2015) radio waves (Bahl and 

Padmanabhan, 2000; Ekahau, 2016), inertial sensors (Rantakokko et al., 2011) and barometers 

(Jacobson et al., 2003).  

There are however, some limitations to localisation technologies, these are somewhat insignificant in 

the outdoor arena. Natural obstacles such as trees, mountains and cavernous regions, can cause 

obstructions that rule certain technologies redundant in such terrains. Other man-made phenomena, 

such as the urban canyon effect (Spangenberg et al., 2008; Xie and Petovello, 2015) can obscure access 

to signals which are fundamental to localising. An urban canyon, is an area where high rise buildings 

border roads on either side, mimicking a canyon-esc landscape. Skyscrapers in large metropolitan areas, 

can cloud large street areas and roads, inhibiting clear lines of sight to the skies above. Fortunately, 

these obstacles are few, in the grand scale of things and have not had a significant impact on the 

implementation of a positioning solution, outdoors.  

2.15 Indoor Positioning Systems (IPS) 

Spatially aware applications such as facilities management, risk management and the movement of 

people, have more recently been making inroads in the indoor arena. The need to accurately locate 

objects or persons in these spatially complex settings, is fundamental to the legitimacy of the 

information delivered by these applications. The development of accurate and robust positioning 

systems that will provide these precise positioning fixes of humans and objects in the indoor world, is 

therefore paramount to this requirement.   

A study of 285 subjects uncovered that they spent over 80% of their time indoors during weekend days 

and over 85% on work days (Odeh and Hussein, 2016). A study conducted in Copenhagen found that 

people on average spent more than 90% of their day indoors. Indoor environments included the subjects’ 

homes and workplaces but while the subjects were away from home, they were found to be more likely 

to be still inside in buildings, rather than outdoors (Bekö et al., 2015).  
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The need for an indoor solution, considering the time expended by people in the indoor environment, 

is obvious.  There are quite a few IPSs on the market with each of them espousing a more accurate, 

cheaper, efficient solution. Many of them use a wide variety of technological solutions implemented 

using a range of positioning techniques. We outline some of the more popular solutions available. 

2.15.1 Ekahau 

The Finnish Company Ekahau (2016) is a market leader in Wi-Fi positioning systems. Their proprietary 

Java based system contains three parts: (1) The Ekahau Positioning Engine (EPE), (2) the Ekahau Site 

Survey (ESS) and (3) the Ekahau tags. The EPE communicates with the mobile device’s Wi-Fi chip 

and retrieves the RSS information and compares it to that gathered during site calibration, by the ESS. 

The EPE is a positioning server that provides the location coordinates (x, y, and floor) of the mobile 

terminal, or Wi-Fi tag. Ekahau are one of the pioneering companies in IPS and are one of the leading 

developers in Wi-Fi tools making enterprise level site survey tools.  

2.15.2 Pole Star 

Pole Star are a French company with offices in Paris, France and Los Altos, California and global 

headquarters in Toulouse. NAO Campus, the Pole Star IPS, uses a hybrid of technologies, Wi-Fi, GPS, 

BLE and Motion Sensors (MEMS) to track mobile devices on both the Android and iPhone platforms. 

Some examples of indoor location services include delivering safety related information or other 

relevant information on public events like music concerts or sports events (Aloudat et al., 2014). These 

applications are assisted in their development, with advances in mapping technologies such as Google 

Indoor Maps (Aly and Bouguet, 2012; Zheng et al., 2012). Typical LBS applications include helping 

users navigate to the correct shop in a shopping centre or the correct room in a building. Modern-day 

Inventory Management requires the ability to quickly detect the location of products within a warehouse 

(Zhang et al., 2014). The ability to push location-aware advertisements, invoicing or searching, provide 

a significant commercial worth (Hu et al., 2015). Applications to help navigate a passenger at a train or 

bus station or airport to the correct platform, bus stop or departure gate can add significant value to the 
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perceived intelligence of an application. The positioning provider can also assimilate important 

information when providing these services, through resource tracking (Teizer, 2015), fleet management 

(Lee et al., 2014) and user statistics (Piwek et al., 2016). 

2.16 Indoor Positioning Challenges and Opportunities 

Although a lot of the technologies and concepts used in the outdoor arena can be incorporated into an 

indoor solution, the indoor environment introduces significant challenges when locating devices. Some 

of the reasons for this are: 

 The reflecting and refracting of signals from the obstacles that constitute the indoor space can 

result in serious multipath effects. 

 The indoor infrastructure and day-to-day obstacles, combined with the need for horizontal 

connections make for very few LoS situations. 

 The indoor infrastructure also affects the attenuation of signals and causes the diffraction of 

signals.  

 Moving furniture, opening and closing doors/windows can result in spatiotemporal 

fluctuations.  

 Due to the smaller spaces within an indoor environment, there is a greater need for accuracy. 

There are however considerable benefits available when positioning within an indoor environment: 

 There is a smaller coverage area in a building. 

 Weather changes have a lesser impact, as do humidity changes, compared to the outdoors. 

 Walls, corridors & rooms offer fixed geometric constraints, allowing a position estimate, to 

locate within those constraints. 

 Most indoor environments provide seamless access to power supplies and data networks, along 

with walls and ceilings, to mount devices on. 
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 The smaller environment, typically means mobile devices are moving at a slower pace, making 

them easier to locate and/or update. 

All these elements should be considered when attempting to design an indoor solution and the 

challenges are sometimes magnified when attempting to do this using a cooperative methodology. 

2.17 Summary 

This chapter focused on the need to estimate one’s position in today’s mobile computing environment. 

It began by introducing the concept of positioning and the techniques used with these technologies by 

man to navigate. This narrative continues describing the many technological advancements and tipping 

points that have occurred over the years in positioning, delivering the near global coverage that exists 

today. The limitations of this global coverage in the indoor environment was presented along with the 

obvious requirement for it. The different technologies and algorithms used to position were critiqued, 

along with some novel methods to enhance the accuracy levels with these. An overview of how to 

evaluate an IPS was described, as well as an insight into some of the sources of positioning errors when 

positioning indoors. The chapter concluded with an overview of some IPSs and mobile applications that 

use them. 
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3 Cooperative Positioning 

Chapter 2 offered an insight into the concept of positioning, covering aspects of positioning in both the 

outdoor and indoor arenas. This chapter begins to narrow the emphasis further, covering the cooperative 

positioning paradigm. It begins by describing some of the different devices that can be used in a 

cooperative system. Some common issues with positioning coverage are highlighted, whilst explaining 

some problems with the authenticity of positioning information from cooperative devices. The chapter 

concludes by describing some scenarios where a cooperative positioning can locate in key situations. 

3.1 Cooperative Devices 

The indoor location problem has been present for many years and has motivated a considerable amount 

of research into discovering a solution. Cooperative solutions provide a significant contribution to this 

research. Cooperation among devices to self-locate requires one key prerequisite - there must be an 

adequate number of devices willing to assist in locating a Lost Device. The proliferation of tablet 

devices and Smartphones, fully-loaded with a myriad of on-board sensors, somewhat addresses this 

need. The advent of the Internet of Things (IoTs) however, providing access to 100’s of billions of 

devices (Kortuem et al., 2010) offers an even more fertile community of wirelessly connected smart 

objects in a connectivity ecosystem.  

The pace of innovation of wearable computing coupled with falling costs, mirrored in the consumer 

interest in Smart Watches, offers no sense of a drop-off in access to these collaborative devices. Indeed, 

the requirement for nomadic wearable devices to be locatable, further exacerbates the requirement for 

an expansive solution to accurately locate in all areas of an indoor environment. Devices such as these, 

were typically not designed with wireless network functionality to merely assist in locating other 

devices. Re-harnessing this technology, albeit a great reuse of an existing technology, does however, 

highlight a secondary issue. The question is whether these network connected devices can realistically 
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be expected to disconnect from that network and to connect in a Peer to Peer network, so that they can 

cooperatively assist in locating Lost Devices. Wi-Fi Direct offers the ability to be in both Ad-Hoc Mode 

and Infrastructure Mode simultaneously (Alliance, 2010). Bluetooth LE allows the Wi-Fi chip to remain 

connected to the network whilst transmitting. Therefore, using cooperative positioning to extend the 

range of an IPS using Wi-Fi Direct and Bluetooth LE capable devices allows users to remain connected 

to their network, whilst cooperatively assisting in locating other devices they can ‘sense’.   

The more devices used that can exploit position information, the more LBSs and applications have a 

fundamental reliance on the accuracy and coverage of this positioning information. Examples of these 

include navigation and path finding applications, image geotagging, friend finder apps, location-based 

advertising and marketing.  

3.2 Indoor Positioning Coverage 

Generally, IPS implementations can be grouped as either exogenous or endogenous, depending on the 

available infrastructure that can be employed to establish location information. An exogenous 

infrastructure implementation is typically designed from the ground up as an IPS system. An 

endogenous solution however consists of infrastructure that has not been installed primarily for 

positioning.  

Currently, one of the most popular techniques to locate devices in the indoor environment is to utilise 

the preinstalled wireless infrastructure, which is used to provide network access for mobile devices. 

Typically, good system implementations are those that achieve an appropriate balance between 

requirements, technological advances and costs. Whilst utilising an existing infrastructure such as this 

offers many noble qualities, not least the reduced costs in procuring equipment to implement a solution, 

it does introduce some challenges. The decision process behind the strategic positioning of such 

equipment to provide mobile network coverage, does not fulfil the requirements of an IPS to locate 

devices. Therefore, it is inevitable that blind spots should exist where devices that need to be located 

cannot be ‘sensed’, by an adequate proportion of the Wi-Fi infrastructure. When determining the 
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location of Wi-Fi equipment such as WAPs, the typical focus of network designers was to provide the 

highest available throughput to the largest congregations of wireless network users, at key areas within 

the building. The ability to locate devices within that environment was not necessarily to the fore in 

their decision process, leaving gaping holes in terms of coverage in some of the IPSs currently in-place. 

This, coupled with some of the architectural barriers to the positioning of WAPs within a building’s 

infrastructure, would suggest a solution to this issue is not something that is achievable in the short 

term. 

To measure the extent of this coverage issue, a walk-through site survey of the Wi-Fi infrastructure in 

the main building on the campus at Letterkenny Institute of Technology (LyIT) was completed during 

the Spring of 2015, using the Ekahau Site Survey (ESS) (Ekahau, 2016) and Wi-Fi Planner. This 

allowed the network to be analysed for both connectivity and performance, highlighting issues of 

location blind spots within the college campus. The Ekahau Site Survey 8.0 (ESS 8.0) system was 

applied to perform a Throughput Site Survey (TSS). The TSS measures throughput, as well as jitter and 

packet loss, to evaluate the performance of a wireless network at given locations. The site survey 

assimilates information from the network infrastructure at a given area, describing how the network 

performs in that particular section of the building.  ESS typically functions by assisting with the design 

of new Wi-Fi networks, as well as troubleshooting issues with existing Wi-Fi implementations. It uses 

different measurements to evaluate various aspects of the Wi-Fi networks infrastructure and generates 

maps that illustrate its performance. It also measures Wi-Fi range alongside Data Transfer Rates, Level 

of Interference\Noise, Signal Strength, Signal to Noise Ratio, Strongest Access Points and Ping Round 

Trip Time. These can then be analysed to evaluate the suitability of a certain area of a building, to 

provide a given level of service for a specified technology. For example, tests can be implemented and 

evaluated to highlight Wi-Fi blackspots or areas with low coverage or high levels of contention. The 

system generates a heat map of the surveyed area to illustrate coverage issues.  
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Figure 3-1: Infrastructures capacity to provide Wi-Fi Connectivity 

 

An interesting facet of the ESS application, is its ability to configure the output and to measure the Wi-

Fi connectivity capacity of a given area within a predefined infrastructure. Simultaneously, it can 

measure the capacity of that same area’s infrastructure to position devices within that surveyed section. 

Therefore, the capacity of a currently installed infrastructure can clearly be identified in any area within 

a building, to effectively locate a mobile device. Figure 3-1 displays the sample area, which was the 

second floor of the West Wing of LyIT Letterkenny Campus. It illustrates the infrastructure’s capacity 

to provide optimal connectivity to mobile devices within a Wi-Fi network.  

The areas highlighted in green in Figure 3-1 illustrate the areas that offer the best connectivity for Wi-

Fi. It uses Wi-Fi range, Data Transfer Rates, Level of Interference\Noise, Signal Strength, Signal to 

Noise Ratio, Strongest Access Points and Ping Round Trip Time as inputs. The stronger orange colours 

highlight areas that would provide the worst coverage in that section of the building. 
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Figure 3-2: Infrastructures capacity to locate 

 

Figure 3-2 is a heat map of the same area within the building, with precisely the same infrastructure. 

However, the ESS is this time measuring the infrastructures capacity to locate devices within this area. 

Green areas on the map signify areas where there is adequate infrastructure to accurately locate devices. 

The darker areas highlight zones where the current infrastructure does not have the capacity to 

accurately locate. As can be appreciated, large areas on the map cannot be utilised to adequately locate 

devices in this section of the building. The difficulties that can be encountered when attempting to 

implement an IPS by means of an endogenous infrastructure, are graphically depicted in these images. 

Whilst utilising an existing infrastructure such as this offers many benefits, such as the reduced costs in 

procuring equipment to implement an IPS solution, the problems are obvious. Moreover, it emphasises 

the hypothesis of this research and the necessity for a solution to extend coverage into un-locatable 

areas of a network.  

Cooperative devices within a cooperative system, positioned at the edges of these green areas, would 

already be located with the current IPS. Where these cooperative devices could access (or ‘see into’) 

these black areas on the map in Figure 3-2, they could assist in locating devices within that area, this 

results in the extension of the reach of the IPS beyond its regular capacity. 
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3.3 Device Censoring in Cooperative Positioning 

One of the most obvious difficulties with implementing a system that utilises information from other 

devices, is validating the authenticity, or measuring the ‘truth’, of that received information. If a device 

that is being used to position ‘thinks’ that its real position is 2 metres from where it is, then its estimate 

of another position relative to it, is going to be out by at least 2 metres. This is especially relevant in 

cooperative localisation. In a standard IPS, the reference devices are generally fixed, and their positions 

are derived using some sort of fixed measurements making them very accurate. For example, a WAP 

could be positioned by physically measuring its distance from other ‘known’ reference frames within 

the building, its distance along a wall or height above a door. With cooperative localisation however, 

the reference devices are located by the IPS, which may have introduced errors. If this estimated 

position of a mobile device is used to obtain the location of other devices within their range, it can 

propagate its accumulated errors in the estimation of the position of the Lost Device. Moreover, 

employing mobile devices, which as their name would imply are nomadic in nature, the position they 

last received from the IPS may be old.  

When implementing cooperative positioning in dense networks, reference devices can accumulate 

positioning information from multiple devices. Node censoring schemes have been investigated by 

Wymeersch et al. (2009) where they consider different censoring schemes, based on the calculated 

Cramér Rao Bound (CRB). The CRB provides a lower bound on the variance achievable by any 

unbiased location estimator (Scholtz, 1968). They propose a method to estimate both transmit and 

receive censoring. This method provides a dual purpose, in that it can prevent the transmission of 

incorrect range estimations, which in turn can avert the miscalculation of a devices position. 

Furthermore, because the reliability of the estimate is calculated before transmission, it also prevents 

the communications overhead of that incorrect measurement being broadcast.  
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Consider the example in Figure 3-3 the Lost Device X can be ‘sensed’ by 5 different devices each of 

which can cooperate to position it. The position of each of these cooperating devices was estimated by 

a positioning system which introduced a certain amount of errors into each position estimate. Mobile 

Device A has a positioning error of 0.5-metres, see Table 3-1, which is illustrated by the red circle in 

Figure 3-3. Because Mobile Device A is being used as a reference frame, its estimated position is also 

used to help position X. Therefore, the positioning error of Mobile Device A is added to the 

cooperatively estimated range between it and Lost Device X. Mobile Device E has a positioning error 

of 5.5-metres, which could add in a range estimate error of 5.5-metres between it and Lost Device X, 

Range E-X in Figure 3-3. 

 

 

Figure 3-3: Device Censoring 

If this error rate is known, as in (Wymeersch et al., 2009) and can be measured using the CRB, then the 

devices with a more accurate position estimate or lower CRB can be used to position Lost Device X, 

thereby minimising the propagation of previously accrued positioning errors. In the scenario depicted 
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in Figure 3-3 this could mean disregarding the information from Mobile Devices D and E and only 

using Mobile Devices A, B and C to cooperatively position Lost Device X. 

 

Mobile Device Positioning Error 

Device A 0.5 m 

Device B 0.5 m 

Device C 0.75 m 

Device D 2.25m 

Device E  5.5m 

Table 3-1: Propagation of Range Errors 

 

Implementing a device censoring scheme can also preserve bandwidth and prevent positioning latency, 

whilst alleviating any computational overhead on the receiving device to estimate reliability. Hadzic 

and Rodriguez (2011) also advocate the reduction of error propagation in cooperative localisation. They 

propose a distributed reference device selection strategy, based on utility functions, specifically for 

Multilateration based position estimation algorithms. They suggest an algorithm for the discarding of 

unreliable links and analyse the Cramér Rao Lower Bound (CRLB) of positioning errors. The ability to 

calculate the truth about a reference device’s known position is important to the success of any 

cooperative positioning system. 

3.4 Cooperative Positioning Scenarios 

To describe the use of cooperative positioning in operation, consider the following scenario - ‘Bob’ is 

sitting at the far end of the airport lounge, reading his newspaper on his tablet and is considering 

ordering food. He has availed of the free Wi-Fi offered at the airport and can view online that his flight 

is due to leave on time. Bob has been to this airport before but is unfamiliar with the time it should take 

to get to his specific departure gate for this flight, or in which zone he must go to pass security. The 

airport’s IPS could assist with this, but he only has visibility of one WAP. This fact is illustrated in 

Figure 3-4, where Bob can be seen connected to WAP 4.  
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Figure 3-4: Bob's Airport Scenario 

 

This provides a robust network connection; however, it is incapable of positioning Bob within the 

airport. Sue is in the airport café, some 45-metres (S-B) to the West of Bob. Sue’s phone can be ‘sensed’ 

by three different WAPs (WAPs 1, 2 and 3) within the airport’s network and can be located to within 

two metres of her current position, via the in-house IPS. Sue’s phone can also ‘sense’ Bob’s tablet. The 

drinks vending machine in the main hall is 25-metres to the North of Bob, the right-hand top corner of 

Figure 3-4. Due to its location in the main hall, it has access to four WAPs (WAPs 4, 5, 6 and 7) that 

are utilised in the airport’s IPS. This smart device also has a wireless Network Interface Card (NIC), 

allowing it to connect to the airport inventory system, providing minute-by-minute updates on its 

current stock levels.  

However, more importantly, it is positioned within the networks IPS. The 25-metre distance (V m\c-B) 

to Bob’s tablet is a simple hop, well within its read range. In a normal scenario, Bob would be beyond 

the range of the airport’s IPS, but because a properly designed cooperative positioning solution can 

utilise the known positions of Sue’s phone, the drinks vending machine and WAP 4, Bob can be 
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positioned. The Cooperative Positioning solution acquires these devices that know their position and 

estimates range distances from Bob’s Lost Device, to them. These range estimates are then placed into 

a positioning algorithm, to position Bob within the airport. The cooperative positioning system provides 

a position estimate relative to the devices locating it, which can then be mapped onto a global overview 

of the airport IPS. Bob can now see that he is 15 minutes from the departure gate. He is advised to go 

via the security area just behind the lounge. Bob orders the duck, all is good.  

There are other specific scenarios that a cooperative positioning system can explicitly assist in the 

location of devices when the Lost Device is beyond the range of the in-situ IPS or the IPS does not have 

enough positioning infrastructure. Some examples of these situations are presented here.  

3.4.1 Scenario 1: Not enough fixed reference points to accurately position 

In a standard IPS, a specified amount of fixed reference devices that know their location, are generally 

required to accurately locate ‘lost’ devices, depending on the positioning technique used. If the situation 

exists, whereby not enough devices can ‘sense’ the Lost Device, a mobile device could be used to act 

as a form of proxy reference device, to assist in the positioning of the Lost Device. In this scenario, a 

cooperating device that is implementing the cooperative positioning system application, would relay 

information to the Lost Device.  

Figure 3-5 illustrates this scenario. Lost Device X is in the stairwell of the building, Fixed Reference 

Devices N and O can ‘sense’ Lost Device X. If these reference devices were only to provide wireless 

network coverage, then Lost Device X would have ample connectivity to the network to do so. 

Positioning using these signals of opportunity can be troublesome when enough devices are not 

available. This hypothetical IPS uses trilateration to position; therefore, Fixed Reference Devices N and 

O do not provide enough information for the trilateration algorithm to obtain a position fix for Lost 

Device X. Mobile Device A is within view of three fixed reference devices (M, N &O) and can therefore 

be positioned accurately with the IPS. Mobile Device A can ‘sense’ Lost Device X, via the transmission 

range of it’s on board Wi-Fi chip. Mobile Device A can therefore provide the range information between 
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itself and Lost Device X. Lost Device X can then use it along with the ranging information from Fixed 

Reference Devices N and O, to allow it to obtain a trilateration fix via a cooperative positioning system.  

Figure 3-5: Scenario 1 Not enough fixed reference points 

 

3.4.2 Scenario 2: Lost Device outside the building beyond the range of the IPS 

 

In an endogenous IPS, the infrastructure used to position was not originally intended to do so as a 

primary function. The wireless network infrastructure is exploited in a somewhat opportunistic fashion, 

to position. Since the infrastructure was not designed primarily for that purpose, situations often arise 

that limit the capacity to position in given situations. Network designers would not have been concerned 

with providing wireless access to the network such as to someone on the outside of a building. Indeed, 

they may even have deliberately done so as a security precaution. On the other hand, it may be important 

for a location-based application or service to know that someone or some object is close to the building, 

in a business’s carpark, smoking area, or some other area just outside the building. In this scenario, 

mobile devices at the outer extremities of a building’s IPS, that have already been located, can be used 

to locate devices outside the network/building, offering the capacity to extend up to 200 metres into 

those areas. 

Mobile Device A 

Lost Device X 

Fixed Reference  

Device M 

Fixed Reference  

Device O 

Fixed Reference  

Device N 



 

70 

 

A properly designed cooperative positioning system could utilise mobile reference devices to determine 

the position of a specific Lost Device. In doing so, it can extend the locating distances of an IPS by 

exploiting the existing mobile infrastructure, without the need for any further hardware. Figure 3-6 

illustrates a building with an IPS strategically designed to cover as much of the ‘L’ shaped building as 

possible, given the range limitations of the devices used within it. The location of devices can be 

determined while they are within range of the APs, which make up the IPS positioning infrastructure 

so almost any device within the building can be located. The rectangle shaped balcony area, at the top 

of the map, is the one area of the building that is not covered by an AP. This is illustrated in it being the 

one area that is not concealed by the large circles, which denote the coverage areas of the IPS. Therefore, 

mobile device X which is out on the balcony cannot be positioned using the in-house IPS. Mobile device 

X will be referred to as the Lost Device, as it cannot obtain a positioning fix at this stage. Mobile device 

A and B are located at the outer reaches of the IPS and have already been localised. Mobile device A 

and B will therefore be referred to as reference device A and B.  

 

 

Figure 3-6: Building with WAPs showing coverage 

 

Mobile device A Mobile device C 

Mobile device X 

Mobile device B 
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The wireless network cards on reference devices A and B also have a range of signal and the Lost 

Device lies within that range. A coarse position fix can be estimated as the intersection of the two 

overlapping coverage ranges of the mobile devices A and B. A more granular location estimation of 

mobile device X can be achieved by incorporating a third mobile device, mobile device C to allow 

trilateration to achieve the intersection point of all three circles.  

3.4.3 Scenario 3: Indoors, but beyond the range of the IPS 

As illustrated earlier, positioning in an indoor environment as opposed to the outdoor environment is 

particularly challenging due to several fundamental factors. 

 Errors are exacerbated due to multipath and NLoS conditions. 

 Signals to and from satellites 22,000 km in space have almost a clear view of everything on the 

earth’s surface. 

 There is a high concentration of people moving within the environment that affect radio signals. 

 A signal from a transmitting device to a receiving device in the indoor environment is mostly 

horizontal in its trajectory. It therefore has a higher propensity to propagate through people before 

accessing the mobile device.  Both Wi-Fi and Bluetooth transmit within a radio frequency of 2.4 

GHz, which is also the resonant frequency of water.  As humans are almost 80% water, this can 

influence ranging estimates obtained via signal propagation (Rowe et al., 2007). 

 There is a higher concentration of obstacles that impact on signal attenuation. The many walls, 

doors, ceilings, pillars and furniture that make up an indoor environment are not conducive to the 

accurate gauging of range using radio signals, modifying the propagation channel. 

 There is a greater demand for precision, accuracy and yield in the indoor environment. 

Given the aforementioned difficulties, blind spots can emerge within a building, created by obstacles 

that affect the propagation channel of radio signals, as described in the tests carried out in Section 3.2. 

Mobile devices within rooms, halls and offices, in the general vicinity of these blind spots, that have 
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access to the wireless network and by default are a part of an IPS, can extend the range of the IPS into 

the blind spot, using a cooperative positioning system. 

3.5 Summary 

This chapter outlined the methodology of cooperative positioning, focusing on how a collaboration of 

resources could be utilised to provide a solution to the range issue present in indoor positioning. The 

chapter began by presenting this concept of cooperation or collaboration within the realms of computing 

per se, providing examples of cooperative devices. The problem of positioning coverage was also 

presented, describing specific experiments that were carried out which highlighted the coverage issues 

within the Wi-Fi network at LyIT.  

This further illustrated the problems when employing an endogenous solution, which is one of the most 

popular solutions being adopted today. Some issues relating to the selection of mobile devices to assist 

in a cooperative positioning solution were also covered. The chapter concludes by providing specific 

scenarios where a cooperative positioning system could best provide a solution to the range issue in 

IPSs. These scenarios are further explored in Chapter 5, where they are replicated in live testbed 

environments. This allows the cooperative positioning system that provides a solution in these scenarios 

to be appropriately appraised.  
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4 CAPTURE Model & Implementation 
 

In Chapter 3, an insight into the methodology of cooperative positioning was provided, outlining 

scenarios where this approach could be used to solve the range issue in indoor positioning. This chapter 

describes how this methodology was modelled and implemented within the CAPTURE framework. 

Mobile devices that could be utilised within this cooperative methodology are described here, along 

with some issues regarding the heterogeneity of mobile devices used to evaluate range. Live testbed 

environments were used throughout the implementation of CAPTURE, to best evaluate any future real-

world implementation. A description of these are provided here also. These live testbeds were 

furthermore used to best emulate some of the scenarios where CAPTURE could be utilised most. The 

chapter begins by reinforcing the rationale of the CAPTURE system using the original hypothesis and 

research questions to do so. The CAPTURE algorithm used to position lost devices is also described. 

The utilisation of devices to assist in a cooperative methodology with the location of unknown devices 

has been heavily researched in both the indoor and outdoor arenas (Patwari et al., 2005; Shen et al., 

2010; Win et al., 2011). This research has spanned all the technologies and techniques used to locate 

within these realms. The primary objective of this research has however, been focused on using this 

collaborative methodology to solve the problem of location accuracy.  

Further honing of positioning accuracies to millimetre levels are primarily the focus of specialist 

systems. Autonomous devices in the indoor arena may, for example, require more accuracy to be able 

to navigate around obstacles that they cannot ‘sense’. People, on the other hand can be advised of their 

position and assisted with their navigation, but still retain their own ‘on-board’ sensors that can be used 

to correct position estimates or directional advice offered by a navigation system or App. An App telling 

a user to turn right into a wall, where a door exists two feet beyond, can pose a problem for a robot, but 

can be swiftly corrected by a human. The combination of this cooperative methodology, applied to 

solving the problem of coverage in IPSs using off the shelf mobile devices, is not found in the literature, 

making our approach a unique contribution to research in this field. CAPTURE also has the built-in 



 

74 

 

capacity to provide a pop-up, ad-hoc positioning system that could be used in emergency situations 

when parts of the existing positioning infrastructure have been damaged or where none exists. 

The hypothesis of this thesis is that mobile devices at the extremities of an IPS, which have themselves 

already been located, can subsequently cooperate in the determination of the position of devices beyond 

the range of that IPS. This hypothesis leads to the following questions: 

1 Can mobile devices be used to accurately measure range between devices? 

2 What range can these mobile devices reach, i.e. how far can they possibly extend a system, 

and can these range estimates be used to then position devices? 

3 Can a framework be designed to allow any device within an in-situ IPS, to cooperatively assist 

in the locating of other devices, effectively extending the range of the IPS?  

4.1 Heterogeneity of Devices when Cooperating 

Mobile devices used for cooperative positioning, are typically heterogeneous in nature, even when 

considering devices of exact or similar make and model. The heterogeneity exists, because of the diverse 

range of radios, antennas, and firmware on-board devices. This can lead to a divergence in range 

estimates between devices used to position, especially when capturing RF signals. For example, RSS 

estimates recorded on different devices, could vary at the same location. Lui et al. (2011) have shown 

that path loss readings when recorded with different devices can be inaccurate and recommend 

calibrating for each individual device. Considering the promiscuous nature of cooperating devices and 

the exploitation of the variety of devices available in the IoT world to help with cooperative positioning 

solutions, the challenge is evident. For a more detailed analysis of the effect of device diversity on RF 

signals, we refer further to the study of Park et al. (2011). Evaluating the divergent range estimates that 

can be introduced with different mobile devices, can help address the questions posed in the first and 

second research questions (RQ1 and RQ2).  
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1. Can mobile devices be used to accurately measure range between devices? 

2. What range can these mobile devices reach, i.e. how far can they possibly extend a system and 

can these range estimates be used to then position devices? 

Device heterogeneity is a challenge for cooperative positioning implementations and the effects of this 

were evaluated in the tests on CAPTURE and are documented in Table 4-1. 

 

Device Wi-Fi Error  Bluetooth Error  

HTC Desire Eye 1.05 m 5.01 m 

HTC Desire 510 -2.07 m 1.66 m 

Samsung Galaxy S4 Mini 7.62 m 4.35 m 

Sony Xperia E5 0.22 m -2.04 m 

Motorola Moto G5 7.49 m 7.64 m 

Samsung Galaxy Pocket Neo 7.54 m 0.42 m 

Samsung Galaxy Mini 2.83 m 2.68 m 

Apple iPhone 6 7.25 m -1.52 m 

Table 4-1: Device Heterogeneity 

 

For this experiment all the devices used were mobile phones. Each of the phones were placed 5-metres 

away from the mobile device. RSS readings were recorded and used to evaluate a range estimate. These 

experiments were carried out on both the Bluetooth and Wi-Fi chips on each phone. The problem with 

the accuracy of range estimates is obvious, considering the array of ranging errors that were found 

during these tests. The Samsung Galaxy S4 Mini for example, was out by an error of 7.62 metres when 

tested with Wi-Fi and 4.35-metres with Bluetooth. During all further positioning tests with CAPTURE, 

beyond these specific heterogeneity tests, CAPTURE was calibrated to achieve an initial meter read. 

This meter read was then used as input to the CAPTURE ranging algorithm which helped overcome 

some of the issues with device heterogeneity.  
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4.2 CAPTURE Algorithm 

CAPTURE was designed using a cooperative methodology, Figure 4-1 illustrates the overall conceptual 

view of the CAPTURE model. The positioning algorithm illustrated as a yellow box in the middle of 

the diagram was designed using this model. The reference devices on the left-hand side of the diagram 

provide the necessary (x, y) coordinate information of the three (or more) cooperating devices for the 

positioning algorithm. These are the mobile reference devices.  

Figure 4-1: CAPTURE Conceptual Model 

 

The signal strength recorded between these devices and the Lost Device (MD1 RSS, MD2 RSS and MD3 

RSS) are filtered before being evaluated in the range estimation algorithm. This filter removes any noise 

from the recorded signal strengths, smoothing the input to achieve a final signal strength value between 

each transmitting and receiving pair. The pseudocode for this filter can be seen in Appendix 1.3. The 

range estimation algorithm produces three (or more) range estimates which are used as input for the 
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positioning algorithm. The range estimation algorithm is based on the path loss model and is further 

described in the pseudocode section in Appendix 1.3. The positioning algorithm, which is illustrated in 

Figure 4-2 takes the position (x, y) of each reference device.  

 

 

Figure 4-2: Positioning Algorithm 

 

Each reference device supplies its position, obtained via the in-house IPS. These coordinate values are 

combined with the previously evaluated range estimate between each reference device and the Lost 

Device and used as input for the positioning algorithm. The trilateration function of the positioning 

algorithm then produces an x, y Cartesian coordinate position as output. This x, y output is then used 

as input for the Kalman filter function, before producing a final position fix of the Lost Device.  

The specific Kalman filter implementation pseudocode is provided in Appendix 1.2. Using this final 

fix, a map of the corresponding area is then requested from the indoor mapping system, the (x, y) 

position of the Lost Device is then rendered (as a blue dot) onto the map, illustrating the position of the 

Lost Device to the user. The position of the Lost Device can also be relayed to the in-house IPS if 

required for tracking purposes. 
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4.3 CAPTURE Model 

CAPTURE was initially designed to measure the capacity of two mobile devices to evaluate range. The 

only variable when attempting to position using trilateration is range. Defining how best to accurately 

evaluate range between mobile devices, was an important factor to consider before setting out to attempt 

to position thereafter. One way to measure range between two mobile devices is to use the strength of 

the radio signal as a means to then derive range. As a signal propagates through the air, it attenuates a 

rate that is inversely proportional to the square of the distance travelled which makes it a challenge to 

estimate range effectively using this method.  

CAPTURE uses the WifiManager class in the Android class Library to retrieve the RSS values 

between two phones. The WifiManager API provides the main method for managing and configuring 

all aspects of Wi-Fi connectivity on an Android phone. CAPTURE then records these RSS values into 

a database. It records 20 RSS values per second, CAPTURE then aggregates these values to record an 

overall average value. These averages are then used in combination with a filter to remove any outliers. 

This filter is described in Appendix 1.3. Outliers can be caused by signal multipath effects described in 

Section 2.10 and can have a dramatic effect on range estimation, if not handled appropriately.  

The database to record these RSS values was hosted locally on the mobile device itself. SQLite comes 

bundled on the Android OS and is an open source database that manages the data in text files on the 

device. Android provides APIs to access and manipulate data on the local database.  

 

 

 



 

79 

 

4.3.1 Range Estimation using Path Loss Model 

The range estimation algorithm takes the newly aggregate RSS value and estimates range using the path 

loss model described in the following equation: 

𝑅𝑆𝑆 =  − (10𝑛 𝐿𝑜𝑔10 (𝑑) + 𝐴)  (5) 

where: 

n: Path Loss Exponent 

d: Distance from transmitting device 

A: RSS at 1 metre distance 

 

The path loss exponent can vary from 1.5 to 4, where 1.5 represents a LoS environment.  

An RSS reading at 1 metre was established as -43.6316 dBm, after a survey of over 500 readings at 

various positions within the Sports hall testbed. This large sample of readings were recorded quickly at 

each location. During experiments it was noted that further readings had little to no effect on the 

calculated aggregated value. If a Wi-Fi signal is not available to help cooperate, CAPTURE will attempt 

to use the devices Bluetooth signal to position. It employs the same propagation model implemented 

with Wi-Fi to calculate range, recording the RSS of the Bluetooth signal transmitted between the 

devices.   CAPTURE records the RSS between the two cooperating devices, taking five RSS readings 

every second. It then takes these twenty-five readings every five seconds and runs them through a simple 

filter to remove any outliers. This filter is described in the pseudocode section in Appendix 1.3. The 

average RSS reading is then used to ascertain range via the path loss model algorithm illustrated in (5).   

When in Bluetooth mode, CAPTURE uses the same algorithm as Wi-Fi mode, apart from the number 

of recordings per second. Bluetooth connections have to be established between two devices before 

RSS readings can be parsed. This takes some time to set up and tear down these connections. The 

Bluetooth 1 metre range used as input for the path loss model was also different, registering at -

66.82dBm, the path loss exponent was maintained at 1.5.  
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The testbed for these experiments when using Bluetooth mode were the hallways of the main campus 

at LyIT. Using the data received from two separate technologies via two distinct sensors allowed for 

the evaluation of a fusion of sensor data. Both technologies could be evaluated both in isolation and 

combined to better understand the benefits or drawbacks of each approach.  

4.3.2 Positioning using Centroid and Trilateration Models 

Another aspect of CAPTURE was an attempt to broaden the definition of mobile devices that could be 

utilised within its cooperative paradigm. This allowed us to investigate the capacity to use other devices, 

especially devices that could be categorised under the IoT umbrella. The capacity to incorporate such 

devices helped somewhat address the problem of having an adequate number of devices at any one time 

to assist in the cooperative positioning of other devices. Using Wi-Fi and\or Bluetooth RSS 

measurements merely allowed for the estimates of range between devices. To obtain a more detailed 

position fix, these range estimates had to be used with a positioning algorithm.  

To properly measure the positioning capabilities of CAPTURE the main canteen area in LyIT was used. 

The canteen provided an optimal environment to position on a 2D plane, unlike the hallways that were 

used to evaluate the ranging capabilities of CAPTURE up to this stage. The canteen area was also the 

first NLoS testing environment used with CAPTURE. Initially a Centroid positioning algorithm was 

incorporated to evaluate a coarse position fix. This allowed for the addressing of the issues set out in: 

RQ3 “Can a framework be designed to allow any device within an in-situ IPS, to cooperatively assist 

in the locating of other devices, effectively extending the range of the IPS?”  

Centroid Positioning is where devices position themselves to the centroid of their proximate reference 

points (Bulusu et al., 2000; Blumenthal et al., 2007). These centroids are generated by overlapping 

circles that can be created using the range estimations between the cooperating devices and the Lost 

Device as the radii of these circles. Clusters of cooperating devices would generate centroids and the 

position of the Lost Device could be estimated as the centre of these centroids.  
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The accuracy of such a positioning methodology is dependent on the accuracy of the range estimates, 

which in turn is dependent on the technology and range estimation technique used. One factor that could 

dramatically affect when positioning using centroids is the number of devices used to create the 

centroid. Two devices can sometimes result in a large centroid which would translate to a large 

positioning error. However, with the introduction of further devices, the size of the centroid could be 

reduced, having a direct correlation to the positioning error. Figure 4-3 illustrates the concept of 

positioning using centroids.  

 

  

Figure 4-3: Centroid Positioning Figure 4-4: Centroid positioning with 3 devices 

 

The red circle, of which Mobile Device A is at its centre, has a radius of the range estimate between it 

and the Lost Device. The blue circle, which has Mobile Device B at its centre has a radius of the range 

estimate between it and the Lost Device. The overlapping centroid area depicts the vicinity of the 

position of the Lost Device. By calculating the centre of the centroid, a coarse positioning estimate of 

the Lost Device can be determined. The introduction of a third device, Mobile Device C, along with its 

green circle illustrated in Figure 4-4, has a dramatic effect on the size of the centroid. The centre of this 

new centroid more accurately depicts the true position of the Lost Device. The addition of more 

reference devices could further enhance the positioning accuracy of this method. 
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Using this methodology of positioning using centroids, an implementation of CAPTURE was designed 

to utilise the known position of multiple reference devices and their respective range estimates to a Lost 

Device, to thereby determine the position of the Lost Device. The advancement of this methodology 

was further fuelled by the literature during this period which describes an IoTs that would deliver a 

plethora of devices to assist in cooperative positioning.  

This provided a space to evaluate the implementation of the trilateration algorithm within CAPTURE. 

Trilateration positions using the intersecting points of circles whose radii are the range between two 

devices and requires the intersection points of three circles to do so.  CAPTURE must therefore have 

visibility of at least three devices to allow it to position on a 2D plane because only with three devices 

can one single intersection point be defined. Each of the cooperating devices send their (x, y) coordinate 

information to the Lost Device.  

Figure 4-5: CAPTURE Model 
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The Lost Device takes each of the RSS values and filters them to remove any outliers before estimating 

the range between itself and the cooperating Device. It then takes these three parameters (range, x, y) 

and inputs them into the trilateration algorithm which then returns a position estimate. CAPTURE also 

incorporates a mapping system, which takes the estimated position of the Lost Device and displays its 

position as a blue dot on to a map of the LyIT building. It does this by sending an API key to Micello 

maps which then returns a HTML map of the campus 

Micello is an indoor map guidance application for android and iOS platforms. It provides indoor maps 

and navigation data for places like shopping centres, airports, university campuses, hospitals, business 

venues, and conference centres. It uses electronic maps to convert floor plan images into interactive 

maps (Micello, 2018). The x, y coordinate position of the Lost Device is passed to a JavaScript function 

in the html map, which takes a blue dot .png file and renders it onto the map at that particular position.  

4.4 CAPTURE Implementation 

Implementations of CAPTURE were used to evaluate the feasibility, functionality and accuracy of 

CAPTURE, the results of which are detailed in Chapter 5. This also allowed CAPTURE to prove the 

overall thesis hypothesis and answer the resulting research questions. The initial implementation of 

CAPTURE used IEEE 802.11 signals to estimate range between mobile devices. These range estimates 

were originally used to gauge the accuracy levels of measuring distance between two devices using 

RSS measurements. This was implemented and tested in an experimental testbed in a Sports Hall which 

provided a 40m diagonal testing range providing LoS measurements for all tests. When implementing 

CAPTURE here, all users vacated the hall. This provided an optimal environment to use as a benchmark 

for future tests on future versions.  

All the mobile devices used in the experiments were given a name (BSSID). CAPTURE then reads the 

RSS from all available reference points, i.e. all devices it can ‘sense’, but it filters out only the test 

phones used in the implementation. This is achieved via a lookup table mapping the MAC address of 
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the mobile device to the mobile device name. This allows the use of only a specified mobile device or 

a group of mobile devices during any given implementation. 

CAPTURE estimates range between two transmitting devices by using a path loss equation, described 

in (5). The recorded RSS readings are used as input for this algorithm along with a pre-recorded RSS 

reading at 1 metre and a path loss exponent to calibrate for the environment. 

A good equation modelling the environment in which experiments are to be deployed is essential to 

ensure the accuracy of position estimates. After initial pre-tests were evaluated, a path loss exponent of 

1.5 was determined for the sports hall test environment. To obtain the pre-recorded RSS reading at 1 

metre, 500 readings were recorded at various locations throughout the hall, as can be seen in Figure 4-6 

these readings are documented in Appendix 2.2. The readings were smoothed with a filter to remove 

any outliers before an average was calculated.  

 

Figure 4-6: 1 Meter RSS readings 

The final established RSS reading at 1 metre was evaluated as -43.6316 dBm. Figure 4-6 illustrates the 

spread of these 500 recorded readings taken in the hall. The 1 metre read of -43.6316 dBm and path 

loss exponent of 1.5 were then used in the path loss algorithm to calculate a range when given a RSS 

reading. 
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4.4.1 Future Cooperating Infrastructure 

CAPTURE’s methodology is to use mobile devices, as reference devices, to help in the positioning of 

Lost Devices. All the evidence at this stage advocated using as many devices as possible to help negate 

positioning errors. Furthermore, the forecasted availability of billions of these devices, from television 

sets, electric kettles, wireless sound systems, to any of the other myriad of devices said to make up the 

IoTs would ensure a never-ending source of such reference devices. Adopting this framework however, 

mandates that the CAPTURE system has no control over the core components that make up its 

positioning infrastructure. The autonomist nature of such components, along with their heterogeneity 

regarding their individual core components throws up quite a few issues when designing and 

implementing such a system. To mitigate for this, a set of experiments were carried out to measure the 

effect of such heterogeneity, the results of which can be seen in Table 4-1. Furthermore, experiments 

were carried out on a variety of IoT indoor devices, to see if they could be used in CAPTURE’s 

cooperative methodology to measure range. Some of these devices are mobile to a certain extent, in that 

they are not permanently fixed to a structure. However, like TVs and satellite TV boxes, they could be 

classified as semi-fixed reference devices. Other devices such as Fitbits and Smartwatches are much 

more mobile in their utility.  

Sensor Device Positioning  

Error (metres) 

Bluetooth Sound Bar Speaker 3.62 m 

Fitbit 2.56 m 

Smart Watch 3.29 m 

Docking Station Dongle 2.72 m 

Sky Box -1.48 m 

Wi-Fi Smart TV 1.66 m 

PlayStation Portable 1.82 m 

GoPro 3.16 m 

Table 4-2: Indoor Cooperative IoT Devices 

Table 4-2 illustrates the results achieved during these tests and does show, albeit with limited accuracy, 

that these devices can indeed be used to measure range. The devices were placed 4 metres away from 

the device estimating the range. No prior calibration took place, which could explain the large error 
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bounds. Either way, this experiment does prove that these devices that make up the IoT can be used to 

cooperatively position devices within their range. 

The second research question, (RQ2) “What range can these mobile devices reach, i.e. how far can 

they extend a system, and can these range estimates be used to then position devices?” allows us to 

investigate the overall yield of any future CAPTURE implementation to examine how far CAPTURE 

can reach beyond the limits of an in-situ IPS. The theoretical bounds of Bluetooth and Wi-Fi is circa 

200m as highlighted. Although in an indoor scenario, the many obstacles that radio signals must travel 

through attenuate to such a degree, as to make even 50% of these theoretical bounds unobtainable. 

During the implementation of CAPTURE, an evaluation of the true range that CAPTURE could extend 

into was completed. These tests attempted to address RQ1, by evaluating the distance that two devices 

could be ‘sensed’ by each other.  One test was carried out in a LoS environment to evaluate the best-

case scenario for CAPTURE. Further tests involved obstacles that had varying orders of magnitude of 

range that could be achieved between each of the devices.  

4.4.2 NLoS Implementations 

Up to this stage of development, CAPTURE had been developed and tested, primarily in LoS scenarios. 

This provided the capacity to create a sterile testing environment, which in turn offered a benchmark to 

evaluate later implementations against. Obviously, such situations do not replicate well in real-world 

scenarios. It was therefore decided that this and any future implementations had to consider NLoS 

scenarios. This would allow these implementations to better reflect the real-world scenarios that 

CAPTURE would most likely encounter. Fundamental to this was a set of preliminary experiments to 

quantify the effect typical indoor obstacles had on the ranging errors of CAPTURE. Advances in 

accuracy levels with UWB in the indoor environment at this time (Jimenez and Seco, 2016), also 

warranted its evaluation as a positioning technology.  
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An example of some of the preliminary ranging experiments carried out with CAPTURE in UWB mode 

can be seen here1. These experiments measured the effect each of these different obstacles listed in 

Table 4-3, had on the range estimates that were evaluated on each of the different ranging technologies. 

Plasterboard had a small impact on signals, affecting the Wi-Fi signal the most by 1.17 metres, although 

in the earlier LoS experiments the Wi-Fi reading was also reading under 5-metres. The glass partitions 

obviously had one of the smallest impacts on range estimates, although the Bluetooth reading was out 

by nearly 4.5-metres. 

 

Material 

Obstacle 

Sensor Ranging  

Error 

Image Description 

Plasterboard  

Wi-Fi 

 

3.83m 

 

Studded wall partition 

with two sheets of 

plasterboard. Wall is 4” 

wide. 
Bluetooth 

 

4.33m 

UWB 5.12m 

Glass 

Wi-Fi 

 

5.10m 

 

There are many glass 

doors and partitions 

throughout the campus. 

Glass is 8mm thick. 
Bluetooth 

 

9.33m 

UWB 5.50m 

Steel Mesh  

Wi-Fi 

 

6.20m 

 

This steel mesh design 

is located throughout the 

college acting as 

partitions in stairways 

etc. The steel is 4mm. 

Bluetooth 

 

7.71m 

UWB 5.37m 

Concrete  

Breeze 

Block 

Wi-Fi 

 

19.84m 

 

Most of the campus 

walls are concrete 

breeze blocks. The 

blocks are 6” wide on 

their edge. 

Bluetooth 

 

12.21m 

UWB 5.78m 

Reinforced  

Concrete 

Wall 

Wi-Fi 

 

53.41m 

 

The reinforced concrete 

walls are 9” thick with  

reinforced steel (rebar) 

inset. 
Bluetooth 

 

36.61m 

UWB 5.74m 

Fire Door 

Wi-Fi 

 

15.46m 

 

All doors within the 

campus are fire doors, 

they are 4” wide 

wooden doors with a 

double fireproof inset. 

Bluetooth 

 

31.74m 

UWB 5.47m 

Table 4-3: Impact of Building Obstacles 

                                                      
1 https://captureips.com/videos/UWB_Tests.mov 
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Steel mesh because of the holes in it, also impacted only marginally on readings. The concrete breeze 

blocks dramatically altered the range estimates for both Wi-Fi and Bluetooth and the reinforced concrete 

wall had an even greater impact on these. This is most likely due to the density of the concrete and the 

steel reinforcement within it. The fire door had a large impact on Bluetooth although Wi-Fi was badly 

affected also. One of the most notable aspects of this test was the limited impact that all of these 

obstacles had on UWB. The average error for UWB was 0.49 metres over all tests. 

4.4.3 In-House IPS Integration 

Research question 3 (RQ3) addresses the capacity for CAPTURE to extend the range of an in-situ IPS. 

To accomplish this, CAPTURE had to integrate with an IPS. The methodology was to design a type of 

CAPTURE plug-in that would be generic in design, allowing it to offer additional range to any IPS, by 

simply plugging-in to it. The Pole Star IPS system which is installed in LyIT Campus was the IPS used 

to evaluate this concept. During the summer of 2014 a Pole Star IPS was installed on two floors of the 

LyIT Campus, using Bluetooth 4.0 LE Beacons, illustrated in Figure 4-7, to locate mobile devices 

within those regions. These beacons are compatible with all Bluetooth Smart 4.0 devices and provide 

over five years of battery lifetime.  

 

  

Figure 4-7: Bluetooth 4.0 LE Beacon Figure 4-8: BLE Beacon Placement 
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The beacons were positioned at ceiling level with 10-metre intervals, along the hallways of the building, 

as can be seen in Figure 4-8. The beacons are 20mm * 45mm * 60mm and weigh 60 grams, with 

batteries (25 grams without). They typically offer a LoS range of 100m+, for both the indoor and 

outdoor environments, but promote a 25m indoor variable yield. Over 400 beacons were strategically 

placed throughout the Campus. Figure 4-9 illustrates the positioning of these on the second floor of the 

main campus building. 

 

Figure 4-9: LyIT Polestar Beacon Positioning 

 

Once the beacons were in place, fingerprinting, or a scene analysis was carried out to record the 

signature of specific RSS readings from these beacons at known locations. This database of 

fingerprints\signatures is then used to derive the position of a mobile device as it moves around the 

Campus. Students use the LyIT IPS for project work and tests are carried out regularly on the accuracy 

of the system. The most recent study found its accuracy to be within 2.27m for 97% of position fixes 

and under 3.4m for 85% of position fixes.   
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4.4.4 Position Mapping Component 

CAPTURE can be integrated with an in-house IPS to provide location information to other information 

systems within an organisation, but the primary application of this component is to provide a visual 

representation of a user’s position relative to where they are in a building. CAPTURE uses Micello 

Maps to provide this functionality. Micello provide the capacity for organisations to incorporate 

coordinate information into navigation content and indoor maps. Pole Star partner with Micello to 

deliver mapping solutions for their NAO Campus positioning system. Figure 4-10 shows an interactive 

html map of the LyIT campus created using Micello maps.  

 

Figure 4-10: LyIT Campus Maps 

 

The LyIT specific maps are accessed via the LyIT project API key. The blue dot of the estimated 

position is then placed on the map using the x and y coordinate values that are passed into the 

show_gps_position()function on the micellomap.js JavaScript file, to illustrate a real world 

position. 
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4.5 Summary 

In this chapter the CAPTURE model and subsequent implementation of that model were presented 

along with an introduction to the live testbeds where CAPTURE implementations were tested. The 

chapter opened by detailing some of the many devices that could make up a CAPTURE solution using 

a cooperative paradigm, before emphasising some issues already noted in literature surrounding device 

divergence. It then broke down the CAPTURE cooperative algorithm used to position, producing 

conceptual diagrams to describe its specific implementation. The different technologies used to 

implement CAPTURE are also defined here, highlighting their utility within the overall system. The 

chapter closes with an insight into how an implementation of CAPTURE was integrated into an in-

house IPS. Chapter 4 also provided an insight as to how the CAPTURE model attempts to address the 

research questions set out in the original hypothesis. 
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5 Evaluation 

Chapter 4 described the CAPTURE model, which helped shape the underlying framework for an 

implementation.  It outlined the technical components and infrastructure used to design and implement 

CAPTURE that was then used to develop a proof of concept. This chapter now deals with how to use 

these implementations to validate this concept. Proving the concept, or hypothesis of extending range 

with CAPTURE was realised via controlled experiments. These experiments and their results are 

described and evaluated here. The chapter begins by describing some of the equipment used in the 

experiments, before outlining the results of some of the preliminary experiments. The different testbeds 

that were used to evaluate CAPTURE are described. The results of the experiments are presented and 

a description as to how these results meet the thesis hypothesis and underlying research questions is 

given. Results of tests on battery consumption when devices collaborate are presented.  

The hypothesis of this thesis is that mobile devices, at the extremities of an IPS, which have themselves 

been located, can in turn assist in the determination of the position of devices beyond the range of that 

IPS. This hypothesis leads to the following research questions: 

1. Can mobile devices be used to accurately measure range between devices? 

2. What range can these mobile devices reach, i.e. how far can they possibly extend a system, 

and can these range estimates be used to then position devices? 

3. Can a framework be designed to allow any device within an in-situ IPS, to cooperatively 

assist in the locating of other devices, effectively extending the range of the IPS? 

The results obtained from the experiments carried out in this chapter provide concrete evidence that 

address these research questions.  
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5.1 Measuring Equipment 

During all the tests, measurements were recorded between reference and Lost Devices to plot their true 

or actual positions and the relative distances therein. This allowed for controlled experiments to be 

carried out on estimated positions or distances. Any results that were recorded during these experiments 

could then be compared against the controlled results. A Trumeter professional road distance measuring 

wheel was used to record all controlled samples. The measuring wheel provides a digital reading of the 

distance travelled by the wheel. The wheel measures 1 metre in circumference, provides metre and 

centimetre readings and advertises an accuracy level of +\- 1%. 

Trilateration techniques used to determine position can calculate a precise position when given precise 

data as input. The coordinates of the mobile reference devices and the estimated range between them 

and the Lost Device are not exact and are the only variables in the equation used to determine the 

coordinate position of the Lost Device. Since it is already known that the range measurements are not 

precise, the best approximate coordinate position of the Lost Device needs to be found. Understanding 

the error bounds of the systems provides the capacity to adequately address these approximations.  

5.2 Experimental Testbeds 

Testing and evaluation of CAPTURE was carried out in five distinct phases. The first phase of 

experiments was carried out in the Sports hall, with second tests carried out in the corridors of the main 

building of the Letterkenny campus. The main canteen area in the Letterkenny campus was used as the 

third testbed with the Library building providing the fourth testbed. For the final test case 

implementation of CAPTURE, tests were carried out in the Library. Each of these testing environments 

where CAPTURE was evaluated, address one or more of the research questions that emanate from the 

original hypothesis of this work. 
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5.2.1 Experimental Testbed 1 – Sports Hall  

The Sports Hall was used as the initial testing environment because it offered the ability to implement 

the required experiments in an environment with limited interference. The hall provides wide LoS views 

to and from devices, with no interference from people moving around in the test area. A map indicating 

the dimensions of the Sports Hall can be seen in Figure 5-1. The red outlined box indicates the area 

where the tests were carried out. The sports hall is 959 m2 in size, offering a maximum testing range of 

40m in the diagonal. The primary objective of this testbed and the purpose of these initial tests were an 

attempt to address the issues posed in Research Question 1 (RQ1) and Research Question 2 (RQ2).  

1 Can mobile devices be used to accurately measure range between devices? 

2 What range can these mobile devices reach, i.e. how far can they possibly extend a 

system and can these range estimates be used to then position devices? 

 

Figure 5-1: Sports Hall 

All phones used during the implementation were the same make and model allowing for any issues with 

varied RSS reads with different antenna types to be ruled out. Some of these issues have been described 

in the following literature (Lisheng et al., 2011). Lisheng et al., go so far as to describe the distortion 
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being as much as 11.2 dBm out with different antenna types over a 25-metre read range. During the 

experiments all phones were place at a distance of 80cm above floor level, to mimic as close to a real-

world example of a user holding them in their hands as they moved. The phones were placed on identical 

platforms during the experiments to negate the impact of Hand-Grip body-loss effect which can also 

impact ranging measurements (Rosa et al., 2011). (Kaemarungsi and Krishnamurthy, 2004) show that 

device orientation can also introduce errors when calculating signal range estimates, so all phones had 

the same orientation when used in these tests. 

Further experiments were then carried out to measure the accuracy of both the RSS values received and 

the resulting range estimations determined by the algorithm. Table 5-1 illustrates the results of tests 

used to capture the RSS values between two phones at 5-metre increments, diagonally across the hall. 

It highlights the RSS value beginning at -57.26 dBm for the 5-metre range. A sample set of 500 readings 

were recorded per 5-metre section, an average was then taken from this set. The standard deviation was 

also documented to illustrate any fluctuations in the received values, the deviation was typically low 

during the Wi-Fi tests. 

Distance 5m 10m 15m 20m 25m 30m 35m 40m 

Average RSS 
 

-57.26 
(dBm) 

 

-61.57 
(dBm) 

 

-69.53 
(dBm) 

 

-67.57 
(dBm) 

 

-68.38 
(dBm) 

 

-70.75 
(dBm) 

 

-71.85 
(dBm) 

 

-73.68 
(dBm) 

Std. Dev 
 

0.50m 

 

0.40m 

 

0.85m 

 

0.48m 

 

0.69m 

 

0.98m 

 

0.68m 

 

0.79m 

Estimated 
Range  

 

4.51m 

 

8.27m 

 

25.31m 

 

19.22m 

 

21.54m 

 

30.06m 

 

35.10m 

 

35.38m 

Table 5-1: CAPTURE Wi-Fi Range Estimates 
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The average was then used as input for the path loss algorithm described in Section 2.11.4 to derive a 

range estimate based on the RSS values received. As mentioned before, RSS values do not provide a 

linear representation of measurement, and therefore some of the increments do not initially seem like 

they could assist in finding a distance at a given measurement. One notable issue with the recorded RSS 

values was the reading taken at the 15-metre distance.  

Figure 5-2: CAPTURE Wi-Fi Ranging Errors 

Figure 5-2 illustrates the numbers shown in Table 5-1 and highlights this spike in readings. This is most 

likely due to signal reflection, or other multipath effects. It jumped dramatically at this distance, giving 

a RSS value higher than the 20 and 25-metre tests. This test at 15-metres was carried out at different 

areas of the hall, to rule out signal interference. Irrespective of where in the hall the readings were taken, 

the RSS value was always way out of proportion, especially so when considered against other readings 

at distances above and below this 15-metre range. These initial tests show the capacity to provide a 

coarse position estimate, to be able to determine the distance to a mobile device to within an 

approximate location. 
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The experiments carried out on CAPTURE when in Bluetooth mode, also used Testbed 1 to examine 

the capacity of Bluetooth to accurately range between mobile devices. The results of the Bluetooth tests 

can be seen in Table 5-2. Not all the readings in Table 5-1 or Table 5-2 offer what would be considered 

acceptable accuracy levels. Acceptable accuracy levels in the indoor environment can vary depending 

on their application but typically fall within a 5 – 10-metre error range. The average range errors with 

Wi-Fi was 2.66m, with Bluetooth not faring any better, offering an average of 4.91 metres, indeed some 

of the individual range estimates were nearly 10-metres out. At the time that these experiments were 

initially carried out however, they did offer at least an indication that these technologies could be used 

to estimate range. Indoor positioning research at the time was primarily focused on methods to further 

hone the accuracy of these technologies to determine range to more useable levels.  

 

Distance 5m 10m 15m 20m 25m 30m 35m 40m 

Average RSS 

 

- 75.39 

(dBm) 

 

-80.05 

(dBm) 

 

-82.56 

(dBm) 

 

-81.62 

(dBm) 

 

-88.72 

(dBm) 

 

-88.84 

(dBm) 

 

-88.49 

(dBm) 

 

-92.29 

(dBm) 

Std. Dev 

 

4.12m 

 

3.63m 

 

3.96m 

 

3.92m 

 

4.11m 

 

3.38m 

 

4.28m 

 

2.95m 

Estimated 

Range 

 

3.73m 

 

7.62m 

 

11.20m 

 

9.69m 

 

28.82m 

 

29.38m 

 

27.87m 

 

49.95m 

Table 5-2: CAPTURE Bluetooth Range Estimates 

 

 

 

 



 

98 

 

One notable aspect of the Bluetooth range tests is the large deviation in the recorded RSS readings, 

which was found to be a lot lower when using Wi-Fi.  

 

Figure 5-3: CAPTURE Bluetooth Ranging Errors 

A large sample of recordings were used in the experiments with CAPTURE when in Wi-Fi and 

Bluetooth mode. Although the accuracy levels of these could not be considered sufficient to implement 

a positioning solution, it must be reemphasised that CAPTURE never espoused to offer the positioning 

accuracies that could compete with an IPS.  

The cooperative methodology of using small battery powered mobile devices to position could never 

match the precision of custom designed, mains powered and costly infrastructure of an IPS. The results 

of these experiments do however, address the research questions set out in RQ1 and RQ2 and allow the 

project to continue, by looking at some newer technologies and better techniques to position mobile 

devices. 
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Most mobile devices come coupled with both Wi-Fi and Bluetooth sensors on board. As mentioned in 

the literature survey in Section 2.7, fusing the results of different sensors can have an impact on 

positioning accuracy. The range estimates evaluated using CAPTURE in Wi-Fi and Bluetooth mode 

were fused to evaluate any perceived benefit when estimating the range between two mobile devices. 

Table 5-3 illustrates the benefits of this sensor fusion when applied in the CAPTURE algorithm.  

 

Range Wi-Fi Error Bluetooth Error Fusion 

5-metres -0.49m -1.27m -0.88m 

10-metres 1.73m -2.38m -0.33m 

15-metres 10.03m -3.8m 3.12m 

20-metres -0.78m -10.31m -5.55m 

25-metres -3.46m 3.82m 0.18m 

30-metres 0.06m -0.62m -0.28m 

35-metres 0.1m -7.13m -3.15m 

40-metres -4.62m 9.95m 2.67m 

Overall Avg 2.57m 4.91m 2.02m 

 

Table 5-3: CAPTURE Sensor Fusion Results 

5.2.2 Experimental Testbed 2 – Main Campus  

The first test environment offered a clean, somewhat clinical test area to conduct experiments without 

any intrusions during experiments whilst also offering LoS views between devices. These initial tests 

helped establish some fundamentals and baselines for all subsequent tests, providing a preliminary 

testing environment that helped iron out some early teething issues. It also helped highlight the type of 

tests that were required to adequately evaluate a positioning system.  

The hallways in the main campus were used as the second testbed environment. These provided access 

to a more real-world setting with narrow corridors and passageways that more accurately reflected the 

type of environment that CAPTURE would be exposed to during any large-scale implementation. The 

Sports hall also had a limited range, in that the furthest that two devices could be placed apart was 40-

metres, when using the diagonal of the hall. The hallways in Testbed 2 stretched for up 110-metres, 

providing the capacity to evaluate CAPTURE at much greater distances. One notable question that arose 

out of the original hypothesis, was just how far an IPS could be extended when using an implementation 

of CAPTURE.  
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This was outlined in Research Question 2: 

 What range can these mobile devices reach, i.e. how far can they possibly extend a system, and 

can these range estimates be used to then position devices? 

To address this question, a set of experiments were established to measure the precise range of 

CAPTURE, rather than the theoretical bounds of each technology used therein. The first experiment 

used Bluetooth which was carried out on two Sony Xperia Z1 C6943 Smart Phones. The largest distance 

that a reading was recorded between the phones was 173 metres, giving an RSS reading of -93.18 dBm 

at that position. After passing that through the path loss algorithm described in (4), a range estimate of 

196.56 metres was achieved. Although this gave an error of 23.56 metres, it still provided an insight 

into just how far CAPTURE could extend an IPS. Furthermore, this accuracy level needs to be put into 

context.  

Although 23.56 metres is a very large error, considering an IPS without CAPTURE could not extend 

into that area, then that mobile device would not be locatable at all. Depending on its application, that 

knowledge of understanding that a device is somewhere between 173 metres and 196 metres, as opposed 

to not knowing where that device is could be critical.  

A range experiment was also carried out with this implementation to see how far it could potentially 

extend an IPS. The furthest that CAPTURE when in UWB mode could extend was 103.4 metres, 

although this was limited in relation to the other CAPTURE modes, its accuracy was to within 0.004 

metres. The absolute range of Wi-Fi mode was also tested, and two mobile devices could ‘sense’ each 

other up to 217 metres apart. The estimated range at this point was 189.62 metres, an error bound of 

27.38 metres.  

Again, as with the Bluetooth readings the errors are very large, making it problematic to use in any 

meaningful way in a traditional positioning system. However, there is still the argument that if 

CAPTURE can ‘sense’ these devices this far beyond the IPS, surely knowing it is within the vicinity of 

these error margins as opposed to not knowing where in the world the device is, could be critical for 
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certain utilities. Consider an IPS that cannot extend beyond its given range and a user is located beyond 

that. The IPS cannot ‘sense’ the user and therefore does not know where they are. With CAPTUREs 

ability to extend this IPS into an area some 200 meters beyond its given range, describing the users as 

being within the vicinity of 27.38 metres of an area could still be useful information. 

CAPTURE was initially tested in the main hallways, to evaluate it at larger ranges, where the sports 

hall was limited to 40-metres. The college canteen Testbed 3 provided an optimal environment for the 

evaluation of the positioning accuracy of the centroid positioning algorithm with CAPTURE. The 

testing environment was initially sampled to obtain a metre read for the path loss algorithm described 

in (5). The meter read is calibrated from the environment and used as input ‘A’ for the path loss 

algorithm. Over 500 samples were gathered to properly evaluate what a 1 metre RSS reading should be 

in this setting, sampling at different locations throughout the testing area. This provides a way to train 

the algorithm for a 1 metre read in this environment. All the recorded values for this sample are 

presented in Appendix 2.2.  

Figure 5-4: CAPTURE Wi-Fi metre reads 
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A graph illustrating these calibrating metre readings can be seen in Figure 5-4 for Wi-Fi and Figure 5-5 

for Bluetooth. One notable aspect of this initial sample and one that continued throughout all the 

experiments was the smoothness of the results in the Wi-Fi tests relative to the Bluetooth. This can be 

seen when comparing the chart depicted in Figure 5-4 and Figure 5-5. The Wi-Fi RSS reads range from 

-44 dBm through to -46 dBm for all of the metre reads, a deviation of 2. Whereas the Bluetooth metre 

reads the highest read recorded was at -59 dBm and the smallest read was -54 dBm giving an overall 

deviation of 5. This is characteristic of Bluetooth signals and is noted in the following literature (Subhan 

et al., 2011; Wang et al., 2013; Faragher and Harle, 2014). All of the recorded values for this sample 

are presented in Appendix 2.3. 

Figure 5-5: CAPTURE Bluetooth metre reads 

Any outliers were removed with a simple filter to take out noise, smoothing the results. This filter is 

described in Appendix 1. After the calibration reads were calculated, a series of tests were carried out 

to evaluate the accuracy of the ranging aspect of the CAPTURE system. Two mobile devices were 

placed at specified distance intervals within the hallway. Readings were then recorded at these points 

and range estimates between the two devices were evaluated.  

 

 



 

103 

 

CAPTURE Wi-Fi  Long-Range Estimates 

Distance 5 m 10 m 15 m 20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m 100 m 

Avg RSS -55.76 
(dBm) 

-63.16 
(dBm) 

-64.74 
(dBm) 

-64.93 
(dBm) 

-65.60 
(dBm) 

-67.66 
(dBm) 

-71.73 
(dBm) 

-70.68 
(dBm) 

-68.78 
(dBm) 

-69.14 
(dBm) 

-67.29 
(dBm) 

-69.68 
(dBm) 

Std. Dev 1.86m 0.97m 2.06m 0.54m 0.49m 0.94m 1.09m 1.39m 1.1m 1.25m 1.28m 1.00m 

Estimate 4.84 14.04m 17.62m 18.09m 19.97m 26.84m 48.18m 41.43m 31.50m 33.20m 25.41m 35.86m 

Table 5-4 : CAPTURE Wi-Fi Long-range estimates 

 

As with all other implementations, any outliers were removed with a simple filter, this allowed for the 

accurate depiction of this reading to be used for the ranging algorithm described in (5). Table 5-4 and 

Table 5-5 detail the readings and the corresponding range estimates achieved during these tests.  

CAPTURE Bluetooth Long-Range Estimates 

Distance 5 m 10 m 15 m 20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m 100 m 

Avg RSS -71.54 
(dBm) 

-73.86 
(dBm) 

-75.56 
(dBm) 

-74.42 
(dBm) 

-79.10 
(dBm) 

-82.63 
(dBm) 

-83.64 
(dBm) 

-82.70 
(dBm) 

-82.04 
(dBm) 

-81.70 
(dBm) 

-82.15 
(dBm) 

-87.91 
(dBm) 

Std. Dev 3.73m 3.71m 3.06m 3.12m 6.12m 3.81m 3.75m 4.60m 4.69m 2.87m 3.29m 3.02m 

Estimate 8.7m 12.19m 15.56m 13.22m 25.92m 43.08m 49.83m 43.49m 39.60m 37.70m 40.19m 92.15m 

Table 5-5: CAPTURE Bluetooth Long-range estimates 

 

The initial Wi-Fi range estimations recorded in Table 5-4 are reasonable, showing 0.16 metres error in 

the 5-metre range. The next 3 readings from 10, through 15 to 20-metres have errors from 4.04 metres 

at the 10-metre read, to approximately 2 metres for 15 and 20-metres. The next 4 readings for 30, 40, 

50 and 60-metres have errors from 0.82 metres for the 50-metre range, through to as large as 18.57 

metres out on range estimate for 60-metres. After this point, the subsequent 4 readings get progressively 

worse as illustrated in Figure 5-6. These final readings from 60 to 70-metres are basically unusable in 
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any standard positioning solution. The Bluetooth readings follow a similar pattern to the Wi-Fi readings, 

in that they begin well for the smaller ranges but then become mostly unusable after about 70-metres, 

although the 100-metre read is only 7.85-metres out, which would place it back into bounds of error 

that would be quite usable again.  

Figure 5-6: CAPTURE Wi-Fi Long Range Errors 

Figure 5-6 and Figure 5-7 graphically depict these large variances in range estimates at distances above 

40 to 50-metres, illustrating where these technologies prove challenging in any IPS implementation. 

Figure 5-7: CAPTURE Bluetooth Long Range Errors 
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Range Wi-Fi Error Bluetooth Error Fusion 

5-metres -0.16m 3.7m 1.77m 

10-metres -0.96m 2.19m 0.62m 

15-metres 2.62m 0.56m 1.59m 

20-metres -1.91m -6.78m -4.35m 

30-metres -11.03m -4.08m -7.55m 

40-metres -13.16m 3.08m -8.12m 

50-metres -1.82m -0.17m -1.0m 

60-metres -18.57m -16.51m -17.54m 

70-metres -38.5m -30.4m -34.45m 

80-metres -46.8m -42.3m -44.55m 

90-metres -64.59m -49.81m -57.2m 

100-metres -64.14m -7.85m -35.00m 

Overall Avg -22.02m -13.95m 17.81m 

Table 5-6: CAPTURE Fusion results 

Table 5-6 illustrates the results achieved when fusing the readings from both the Bluetooth and Wi-Fi 

sensors range estimates. Once the experiments pass the 50-metre threshold range estimate accuracies 

drop dramatically. The fusion results do however smooth the errors of both technologies when used in 

combination.  

5.2.3 Experimental Testbed 3 – Canteen 

The hallways in the main LyIT Campus building offered a great location to carry out experiments to 

measure range, with its many long halls providing test areas that could extend over 100-metres in 

distance. After completing the range experiments in Testbeds 1 and 2, CAPTURE needed to be tested 

to evaluate its capacity to obtain a position fix. The main canteen in LyIT was chosen for these 

experiments.  

The canteen offers a large test area, with a large congregation of people at key times throughout the 

day, thereby offering both LoS and NLoS conditions for tests. This provided the ability to evaluate the 

performance of CAPTURE when using a centroid positioning algorithm.  
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Figure 5-8: Testbed 3 Experiment Plan Overview 

 

CAPTURE used Bluetooth and Wi-Fi to estimate the range between mobile devices. Some issues 

around the accuracies of these range estimates were highlighted in earlier experiments when the distance 

between the mobile devices exceeded 40 to 50-metres. The canteen provided a testbed to evaluate the 

positioning capabilities of the centroid positioning algorithm used in it by not encroaching into these 

problematic ranges.  

Figure 5-8 shows one of the experiments where CAPTURE locates a mobile device to within 2.89 

metres of its actual position in the canteen, during LoS conditions. Anchor 0, Anchor 1, Anchor 2 have 

a prior knowledge of their relative location, (Anchor 0 - Anchor 1 = 20-metres, Anchor 0 - Anchor 2 = 

20-metres). The Bluetooth RSS readings from the Lost Phone to Anchor 0 is -75.51 dBm, from the Lost 

Phone to Anchor 1 is -77.06 dBm and from the Lost Phone to Anchor 2 is -17.52 dBm. These RSS 
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readings translate to a ranging estimate of 15.47 metres, 15.42 metres and 19.37 metres respectively 

when evaluated by the ranging algorithm. The actual distance between Anchor 0 and the lost phone is 

14.17 metres, between Anchor 1 and the lost phone is 17.9 metres and Anchor 2 and the Lost Phone is 

14.19. When incorporating the centroid algorithm with these figures, this gives an approximate error 

rate of 2.89 metres.  

The canteen can seat up to 350 students at any one time. The experiments carried out in the canteen 

were carried out at specific times, this allowed the experiments to measure the impact of both LoS and 

NLoS situations. The canteen closes at 10pm, therefore any experiments recorded after this time would 

not encounter human traffic within the canteen area at those times. Different configurations to those 

illustrated in Figure 5-9 were used in the canteen setting and the results of all the experiments were 

recorded for both LoS and NLoS situations. Within the configuration illustrated in Figure 5-9, the 

resulting error rate was recorded at 2.96 metres with people moving around in the canteen. A further 

four configurations of reference devices similar to those in Figure 5-9 were used to evaluate CAPTURE 

in Testbed 3, each of these tests were recorded during both LoS and NLoS situations, these can be seen 

in Appendix 3.  

 

Figure 5-9: Schematic 1 Testbed 3 
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The results of these experiments are detailed in Table 5-7 and show a combined average error range of 

2.36 metres for CAPTURE using Wi-Fi in LoS situations and 2.83 metres in NLoS situations. The 

corresponding results for Bluetooth were 2.76 metres in LoS and 3.1 in NLoS. The LoS reading were 

more accurate due to the lack of people in the environment while the tests were being run. This would 

be in line with findings by (Rowe et al., 2007; Yang et al., 2009) where they highlighted issues with 

radio signal propagation in environments where people were present. This is due to the fact that our 

bodies are 60-80% water and radio signals operating in the 2.4 GHz channel resonate at that frequency 

affecting the signal attenuation.  

 

Experiment Wi-Fi LoS Wi-Fi NLoS Bluetooth  LoS Bluetooth  NLoS 

Experiment 1 2.17m 2.74m 2.89m 3.17m 

Experiment 2 2.59m 2.87m 2.67m 3.05m 

Experiment 3 1.84m 2.79m 2.47m 2.82m 

Experiment 4 2.75m 3.11m 3.11m 3.53m 

Experiment 5 2.44m 2.65m 2.67m 2.93m 

Average error 2.36m 2.83m 2.76m 3.1m 

Table 5-7: CAPTURE Centroid Algorithm Errors 

5.2.4 Experimental Testbed 4 – Library  

The Library in LyIT was the penultimate testing area for CAPTURE. An implementation of CAPTURE, 

incorporating a trilateration algorithm to position was used during these tests. As with Testbed 3, 

Testbed 4 offered an experimental setting where tests could be carried out while people moved 

throughout the testing environment. The experiments were conducted during Library opening hours as 

well as when the Library was closed. This offered the capacity to measure the effect on accuracy of 

people moving throughout the test area while a position estimate was being evaluated. Figure 5-10 

shows the Library area used for these experiments. 
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Figure 5-10: Library Plans 

To evaluate the performance of CAPTURE, the estimated position versus the true position of the Lost 

Device is initially plotted. The positioning error metric is defined as the Euclidian distance between 

these true and estimated positions. 

 (6) 

 

where XEST and YEST are the coordinates of the estimated position of the mobile device and 

XTRUE and YTRUE are the known coordinates of the actual positions of the mobile device. 

Figure 5-11 shows CAPTURE test results being recorded in the Library testbed. The left-hand side of 

the screen illustrates the position of the reference devices (Anchor 0, Anchor 1 and Anchor 2) in blue, 

along with the true position of the Lost Device in green, together with as the estimated position in red2. 

The x and y coordinate values of the anchors are hardcoded into their respective textboxes at the bottom 

of the screen. The range between these anchors and the Lost Device is shown beneath this in metres. 

Live data from each anchor is streamed in the top textbox. While the estimated coordinate information 

of the Lost Device along with the difference between the estimate and the actual position is recorded in 

the textbox in the middle of the screenshot. 

                                                      
2  https://captureips.com/videos/distance-plotter.mp4 

https://captureips.com/videos/distance-plotter.mp4
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Figure 5-11: CAPTURE Test Results 

Figure 5-12 illustrates these experiments in the Library setting, phones were placed at desk height with 

LoS views when the Library was closed. Student traffic distorted the views to and from the phones 

during Library opening times. The results of this are illustrated in Table 5-8. 

  

Figure 5-12: Library Bluetooth test Figure 5-13: Pole Star Integration 
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The Cartesian coordinate values that were obtained from the trilateration algorithm were then used as 

input for the JavaScript that allowed CAPTURE to display the position onto the screen of the mobile 

device. This is described through its implementation in Section 4.4.4 and is illustrated in Figure 5-13. 

The results of the trilateration for the five separate experiments carried out in the Library are detailed 

in Table 5-8. The NLoS tests relate to a time when the Library was open and was frequently used by 

students. Both Wi-Fi and Bluetooth performed reasonably well in these tests, the largest error recorded 

was 3.89 metres and the closest estimate was within 1.11 metres. The NLoS and LoS errors again, as 

with previous test align with results found in (Rowe et al., 2007; Yang et al., 2009). 

 

Experiment Wi-Fi LoS Wi-Fi NLoS Bluetooth  LoS Bluetooth  NLoS 

Experiment 1 3.11m 2.82m 2.12m 3.86m 

Experiment 2 1.39m 2.18m 2.58m 3.47m 

Experiment 3 2.16m 2.22m 3.87m 2.96m 

Experiment 4 2.14m 2.35m 1.25m 3.89m 

Experiment 5 2.57m 1.11m 2.34m 3.58m 

Average error 2.27m 2.14m 2.43m 3.55m 

Table 5-8: CAPTURE Library Results 

Figure 5-14 provides an outline of the schematic for one of the experiments carried out in the Library. 

Three mobile devices (Anchors 0, 1 and 2) acted as fixed reference devices, they then located the Lost 

Device illustrated with the red dot in the diagram. The actual results recorded for this experiment can 

be seen in Section 1.5 of Appendix 2. 
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Figure 5-14: Schematic 5 Testbed 4 

Figure 5-15 provides a further graphical illustration of this test as it was carried out in the setting for 

Testbed 4. The three reference devices can be seen with the red triangle line. The Lost Device is at the 

edge of the middle table, highlighted with the green circle. 

Figure 5-15: Library Experiment 5 
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5.3 Preliminary Tests 

Before carrying out the experiments, some preliminary tests were recorded in the college in Testbed 3 

and 4. These testbeds best emulated the type of setting that would be encountered in a real-world 

environment and therefore allowed teething issues to be teased out more effectively here. The UWB 

tags were attached to the top of queue stanchions which replicated mobile reference devices, as can be 

seen in Figure 5-16 and are powered by a PNY Curve 5200 Portable Power Bank. The Power Bank uses 

a micro USB cable to connect to the tag and has a capacity of 5200 mAh. It is slender in size being 

152mm high, 84mm wide and 34mm deep. This allows it to fit comfortably around the stanchion. The 

completed solution proposes to locate the power banks inside the hollow core of the stanchion. Figure 

5-16 illustrates the prototype system in action as its being tested in the canteen area of the LyIT Campus. 

 

  

Figure 5-16: Stanchion 

mounted UWB Tag 

Figure 5-17: Testbed 3 Configuration - CAPTURE preliminary 

experiments 

Figure 5-17 shows one of the tests being recorded in the canteen. Three anchor tags are placed on top 

of stanchions at pre-recorded positions. These anchor tags then collaborate to locate the fourth 

stanchion. This replicates as closely as possible the situations in a cooperative positioning methodology.  

Some range estimates were first recorded. These highlighted some very accurate measurements as can 

be seen in Table 5-9. Even at distances up to 90-metres the errors were as low as 0.12 of a metre. It is 
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not perceived at this stage that any of the stanchions would ever be this far away from other stanchions. 

The largest error recorded was at 25-metres and was only out by 0.44 metres. 

CAPTURE UWB Range estimates 

Distance 5 m 10 m 15 m 20 m 25 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m 

Std. Dev 0.01 0.03 0.03 0.03 0.02 0.03 0.03 0.01 0.09 0.03 0.05 0.03 

Estimate 5.10 10.08 15.07 19.90 25.44 30.52 40.14 50.21 60.22 70.15 80.19 90.12 

Table 5-9: CAPTURE UWB Range Estimates 

Earlier experiments with Wi-Fi and Bluetooth showed very large ranging errors as can be seen in Figure 

5-2, Figure 5-3, Figure 5-6 and Figure 5-7. In Figure 5-18 the dramatic impact UWB has compared to 

these results can be seen. This is particularly evident where the blue line of the True Range values 

cannot be seen because the orange line of the estimates is so accurate it completely covers it. All of the 

recorded readings taken during these tests are presented in Section 2.1 of Appendix 2. 

Figure 5-18: CAPTURE Range Errors 

Three stanchions acted as anchor stanchions.  Once the lost stanchion can be seen by all three of these 

anchors, they can position the lost stanchion. The lost stanchion is attached to a laptop during 
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experiments. CAPTURE is running on the laptop and takes in the range estimates before putting them 

through the CAPTURE positioning algorithm.  

CAPTURE then returns the position estimate of the lost stanchion. The completed solution would have 

multiple stanchions locate other stanchions. Once all of the stanchions within an area are located, the 

Bluetooth and Wi-Fi chips on stanchions are then used to locate mobile devices as they move through 

the stanchions. It must be remembered that the configuration of a queue can regularly change and that 

stanchions themselves are mobile objects within these configurations.  

Table 5-10 details the results of the preliminary experiments carried out in the Library. These results 

were recorded when the Library was closed. There were no obstacles or people between each of the 

UWB tags during the tests. The true position of the tag that CAPTURE was attempting to locate is at 

(5.06, 0.46). The read column signifies an average of twenty recorded position estimates. The 

application processes approximately eight reads per second. These reads therefore relate to 2.5 seconds 

of reads. Twenty position estimates were determined by CAPTURE. These were then averaged, and the 

results can be seen in the table. This would provide a refresh rate of approximately 2.5 seconds, updating 

any newly estimated position at that rate. A full record of all of these results can be seen in Section 1.6 

and Section 1.7 of Appendix 2. 

  

Table 5-10: CAPTURE UWB LoS Position 

Estimates Library  

Table 5-11: CAPTURE UWB NLoS Position 

Estimates Library  
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The “Error Metres” column details the errors that were recorded between the true position of the tag 

and the estimated position. As can be seen, these were very low. The highest reading being 0.14 metres 

out, giving an average error bounds of 0.12 metres with a sample of over 200 position estimates. Table 

5-11 lists the results of the same experiment in the Library with the tags positioned at the same locations, 

but this time the experiment was carried out while the Library was open. The results of the experiment 

were still very accurate giving an average error bounds of 0.13 metres. A full record of all of these 

results can be seen in Section 1.7 of Appendix 2. 

The tags were all placed within 25-metres of each other during these experiments. The second testbed 

that was used for these preliminary tests was the canteen area in LyIT. This testbed is described in 

Section 5.2.3 and provides a large test area to evaluate the capacity for CAPTURE to locate tags on 

queue stanchions, via tags on other queue stanchions. The canteen also closed in the evening this offered 

the opportunity to run the experiment while people were in the area of the tests, whilst also being able 

to measure the effect of people within the test area. 

Read 
True Position Estimated Position Error 

Metres X Y X Y 

1 5.43 4.34 5.21 4.30 0.22 

2 5.43 4.34 5.20 4.32 0.23 

3 5.43 4.34 5.19 4.30 0.24 

4 5.43 4.34 5.20 4.32 0.22 

5 5.43 4.34 5.25 4.33 0.18 

6 5.43 4.34 5.20 4.43 0.26 

7 5.43 4.34 5.28 4.31 0.15 

8 5.43 4.34 5.19 4.29 0.25 

9 5.43 4.34 5.28 4.32 0.15 

10 5.43 4.34 5.23 4.42 0.24 

Avg 5.43 4.34 5.22 4.33 0.22 
 

Table 5-12: CAPTURE UWB LoS Position Estimates Canteen 

Being able to measure the difference between reads while people were in between tags, allowed the 

experiment to evaluate the impact that people in a queue situation would have on position estimates. 

Considering all the tags e.g. UWB, Wi-Fi or Bluetooth would eventually be placed on top of the 

stanchions and transmitting between each other on a horizontal plane, therefore, any people in the 
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vicinity would obscure any views to and from tags. The configuration of the tags for the experiments in 

the canteen maintained the distance threshold of 25-metres, like the earlier tests. The error bounds 

recorded during these experiments were slightly larger than those recorded in the Library Testbed. The 

Steel Mesh partitions in the canteen impacted on these error bounds. Two of the tags had to transmit 

through this Steel Mesh partition to be able to determine the range between themselves and the lost tag. 

The impact of this Steel Mesh on the ranging accuracy of the DecaWave tags can be seen in Table 4-3. 

Nonetheless, the results achieved were still impressive giving an average error of 0.22 metres as can be 

seen in Table 5-12.  

Table 5-13 the results carried out in the canteen Testbed for the same experiment that was carried out 

in Table 5-12, but this time the canteen was open, so people were moving freely around while the 

experiments were being recorded. Strangely, the results achieved with this experiment where people 

are obstacles between the tags, are better that the same experiment when there was no interference from 

people. (Jimenez and Seco, 2016) found similar results in crowded environments, this is due to the 

operating frequency of UWB (3-5GHz) thereby overcoming the effects of signal attenuation due to 

resonance (Rowe et al., 2007; Yang et al., 2009).  

 

Table 5-13: CAPTURE UWB NLoS Position Estimates Canteen 
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The 3-5 GHz also moves the signal out of the noisy 2.4 GHz channel lessening the impact of other 

indoor signals such as Wi-Fi, Bluetooth and Microwave ovens that operate in that band. The DecaWave 

tags were also configured to be used in crowded indoor environments and were calibrated to negate for 

human interference.  The only explanation for this is the effect that the Steel Mesh was having on results. 

It is the only variable in each of the different Testbeds. Irrespective, the results are still very impressive 

with four experiments giving an average error bounds of 0.16 metres. This provides conclusive evidence 

that UWB can be used with enough precision to position these stanchions and allow them to act as 

reference devices to then cooperatively locate people as they move between these queues.  

To improve on this accuracy, the results achieved were passed through a Kalman Filter. Considering 

the results were already very accurate improvements on those levels were going to be difficult. The 

source code for the filter can be seen in Section 1.2 of Appendix 1. The implementation focused on 

using the Kalman Filter to screen measured/estimated ‘x’ and ‘y’ coordinate values to estimate the 

position of an object on a Cartesian plane. The filter was applied to evaluate ‘x’ and ‘y’ coordinates 

using different measurement models. It was first applied on each coordinate separately and then applied 

on both coordinates simultaneously. The process noise covariance matrix was modified several times 

during testing to evaluate which model resembled the real-world process, this model was then used for 

the final filter application. A standalone application was developed for initial testing to read the 

measured coordinates from a database, filter the coordinates and write the filtered values back out to a 

database. An open source Java API was used to implement the filter (Apache, 2018). The data was 

imported directly into an excel spreadsheet from the database and visualised using line charts as 

illustrated in Figure 5-19 and Figure 5-20.  

The program was designed in a way that allowed the following variable inputs (process noise, 

measurement noise, error covariance and discrete time) to be altered using a single variable value for 

each input. Various measurement and process models were evaluated to determine an optimal 

configuration for the specific real-world measurement and process models. The error covariance matrix 

and the number of discrete time steps were altered to model this configuration. The coordinates are 

updated at a rate of 4 per second, therefore 10 coordinate reads are equivalent to 2.5 seconds and 100 
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coordinate reads are equivalent to 25 seconds. The preliminary tests produced clear results in terms of 

which variable changes were improving the filter.  

 

ID Noise 
Process 
Noise 

Error 
Rate 

Discrete 
Time 

Estimated 
Distance Error 

Filtered 
Distance Error 

Improved 
By metres 

Estimated 
Distance Error 

Filtered 
Distance Error 

Improved 
By metres 

Preliminary Tests 

0 1 1 1.00m 1.00m 0.096m 0.090m 0.006m 0.3223m 0.323m -0.001m 

1 1 1 1.00m 0.10m 0.096m 0.069m 0.027m 0.3223m 0.326m -0.003m 

2 1 1 1.00m 0.01m 0.096m 0.066m 0.030m 0.3223m 0.307m 0.016m 

3 1 1 1.00m 0.00m 0.096m 0.066m 0.030m 0.3223m 0.223m 0.099m 

4 1 1 1.00m 0.00m 0.096m 0.066m 0.030m 0.3223m 0.220m 0.102m 

5 1 1 0.10m 1.00m 0.096m 0.088m 0.008m 0.3223m 0.323m 0.000m 

6 1 1 0.01m 1.00m 0.096m 0.088m 0.008m 0.3223m 0.323m 0.000m 

7 1 1 0.00m 1.00m 0.096m 0.088m 0.008m 0.3223m 0.323m 0.000m 

8 1 1 0.00m 1.00m 0.096m 0.088m 0.008m 0.3223m 0.323m 0.000m 

9 1 0.1 1.00m 1.00m 0.096m 0.090m 0.006m 0.3223m 0.323m -0.001m 

10 1 0.01 1.00m 1.00m 0.096m 0.090m 0.006m 0.3223m 0.323m -0.001m 

11 1 10 1.00m 1.00m 0.096m 0.090m 0.006m 0.3223m 0.323m -0.001m 

12 1 100 1.00m 1.00m 0.096m 0.090m 0.006m 0.3223m 0.323m -0.001m 

13 0.1 1 1.00m 1.00m 0.096m 0.096m 0.000m 0.3223m 0.325m -0.003m 

14 0.01 1 1.00m 1.00m 0.096m 0.097m -0.001m 0.3223m 0.326m -0.004m 

15 10 1 1.00m 1.00m 0.096m 0.074m 0.022m 0.3223m 0.322m 0.001m 

16 100 1 1.00m 1.00m 0.096m 0.059m 0.037m 0.3223m 0.316m 0.007m 

           
Custom Tests 

17 100 1 0.00m 0.00m 0.096m 0.059m 0.037m 0.3223m 0.059m 0.264m 

18 100 100 0.10m 0.00m 0.096m 0.059m 0.037m 0.3223m 0.059m 0.264m 

19 100 1 0.50m 0.00m 0.096m 0.059m 0.037m 0.3223m 0.058m 0.264m 

20 1000 1 0.00m 0.00m 0.096m 0.059m 0.037m 0.3223m 0.059m 0.264m 

Table 5-14: Parameter configuration test results 

 

The preliminary tests indicated that the process noise and measurement noise are inversely related as 

the input for the process noise increases and the input for the measurement noise increases, the numbers 

remain constant. However, if either one increases, there is a dramatic impact on results. 
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Figure 5-19: 'x' coordinate filtered results 

These results are highlighted in Figure 5-19 and Figure 5-20. The blue line represents the actual 

coordinates, the grey line represents the estimated coordinates and the orange line represents the filtered 

coordinates. 

 

Figure 5-20: 'y' coordinate filtered results 

The following outcomes were observed from these tests: 

1. The process noise and measurement noise are inversely related; therefore, the process noise can 

be left at a constant of 1. 

2. The error covariance has negligible impact when observing only two Cartesian coordinates; 

therefore, it can be left at a constant of 0.5. 

3. The discrete time significantly improves the filter as it is reduced by a factor of 10. 
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5.4 Battery Consumption 

Convincing users of other devices to cooperatively assist in locating Lost Devices, would be impossible, 

if as part of that cooperation, the assisting devices had to sacrifice copious amounts of battery power to 

do so. CAPTURE relies on the ‘cooperative goodwill’ of other users, to assist in the location of Lost 

Devices. In any cooperative ethos such as this, it is imperative that no burden be placed on any users’ 

involvement in such an arrangement. Constantly pinging devices to ascertain ranging information 

between each other can have a dramatic effect on battery life, irrespective of the technology adopted to 

determine this. Accepting that a device would lose such a vital commodity, in a world where battery 

consumption is such an essential commodity, would seem an unreasonable demand from any 

application or service. The technological advancements required to drive modern smart phones, with 

the myriad of sensors and brightly lit screens that come bundled with them, further exacerbate this issue. 

It was for this reason that sample test implementations of both the Wi-Fi Direct and Bluetooth LE 

versions of CAPTURE, were conducted to measure their respective impact on battery consumption.  

The tests were carried out on Sony Xperia Z1 C6943 Smart Phones running Android v5.1 (Lollipop) 

with a total battery lifetime of 2980 mA.h (milliampere hours). At the beginning of each test, the phones 

were placed into Airplane mode. Wi-Fi was then switched on for the Wi-Fi Direct test and Bluetooth 

switched on for the BLE test. This provided a more accurate measurement of each technology in 

isolation. By switching off all the other sensors on each phone during each test, the respective sensors 

that were to be measured, were isolated with regards to battery consumption.  

A simple program was created to capture the battery readings at the beginning, end and throughout the 

test. The application used the BatteryManager class, to access the battery levels at pre-recorded 

intervals, throughout the testing period. An SQLite database was used to record each of the battery level 

readings throughout the test. The local database was used, because network connectivity was not 

available for each of the tests due to Wi-Fi being switched off. A sample of the Wi-Fi Direct version of 

CAPTURE was recorded running over a period of 10 hours. An estimate of 1.5 seconds per range 

estimate of each device, was then evaluated from this sample. This displayed a total battery consumption 
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of 0.004967 mA.h, per range estimate, or 0.000167% of the overall lifetime of the battery, as can be 

seen in Table 5-15. 

 

Wi-Fi Battery Consumption 

Total Battery 2980 mA.h 

Battery Start Level  2488.3 mA.h 

Battery End Level  2369.1 mA.h 

Total Consumption  119.2 mA.h 

Per range estimate  0.00497 mA.h 

% of Battery Usage  0.00017% 
 

Bluetooth Battery Consumption 

Total Battery 2980 mA.h 

Battery Start Level  2711.8 mA.h 

Battery End Level  2324.4 mA.h 

Total Consumption  387.4 mA.h 

Per range estimate  0.0161417 
mA.h 

% of Battery Usage  0.00054% 
 

Table 5-15: Battery Consumption - Wi-Fi Table 5-16:Battery Consumption - Bluetooth 

Again, as with the Wi-Fi Direct test, a sample of the BLE version of CAPTURE was recorded taking 

RSS readings over a period of 10 hours. 1.5 seconds was determined as the time required to record 

enough BLE RSS readings, to obtain a range estimate. Since each mobile device utilised in the 

CAPTURE framework merely assists in the localisation of Lost Devices, each device only assists with 

the range estimate between itself and the Lost Device.  

Therefore, this was the only impact on battery consumption with cooperating devices. The battery 

consumption to estimate the range between two devices, was calculated at 0.016142 mA.h, 0.0005417% 

of the overall lifetime of the battery, as can be seen in Table 5-16. The BLE version of the application 

proved more battery intensive, but this had more to do with the implementation process rather than the 

technology itself being power hungry. One of the characteristics of Bluetooth is that it is designed to 

search the local area for other Bluetooth enabled devices. To be in a position to receive and record the 

signal strength from neighbouring devices, CAPTURE needs to carry out a scanning procedure, called 

Device Discovery. Bluetooth adopts Device Discovery to search for neighbouring devices. The 

cooperating device does not establish a link with any of these neighbouring devices when recording an 

RSS value. To be able to record other RSS values from the same device, CAPTURE was designed to 
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loop this device discovery method. The problem with this is that the Device Discovery procedure is 

battery intensive, as can be seen in Table 5-16. CAPTURE imports the Bluetooth package, it then 

applies the BluetoothDevice and the BluetoothAdapter to get the RSS from each scan. 

5.5 Summary 

In this chapter, results from the different test environments used to evaluate CAPTURE were presented. 

Each of these tests were in progressively more challenging and in more real-world environments, 

allowing the tests to better reflect how CAPTURE would perform in those environments. The 

experiments were designed to address the main research questions laid out at the beginning of this 

thesis.  

The first and second experiments carried out in the LyIT Sports Hall and main LyIT Campus Hallways, 

provided a LoS scenario to test the capacity to measure range using mobile devices. The accuracy levels 

obtained in these experiments, although not at the level of an IPS, did offer the ability to address RQ1. 

Being able to read devices up to 173, 217 and 104 metres away, using Bluetooth, Wi-Fi and UWB 

respectively, proved RQ2. Using the range estimate in both centroid and trilateration algorithms, 

implemented in testbeds 3 and 4, substantiated the claims set out in RQ2 and RQ3. Integrating 

CAPTURE with the Pole Star IPS in testbed 4, further corroborated the claims made in RQ3. The 

chapter also provided an insight into the capacity for CAPTURE to solve a positioning problem using 

its cooperative methodology, in a novel fashion. Some of the successes of earlier implementations of 

CAPTURE were used to create a solution, using Wi-Fi, Bluetooth and UWB to do so.  

The use of a Kalman Filter to further refine results was also described here. The proposed solution 

involved the use of queue stanchions to cooperatively locate other queue stanchions using UWB. BluFi 

chips on key queue stanchions then positioned passengers as they moved through the queues. This work 

highlighted a novel implementation of CAPTURE one that would allow for the setup and teardown of 

an ad-hoc positioning system using the cooperation of mobile devices that already know their position 
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to do so. Collectively, all of the experiments addressed the overall thesis hypothesis by providing 

quantifiable evidence that backed up the assertion that mobile devices could, in effect cooperatively 

extend the range of an IPS. 
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6 Conclusion & Future Work 

 

The main hypothesis of this work was that cooperating mobile devices could extend the range of an 

IPS. The development of the CAPTURE prototype and the results presented therein helped prove this 

hypothesis. Moreover, the capacity to use the cooperative methodology of CAPTURE to solve real-

world problems. This opened some more interesting opportunities for CAPTURE to provide a solution 

in specific niche areas. The ability to set up an instance of CAPTURE, a sort of pop-up IPS, by 

exploiting local mobile devices to provide the necessary cooperative positioning infrastructure warrants 

further exploration. The capacity to position in all areas of the indoor environment has been an important 

aspect of research in this area over the past number of years.  

As people become more accustomed to an application or a system’s capacity to position in the outdoor 

arena, the more they will demand to be able to replicate this while indoors. Considering people spend 

more time indoors and carry out most commerce indoors, this demand looks unlikely to abate in the 

near future. The proliferation of mobile devices available today mandate the need to position in all 

environments, whilst also offering a possible solution to the positioning problem when operating as 

cooperating devices themselves. 
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6.1 Thesis Summary  

The primary objective of this study was to design, develop and test a cooperative methodology to extend 

the range of IPSs. Platform requirements for the system needed to fall within the technological 

limitations of standard off the shelf mobile phones, with no requirements for hardware or software 

modifications therein. These requirements limited the technological solutions to those available on 

consumer mobile devices.  

An introduction to positioning was presented in Chapter 2. How current technologies mimic the way 

humans have historically positioned was illustrated. An overview of coordinate systems was provided 

along with positioning measurements and how these measurements can be used to help with a 

technological solution to the positioning problem. A detailed overview of current positioning 

technologies was also described in Chapter 2.  

Ranging techniques used with these technologies was also presented. Position estimation algorithms 

were evaluated and the sources of positioning errors in the indoor environment were described. Metrics 

used to evaluate the performance of a positioning system were outlined. Filtering techniques were 

detailed as well as an in-depth look at GPS and how from its early conception it got to be the ubiquitous 

system that is used today. Chapter 2 concluded by stating that to date, no technology using a cooperative 

framework existed to solve the problem of indoor positioning coverage. In Chapter 3, the CAPTURE 

methodology was presented, outlining how this cooperative approach has been utilised in computing 

for quite some time. Evidence was presented via experiments in Section 3.2 illustrating coverage issues 

in the indoor environment when using an endogenous solution, further backing this work’s hypothesis. 

Issues relating to device selection were documented in Section 3.3. Specific scenarios where CAPTURE 

can help extend IPS range were described.  

The CAPTURE model was detailed in Chapter 4, illustrating the design of CAPTURE. Chapter 4 also 

describes how CAPTURE was implemented outlining the different technologies and algorithms that 

were incorporated. An overview of the mobile devices that were used with CAPTURE were also 
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presented here along with some evidential evaluation surrounding device heterogeneity. Chapter 5 

provides an evaluation of CAPTURE with a complete testbed description and an account of a case study 

implementation. The hypothesis of this thesis looks at how mobile devices can assist in the positioning 

of other mobile devices in a cooperative methodology. Evidence for this hypothesis has been presented 

through the design, development and evaluation of the proof of concept application - CAPTURE. This 

thesis has answered the research questions outlined in Chapter 1, proving that the range of an IPS can 

be extended by mobile devices using a cooperative methodology.  

6.2 Relation to other work 

CAPTURE was inspired through previous and current research carried out in cooperative positioning. 

It relates broadly to the work carried out by (Patwari et al., 2005; Wymeersch et al., 2009; Shen et al., 

2010; Kloch et al., 2011b; Kaltiokallio et al., 2012; Meyer et al., 2015). Although these works inspired 

CAPTURE, the unique contribution of CAPTURE remains, in its capacity to extend the coverage of an 

IPS, rather than further hone the accuracy levels of indoor positioning. 

In this work, a novel approach to the coverage issue in indoor positioning is presented. There are two 

key contributions within the technical work of this thesis. The primary contribution is the CAPTURE 

model which uses a cooperative methodology to locate devices outside the coverage area of an indoor 

positioning solution. The model offers the capacity to act as a plugin to an existing IPS, to extend its 

range. CAPTURE could be implemented in key areas of a building, to position mobile devices that 

could not ordinarily be positioned in those areas with the existing IPS infrastructure. IPS users could 

download CAPTURE which would then cooperatively locate itself or other CAPTURE users within an 

indoor environment.    

The second contribution of this thesis lies in the ability to use the cooperative methodology of 

CAPTURE to create an impromptu IPS in strategic areas. The initial concept of cooperative localisation 

involved the use of mobile devices such as phones or tablets as cooperating devices. With the recent 

advent of wireless devices, such as Headphones, Smartwatches and Fitbits along with the proliferation 
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of devices within the realm of IoT, the definition of cooperating devices broadened (Tsai and Teng, 

2012; Safavi et al., 2018). CAPTURE aimed to exploit the availability of such devices. The ability to 

use a device in such an opportunistic fashion whilst retaining a cooperative methodology offered the 

capacity to expand the application of CAPTURE.  

Cooperative positioning is very similar to conventional IPSs and only differs in that the reference 

devices are typically mobile, initially positioned by an IPS and cooperate by being used as a reference 

frame.  The reference devices are initially located by the UWB ceiling mounted tags and when Wi-Fi, 

Bluetooth or UWB chips are attached to them, they cooperate to locate mobile devices as they 

manoeuvre between them. 

This concept of a ‘pop-up’ IPS could be extended to any environment that required an improvised 

positioning system. It could be constructed at key times or in key locations in either an indoor or outdoor 

setting, in scenarios where devices could not ordinarily be located. Achieving a position fix in the indoor 

environment, still poses particularly challenging problems mainly due to the following factors:  

 Multi-path errors and Non-Line of Sight surroundings. 

 A propagation channel being obstructed, due to the presence of people. 

 A higher density of obstacles that affect attenuation of signals travelling through or bouncing 

off them. 

 The requirement to deliver greater precision accuracy, in what is, a smaller domain. 

 Propagation paths, which are horizontal rather than vertical, further exacerbating the issues 

above. 

Most of these factors still remain, but as of writing, positioning in the indoor domain is a problem that 

has somewhat been solved (Jimenez and Seco, 2016). Obtaining accuracy levels in the millimetre realm 

still poses a challenge, however this is primarily the focus of more specialist systems. This is not to say 

that challenges themselves do not exist. GPS for example, although invented in the 90’s is still actively 

researched today. It is envisaged that new and current research will focus on niche areas within the area 

of indoor positioning, areas such as coverage. For this reason, studies such as CAPTURE remain as 
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relevant today as they were when this research initially began in 2010. Future implementations of 

CAPTURE can be envisaged offering cooperative solutions to these niche indoor positioning 

challenges. 

Following on from the experiments carried out with the different implementations of CAPTURE, along 

with investigations carried out in the review of the literature surrounding IPSs and the techniques used 

therein, cooperative range estimation techniques using UWB, Bluetooth and Wi-Fi were identified as 

possible solutions. In combination with this, trilateration was identified as providing the most 

appropriate positioning algorithm to use with this cooperative framework, due to its ability to work with 

the RSS range estimation techniques as described in Section 2.9.1. Thereby, offering a feasible and 

novel approach to the coverage issue within IPSs. This builds on existing research in this field when 

using a cooperative paradigm as demonstrated by (Howard et al., 2003; Patwari et al., 2005; Chen et 

al., 2006; Wymeersch et al., 2009; Rantakokko et al., 2011; Win et al., 2011; Kaltiokallio et al., 2012; 

Meyer et al., 2015). 
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6.3 Future Work 

Several aspects of this research have emerged as having the potential to be expanded upon. These areas 

would still utilise the underlying methodology and technologies within CAPTURE but would do so to 

solve problems other than the issue of yield or range in an IPS. Investigations into the use of smoothing 

algorithms, could be done to better remove the noise from RSS values. The focus would be on finding 

an algorithm which best suits the cooperative nature of CAPTURE, such as Bayesian filters to remove 

some of the noise in a more comprehensive manner than the current filtering algorithm.  

Node censorship (Wymeersch et al., 2009) warrants further investigation in order to improve the 

positioning accuracy of CAPTURE. This could offer the capacity to improve the intelligence of the 

system as by first evaluating the truth of range estimates from cooperating mobile devices, a decision 

could be made, whether to use this information or discard it. 

Co-operative hotspots can be used to allow users of CAPTURE to avail of the benefit of extending a 

networks location coverage, whilst also allowing them to extend the coverage of their Wi-Fi access to 

that network. This could mean that a device using Wi-Fi Direct could be connected to the network and 

then connect to other devices beyond the network’s reach, thereby extending that network’s range. This, 

although not a particularly novel concept on its own, could be incorporated as an add-on, allowing 

CAPTURE to extend both the range of an IPS and the range of that network’s wireless infrastructure.  

CAPTURE can be used as a pop-up positioning system extended to the outdoor arena in a setting where 

GPS could not accurately locate all required devices. For example, a group of scouts on a camping trip 

in a cavernous terrain, with trees and rock faces, obscuring views to satellites. A network of 

collaborating devices could be used to implement CAPTURE and assist in extending the range of GPS 

into that environment. This could also provide a solution to the urban canyon effect (Xie and Petovello, 

2015) where manmade metropolitan canyons of buildings obscure the line of sight of mobile devices to 
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an adequate amount of satellites. Devices located at the outskirts of these barriers that are already 

positioned via GPS, could help locate devices inside these areas.      

6.4 Summary 

This chapter delivers a synopsis of the thesis which provides a cooperative methodology and framework 

to extend the range of IPSs. Furthermore, it offers the ability to use this methodology in a novel concept 

to provide a pop-up IPS in niche areas or impromptu settings. Evidence for the thesis hypothesis is 

validated through the results obtained during the testing of CAPTURE, whilst the limitations in this 

approach are also acknowledged.  

The incorporation of more complex filtering techniques to assist with the accuracy of CAPTURE are 

emphasised. The link between CAPTURE and similar research is presented, emphasising the 

uniqueness of CAPTURE whilst recognising the importance of the cooperative methodology and the 

research therein.  

The results achieved by CAPTURE enhance the existing work in this field of cooperative positioning 

by (Howard et al., 2003; Patwari et al., 2005; Chen et al., 2006; Wymeersch et al., 2009; Rantakokko 

et al., 2011; Win et al., 2011; Kaltiokallio et al., 2012; Meyer et al., 2015). Further work in this field is 

detailed, outlining examples where CAPTURE could offer a potential solution. CAPTURE proves this 

study’s hypothesis by providing a framework whereby devices can, in a cooperative methodology, assist 

in the locating of other devices beyond the range of an IPS.  
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Appendix 1 – Code 

1.1 CAPTURE Code 

 

package model; 

 

public class Trilateration 

{ 

   // Declare global variables 

   private static double[] refPoint1Details = new double[3]; 

   private static double[] refPoint2Details = new double[3]; 

   private static double[] refPoint3Details = new double[3]; 

   private static double[] setDistance = new double[2]; 

   private static double[] calcedDistance = new double[2]; 

 

   private static double refP1_x; 

   private static double refP1_y; 

   private static double refP2_x; 

   private static double refP2_y; 

   private static double refP3_x; 

   private static double refP3_y; 

 

   /** 

    * Method that sets the exact coordinates of the lost phone 

    *  

    * @param x_1 

    * @param y_1 

    * @param x_2 

    * @param y_2 

    * @param x_3 

    * @param y_3 

    * @param dist_1 

    * @param dist_2 

    * @param dist_3 

   */ 

public static void fixedTrilateration(double x_1, double y_1, double x_2, 

double y_2, double x_3, double y_3, double dist_1, double dist_2, double 

dist_3) 

   { 

      refPoint1Details[0] = x_1; 

      refPoint1Details[1] = y_1; 

      refPoint1Details[2] = dist_1; 

      refPoint2Details[0] = x_2; 

      refPoint2Details[1] = y_2; 

      refPoint2Details[2] = dist_2; 

       

      refPoint3Details[0] = x_3; 

      refPoint3Details[1] = y_3; 

      refPoint3Details[2] = dist_3; 

 

      double refP1_x = x_1; 

      double refP1_y = y_1; 

      double refP2_x = x_2; 

      double refP2_y = y_2; 
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      double refP3_x = x_3; 

      double refP3_y = y_3; 

       

      double distanceRssiRefP_1 = dist_1; 

      double distanceRssiRefP_2 = dist_2; 

      double distanceRssiRefP_3 = dist_3; 

       

double S = (Math.pow(refP3_x, 2.) - Math.pow(refP2_x, 2.) + 

Math.pow(refP3_y, 2.) - Math.pow(refP2_y, 2.) + 

Math.pow(distanceRssiRefP_2, 2.) - Math.pow(distanceRssiRefP_3, 2.)) / 2.0; 

       

double T = (Math.pow(refP1_x, 2.) - Math.pow(refP2_x, 2.) + 

Math.pow(refP1_y, 2.) - Math.pow(refP2_y, 2.) + 

Math.pow(distanceRssiRefP_2, 2.) - Math.pow(distanceRssiRefP_1, 2.)) / 2.0; 

 

double lostPhone_y = ((T * (refP2_x - refP3_x)) - (S * (refP2_x - 

refP1_x))) / (((refP1_y - refP2_y) * (refP2_x - refP3_x)) - ((refP3_y - 

refP2_y) * (refP2_x - refP1_x))); 

      

double lostPhone_x = ((lostPhone_y * (refP1_y - refP2_y)) - T) / (refP2_x - 

refP1_x); 

 

      System.out.println("x = " + lostPhone_x); 

      System.out.println("Y = " + lostPhone_y); 

 

      setDistance[0] = (int)lostPhone_x; 

      setDistance[1] = (int)lostPhone_y; 

   } 

 

   /** 

    * Method that sets the coordinates from the given rssi of the lost 

phone 

    *  

    * @param x_1 

    * @param y_1 

    * @param x_2 

    * @param y_2 

    * @param x_3 

    * @param y_3 

    * @param dist_1 

    * @param dist_2 

    * @param dist_3 

    */ 

 

public static void calcedTrilateration(double x_1, double y_1, double x_2, 

double y_2, double x_3, double y_3, double dist_1, double dist_2, double 

dist_3) 

   { 

      // x and y coordinates 

      refP1_x = x_1; 

      refP1_y = y_1; 

      refP2_x = x_2; 

      refP2_y = y_2; 

      refP3_x = x_3; 

      refP3_y = y_3; 

// RSS calculated distance from each ref point to the lost phone 

      double distanceRssiRefP_1 = dist_1; 

      double distanceRssiRefP_2 = dist_2; 

      double distanceRssiRefP_3 = dist_3; 
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      // Use coordinates and distances to calculate variable S 

      double S = (Math.pow(refP3_x, 2) - Math.pow(refP2_x, 2.) + 

Math.pow(refP3_y, 2) - Math.pow(refP2_y, 2) + Math.pow(distanceRssiRefP_2, 

2) - Math.pow(distanceRssiRefP_3, 2)) / 2; 

 

      // Use coordinates and distances to calculate variable T 

      double T = (Math.pow(refP1_x, 2) - Math.pow(refP2_x, 2.) + 

Math.pow(refP1_y, 2) - Math.pow(refP2_y, 2) + Math.pow(distanceRssiRefP_2, 

2) - Math.pow(distanceRssiRefP_1, 2)) / 2; 

 

      // Use S and T along with coordinates and distances to calculate X 

and Y 

      double lostPhone_y = ((T * (refP2_x - refP3_x)) - (S * (refP2_x - 

refP1_x))) / (((refP1_y - refP2_y) * (refP2_x - refP3_x)) - ((refP3_y - 

refP2_y) * (refP2_x - refP1_x))); 

      double lostPhone_x = ((lostPhone_y * (refP1_y - refP2_y)) - T) / 

(refP2_x - refP1_x); 

 

      // Print x and y to the console 

      System.out.println("x = " + lostPhone_x); 

      System.out.println("Y = " + lostPhone_y); 

 

      // Store RSS calculated X and Y coordinates to the clacedDistance 

array 

      calcedDistance[0] = (int) lostPhone_x; 

      calcedDistance[1] = (int) lostPhone_y; 

 

   } 

 

   /** 

    * Method to return the info on ref Point 1 

    *  

    * @return double array of ref point 1 details 

    */ 

   public static double[] getRefPoint1Details() 

   { 

      return refPoint1Details; 

   } 

 

   /** 

    * Method to return the info on ref Point 2 

    *  

    * @return double array of ref point 2 details 

    */ 

   public static double[] getRefPoint2Details() 

   { 

      return refPoint2Details; 

   } 

 

   /** 

    * Method to return the info on ref Point 3 

    * @return double array of ref point 3 details 

    */ 

   public static double[] getRefPoint3Details() 

   { 

      return refPoint3Details; 

   } 

 

   /** 

    * Method to return the info of set x and y 

    * @return double array of set coordinates 
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    */ 

   public static double[] getsetDist() 

   { 

      return setDistance; 

   } 

 

   /** 

    * Method to return the info of RSS set x and y 

    *  

    * @return double array of calculated distances by RSS 

    */ 

   public static double[] getCalcedDist() 

   { 

      return calcedDistance; 

   } 

} 

1.2 Kalman Filter Code 
 

import org.apache.commons.math3.filter.DefaultMeasurementModel; 

import org.apache.commons.math3.filter.DefaultProcessModel; 

import org.apache.commons.math3.filter.KalmanFilter; 

import org.apache.commons.math3.filter.MeasurementModel; 

import org.apache.commons.math3.filter.ProcessModel; 

import org.apache.commons.math3.linear.Array2DRowRealMatrix; 

import org.apache.commons.math3.linear.ArrayRealVector; 

import org.apache.commons.math3.linear.RealMatrix; 

import org.apache.commons.math3.linear.RealVector; 

 

/** 

 * @author Gary Cullen 

 *  Date:  18-Jul-2017 

 */ 

public class KalmanFilterCartesian { 

 

    // Position measurement noise (in meters) 

    private final double MEAS_NOISE; 

    // Process noise (in meters) 

    private final double PROC_NOISE; 

    // Error covariance 

    private final double ERROR_COV; 

    // Discrete time interval between steps 

    private final double dt; 

 

    // A - state transition matrix 

    private RealMatrix A; 

    // B - control input matrix 

    private RealMatrix B; 

    // H - measurement matrix 

    private RealMatrix H; 

    // Q - process noise covariance matrix (process error) 

    private RealMatrix Q; 

    // R - measurement noise covariance matrix (measurement error) 

    private RealMatrix R; 

    // P - error covariance matrix 

    private RealMatrix P; 

    // x - state 

    private RealVector x; 
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    // Kalman Filter 

    private KalmanFilter filter; 

 

    /** 

     * Constructs a default KalmanFilter 

     */ 

    public KalmanFilterCartesian(){ 

        // Change first 3 parameters to change algorithm sensitivity 

        // Last 2 parameters are the initial X and Y coordinates 

        this(100d, 0.001d, 0.5d, 1e-6d, 0, 0); 

    } 

     

    /** 

     * Constructs a KalmanFilter that takes initial system state 

     * @param measNoise Measurement covariance 

     * @param procNoise Process noise 

     * @param error Error covariance 

     * @param time Discrete time interval 

     * @param X Initial X coordinate 

     * @param Y Initial Y coordinate 

     */ 

    public KalmanFilterCartesian(double measNoise, double procNoise, double 

error, double time, double X, double Y) { 

        // Set measurement and process error constants 

        this.MEAS_NOISE = measNoise; 

        this.PROC_NOISE = procNoise; 

        this.ERROR_COV = error; 

        // Set discrete time steps 

        this.dt = time; 

        // A =  

        A = new Array2DRowRealMatrix(new double[][]{ 

            {1d, 0d, dt, 0d}, 

            {0d, 1d, 0d, dt}, 

            {0d, 0d, 1d, 0d}, 

            {0d, 0d, 0d, 1d} 

        }); 

        // B =  

        B = new Array2DRowRealMatrix(new double[][]{ 

            {Math.pow(dt, 2d) / 2d}, 

            {Math.pow(dt, 2d) / 2d}, 

            {dt}, 

            {dt} 

        }); 

        //only observe first 2 values - the position coordinates 

        H = new Array2DRowRealMatrix(new double[][]{ 

            {1d, 0d, 0d, 0d}, 

            {0d, 1d, 0d, 0d}, 

        }); 

        // System state with initial state included 

        x = new ArrayRealVector(new double[] {X, Y, 0, 0}); 

        // Measurement noise covariance matrix 

        R = new Array2DRowRealMatrix(new double[][] { 

            { Math.pow(this.MEAS_NOISE, 2d), 0d }, 

            { 0d, Math.pow(this.MEAS_NOISE, 2d) } 

        }); 

        // Process noise covariance matrix 

        Q = new Array2DRowRealMatrix(new double[][]{ 

            {Math.pow(PROC_NOISE, 4d) / 4d, 0d, Math.pow(PROC_NOISE, 3d) / 

2d, 0d}, 

            {0d, Math.pow(PROC_NOISE, 4d) / 4d, 0d, Math.pow(PROC_NOISE, 
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3d) / 2d}, 

            {Math.pow(PROC_NOISE, 3d) / 2d, 0d, Math.pow(PROC_NOISE, 2d), 

0d}, 

            {0d, Math.pow(PROC_NOISE, 3d) / 2d, 0d, Math.pow(PROC_NOISE, 

2d)} 

        }); 

        // Error covariance matrix 

        P = new Array2DRowRealMatrix(new double[][] {  

            {ERROR_COV, 0d, 0d, 0d}, 

            {0d, ERROR_COV, 0d, 0d}, 

            {0d, 0d, ERROR_COV, 0d}, 

            {0d, 0d, 0d, ERROR_COV} 

        }); 

         

        // Create process model, measurement model and kalman filter 

        ProcessModel pm = new DefaultProcessModel(A, B, Q, x, P); 

        MeasurementModel mm = new DefaultMeasurementModel(H, R); 

        filter = new KalmanFilter(pm, mm); 

    } 

     

    /** 

     * Method to estimate position using Kalman filter 

     * @param xy measured position 

     * @return estimated position 

     */ 

    public double[] estimatePosition(double[] xy){ 

        filter.predict(); 

        filter.correct(xy); 

        return filter.getStateEstimation(); 

    } 

     

}  
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1.3 Pseudocode Description 
 

Positioning Stanchions 

 

// Get UWB Master Stanchion positions  

For each UWB Ceiling Mounted Anchor (CMA) 

Get CMA1 (x,y) coordinate //(pre-recorded stored positions) 

// Get UWB estimates via DecaWave Time of Flight algorithm 

 Get distance (d1) from CMA1 to Master Stanchion1 (MS1); 

 Get distance (d2) from CMA2 to MS1; 

 Get distance (d3) from CMA3 to MS1; 

 

// estimate the coordinate position of the master stanchions  

Calc MS (x,y) position via Trilateration Algorithm using: 

  CMA1 position and d1;  

  CMA2 position and d2; 

  CMA3 position and d3; 

 Store MS position 

 

// Get UWB estimates via DecaWave Time of Flight algorithm 

For each Anchor Stanchion (AS) 

// Get (UWB) distances from AS’s to the MS’s 

 Get d1 from MS1 to AS1;  

 Get d2 from MS2 to AS1; 

 Get d3 from MS3 to AS1; 

 

// estimate the coordinate position of the ASs 

Calc AS (x,y) position via Trilateration Algorithm using: 

  MS1 position and d1;  

  MS2 position and d2; 

  MS3 position and d3;  

 Store AS (x,y) coordinate  

// Filter or clean stanchion positions 

For each AS coordinate  

 // Pass coordinate through a Discrete Kalman Filter 

 Filter coordinate with Kalman Filter 

 Store filtered coordinate and system time 
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Positioning Lost Devices  

 

// Get lost device positions 

For each mobileDevice (passenger held device) 

 

// Get RSS (BLe\Wi-Fi) reads from stanchions to lost device 

 Get rss (*100) from AS1 to mobileDevice; 

 Get rss (*100) from AS2 to mobileDevice; 

 Get rss (*100) from AS3 to mobileDevice; 

 

  // Remove measurement noise (Basic Filter) 

 Filter rss1 (*100); 

 Filter rss2 (*100); 

 Filter rss3 (*100); 

 

// Pass rss values into path loss algorithm to determine range 

 Calculate d1 from path loss algorithm using rss1; 

 Calculate d2 from path loss algorithm using rss2; 

 Calculate d3 from path loss algorithm using rss3; 

 

// estimate the coordinate position of the lost device  

Calc mobileDevice (x,y)coordinate via Trilateration using: 

  AS1 position and d1;  

  AS2 position and d2; 

  AS3 position and d3; 

 

// Filter or clean lost device positions 

For each mobileDevice coordinate 

  

// Pass coordinate through a Discrete Kalman Filter 

 Filter coordinate with Kalman Filter 

 Store filtered coordinate and system time 

 

 

Calculate Distance - Path Loss Algorithm 

 

// rss = -(10n Log10 (d)+A) 

// n: Path Loss Exponent 

// d: Distance from transmitting device 

// A: rss at 1 metre distance 

// Declare variables 

Declare rss read at 1 metre 

Declare pathLossExponent 

Get rss read 

// Calculate distance  

d = 10 to the power of ((rss_Read - 1_metreRead) / (-10 

(pathLossExponent))) 

Return d 
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Basic Filter 

 

// Declare rss noise to be filtered 

Declare threshold 

For 20 rss readings 

 Calculate average 

  if (rss > average + threshold) 

   remove rss 

  else if (rss < average - threshold) 

   remove rss 

  else 

   return rss 

 

Kalman Filter 

 

//Declare process matrices 

Declare state transition matrix //sampling rate is declared here 

Declare control input matrix //sampling rate is declared here also 

Declare process noise covariance matrix //this is for known 

process errors 

Declare error covariance matrix 

Declare state matrix //this is used to hold the current state of the 

system 

// Create process model 

Create process model using process matrices 

//Declare measurement matrices 

Declare measurement matrix //this holds current measurements of the 

system 

Declare measurement noise covariance matrix //this is for known 

measurement errors 

// Create measurement model 

Create measurement model using measurement matrices 

// Create Kalman Filter (KF) 

Create KF using process and measurement models 

// KF filtering process 

For each coordinate to be filtered 

 // Predict the system state based on previous system states 

 Predict the state of the system using the KF 

 // Correct the prediction with the measured state 

 Correct the prediction using the coordinate and the KF 

 // Get an estimation of the system state after correction 

 Get an estimation of the new state using KF
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Appendix 2 - Results 

1.1 UWB Range results (partial) 

ID 5m 10m 15m 20m 25m 30m 40m 50m 60m 70m 80m 90m 

             

1 5.095 10.062 15.082 19.957 25.65 30.523 40.114 50.207 60.15 70.122 80.258 90.126 

2 5.109 10.067 15.091 19.924 25.453 30.513 40.18 50.198 60.187 70.122 80.201 90.131 

3 5.105 10.076 15.072 19.92 25.106 30.499 40.133 50.151 60.202 70.145 80.164 90.084 

4 5.086 10.076 15.082 19.915 25.416 30.523 40.156 49.958 60.192 70.131 80.126 90.149 

5 5.091 10.095 15.101 19.92 25.359 30.532 40.175 50.155 60.202 70.108 80.197 90.168 

6 5.109 10.1 15.087 19.896 25.706 30.546 40.123 50.132 59.991 70.187 80.201 90.168 

7 5.123 10.095 15.077 19.873 25.378 30.49 40.147 50.259 60.145 70.126 80.122 90.093 

8 5.095 10.1 15.04 19.878 25.317 30.542 40.18 50.226 60.239 70.117 80.215 90.126 

9 5.109 10.104 15.026 19.878 25.402 30.56 40.137 50.207 60.183 70.192 80.201 90.079 

10 5.1 10.09 15.04 19.864 25.444 30.513 40.1 50.174 60.183 70.145 80.14 90.103 

11 5.095 10.09 15.068 19.873 25.13 30.438 40.142 50.235 60.187 70.178 80.211 90.103 

12 5.109 10.086 15.091 19.864 25.219 30.542 40.161 50.301 60.173 70.183 80.22 90.173 

13 5.086 10.086 15.082 19.924 25.406 30.462 40.137 50.268 60.216 70.103 80.173 90.093 

14 5.109 10.1 15.091 19.882 25.392 30.481 40.119 50.343 60.145 70.131 80.197 90.098 

15 5.072 10.067 15.105 19.854 25.294 30.56 40.128 50.193 60.122 70.131 80.159 90.112 

16 5.086 10.076 15.035 19.934 25.434 30.513 40.133 50.23 60.108 70.108 80.178 90.131 

17 5.077 10.062 15.044 19.892 25.636 30.495 40.123 50.155 60.127 70.197 80.182 90.14 

18 5.091 10.09 15.105 19.887 25.631 30.499 40.161 50.207 60.197 70.089 80.253 90.089 

19 5.095 10.095 15.063 19.896 25.392 30.49 40.128 50.249 60.155 70.154 80.136 90.084 

20 5.105 10.034 15.077 19.91 25.106 30.537 40.17 50.16 60.085 70.15 80.112 90.117 
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21 5.114 10.086 15.063 19.91 25.669 30.57 40.105 50.155 60.295 70.117 80.276 90.107 

22 5.109 10.076 15.072 19.906 25.101 30.485 40.147 50.17 60.642 70.173 80.201 90.164 

23 5.1 10.1 15.054 19.967 25.599 30.504 40.166 50.188 60.173 70.183 80.15 90.182 

24 5.105 10.114 15.063 19.929 25.674 30.532 40.161 50.263 60.15 70.154 80.122 90.159 

25 5.105 10.067 15.035 19.91 25.303 30.513 40.137 50.123 60.127 70.098 80.299 90.154 

26 5.091 10.123 15.082 19.92 25.134 30.523 40.198 50.212 60.192 70.122 80.136 90.135 

27 5.105 10.076 15.054 19.948 25.111 30.532 40.156 50.174 60.206 70.173 80.154 90.117 

28 5.119 10.048 15.143 19.892 25.383 30.532 40.095 50.062 60.169 70.15 80.255 90.154 

..             

…             

….             

……..             

………….             

494 5.109 10.053 15.077 19.901 25.603 30.593 40.142 50.212 60.239 70.215 80.262 90.089 

495 5.1 10.081 15.03 19.92 25.378 30.49 40.161 50.16 60.164 70.122 80.168 90.131 

496 5.114 10.043 15.03 19.943 25.359 30.499 40.152 50.179 60.164 70.197 80.229 90.149 

497 5.1 10.104 15.096 19.906 25.688 30.429 40.133 50.296 60.216 70.164 80.258 90.051 

498 5.1 10.062 15.105 19.901 25.153 30.509 40.156 50.193 60.202 70.164 80.164 90.112 

499 5.114 10.062 15.082 19.887 25.397 30.452 40.105 50.179 60.291 70.126 80.225 90.121 

500 5.086 10.076 15.035 19.934 25.434 30.513 40.133 50.23 60.108 70.108 80.178 90.131 

             

Average 5.10 10.08 15.07 19.90 25.44 30.52 40.14 50.21 60.22 70.15 80.19 90.12 

Actual 5 10 15 20 25 30 40 50 60 70 80 90 

Error Margin 0.10 0.08 0.07 -0.10 0.44 0.52 0.14 0.21 0.22 0.15 0.19 0.12 
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1.2 Wi-Fi metre readings 

-44.69dBm -44.21dBm -45.8dBm -46.54dBm -45.7dBm -45.91dBm -44.83dBm -44.35dBm -44.93dBm -44.86dBm 

-44.68dBm -46.49dBm -44.17dBm -45.32dBm -45.94dBm -46.96dBm -44.35dBm -45.69dBm -45.49dBm -45.27dB 

-44.5dBm -44.69dBm -46.76dBm -46.56dBm -45.59dBm -44.47dBm -44.56dBm -45.03dBm -44.74dBm -44.54dBm 

-45.57dBm -45.44dBm -44.15dBm -44.67dBm -45.45dBm -46.07dBm -45.13dBm -46.49dBm -45.44dBm -44.54dBm 

-45.8dBm -45.25dBm -45.37dBm -45.5dBm -46.1dBm -45.67dBm -46.08dBm -45.39dBm -46.2dBm -46.01dBm 

-44.62dBm -44.74dBm -45.74dBm -44.59dBm -44.83dBm -46.1dBm -45.79dBm -44.31dBm -44.21dBm -45.82dBm 

-44.11dBm -46.02dBm -45.76dBm -45.2dBm -44.84dBm -46.84dBm -45.86dBm -44.38dBm -44.67dBm -46.49dBm 

-46.01dBm -46.18dBm -45.31dBm -46.61dBm -45.13dBm -45.8dBm -46.97dBm -46.64dBm -44.83dBm -44.76dBm 

-44.96dBm -44.62dBm -45.27dBm -44.81dBm -46.14dBm -44.3dBm -46.1dBm -44.67dBm -45.74dBm -46.59dBm 

-45.17dBm -44.67dBm -46.94dBm -46.11dBm -44.16dBm -46.08dBm -45.44dBm -46.82dBm -45.34dBm -45.6dBm 

-46.42dBm -44.16dBm -46.26dBm -45.23dBm -45.18dBm -45.15dBm -44.91dBm -44.07dBm -45.31dBm -45.85dBm 

-44.96dBm -44.74dBm -46.13dBm -44.47dBm -45.18dBm -46.32dBm -46.92dBm -44.94dBm -46.31dBm -45.71dBm 

-45.67dBm -46.29dBm -45.92dBm -45.94dBm -44.96dBm -44.62dBm -44.67dBm -46.65dBm -46.78dBm -44.34dBm 

-45.66dBm -45.54dBm -44.66dBm -45.87dBm -45.41dBm -45.66dBm -44.32dBm -44.13dBm -45.74dBm -46.9dBm 

-45.12dBm -44.65dBm -45.86dBm -45.67dBm -45.64dBm -44.08dBm -46.61dBm -45.95dBm -46.69dBm -45.55dBm 

-44.39dBm -45.39dBm -45.63dBm -46.54dBm -46.86dBm -45.61dBm -45.84dBm -46.93dBm -46.35dBm -44.5dBm 

-45.01dBm -44.85dBm -46.87dBm -46.26dBm -46.92dBm -45.85dBm -45.21dBm -44.1dBm -45.7dBm -44.2dBm 

-45.12dBm -46.49dBm -45.57dBm -46.07dBm -45.3dBm -45.45dBm -44.39dBm -46.04dBm -45.49dBm -45.21dBm 

-44.87dBm -44.17dBm -45.91dBm -44.62dBm -46.69dBm -46.28dBm -44.13dBm -46.46dBm -45.4dBm -44.37dBm 

.. 

… 

…… 

-44.42dBm -45.41dBm -44.68dBm -44.41dBm -45.12dBm -46.1dBm -46.04dBm -45.63dBm -46.46dBm -46.63dBm 

-45.3dBm -46.39dBm -46.38dBm -45.81dBm -46.16dBm -46.55dBm -44.24dBm -46.31dBm -44.4dBm -45.35dBm 

-45.6dBm -45.78dBm -44.84dBm -45.3dBm -46.13dBm -46.84dBm -46.84dBm -46.55dBm -44.93dBm -44.3dB 

-44.52dBm -45.6dBm -44.16dBm -46.2dBm -44.29dBm -46.48dBm -44.44dBm -45.33dBm -46.84dBm -44.69d 

-44.79dBm -448dBm -44.53dBm -44.98dBm -45.59dBm -45.94dBm -45.04dBm -44.19dBm -46.91dBm -44.52dBm 
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1.3 Bluetooth metre readings 

-54.12dBm -56.03dBm -58.93dBm -55.11dBm -56.61dBm -54.49dBm -58.15dBm -55.8dBm -58.99dBm -55.83dBm 

-57.13dBm -57.28dBm -57.43dBm -54.42dBm -58.96dBm -57.28dBm -56.77dBm -57.65dBm -55.22dBm -58.47dBm 

-57.92dBm -55.21dBm -55.48dBm -55.61dBm -56.29dBm -56.06dBm -56.74dBm -56.87dBm -57.41dBm -56.62dBm 

-55.77dBm -55.9dBm -55.9dBm -58.45dBm -57.72dBm -57.25dBm -55.59dBm -57.77dBm -58.93dBm -55.39dBm 

-57.71dBm -56.29dBm -56.25dBm -55.36dBm -54.46dBm -57.73dBm -58.87dBm -57.01dBm -58.88dBm -58.4dBm 

-56.94dBm -54.32dBm -56.21dBm -56.78dBm -54.19dBm -56.8dBm -54.36dBm -57.37dBm -54.09dBm -55.78dBm 

-54.91dBm -57.36dBm -55.9dBm -55.96dBm -57.15dBm -56.46dBm -58.55dBm -54.52dBm -55.81dBm -55.2dBm 

-56.14dBm -54.36dBm -58.08dBm -55.31dBm -54.37dBm -56.73dBm -57.75dBm -57.19dBm -57.19dBm -58.9dBm 

-58.57dBm -54.54dBm -57.72dBm -58.26dBm -54.89dBm -54.09dBm -56.22dBm -55.98dBm -55.99dBm -55.01dBm 

-56.82dBm -55.39dBm -55.88dBm -57.01dBm -57.79dBm -54.09dBm -57.42dBm -54.21dBm -57.68dBm -57.05dBm 

-54.08dBm -58.24dBm -57.04dBm -58.22dBm -54.03dBm -58.15dBm -59.07dBm -58.55dBm -54.41dBm -58.02dBm 

-57.89dBm -54.45dBm -54.45dBm -58.73dBm -54.89dBm -58.17dBm -58.1dBm -55.16dBm -56.87dBm -54.17dBm 

-56.69dBm -57.42dBm -54.86dBm -54.22dBm -58.32dBm -55.7dBm -54.36dBm -58.7dBm -54.58dBm -57.73dBm 

-58.36dBm -56.35dBm -55.4dBm -54.97dBm -56.3dBm -56.13dBm -55.75dBm -54.83dBm -57.62dBm -56.34dBm 

-57.23dBm -54.8dBm -55.76dBm -58.83dBm -54.67dBm -57.24dBm -55.72dBm -54.59dBm -56.04dBm -58.64dBm 

-54.77dBm -55.85dBm -55.24dBm -56.53dBm -57.06dBm -54.99dBm -54.55dBm -58.97dBm -58.46dBm -56.17dBm 

-58.89dBm -57.42dBm -58.33dBm -56.95dBm -55.29dBm -57.15dBm -54.34dBm -54.6dBm -55.31dBm -56.64dBm 

… 

….. 

-55.18dBm -57.36dBm -54.64dBm -54.71dBm -57.64dBm -55.66dBm -54.71dBm -56.83dBm -58.79dBm -55.46dBm 

-55.27dBm -57.8dBm -55.03dBm -55.4dBm -54.71dBm -55.19dBm -54.34dBm -56.15dBm -56.9dBm -54.36dBm 

-54.65dBm -55.48dBm -54.03dBm -58.54dBm -54.3dBm -54.42dBm -57.11dBm -57.95dBm -58.67dBm -58.55dBm 

-54.54dBm -54.24dBm -57.22dBm -58.63dBm -57.92dBm -56.22dBm -58.61dBm -55.56dBm -55.73dBm -56.06dBm 

-58.8dBm -56.27dBm -58.54dBm -56.49dBm -57.52dBm -54.62dBm -54.82dBm -54.29dBm -57.75dBm -54.44dBm 

-58.72dBm -58.08dBm -55.38dBm -56.0dBm -55.24dBm -54.96dBm -58.66dBm -56.84dBm -55.0dBm -54.9dBm 

-58.63dBm -58.29dBm -58.83dBm -54.52dBm -57.96dBm -55.71dBm -57.97dBm -58.14dBm -56.59dBm -57.12dBm 
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1.4 Kalman Filter results 

ID

Measurem

ent

Noise

Process

Noise

Error

Rate

Discrete

Time

Estimated

Range Error

 10 Reads)

Filtered

Range Error

 10 Reads)

Improved

By ???

Estimated

Range Error

 (100 Reads)

Filtered

Range Error

( 100 Reads)

Improved

By ???

0 1 1 1.000 1 0.096 0.09010713 0.005893 0.3223 0.32289281 -0.000593

1 1 1 1.000 0.1 0.096 0.06922799 0.026772 0.3223 0.32573284 -0.003433

2 1 1 1.000 0.01 0.096 0.06580281 0.030197 0.3223 0.30654234 0.015758

3 1 1 1.000 0.001000 0.096 0.06576283 0.030237 0.3223 0.22349894 0.098801

4 1 1 1.000 0.000100 0.096 0.06576244 0.030238 0.3223 0.22008035 0.102220

5 1 1 0.100 1.000000 0.096 0.08830196 0.007698 0.3223 0.32271243 -0.000412

6 1 1 0.010 1.000000 0.096 0.08790276 0.008097 0.3223 0.32267254 -0.000373

7 1 1 0.001 1.000000 0.096 0.08785897 0.008141 0.3223 0.32266816 -0.000368

8 1 1 0.000 1.000000 0.096 0.08785456 0.008145 0.3223 0.32266772 -0.000368

9 1 0.1 1.000 1.000000 0.096 0.09010713 0.005893 0.3223 0.32289281 -0.000593

10 1 0.01 1.000 1.000000 0.096 0.09010713 0.005893 0.3223 0.32289281 -0.000593

11 1 10 1.000 1.000000 0.096 0.09010713 0.005893 0.3223 0.32289281 -0.000593

12 1 100 1.000 1.000000 0.096 0.09010713 0.005893 0.3223 0.32289281 -0.000593

13 0.1 1 1.000 1.000000 0.096 0.09616892 -0.000169 0.3223 0.32545468 -0.003155

14 0.01 1 1.000 1.000000 0.096 0.09723134 -0.001231 0.3223 0.32627408 -0.003974

15 10 1 1.000 1.000000 0.096 0.07410306 0.021897 0.3223 0.32178039 0.000520

16 100 1 1.000 1.000000 0.096 0.05868132 0.037319 0.3223 0.31554397 0.006756

17 100 1 0.001 0.000100 0.096 0.05860034 0.037400 0.3223 0.05859973 0.263700

18 100 100 0.100 0.000100 0.096 0.05860054 0.037399 0.3223 0.05853939 0.263761

19 100 1 0.500 0.000001 0.096 0.05860136 0.037399 0.3223 0.05830104 0.263999

20 1000 1 0.000 0.000010 0.096 0.05860034 0.037400 0.3223 0.05860034 0.263700

Preliminary Tests

Custom Tests
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1.5 Library Results 

ID x y Timestamp ID x y Timestamp ID x y Timestamp 

1 4.716145 0.637811 05/07/2017 10:26 19 4.753851 0.605334 05/07/2017 10:28 37 4.713394 0.606656 05/07/2017 10:29 

2 4.768034 0.652767 05/07/2017 10:26 20 4.712454 0.623673 05/07/2017 10:28 38 4.722148 0.671789 05/07/2017 10:29 

3 4.726517 0.683012 05/07/2017 10:26 21 4.729707 0.661853 05/07/2017 10:28 39 4.716876 0.661204 05/07/2017 10:29 

4 4.735326 0.669471 05/07/2017 10:26 22 4.739011 0.674512 05/07/2017 10:28 40 4.716876 0.636986 05/07/2017 10:29 

5 4.73977 0.626269 05/07/2017 10:26 23 4.765655 0.637893 05/07/2017 10:28 41 4.739627 0.630427 05/07/2017 10:29 

6 4.725157 0.675461 05/07/2017 10:26 24 4.747832 0.636986 05/07/2017 10:28 42 4.718689 0.628852 05/07/2017 10:29 

7 4.755326 0.620634 05/07/2017 10:26 25 4.75753 0.66191 05/07/2017 10:28 43 4.736912 0.637685 05/07/2017 10:29 

8 4.705926 0.615912 05/07/2017 10:26 26 4.728788 0.629407 05/07/2017 10:28 44 4.725 0.63617 05/07/2017 10:29 

9 4.710967 0.655351 05/07/2017 10:26 27 4.769312 0.648938 05/07/2017 10:28 45 4.750085 0.659596 05/07/2017 10:29 

10 4.742184 0.653336 05/07/2017 10:26 28 4.745132 0.630108 05/07/2017 10:28 46 4.73977 0.659596 05/07/2017 10:29 

11 4.746637 0.653552 05/07/2017 10:26 29 4.743411 0.661015 05/07/2017 10:28 47 4.739011 0.650305 05/07/2017 10:29 

12 4.725753 0.66464 05/07/2017 10:26 30 4.728788 0.643545 05/07/2017 10:28 48 4.722895 0.656866 05/07/2017 10:29 

13 4.730267 0.630054 05/07/2017 10:26 31 4.724895 0.659509 05/07/2017 10:28 49 4.713309 0.63914 05/07/2017 10:29 

14 4.736786 0.637811 05/07/2017 10:26 32 4.745007 0.673163 05/07/2017 10:28 50 4.746637 0.643454 05/07/2017 10:29 

15 4.741958 0.669471 05/07/2017 10:26 33 4.767247 0.648503 05/07/2017 10:28 51 4.721309 0.622024 05/07/2017 10:29 

16 4.737674 0.671202 05/07/2017 10:26 34 4.75753 0.637685 05/07/2017 10:28 52 4.704546 0.612363 05/07/2017 10:29 

17 4.755944 0.61798 05/07/2017 10:26 35 4.725753 0.636374 05/07/2017 10:28 53 4.72079 0.658382 05/07/2017 10:29 

18 4.7251 0.647582 05/07/2017 10:26 36 4.733225 0.642735 05/07/2017 10:28 54 4.731804 0.660329 05/07/2017 10:29 
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55 4.74564 0.63213 05/07/2017 10:26 64 4.740467 0.656982 05/07/2017 10:28 73 4.759009 0.648938 05/07/2017 10:30 

56 4.734813 0.681574 05/07/2017 10:26 65 4.727206 0.646072 05/07/2017 10:28 74 4.736276 0.688806 05/07/2017 10:30 

57 4.740597 0.666953 05/07/2017 10:26 66 4.716145 0.637811 05/07/2017 10:28 75 4.753851 0.605334 05/07/2017 10:30 

58 4.706534 0.656162 05/07/2017 10:26 67 4.768034 0.652767 05/07/2017 10:28 76 4.712454 0.623673 05/07/2017 10:30 

59 4.737743 0.640009 05/07/2017 10:26 68 4.726517 0.683012 05/07/2017 10:28 77 4.729707 0.661853 05/07/2017 10:30 

60 4.759621 0.660395 05/07/2017 10:26 69 4.735326 0.669471 05/07/2017 10:28 78 4.739011 0.674512 05/07/2017 10:30 

61 4.717617 0.64122 05/07/2017 10:26 70 4.73977 0.626269 05/07/2017 10:28 79 4.765655 0.637893 05/07/2017 10:30 

62 4.723562 0.663852 05/07/2017 10:26 71 4.725157 0.675461 05/07/2017 10:28 80 4.747832 0.636986 05/07/2017 10:30 

63 4.755944 0.63213 05/07/2017 10:26 72 4.755326 0.620634 05/07/2017 10:28 81 4.75753 0.66191 05/07/2017 10:30 

.. 
…. 
…….. 

471 4.739011 0.650305 05/07/2017 10:27 481 4.705814 0.64972 05/07/2017 10:29 491 4.732626 0.643454 05/07/2017 10:31 

472 4.722895 0.656866 05/07/2017 10:27 482 4.736912 0.670986 05/07/2017 10:29 492 4.71414 0.658382 05/07/2017 10:31 

473 4.713309 0.63914 05/07/2017 10:27 483 4.753706 0.604467 05/07/2017 10:29 493 4.7583 0.680275 05/07/2017 10:31 

474 4.746637 0.643454 05/07/2017 10:27 484 4.715412 0.650513 05/07/2017 10:29 494 4.740042 0.647718 05/07/2017 10:31 

475 4.721309 0.622024 05/07/2017 10:27 485 4.735326 0.650305 05/07/2017 10:29 495 4.763895 0.621334 05/07/2017 10:31 

476 4.704546 0.612363 05/07/2017 10:27 486 4.759009 0.673163 05/07/2017 10:29 496 4.715295 0.635477 05/07/2017 10:31 

477 4.72079 0.658382 05/07/2017 10:27 487 4.761978 0.675235 05/07/2017 10:29 497 4.715412 0.669683 05/07/2017 10:31 

478 4.731804 0.660329 05/07/2017 10:27 488 4.747226 0.647783 05/07/2017 10:29 498 4.734058 0.640009 05/07/2017 10:31 

479 4.759009 0.648938 05/07/2017 10:28 489 4.756948 0.629308 05/07/2017 10:29 499 4.72858 0.640343 05/07/2017 10:31 

480 4.736276 0.688806 05/07/2017 10:28 490 4.736912 0.676027 05/07/2017 10:29 500 4.750997 0.65414 05/07/2017 10:31 
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1.6 Library UWB LoS Results  

id 
 

fixed_x 
 

fixed_y est_x est_y  diff timestamp id 
 

fixed_x 
 

fixed_y est_x est_y  diff timestamp 
1 5.061 0.458 4.717 0.638 0.389  4/11/17 - 20:39:00 251 5.061 0.458 4.747 0.654 0.371  4/11/17 - 20:43:10 
2 5.061 0.458 4.769 0.653 0.352  4/11/17 - 20:39:01 252 5.061 0.458 4.726 0.665 0.394  4/11/17 - 20:43:11 
3 5.061 0.458 4.727 0.684 0.404  4/11/17 - 20:39:02 253 5.061 0.458 4.731 0.631 0.373  4/11/17 - 20:43:12 
4 5.061 0.458 4.736 0.67 0.389  4/11/17 - 20:39:03 254 5.061 0.458 4.737 0.638 0.371  4/11/17 - 20:43:13 
5 5.061 0.458 4.74 0.627 0.363  4/11/17 - 20:39:04 255 5.061 0.458 4.742 0.67 0.384  4/11/17 - 20:43:14 
6 5.061 0.458 4.726 0.676 0.4  4/11/17 - 20:39:05 256 5.061 0.458 4.738 0.672 0.388  4/11/17 - 20:43:15 
7 5.061 0.458 4.756 0.621 0.346  4/11/17 - 20:39:06 257 5.061 0.458 4.756 0.618 0.345  4/11/17 - 20:43:20 
8 5.061 0.458 4.706 0.616 0.389  4/11/17 - 20:39:07 258 5.061 0.458 4.726 0.648 0.386  4/11/17 - 20:43:17 
9 5.061 0.458 4.711 0.656 0.403  4/11/17 - 20:39:08 259 5.061 0.458 4.746 0.633 0.361  4/11/17 - 20:43:18 

10 5.061 0.458 4.743 0.654 0.374  4/11/17 - 20:39:09 260 5.061 0.458 4.735 0.682 0.396  4/11/17 - 20:43:19 
11 5.061 0.458 4.747 0.654 0.371  4/11/17 - 20:39:10 261 5.061 0.458 4.741 0.667 0.383  4/11/17 - 20:43:20 
12 5.061 0.458 4.726 0.665 0.394  4/11/17 - 20:39:11 262 5.061 0.458 4.707 0.657 0.407  4/11/17 - 20:43:21 
13 5.061 0.458 4.731 0.631 0.373  4/11/17 - 20:39:12 263 5.061 0.458 4.738 0.641 0.372  4/11/17 - 20:43:22 
14 5.061 0.458 4.737 0.638 0.371  4/11/17 - 20:39:13 264 5.061 0.458 4.76 0.661 0.364  4/11/17 - 20:43:23 
15 5.061 0.458 4.742 0.67 0.384  4/11/17 - 20:39:14 265 5.061 0.458 4.718 0.642 0.39  4/11/17 - 20:43:24 
16 5.061 0.458 4.738 0.672 0.388  4/11/17 - 20:39:15 266 5.061 0.458 4.724 0.664 0.395  4/11/17 - 20:43:25 
17 5.061 0.458 4.756 0.618 0.345  4/11/17 - 20:39:20 267 5.061 0.458 4.756 0.633 0.352  4/11/17 - 20:43:26 
18 5.061 0.458 4.726 0.648 0.386  4/11/17 - 20:39:17 268 5.061 0.458 4.761 0.65 0.357  4/11/17 - 20:43:27 
19 5.061 0.458 4.746 0.633 0.361  4/11/17 - 20:39:18 269 5.061 0.458 4.74 0.679 0.39  4/11/17 - 20:43:28 
20 5.061 0.458 4.735 0.682 0.396  4/11/17 - 20:39:19 270 5.061 0.458 4.702 0.667 0.416  4/11/17 - 20:43:29 
21 5.061 0.458 4.741 0.667 0.383  4/11/17 - 20:39:20 271 5.061 0.458 4.735 0.668 0.388  4/11/17 - 20:43:30 
22 5.061 0.458 4.707 0.657 0.407  4/11/17 - 20:39:21 272 5.061 0.458 4.728 0.676 0.399  4/11/17 - 20:43:31 
23 5.061 0.458 4.738 0.641 0.372  4/11/17 - 20:39:22 273 5.061 0.458 4.748 0.666 0.376  4/11/17 - 20:43:32 
24 5.061 0.458 4.76 0.661 0.364  4/11/17 - 20:39:23 274 5.061 0.458 4.74 0.617 0.359  4/11/17 - 20:43:33 
25 5.061 0.458 4.718 0.642 0.39  4/11/17 - 20:39:24 275 5.061 0.458 4.724 0.618 0.374  4/11/17 - 20:43:34 
26 5.061 0.458 4.724 0.664 0.395  4/11/17 - 20:39:25 276 5.061 0.458 4.743 0.64 0.367  4/11/17 - 20:43:35 
27 5.061 0.458 4.756 0.633 0.352  4/11/17 - 20:39:26 277 5.061 0.458 4.737 0.641 0.373  4/11/17 - 20:43:36 
28 5.061 0.458 4.761 0.65 0.357  4/11/17 - 20:39:27 278 5.061 0.458 4.713 0.638 0.392  4/11/17 - 20:43:37 
29 5.061 0.458 4.74 0.679 0.39  4/11/17 - 20:39:28 279 5.061 0.458 4.751 0.617 0.349  4/11/17 - 20:43:38 
30 5.061 0.458 4.702 0.667 0.416  4/11/17 - 20:39:29 280 5.061 0.458 4.726 0.667 0.395  4/11/17 - 20:43:39 
31 5.061 0.458 4.735 0.668 0.388  4/11/17 - 20:39:30 281 5.061 0.458 4.74 0.677 0.389  4/11/17 - 20:43:40 
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32 5.061 0.458 4.728 0.676 0.399  4/11/17 - 20:39:31 282 5.061 0.458 4.706 0.613 0.388  4/11/17 - 20:43:41 
33 5.061 0.458 4.748 0.666 0.376  4/11/17 - 20:39:32 283 5.061 0.458 4.753 0.654 0.366  4/11/17 - 20:43:42 
34 5.061 0.458 4.74 0.617 0.359  4/11/17 - 20:39:33 284 5.061 0.458 4.745 0.659 0.375  4/11/17 - 20:43:43 
35 5.061 0.458 4.724 0.618 0.374  4/11/17 - 20:39:34 285 5.061 0.458 4.752 0.62 0.349  4/11/17 - 20:43:44 
36 5.061 0.458 4.743 0.64 0.367  4/11/17 - 20:39:35 286 5.061 0.458 4.743 0.654 0.374  4/11/17 - 20:43:45 
37 5.061 0.458 4.737 0.641 0.373  4/11/17 - 20:39:36 287 5.061 0.458 4.754 0.668 0.372  4/11/17 - 20:43:46 
38 5.061 0.458 4.713 0.638 0.392  4/11/17 - 20:39:37 288 5.061 0.458 4.754 0.634 0.354  4/11/17 - 20:43:47 
39 5.061 0.458 4.751 0.617 0.349  4/11/17 - 20:39:38 289 5.061 0.458 4.758 0.652 0.36  4/11/17 - 20:43:48 
40 5.061 0.458 4.726 0.667 0.395  4/11/17 - 20:39:39 290 5.061 0.458 4.742 0.628 0.362  4/11/17 - 20:43:49 
41 5.061 0.458 4.74 0.677 0.389  4/11/17 - 20:39:40 291 5.061 0.458 4.733 0.644 0.378  4/11/17 - 20:43:50 
42 5.061 0.458 4.706 0.613 0.388  4/11/17 - 20:39:41 292 5.061 0.458 4.715 0.659 0.401  4/11/17 - 20:43:51 
43 5.061 0.458 4.753 0.654 0.366  4/11/17 - 20:39:42 293 5.061 0.458 4.759 0.681 0.376  4/11/17 - 20:43:52 
44 5.061 0.458 4.745 0.659 0.375  4/11/17 - 20:39:43 294 5.061 0.458 4.741 0.648 0.373  4/11/17 - 20:43:53 

…. 
……. 
……… 

236 5.061 0.458 4.758 0.638 0.353  4/11/17 - 20:42:57 486 5.061 0.458 4.726 0.676 0.4  4/11/17 - 20:47:05 
237 5.061 0.458 4.726 0.637 0.38  4/11/17 - 20:42:57 487 5.061 0.458 4.756 0.621 0.346  4/11/17 - 20:47:06 
238 5.061 0.458 4.734 0.643 0.376  4/11/17 - 20:42:57 488 5.061 0.458 4.706 0.616 0.389  4/11/17 - 20:47:07 
239 5.061 0.458 4.741 0.657 0.377  4/11/17 - 20:42:58 489 5.061 0.458 4.711 0.656 0.403  4/11/17 - 20:47:08 
240 5.061 0.458 4.728 0.647 0.383  4/11/17 - 20:42:59 490 5.061 0.458 4.743 0.654 0.374  4/11/17 - 20:47:09 
241 5.061 0.458 4.717 0.638 0.389  4/11/17 - 20:43:00 491 5.061 0.458 4.747 0.654 0.371  4/11/17 - 20:47:10 
242 5.061 0.458 4.769 0.653 0.352  4/11/17 - 20:43:01 492 5.061 0.458 4.726 0.665 0.394  4/11/17 - 20:47:11 
243 5.061 0.458 4.727 0.684 0.404  4/11/17 - 20:43:02 493 5.061 0.458 4.731 0.631 0.373  4/11/17 - 20:47:12 
244 5.061 0.458 4.736 0.67 0.389  4/11/17 - 20:43:04 494 5.061 0.458 4.737 0.638 0.371  4/11/17 - 20:47:13 
245 5.061 0.458 4.74 0.627 0.363  4/11/17 - 20:43:04 495 5.061 0.458 4.742 0.67 0.384  4/11/17 - 20:47:14 
246 5.061 0.458 4.726 0.676 0.4  4/11/17 - 20:43:05 496 5.061 0.458 4.738 0.672 0.388  4/11/17 - 20:47:15 
247 5.061 0.458 4.756 0.621 0.346  4/11/17 - 20:43:06 497 5.061 0.458 4.756 0.618 0.345  4/11/17 - 20:47:20 
248 5.061 0.458 4.706 0.616 0.389  4/11/17 - 20:43:07 498 5.061 0.458 4.726 0.648 0.386  4/11/17 - 20:47:17 
249 5.061 0.458 4.711 0.656 0.403  4/11/17 - 20:43:08 499 5.061 0.458 4.746 0.633 0.361  4/11/17 - 20:47:18 
250 5.061 0.458 4.743 0.654 0.374  4/11/17 - 20:43:09 500 5.061 0.458 4.735 0.682 0.396  4/11/17 - 20:47:19 
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1.7 Library UWB NLoS Results 

id 
 

fixed_x 
 

fixed_y est_x est_y  diff timestamp id 
 

fixed_x 
 

fixed_y est_x est_y  diff timestamp 

1 5.061 0.458 5.017 0.36 0.108  4/11/17 - 16:58:25 251 5.061 0.458 5.013 0.426 0.058  4/11/17 - 17:02:35 

2 5.061 0.458 4.997 0.35 0.126  4/11/17 - 16:58:26 252 5.061 0.458 4.909 0.37 0.176  4/11/17 - 17:02:36 

3 5.061 0.458 5.035 0.35 0.112  4/11/17 - 16:58:27 253 5.061 0.458 4.732 0.398 0.335  4/11/17 - 17:02:37 

4 5.061 0.458 4.995 0.317 0.156  4/11/17 - 16:58:28 254 5.061 0.458 4.801 0.372 0.274  4/11/17 - 17:02:38 

5 5.061 0.458 5.009 0.304 0.163  4/11/17 - 16:58:29 255 5.061 0.458 4.891 0.346 0.204  4/11/17 - 17:02:39 

6 5.061 0.458 5.009 0.369 0.104  4/11/17 - 16:58:30 256 5.061 0.458 4.921 0.347 0.179  4/11/17 - 17:02:40 

7 5.061 0.458 5.014 0.381 0.091  4/11/17 - 16:58:31 257 5.061 0.458 4.914 0.388 0.163  4/11/17 - 17:02:41 

8 5.061 0.458 4.969 0.349 0.143  4/11/17 - 16:58:32 258 5.061 0.458 4.948 0.328 0.173  4/11/17 - 17:02:42 

9 5.061 0.458 4.991 0.36 0.121  4/11/17 - 16:58:33 259 5.061 0.458 4.938 0.371 0.151  4/11/17 - 17:02:43 

10 5.061 0.458 4.986 0.347 0.134  4/11/17 - 16:58:34 260 5.061 0.458 4.94 0.343 0.167  4/11/17 - 17:02:44 

11 5.061 0.458 5.023 0.37 0.096  4/11/17 - 16:58:35 261 5.061 0.458 4.956 0.375 0.134  4/11/17 - 17:02:45 

12 5.061 0.458 4.988 0.328 0.15  4/11/17 - 16:58:36 262 5.061 0.458 4.946 0.368 0.147  4/11/17 - 17:02:46 

13 5.061 0.458 4.976 0.399 0.104  4/11/17 - 16:58:37 263 5.061 0.458 4.982 0.397 0.1  4/11/17 - 17:02:47 

14 5.061 0.458 4.986 0.346 0.135  4/11/17 - 16:58:38 264 5.061 0.458 5.021 0.376 0.092  4/11/17 - 17:02:48 

15 5.061 0.458 5.019 0.363 0.104  4/11/17 - 16:58:39 265 5.061 0.458 4.986 0.372 0.115  4/11/17 - 17:02:49 

16 5.061 0.458 4.982 0.354 0.131  4/11/17 - 16:58:40 266 5.061 0.458 5.017 0.314 0.151  4/11/17 - 17:02:50 

17 5.061 0.458 4.977 0.324 0.159  4/11/17 - 16:58:41 267 5.061 0.458 5.011 0.335 0.133  4/11/17 - 17:02:51 

18 5.061 0.458 5.006 0.375 0.1  4/11/17 - 16:58:42 268 5.061 0.458 4.989 0.359 0.123  4/11/17 - 17:02:52 

19 5.061 0.458 5.023 0.416 0.057  4/11/17 - 16:58:43 269 5.061 0.458 4.99 0.324 0.152  4/11/17 - 17:02:53 

20 5.061 0.458 5.074 0.403 0.057  4/11/17 - 16:58:44 270 5.061 0.458 4.996 0.375 0.106  4/11/17 - 17:02:54 

21 5.061 0.458 5.033 0.392 0.072  4/11/17 - 16:58:45 271 5.061 0.458 5.016 0.368 0.101  4/11/17 - 17:02:57 

22 5.061 0.458 5.041 0.345 0.115  4/11/17 - 16:58:46 272 5.061 0.458 4.999 0.344 0.13  4/11/17 - 17:02:57 

23 5.061 0.458 5.019 0.359 0.108  4/11/17 - 16:58:47 273 5.061 0.458 5.032 0.422 0.047  4/11/17 - 17:02:57 

24 5.061 0.458 5.007 0.417 0.068  4/11/17 - 16:58:48 274 5.061 0.458 5.001 0.349 0.125  4/11/17 - 17:02:58 

25 5.061 0.458 4.974 0.358 0.133  4/11/17 - 16:58:49 275 5.061 0.458 4.987 0.408 0.09  4/11/17 - 17:02:59 

26 5.061 0.458 4.993 0.338 0.138  4/11/17 - 16:58:50 276 5.061 0.458 4.986 0.345 0.136  4/11/17 - 17:03:00 
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27 5.061 0.458 4.991 0.302 0.171  4/11/17 - 16:58:51 277 5.061 0.458 5.001 0.384 0.096  4/11/17 - 17:03:01 

28 5.061 0.458 4.972 0.369 0.126  4/11/17 - 16:58:52 278 5.061 0.458 5.021 0.398 0.073  4/11/17 - 17:03:02 

29 5.061 0.458 4.99 0.304 0.17  4/11/17 - 16:58:53 279 5.061 0.458 5.013 0.378 0.094  4/11/17 - 17:03:03 

30 5.061 0.458 5.006 0.373 0.102  4/11/17 - 16:58:54 280 5.061 0.458 5.013 0.389 0.085  4/11/17 - 17:03:04 

31 5.061 0.458 5.016 0.322 0.144  4/11/17 - 16:58:55 281 5.061 0.458 4.979 0.374 0.118  4/11/17 - 17:03:05 

32 5.061 0.458 5.004 0.353 0.12  4/11/17 - 16:58:56 282 5.061 0.458 5 0.333 0.14  4/11/17 - 17:03:06 

33 5.061 0.458 4.983 0.312 0.166  4/11/17 - 16:58:57 283 5.061 0.458 5.008 0.376 0.098  4/11/17 - 17:03:07 

34 5.061 0.458 5.006 0.346 0.125  4/11/17 - 16:58:58 284 5.061 0.458 5.059 0.331 0.128  4/11/17 - 17:03:08 

35 5.061 0.458 5.019 0.334 0.131  4/11/17 - 16:58:59 285 5.061 0.458 4.892 0.295 0.235  4/11/17 - 17:03:09 
… 
….. 
…….. 

238 5.061 0.458 5.018 0.347 0.12  4/11/17 - 17:02:22 488 5.061 0.458 5.005 0.349 0.123  4/11/17 - 17:06:32 

239 5.061 0.458 5.041 0.36 0.101  4/11/17 - 17:02:23 489 5.061 0.458 4.974 0.364 0.129  4/11/17 - 17:06:33 

240 5.061 0.458 5.025 0.386 0.081  4/11/17 - 17:02:24 490 5.061 0.458 4.974 0.343 0.145  4/11/17 - 17:06:34 

241 5.061 0.458 4.987 0.283 0.191  4/11/17 - 17:02:25 491 5.061 0.458 5.001 0.347 0.127  4/11/17 - 17:06:35 

242 5.061 0.458 4.974 0.332 0.154  4/11/17 - 17:02:26 492 5.061 0.458 4.979 0.349 0.137  4/11/17 - 17:06:36 

243 5.061 0.458 4.964 0.333 0.159  4/11/17 - 17:02:27 493 5.061 0.458 4.99 0.389 0.1  4/11/17 - 17:06:37 

244 5.061 0.458 4.898 0.348 0.197  4/11/17 - 17:02:28 494 5.061 0.458 4.982 0.378 0.113  4/11/17 - 17:06:38 

245 5.061 0.458 4.877 0.337 0.221  4/11/17 - 17:02:29 495 5.061 0.458 5 0.358 0.118  4/11/17 - 17:06:39 

246 5.061 0.458 4.88 0.359 0.207  4/11/17 - 17:02:30 496 5.061 0.458 5.018 0.422 0.057  4/11/17 - 17:06:40 

247 5.061 0.458 4.897 0.328 0.21  4/11/17 - 17:02:31 497 5.061 0.458 5.015 0.388 0.084  4/11/17 - 17:06:41 

248 5.061 0.458 4.893 0.317 0.22  4/11/17 - 17:02:32 498 5.061 0.458 4.983 0.358 0.127  4/11/17 - 17:06:42 

249 5.061 0.458 4.904 0.34 0.197  4/11/17 - 17:02:33 499 5.061 0.458 4.984 0.355 0.129  4/11/17 - 17:06:43 

250 5.061 0.458 4.672 0.366 0.4  4/11/17 - 17:02:34 500 5.061 0.458 4.999 0.363 0.114  4/11/17 - 17:06:44 
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Appendix 3 – Schematics 

The following appendix details some of the configurations that were used during the evaluation of 

CAPTURE.  

3.1 Sample Configurations for Canteen Experiments 

The following experiments were carried out in the canteen, the results for these can be viewed in 3 

 

                                                      
3 https://captureips.com/results/Canteen_Results/  

Figure A3–1: Canteen test configuration 1 

https://captureips.com/results/Canteen_Results/
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Figure A3–2: Canteen test configuration 3 

Figure A3–3: Canteen test configuration 4 
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Figure A3–4: Canteen test configuration 5 
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3.2 Sample Configurations for Library Experiments 

The following experiments were carried out in the Library, the results for these can be viewed in 4  

                                                      
4 https://captureips.com/results/Library_Results/  

Figure A3–5: Library test configuration 2 

Figure A3–6: Library test configuration 3 

https://captureips.com/results/Library_Results/
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Figure A3–7: Library test configuration 4 

Figure A3–8: Library test configuration 5 
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