61 research outputs found

    Multi‐Objective Hyper‐Heuristics

    Get PDF
    Multi‐objective hyper‐heuristics is a search method or learning mechanism that operates over a fixed set of low‐level heuristics to solve multi‐objective optimization problems by controlling and combining the strengths of those heuristics. Although numerous papers on hyper‐heuristics have been published and several studies are still underway, most research has focused on single‐objective optimization. Work on hyper‐heuristics for multi‐objective optimization remains limited. This chapter draws attention to this area of research to help researchers and PhD students understand and reuse these methods. It also provides the basic concepts of multi‐objective optimization and hyper‐heuristics to facilitate a better understanding of the related research areas, in addition to exploring hyper‐heuristic methodologies that address multi‐objective optimization. Some design issues related to the development of hyper‐heuristic framework for multi‐objective optimization are discussed. The chapter concludes with a case study of multi‐objective selection hyper‐heuristics and its application on a real‐world problem

    A Classification of Hyper-heuristic Approaches

    Get PDF
    The current state of the art in hyper-heuristic research comprises a set of approaches that share the common goal of automating the design and adaptation of heuristic methods to solve hard computational search problems. The main goal is to produce more generally applicable search methodologies. In this chapter we present and overview of previous categorisations of hyper-heuristics and provide a unified classification and definition which captures the work that is being undertaken in this field. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail. Our goal is to both clarify the main features of existing techniques and to suggest new directions for hyper-heuristic research

    Hyper-heuristic decision tree induction

    Get PDF
    A hyper-heuristic is any algorithm that searches or operates in the space of heuristics as opposed to the space of solutions. Hyper-heuristics are increasingly used in function and combinatorial optimization. Rather than attempt to solve a problem using a fixed heuristic, a hyper-heuristic approach attempts to find a combination of heuristics that solve a problem (and in turn may be directly suitable for a class of problem instances). Hyper-heuristics have been little explored in data mining. This work presents novel hyper-heuristic approaches to data mining, by searching a space of attribute selection criteria for decision tree building algorithm. The search is conducted by a genetic algorithm. The result of the hyper-heuristic search in this case is a strategy for selecting attributes while building decision trees. Most hyper-heuristics work by trying to adapt the heuristic to the state of the problem being solved. Our hyper-heuristic is no different. It employs a strategy for adapting the heuristic used to build decision tree nodes according to some set of features of the training set it is working on. We introduce, explore and evaluate five different ways in which this problem state can be represented for a hyper-heuristic that operates within a decisiontree building algorithm. In each case, the hyper-heuristic is guided by a rule set that tries to map features of the data set to be split by the decision tree building algorithm to a heuristic to be used for splitting the same data set. We also explore and evaluate three different sets of low-level heuristics that could be employed by such a hyper-heuristic. This work also makes a distinction between specialist hyper-heuristics and generalist hyper-heuristics. The main difference between these two hyperheuristcs is the number of training sets used by the hyper-heuristic genetic algorithm. Specialist hyper-heuristics are created using a single data set from a particular domain for evolving the hyper-heurisic rule set. Such algorithms are expected to outperform standard algorithms on the kind of data set used by the hyper-heuristic genetic algorithm. Generalist hyper-heuristics are trained on multiple data sets from different domains and are expected to deliver a robust and competitive performance over these data sets when compared to standard algorithms. We evaluate both approaches for each kind of hyper-heuristic presented in this thesis. We use both real data sets as well as synthetic data sets. Our results suggest that none of the hyper-heuristics presented in this work are suited for specialization – in most cases, the hyper-heuristic’s performance on the data set it was specialized for was not significantly better than that of the best performing standard algorithm. On the other hand, the generalist hyper-heuristics delivered results that were very competitive to the best standard methods. In some cases we even achieved a significantly better overall performance than all of the standard methods

    A hyperheuristic methodology to generate adaptive strategies for games

    Get PDF
    Hyperheuristics have been successfully applied in solving a variety of computational search problems. In this study, we investigate a hyper-heuristic methodology to generate adaptive strategies for games. Based on a set of low-level heuristics (or strategies), a hyper-heuristic game player can generate strategies which adapt to both the behaviour of the co-players and the game dynamics. By using a simple heuristic selection mechanism, a number of existing heuristics for specialised games can be integrated into an automated game player. As examples, we develop hyperheuristic game players for three games: iterated prisoner's dilemma, repeated Goofspiel and the competitive traveling salesmen problem. The results demonstrate that a hyperheuristic game player outperforms the low-level heuristics, when used individually in game playing and it can generate adaptive strategies even if the low-level heuristics are deterministic. This methodology provides an efficient way to develop new strategies for games based on existing strategies

    Técnicas de optimización paralelas : esquema híbrido basado en hiperheurísticas y computación evolutiva

    Get PDF
    Optimisation is the process of selecting the best element fr om a set of available alternatives. Solutions are termed good or bad depending on its performance for a set of objectives. Several algorithms to deal with such kind of problems have been defined in the literature. Metaheuristics are one of the most prominent techniques. They are a class of modern heuristics whose main goal is to com bine heuristics in a problem independent way with the aim of improving their per formance. Meta- heuristics have reported high-quality solutions in severa l fields. One of the reasons of the good behaviour of metaheuristics is that they are defin ed in general terms. Therefore, metaheuristic algorithms can be adapted to fit th e needs of most real-life optimisation. However, such an adaptation is a hard task, and it requires a high computational and user effort. There are two main ways of reducing the effort associated to th e usage of meta- heuristics. First, the application of hyperheuristics and parameter setting strategies facilitates the process of tackling novel optimisation pro blems and instances. A hyperheuristic can be viewed as a heuristic that iterativel y chooses between a set of given low-level metaheuristics in order to solve an optim isation problem. By using hyperheuristics, metaheuristic practitioners do no t need to manually test a large number of metaheuristics and parameterisations for d iscovering the proper algorithms to use. Instead, they can define the set of configur ations which must be tested, and the model tries to automatically detect the be st-behaved ones, in order to grant more resources to them. Second, the usage of pa rallel environments might speedup the process of automatic testing, so high qual ity solutions might be achieved in less time. This research focuses on the design of novel hyperheuristic s and defines a set of models to allow their usage in parallel environments. Differ ent hyperheuristics for controlling mono-objective and multi-objective multi-po int optimisation strategies have been defined. Moreover, a set of novel multiobjectivisa tion techniques has been proposed. In addition, with the aim of facilitating the usage of multiobjectivi- sation, the performance of models that combine the usage of m ultiobjectivisation and hyperheuristics has been studied. The proper performance of the proposed techniques has been v alidated with a set of well-known benchmark optimisation problems. In addi tion, several practical and complex optimisation problems have been addressed. Som e of the analysed problems arise in the communication field. In addition, a pac king problem proposed in a competition has been faced up. The proposals for such pro blems have not been limited to use the problem-independent schemes. Inste ad, new metaheuristics, operators and local search strategies have been defined. Suc h schemes have been integrated with the designed parallel hyperheuristics wit h the aim of accelerating the achievement of high quality solutions, and with the aim of fa cilitating their usage. In several complex optimisation problems, the current best -known solutions have been found with the methods defined in this dissertation.Los problemas de optimización son aquellos en los que hay que elegir cuál es la solución más adecuada entre un conjunto de alternativas. Actualmente existe una gran cantidad de algoritmos que permiten abordar este tipo de problemas. Entre ellos, las metaheurísticas son una de las técnicas más usadas. El uso de metaheurísticas ha posibilitado la resolución de una gran cantidad de problemas en diferentes campos. Esto se debe a que las metaheurísticas son técnicas generales, con lo que disponen de una gran cantidad de elementos o parámetros que pueden ser adaptados a la hora de afrontar diferentes problemas de optimización. Sin embargo, la elección de dichos parámetros no es sencilla, por lo que generalmente se requiere un gran esfuerzo computacional, y un gran esfuerzo por parte del usuario de estas técnicas. Existen diversas técnicas que atenúan este inconveniente. Por un lado, existen varios mecanismos que permiten seleccionar los valores de dichos parámetros de forma automática. Las técnicas más simples utilizan valores fijos durante toda la ejecución, mientras que las técnicas más avanzadas, como las hiperheurísticas, adaptan los valores usados a las necesidades de cada fase de optimización. Además, estas técnicas permiten usar varias metaheurísticas de forma simultánea. Por otro lado, el uso de técnicas paralelas permite acelerar el proceso de testeo automático, reduciendo el tiempo necesario para obtener soluciones de alta calidad. El objetivo principal de esta tesis ha sido diseñar nuevas hiperheurísticas e integrarlas en el modelo paralelo basado en islas. Estas técnicas se han usado para controlar los parámetros de varias metaheurísticas evolutivas. Se han definido diversas hiperheurísticas que han permitido abordar tanto problemas mono-objetivo como problemas multi-objetivo. Además, se han definido un conjunto de multiobjetivizaciones, que a su vez se han beneficiado de las hiperheurísticas propuestas. Las técnicas diseñadas se han validado con algunos de los problemas de test más ampliamente utilizados. Además, se han abordado un conjunto de problemas de optimización prácticos. Concretamente, se han tratado tres problemas que surgen en el ámbito de las telecomunicaciones, y un problema de empaquetado. En dichos problemas, además de usar las hiperheurísticas y multiobjetivizaciones, se han definido nuevos algoritmos, operadores, y estrategias de búsqueda local. En varios de los problemas, el uso combinado de todas estas técnicas ha posibilitado obtener las mejores soluciones encontradas hasta el momento

    A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems

    Get PDF
    Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite

    An efficient robust hyperheuristic clustering algorithm

    Get PDF
    Observations on recent research of clustering problems illustrate that most of the approaches used to deal with these problems are based on meta-heuristic and hybrid meta-heuristic to improve the solutions. Hyperheuristic is a set of heuristics, meta- heuristics and high-level search strategies that work on the heuristic search space instead of solution search space. Hyperheuristics techniques have been employed to develop approaches that are more general than optimization search methods and traditional techniques. In the last few years, most studies have focused considerably on the hyperheuristic algorithms to find generalized solutions but highly required robust and efficient solutions. The main idea in this research is to develop techniques that are able to provide an appropriate level of efficiency and high performance to find a class of basic level heuristic over different type of combinatorial optimization problems. Clustering is an unsupervised method in the data mining and pattern recognition. Nevertheless, most of the clustering algorithms are unstable and very sensitive to their input parameters. This study, proposes an efficient and robust hyperheuristic clustering algorithm to find approximate solutions and attempts to generalize the algorithm for different cluster problem domains. Our proposed clustering algorithm has managed to minimize the dissimilarity of all points of a cluster using hyperheuristic method, from the gravity center of the cluster with respect to capacity constraints in each cluster. The algorithm of hyperheuristic has emerged from pool of heuristic techniques. Mapping between solution spaces is one of the powerful and prevalent techniques in optimization domains. Most of the existing algorithms work directly with solution spaces where in some cases is very difficult and is sometime impossible due to the dynamic behavior of data and algorithm. By mapping the heuristic space into solution spaces, it would be possible to make easy decision to solve clustering problems. The proposed hyperheuristic clustering algorithm performs four major components including selection, decision, admission and hybrid metaheuristic algorithm. The intensive experiments have proven that the proposed algorithm has successfully produced robust and efficient clustering results

    A multi-objective hyper-heuristic based on choice function

    Get PDF
    Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the proposed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM

    Choice function based hyper-heuristics for multi-objective optimization

    Get PDF
    A selection hyper-heuristic is a high level search methodology which operates over a fixed set of low level heuristics. During the iterative search process, a heuristic is selected and applied to a candidate solution in hand, producing a new solution which is then accepted or rejected at each step. Selection hyper-heuristics have been increasingly, and successfully, applied to single-objective optimization problems, while work on multi-objective selection hyper-heuristics is limited. This work presents one of the initial studies on selection hyper-heuristics combining a choice function heuristic selection methodology with great deluge and late acceptance as non-deterministic move acceptance methods for multi-objective optimization. A well-known hypervolume metric is integrated into the move acceptance methods to enable the approaches to deal with multi-objective problems. The performance of the proposed hyper-heuristics is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, they are applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the non-deterministic move acceptance, particularly great deluge when used as a component of a choice function based selection hyper-heuristic
    corecore