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Abstract 

 

A hyper-heuristic is any algorithm that searches or operates in the space of 

heuristics as opposed to the space of solutions. Hyper-heuristics are 

increasingly used in function and combinatorial optimization. Rather than 

attempt to solve a problem using a fixed heuristic, a hyper-heuristic 

approach attempts to find a combination of heuristics that solve a problem 

(and in turn may be directly suitable for a class of problem instances). 

Hyper-heuristics have been little explored in data mining. This work presents 

novel hyper-heuristic approaches to data mining, by searching a space of 

attribute selection criteria for decision tree building algorithm. The search is 

conducted by a genetic algorithm. The result of the hyper-heuristic search in 

this case is a strategy for selecting attributes while building decision trees. 

 

Most hyper-heuristics work by trying to adapt the heuristic to the state of 

the problem being solved. Our hyper-heuristic is no different. It employs a 

strategy for adapting the heuristic used to build decision tree nodes 

according to some set of features of the training set it is working on.  We 

introduce, explore and evaluate five different ways in which this problem 

state can be represented for a hyper-heuristic that operates within a decision-

tree building algorithm. In each case, the hyper-heuristic is guided by a rule 

set that tries to map features of the data set to be split by the decision tree 

building algorithm to a heuristic to be used for splitting the same data set. 

We also explore and evaluate three different sets of low-level heuristics that 

could be employed by such a hyper-heuristic.  

 

This work also makes a distinction between specialist hyper-heuristics and 

generalist hyper-heuristics. The main difference between these two hyper-

heuristcs is the number of training sets used by the hyper-heuristic genetic 

algorithm. Specialist hyper-heuristics are created using a single data set from 

a particular domain for evolving the hyper-heurisic rule set. Such algorithms 

are expected to outperform standard algorithms on the kind of data set used 



 

by the hyper-heuristic genetic algorithm. Generalist hyper-heuristics are 

trained on multiple data sets from different domains and are expected to 

deliver a robust and competitive performance over these data sets when 

compared to standard algorithms.  

 

We evaluate both approaches for each kind of hyper-heuristic presented in 

this thesis. We use both real data sets as well as synthetic data sets. Our 

results suggest that none of the hyper-heuristics presented in this work are 

suited for specialization – in most cases, the hyper-heuristic’s performance on 

the data set it was specialized for was not significantly better than that of 

the best performing standard algorithm. On the other hand, the generalist 

hyper-heuristics delivered results that were very competitive to the best 

standard methods. In some cases we even achieved a significantly better 

overall performance than all of the standard methods. 
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Chapter 1 

 

 

Introduction 

 

 

 

 

 

 

1.1 Data Mining 

 

Data mining is the extraction of useful knowledge from data (Freitas, 2002). 

One very common data mining task is classification. Classification involves 

predicting the class of previously unseen objects using a number of attributes 

that describe these objects. This could be trying to guess whether a patient 

has some form of cancer or not from his or her symptoms and physical 

attributes; or trying to predict the likelihood of a customer being interested in 

a certain product given a history of his or her past purchases. This is made 

possible through the use of a classification system that is built by generalising 

from available training data – data that contains a set of instances together 

with their class. 

 

There are many different ways of representing a classification model: 

classification rules, decision trees, Bayesian networks, neural networks and 

support vectors produced by support vector machines are examples of such 
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representations. Each representation comes with its own set of advantages 

and disadvantages. When trying to choose a suitable representation for a 

particular problem, one usually has to consider the pros and cons of each type 

of classifier against the requirements of the solution that is needed. For 

example, a neural network might be very accurate in predicting the class of 

an unseen object but it is no use to someone who wants to understand the 

mechanism used by the classifier to separate instances into classes. 

Classification rules might be a better option is such a case since such rules are 

very easy to read and understand. 

 

 

1.2 Motivation for Hyper-heuristics 

 

Classification is used in a wide variety of problem domains.  There are 

numerous algorithms that can be used to build each of the representations a 

classifier can take. It has been shown that there is no such thing as a single 

algorithm that works well for all problem domains (Lim et al, 2000). This 

creates the challenge of deciding which is the most suitable algorithm to use 

for building the classifier from the available training data. For example, there 

are many different decision tree building algorithms that can be used to build 

a decision tree. Different algorithms use different heuristics for building a 

decision tree and there is no clear way of matching the right algorithm to the 

data that needs to be mined. Furthermore, it rarely happens that an 

algorithm is used as is. There is often a customisation process that involves 

fine tuning and tailoring the data mining algorithm to the nature of the 

training data set at hand.  

 

The problem of choosing the right algorithm for a given problem also exists 

outside the field of data mining. For example, Soubeiga (2003) explains the 

difficulty of re-using algorithms for building schedules over different problem 
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cases. An algorithm that works well for one case of a scheduling problem is 

bound to perform very badly on another case of a completely different 

scheduling problem. Burke et al (2003b) highlight the same kind of issues 

when working with algorithms that build timetables and rosters while Ross et 

al (2003) give examples that demonstrate similar challenges in the field of 

bin-packing problems. 

 

One way of overcoming this problem is through the use of hyper-heuristics 

(Cowling et al, 2000; Özcan et al, 2008). A hyper-heuristic is a strategy for 

adapting the heuristic used to build a solution according to the problem at 

hand. This is possible because hyper-heuristics, unlike standard heuristics and 

meta-heuristics, operate in the space of heuristics as opposed to the space of 

solutions. In the past decade or so, research in this area has produced many 

different types of hyper-heuristics. A description that probably holds true for 

most (if not all) of these hyper-heuristics is one that defines a hyper-heuristic 

as a program that takes a problem state and/or a solution state as input and 

returns the heuristic to be applied to that problem as output (see Figure 1.1). 

 

 
Figure 1.1: Concept of Hyper-heuristics 

 

Hyper-heuristics have been successfully applied to many kinds of scheduling 

problems (Fang et al, 1993; 1994; Cowling et al, 2000; 2000a; Kendall et al 

2002a; Cowling and Chakhlevitch, 2003; Chakhlevitch and Cowling, 2005. 

Burke et al, 2005b), timetabling problems (Burke and Newall, 2002; Burke et 

al, 2003b; 2005a; 2007a; 2007b; Ross et al, 2004; Ross and Marín-Blázquez, 

2005; Chen et al, 2007; Qu and Burke, 2008), cutting stock problems 

(Terashima-Marín et al, 2005; 2006), bin-packing problems (Ross et al, 2002; 
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2003; Burke et al, 2006a; Marín-Blázquez and Schulenburg, 2006; 2007) as 

well as a number of other combinatorial and constraint satisfaction problems 

(Schmiedle et al, 2002; Kendall and Mohammad, 2004a; Oltean and 

Dumitrescu, 2004; Keller and Poli 2007a; 2007b; Kumar et al, 2008). 

 

 

1.3 Hyper-heuristics for Decision Tree Building 

Algorithms 

 

Very little work has been done in the way of applying hyper-heuristics to 

create adaptive data mining algorithms. To the best of our knowledge, the 

only work that does this is Pappa and Freitas (2006). The idea was first 

presented in Pappa and Freitas (2004). This work uses grammar-based 

genetic programming to automatically construct rule induction algorithms. 

Though the term hyper-heuristics is never explicitly mentioned by the 

authors of this work, their method involves conducting a search in the space 

of heuristics as opposed to the space of solutions. To be precise, the search is 

conducted via genetic programming in a space made up of the basic building 

blocks of rule induction algorithms. 

 

This thesis presents an alternative hyper-heuristic framework for constructing 

a different breed of data mining algorithms: decision tree building algorithms. 

Decision trees are tree-like graphs made up of nodes, branches and leaves 

where the nodes contain attribute names, the branches contain attribute 

values and the leaves contain target class values (see Figure 1.2). A decision 

tree can be used to classify objects by traversing it from the top down. At 

each step of the way, the branch taken is always the one whose value matches 

the value of the object’s attributes. The traversal process stops at one of the 

bottom leaves. The class specified by the leaf is the class assigned to the 
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object. Decision trees are widely used in the data mining community as they 

are easy to read and understand as well as fast to traverse.  

 

 
Figure 1.2: A Generic Decision Tree 

 

A typical decision tree building algorithm builds a tree step by step by 

deciding, at each step, how to develop the next node in the tree using the 

training data set. The topmost node is the first to be created after which the 

rest of the tree is grown in a recursive manner. An example of such an 

algorithm is the popular ID3 (Quinlan, 1986). The vast majority of algorithms 

for building decision trees use this strategy. One of the procedures that 

usually varies from one algorithm to another is the heuristic used to choose 

which attribute should be placed at each node in the tree. ID3 uses a heuristic 

based on information gain to create nodes in a decision tree. The heuristic 

used to create tree nodes is crucial to the performance of the resulting 

decision tree, so much so that decision tree building algorithms are often 
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defined, to some extent, by the heuristic they employ to create nodes 

(Buntine and Niblett, 1992; Liu and White, 1994). 

 

One thing common to all decision tree building algorithms is that this 

heuristic is static throughout the whole tree building process. This brings us 

back to the problem mentioned earlier. There is no heuristic that is 

universally better at building decision trees. Different heuristics are suited for 

different data sets.  Furthermore, there is no clear way of choosing which 

heuristic to use according to the data set at hand.  

 

This work addresses this problem by proposing a hyper-heuristic decision tree 

induction algorithm. Our hyper-heuristic automatically chooses which 

heuristic to use according to the data set at hand. We do this by augmenting 

the standard decision tree building technique described earlier with a hyper-

heuristic that, at each step of the way, is input with the current problem 

state and returns the heuristic to be used to handle that problem state. The 

problem state is the training data set while the output is the heuristic that 

chooses which attribute to use at the next tree node to be created. The hyper-

heuristic manages this through a rule set: a number of if-then rules that map 

certain features of the data set to a heuristic (see Figure 1.3). 

 

 

 
Figure 1.3: Hyper-heuristic for Decision Tree Induction 

 

One can call this rule set the “brain” of the hyper-heuristic since it transforms 

our decision tree building algorithm into a hyper-heuristic capable of adapting 

the heuristic used for attribute selection according to the problem at hand. 
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We present various ways in which such a rule set can be represented, mostly 

differing in the way the problem state is characterized (i.e. the data set 

features considered by the rule set). We explore two possible uses for each of 

these variants by defining two types of hyper-heuristics for decision tree 

building algorithms: specialized hyper-heuristics that are tailored for a data 

set from a particular problem domain and generalized hyper-heuristics that 

are expected to run reasonably well over a number of data sets from different 

problem domains. In all cases, we use a hyper-heuristic genetic algorithm for 

discovering a good set of rules. 

 

All of these hyper-heuristics are tested on a number of real data sets picked 

from a wide variety of domains. We use data sets of different sizes with 

underlying classification models of varying complexity. The results obtained 

are compared to those achieved by a number of standard, non-adaptive 

decision tree building algorithms. We identify situations in which using such 

hyper-heuristics can yield decision trees of a higher predictive accuracy than 

the ones created by the standard methods. We also run experiments on 

synthetic data sets to try and understand how such hyper-heuristics are 

capable of adapting the heuristic used according to the problem state. 

 

 

1.4 Contributions 

 

This thesis offers contributions in the area of hyper-heuristics and data 

mining. The primary contribution of this thesis is the first set of approaches 

to develop decision-tree based data mining algorithms using hyper-heuristics. 

In fact, this represents one of the first few attempts at developing data 

mining algorithms in general using hyper-heuristics. A specific breakdown of 

the main contributions is as follows: 
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1. A key factor for any hyper-heuristic is how to represent the problem 

state. We introduce, explore and evaluate five different ways how the 

problem state can be represented: 

a. Using the number of instances in the partition to be split 

(sections 3.4 and 3.5). 

b. Using the number of attributes left in the partition to be split 

(section 4.1). 

c. Using the value count of the attributes left in the partition to be 

split (section 4.2). 

d. Using the entropy of the attributes left in the partition to be 

split (section 4.3). 

e. Using the maximum conditional entropy of the class attribute in 

the partition to be split (section 4.4). 

 

2. Another key factor for any hyper-heuristic is the pool of low-level 

heuristics at its disposal. We explore and evaluate three different pools 

of heuristics for finding splitting attributes: 

a. Using a single fixed heuristic for sorting the candidate splitting 

attributes while adapting the ranking of the chosen attribute 

(section 3.4). 

b. Using a set of two heuristics for sorting the candidate splitting 

attributes as well as adapting the ranking of the chosen 

attribute (section 3.5). 

c. Using a bigger set of five or twelve heuristics for sorting the 

candidate splitting attributes while always choosing the first-

ranked attribute from the sorted list of attributes (sections 4.1, 

4.2, 4,3 and 4.4). 

  

3. We make a distinction between specialist hyper-heuristics (trained on a 

single data set from a particular domain) and generalist hyper-
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heurisitics (trained on a number of data sets from different domains) 

and we evaluate both approaches for each of the hyper-heuristics 

presented in this work. 

 

4. In chapter 5 we present experimental evidence using synthetic data 

sets that tries to shed some light on when and why our hyper-

heuristics work. These experiments suggest that the number of data 

sets used to train a hyper-heuristic for decision-tree building algorithms 

such as the ones presented in this work is related to the performance of 

the resultant decision trees (section 5.1). They also suggest that having 

a pool of training data sets with a variety of class distributions can 

help evolve more robust hyper-heuristics (section 5.2). 

 

The PhD research described in this thesis has produced the following 

publication:  

 

Vella A., Corne D. and Murphy C. (2009) Hyper-heuristic Decision Tree 

Induction. World Congress on Nature & Biologically Inspired Computing, 

2009, pp. 409-414. 

 

 

1.5 Thesis Overview 

 

The rest of this thesis is structured as follows. Chapter 2 provides the 

necessary background to this thesis in the form of a literature review of 

hyper-heuristics and decision-tree building algorithms. In chapter 3 we discuss 

certain shortcomings of the current non-adaptive methods for building 

decision trees, thus explaining our motivation for using hyper-heuristics. We 

present the first version of our hyper-heuristic together with experimental 

results that compare it to standard methods on real data sets. Chapter 4 
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presents four more variants of our hyper-heuristic. Each of these variants is 

again compared to standard methods on real data sets. In chapter 5 we try to 

understand how and when our hyper-heuristics perform well by running 

experiments on synthetic data sets. Chapter 6 lists our conclusions as well as 

possible future work. 
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Chapter 2 

 

 

Literature Review  

 

 

 

 

 

 

2.1 Hyper-heuristics 

 

2.1.1 Origins and Early Approaches 

The origin of the notion behind hyper-heuristics can be traced back to the 

1960s (Fisher and Thompson, 1961; Crowston et al, 1963). This work 

investigated combinations of basic rules for job-shop scheduling. Using 

probabilistic learning they showed that combining these scheduling rules gave 

better results than applying any one of them separately. This notion was not 

revisited until 1985 (Smith, 1985) when Smith developed a hybrid genetic 

algorithm for solving the bin packing problem. This genetic algorithm used an 

indirect encoding approach in which a chromosome represented rules for 

producing the solution as opposed to the solution itself. In this work, a base 

heuristic was used to pack items of various sizes into bins while a genetic 

algorithm was employed to find the best ordering for these items. From 1985 

until the late 1990s a series of works in the field of hyper-heuristics were 

carried out although the term “hyper-heuristic” was not introduced until 2000 
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(Cowling et al, 2000). What unites these works is that they all employ 

methods that conduct a search or operate in the space of heuristics (or 

parameters for heuristics) to solve a set of instances of a problem. This is in 

contrast to other search methods that work in the space of direct solutions. 

 

Syswerda (1991) and Fang et al (1993) both applied a genetic algorithm that 

used an indirect encoding to scheduling where a heuristic was used to fit an 

ordered list of tasks into a developing schedule. The genetic algorithm was 

used to find the optimal ordering for these tasks. Kelly and Davis (1991) 

applied a similar hybrid genetic algorithm approach to k-nearest neighbour to 

aid data classification while Ling (1992) used this technique for solving 

timetabling problems. Shing and Parker (1993) used a hybrid genetic 

algorithm to optimise parameters for a set of heuristics. Another notable study 

was that of Gratsch et al (1993; 1996), which used hill-climbing in a space of 

control strategies to find good algorithms for controlling satellite 

communication schedules. 

 

Storer et al. (1992; 1995) identified the need to carry out a search in the 

heuristic space so as to generate a combination of problem-specific heuristics. 

They used a hill-climbing technique to search within this neighbourhood but 

they also suggested that other search techniques could be used such as genetic 

algorithms, tabu search or simulated annealing. The open-shop scheduling 

problem was revisited by Fang et al in 1994. This time they used a genetic 

algorithm to evolve a sequence of heuristics to be applied to the problem. In 

this work the authors comment on the advantages of using a genetic algorithm 

hybridized with a heuristic search where each chromosome represents an 

abstraction of a solution. Such hybridization avoids the need to represent a 

complete solution as an individual in the population of a genetic algorithm, 

thus facilitating the search performed by the genetic algorithm. 
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In Langdon (1995) a hybrid genetic algorithm was used to schedule the 

maintenance of electrical power transmission networks. This problem was 

revisited in Langdon (1996) in which genetic programming was used to evolve 

a schedule for the same purpose. Dorndorf and Pesch (1995) used evolutionary 

algorithms to evolve local decision rule sequences for production scheduling. 

Hybrid genetic algorithm approaches were used to solve a graph colouring 

problem in Fleurent and Ferland (1996), a bin-packing problem in Reeves 

(1996), a line-balancing problem in Schaffer and Eshelman (1996) and 

timetabling problems in Corne and Ogden (1997) and Terashima- Marín et al 

(1999). In Terashima-Marin et al (1999), an individual represented a series of 

instructions and parameters for guiding a search algorithm that builds a 

timetable. The instructions allowed the algorithm to switch its search strategy 

when a certain problem condition is met. 

 

Zhang and Dietterich (1995; 1996) developed novel job-shop scheduling 

heuristics within a reinforcement learning framework while Minton (1996) 

presented a system that works by modifying elements of a template for a 

generic algorithm. This system was used to generate reusable heuristics for 

constraint satisfaction problems. Norenkov and Goodman (1997) proposed a 

system that conducts a search in the space of heuristics using evolutionary 

algorithms to solve multistage flow-shop scheduling problems. Hart and Ross 

(1998) evolved heuristic combinations for dynamic job-shop scheduling 

problems using a genetic algorithm. This concept was later applied by Hart et 

al (1998) to a real-world scheduling problem. The problem involved scheduling 

the collection and delivery of chickens from farms in different locations to 

multiple processing factories. This time two genetic algorithms were used, one 

to evolve heuristics for assigning orders and the other to evolve heuristics for 

scheduling the arrival of deliveries. 

 

A novel search framework called “squeaky wheel optimization” was proposed by 

Joslin and Clements (1999) that works by iterating three stages named 



 

 

 
Chapter 2 - Literature Review 

14 

construct, analyze and prioritize. In the construct stage, a heuristic is used to 

construct a complete solution using some priorities related to features of the 

problem being solved. In the analyze stage, the resultant solution is analyzed 

and “trouble spots” are identified. Trouble spots are elements in the solution 

that if improved are likely to increase the objective function score. In the 

prioritize stage the priorities are redefined according to the identified “trouble 

spots”. The idea is to operate the search in the space of priorities as opposed to 

the space of solutions. In the same year, Voudouris and Tsang (1999) proposed 

a hillclimbing algorithm that is re-run with a modified target function each 

time it gets stuck in a local minimum. The target function is changed through 

the use of problem-dependent features which carry costs and penalties. 

 

 

2.1.2 Reinforcement Learning Hyper-heuristics 

The literature contains several hyper-heuristics that use reinforcement learning. 

Such hyper-heuristics would typically utilize a pool of low-level heuristics and 

some technique for choosing which heuristic to apply to the solution at the 

different stages of the problem-solving process. The decision would be based on 

some sort of feedback relating to the heuristics’ past performance when applied 

to the problem. One such hyper-heuristic is the choice function hyper-heuristic 

which was first proposed by Cowling et al (2000). This hyper-heuristic 

iteratively modifies a candidate solution using a set of heuristics. The choice 

function chooses which heuristic to apply at each iteration by taking into 

consideration the past performance of each heuristic, the heuristic applied just 

before as well as the last time each heuristic has been called. This system was 

successfully applied to a hard scheduling problem in (Cowling et al, 2002a) and 

to a real-world nurse scheduling problem in (Kendall et al, 2002a). Further 

experiments in (Kendall et al, 2002b) confirmed that the choice function does 

adapt and choose intelligently which low-level heuristics to call in the order 

that best suits the search space and the problem being solved. 
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Narayek (2001) proposed a hillclimbing algorithm that has a set of heuristics 

at its disposal where each heuristic is assigned a weight value. At each 

iteration, the system always applies the heuristic with the largest weight 

value. The weight values are modified (adapted) according to the heuristics’ 

past performance during the search process. A similar heuristic-ranking system 

was presented by Burke et al (2003b) who applied this concept to a 

timetabling problem. This hyper-heuristic also made use of a tabu list that 

temporarily omits heuristics from being chosen if they do not improve the 

solution. Burke and Newall (2002) presented a hyper-heuristic framework for 

solving exam timetabling problems that iteratively adapts the ranking of 

exams left to schedule for a heuristic that inserts these exams into a 

developing timetable. A weighting system is again used to change the ranking 

of exams left to schedule as the algorithm progresses.  A heuristic-ranking 

hyper-heuristic is described in (Pisinger and Ropke, 2007) for solving vehicle 

routing problems. This hyper-heuristic uses roulette wheel selection to choose 

which heuristic to apply at each iteration. The better the past performance of 

a heuristic, the higher its weight value and the higher the probability of it 

being chosen by the hyper-heuristic at the next iteration. 

 

Dowsland et al (2007) proposed a novel hyper-heuristic embedded within a 

simulated annealing framework. The system was used to determine shipper 

sizes for storage and transportation – a complex problem with a massive 

search space. The hyper-heuristic employs a set of heuristics and the same 

heuristic-ranking technique is used where the heuristic with the highest weight 

is always chosen. A tabu list is also used for temporarily omitting heuristics 

that do not improve the solution. At each iteration, an acceptance mechanism 

is used to decide whether a new solution is accepted or not after the chosen 

heuristic is applied. The acceptance method for a move in the solution search 

space is based on simulated annealing but the temperature can go both up and 

down during the course of the hyper-heuristic run. A similar simulated 

annealing based hyper-heuristic was presented in the same year by Bai et al 
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(Bai et al, 2007a). This time, the hyper-heuristic employs a short-term 

memory so that only the recent performance of the heuristic is reflected in its 

weight value. The authors’ reason for using such a technique is that the search 

for a good solution proceeds in a dynamic environment as the region of the 

search space being explored changes and the information gathered during the 

initial stages may not be useful later in the search. The exam timetabling 

problem was revisited by Burke et al (2008b). This work presented a hyper-

heuristic that combined reinforcement learning (through heuristic-ranking) 

with the Great Deluge acceptance mechanism (Kendall and Mohamad, 2004a). 

 

 

2.1.3 Tabu-Search Hyper-heuristics 

Burke et al (2003b) proposed a tabu-search hyper-heuristic for solving 

timetabling problems. The system builds a timetable iteratively by applying a 

heuristic from a set at each iteration. The heuristic to be applied is chosen on 

the strength of its past performance. If, once applied, the heuristic does not 

improve the solution, it is inserted in a tabu list for some time so as to 

temporarily prevent it from being chosen. This approach was later integrated 

within a simulated annealing framework by Dowsland et al in 2007 for the 

purpose of searching for good combinations of low-level heuristics to determine 

shipper sizes in transportation problems. The timetabling problem was also 

tackled by Kendall and Hussin (2005) who used a hyper-heuristic to build 

timetables in the same iterative manner as described in Burke et al (2003). In 

this work, all heuristics are tried out on the solution at each iteration but only 

the heuristic that yields the best improvement is actually applied to the 

solution before moving on to the next iteration. After the best heuristic is 

applied to the solution, it is inserted in a tabu list so as to exclude it from 

being chosen by the hyper-heuristic for some time. The authors argue that 

such a system allows for a balance between intensification (best heuristic is 

always chosen) and diversification (heuristic is excluded for some time after it 

is applied) in terms of the search process.  
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In Cowling and Chakhlevitch (2003) and Chakhlevitch and Cowling (2005), 

the performances of various hyper-heuristics that make use of a collection of 

low-level heuristics were investigated by testing them on personnel scheduling 

problems. Four hyper-heuristics that use some kind of tabu list were compared 

to various other hyper-heuristics including four Peckish hyper-heuristics 

(Corne and Ross, 1995). The Peckish algorithm works by always applying the 

heuristic that gives the biggest improvement in terms of the solution objective 

function. If none of the heuristics manage to improve the solution, a random 

one is chosen and applied. The results of their experiments suggested that 

using smaller sets of low-level heuristics was not so effective and that the 

performance of a hyper-heuristic is determined to a great extent by the quality 

of the low-level heuristics used. The same conclusion was arrived at by Özcan 

et al (2008) who compared the performance of genetic algorithms and memetic 

algorithms to a number of hyper-heuristic methods that use various 

combinations of different heuristic selection and acceptance methods. 

 

In Burke et al (2005a; 2007a) and Qu and Burke (2008), tabu search based 

hyper-heuristic methods were used to find heuristic lists to solve timetabling 

problems. The search space of the tabu search consisted of all possible 

permutations of low-level graph colouring heuristics that construct timetables. 

In Burke et al (2007a), the authors highlight one advantage of conducting a 

search in the heuristic space by saying that moving in the heuristic space can 

result in jumps within the solution space that might not be always possible if 

the search is conducted in the solution space. They do however mention that a 

search in the heuristic space might make some solutions unreachable. The 

authors also conclude that the larger the number of low-level heuristics 

available to the hyper-heuristic, the better it may perform provided a 

reasonable search time is given. 
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2.1.4 Hyper-heuristics that use Problem State Representation 

In Petrovic and Qu (2002) and Burke et al (2002), a system was proposed that 

matches the features of some instance of a timetabling problem with case 

problems stored in a case base. Each entry in the case base would contain the 

heuristic most suited for solving the case problem. Ross et al. (2002) 

successfully used a Michigan-style (Freitas, 2002) learning classifier system 

called XCS (Wilson, 1995) to evolve a set of rules that dictate which heuristic 

to use when some particular problem state is encountered while solving a bin-

packing problem. The problem state is represented by the number and size of 

items left to pack. This way, the hyper-heuristic manages which heuristics are 

used as well as when they are used throughout the problem-solving process. 

Marín-Blázquez and Schulenburg (2006; 2007) extended this system by 

introducing a multi-step reward system. The produced algorithms generalized 

well on both training and unseen data. The authors stressed the importance of 

the choice of representation for the problem state in the hyper-heuristic rules. 

 

In Ross et al (2003), a messy genetic algorithm was used to evolve the same 

kind of hyper-heuristic rules described in Ross et al (2002). As in their 

previous work, each chromosome represents a set of rules that match heuristics 

to problem states. In the first generation of the genetic algorithm, each 

chromosome was applied to 5 bin-packing problems chosen randomly from a 

set of training problems. In the subsequent generations, each chromosome was 

assigned one random problem so as to calculate its fitness. The fitness value 

was taken to be the difference between the results obtained by the hyper-

heuristic and the best result obtained by any single heuristic on the same 

problem. The same concept was successfully applied to timetabling problems 

using graph colouring heuristics in (Ross et al, 2004; Ross and Marín-

Blázquez, 2005), 2D cutting stock problems in (Terashima-Marín et al, 2006) 

and constraint satisfaction problems in (Terashima-Marín et al, 2008). The 2D 

strip packing problem was tackled in a similar manner by Garrido and Riff 

(2007a; 2007b) but their hyper-heuristic was online so the evolved hyper-
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heuristic rules could only be used to solve the same problem instance that was 

used for training. 

 

Thabtah and Cowling (2008) suggested mining hyper-heuristic rules from the 

solution run of Peckish (Cowling and Chakhlevitch, 2003) – a robust but slow 

hyper-heuristic. The data set to be mined would contain all the improving 

moves of Peckish. For each improving move, the data set would contain the 

heuristic applied as well as the features of the problem state before the 

heuristic was applied. Data mining could then yield hyper-heuristic rules that 

would dictate which heuristic to use according to the features of the current 

problem state. The authors suggest that such rules could replace the slower 

Peckish hyper-heuristic. Burke et al (2008c) also proposed using data mining 

to speed up a hyper-heuristic. This time, data mining is used to skip the step 

of calculating the objective function value of the candidate solution at each 

iteration. To achieve this, the authors proposed a system that, after training, 

can recognize patterns hidden in good candidate solutions, which can then be 

used to classify newly obtained solutions without calculating their fitness 

value. 

 

 

2.1.5 Genetic Programming Hyper-Heuristics 

Genetic programming was used to evolve priority dispatching rules for 

machine scheduling problems in (Dimopoulos and Zalzala, 2001; Ho and Tay, 

2005; Geiger et al, 2006). Geiger et al (2006) presented a genetic programming 

system called SCRUPLES (Scheduling Rule Discovery and Parallel Learning 

System) to carry out a number of experiments with training sets containing 

problem instances of various sizes. It was observed that the generalizing ability 

of the learned rules improved as the number of training instances approached 

10 but then worsened after 10. Tay and Ho (2008) extended their earlier work 

so as to evolve dispatching rules for multi-objective job-shop problems. 
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Genetic programming has also been used to construct heuristics for the 

minimisation of binary decision diagrams (Schmiedle et al, 2002), to aid 

compiler optimization (Stephenson et al, 2003), to solve the travelling 

salesman problem (Oltean and Dumitrescu, 2004; Keller and Poli 2007a; 

2007b), parallel machine scheduling problems (Jakobovic et al, 2007) and a 

biobjective knapsack problem (Kumar et al, 2008). Fukunaga (2002) proposed 

a system called CLASS to evolve algorithms for solving satisfiability testing 

problems. CLASS maintains a population of such algorithms over several 

cycles and uses a composition operator to create new algorithms at the end of 

each cycle. The performance of CLASS was improved in (Fukunaga, 2004) by 

limiting the size of the trees representing the candidate algorithms. Heuristics 

for the same kind of problems were evolved by Bader-El-Din and Poli (2007) 

using a grammar-based genetic programming system. 

 

Tavares et al (2004) used genetic programming to evolve evolutionary 

algorithms that solve a function optimization problem. The hyper-heuristic 

works by evolving an effective mapping function that maps a genotype to a 

phenotype. Oltean (2005) also presented a hyper-heuristic that produces 

evolutionary algorithms using genetic programming. The system works by 

treating an array of data as a population where each array member is called a 

register. Genetic programming is used to evolve instructions that operate on 

these registers in the same way genetic operators work on a population. The 

system was successfully applied to function optimisation, a travelling salesman 

problem and a quadratic assignment problem. 

 

Burke et al (2006a) used tree-based genetic programming to automate the 

construction of heuristics for online bin packing problems. It was noted that in 

most of the runs, the genetic program managed to evolve some kind of variant 

of the well-known, human-designed First-Fit algorithm (Johnson et al, 1974). 

This work was followed by Poli et al (2007) who used a linear genetic 

programming system to construct heuristics for offline bin packing problems. 
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In (Burke et al, 2008d), genetic programming was used to evolve disposable 

heuristics that work out the score for each possible allocation in a 2D strip 

packing problem so that the allocation with the highest score is chosen at each 

step of the algorithm. 

 

 

2.1.6 Hyper-Heuristics for Machine Learning 

In Abe and Yamaguchi (2004) an inductive learning system called CAMLET 

(Suyama et al, 1998) is used for meta-learning. In this work, CAMLET  

constructs classification algorithms from a repository of methods according to 

a given data set. The repository of methods consists of various building block 

components from a selection of inductive learning methods. A control 

structure is then used to describe the relationship between these building 

blocks. Delibasic et al (2011) proposed a platform for storing reusable decision 

tree algorithm components such as attribute selection, split evaluation, 

stopping criteria and pruning strategies. A component-based framework called 

WhiBo is then used to recombine these components into complete decision 

tree building algorithms. 

 

Pappa and Freitas (2006) used grammar-based genetic programming to evolve 

rule induction algorithms, having presented the original idea in Pappa and 

Freitas (2004). A broad category of rule induction algorithms operate via 

sequential covering: an initial rule is generated, covering some of the dataset, 

and additional rules are generated in order until the entire dataset is covered. 

There are several alternative ways to generate the initial and subsequent rules. 

For instance, we may either start with a very general high-coverage (but low 

accuracy) rule, and add conditions until accuracy and/or coverage move 

beyond a threshold. Or, we may start with a very precise rule and gradually 

remove conditions. In Pappa and Freitas (2006), the encoding covered a vast 

space of possible ways to organize this process. Pappa and Freitas (2007) 
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shows how the same concept can be applied for multi-objective genetic 

programming. 

 

Barros et al. (2011) recently proposed the idea of using genetic programming 

to evolve decision tree induction algorithms but no implementation has been 

reported yet. 

 

 

2.1.7 Other Hyper-heuristics 

Cowling et al (2002b) proposed using a genetic algorithm as a heuristic-

selector for a scheduling problem. Each individual represents a sequence of 

heuristics and the heuristics encoded by the best individual of each generation 

are applied to the solution. Ahmadi et al (2003) used a variable neighbourhood 

search algorithm to find sequences of parameterized constructive heuristics to 

solve examination timetabling problems. A variant of the same algorithm was 

presented in Qu and Burke (2005). In this work, the authors highlighted the 

difference between working in the heuristic search space and solution search 

space. Two heuristic lists that have very little differences between them can 

result in two very different timetables. So the same effort within the high level 

searching is capable of exploring a much larger part of the solution space than 

a similar amount of effort used by local search based methods applied directly 

to solutions. 

 

Ayob et al (2003) presented a novel heuristic acceptance criteria called the 

Exponential Monte Carlo with Counter method for hyper-heuristics that work 

by iteratively modifying a complete solution using a pool of low-level 

heuristics. This method works by always accepting solutions that improve on 

the previous one while the probability of accepting non-improving solutions 

decreases as time passes but increases as the number of non-improvement 

iterations increases. Another novel heuristic acceptance criterion called the 

Great Deluge was proposed by Kendall and Mohammad (2004a). This 
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mechanism only accepts improved solutions and tends to favour diverse 

solutions as more iterations of the program are carried out. This technique was 

used in a hyper-heuristic to solve the channel assignment problem for cellular 

communication. Burke and Bykov (2008) proposed a memory-based heuristic 

acceptance mechanism that accepts a new solution by comparing its objective 

function value with that of L solutions ago. The motivation behind this 

technique is to allow for some worsening moves thus helping to avoid local 

minima, while still making “intelligent” use of information collected during 

search. 

 

Asmuni et al (2005) used a fuzzy hyper-heuristic system to solve course 

timetabling problems. The system uses fuzzy weights to decide which event to 

schedule while constructing the timetable. A variant of exhaustive search is 

used to discover a good shape for the fuzzy membership functions. Bai and 

Kendall (2005) proposed a hyper-heuristic based on simulated annealing to 

solve a space allocation problem. This hyper-heuristic was later applied by Bai 

et al (2006) for timetabling problems. Burke et al (2005b) presented the ant 

colony algorithm (Dorigo et al, 1991) as a hyper-heuristic to solve a real world 

scheduling problem. The same algorithm was later used by Chen et al (2007) 

to solve a sport timetabling problem. Burke et al (2006b) presented a case-

based system for heuristic selection to solve timetabling problems. 

 

In Vázquez-Rodríguez et al (2007a), a genetic algorithm was used to solve the 

first stage of a scheduling problem after which a hyper-heuristic was used to 

continue working on the problem for the second stage. The hyper-heuristic 

itself consisted of a combination of various dispatching rules evolved through 

the use of a genetic algorithm. Bhanu and Gopalan (2008) presented a hyper-

heuristic that works on top of three meta-heuristics to solve a grid resource 

scheduling problem. The hyper-heuristic works above the meta-heuristics and 

the meta-heuristics work on candidate schedules. The three meta-heuristics are 

a genetic algorithm combined with local search, a genetic algorithm with a 
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mutation operator inspired by simulated annealing and a genetic algorithm 

that uses a tabu list. 

 

 

2.2 Decision Trees 

 

2.2.1 Decision Trees for Classification 

A decision tree is a tree structure that can be used to classify data instances 

into some target class (Freitas, 2002). The tree structure is made up of 

attribute names at the nodes, attribute values at the branches and target 

classes at the leaves (see Figure 1.2). When a new instance needs to be 

classified, the values of its attributes are tested against the attributes found in 

the nodes of the tree, starting from the single topmost node and going down to 

the bottom. The branch taken is the one whose attribute value matches the 

one in the instance. The tree is traversed in this way until a leaf is met – the 

class at the leaf would be the class assigned to that instance. 

 

Decision trees have been successfully used in virtually any field that involves 

some form of data mining.  Using decision trees for data mining comes with 

many advantages: a decision tree is very easy to read and understand by 

humans as long as the tree is not too large, the most important attributes for 

classification can be easily identified as the ones towards the top of the tree, 

most decision tree building algorithms are non-parametric and they do not 

require an expert in domain of the data that is being mined. 

 

 

2.2.2 Algorithms for Building Classification Trees 

The majority of decision tree-building algorithms build decision trees in a 

recursive manner, using a greedy, divide-and-conquer method, by adding one 

attribute at a time to a growing tree. Such an algorithm works in a top-down 
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fashion, starting with the full training data, partitioning it into smaller subsets 

by choosing a splitting attribute, and then recursing this partitioning process 

on each of the subsets. This procedure stops when all the instances in the 

partition belong to the same class or when the partition satisfies some stopping 

condition.  

 

Stopping conditions are used to produce trees that are not overly complex and 

that do not overfit the training data. Overfitting happens when the classifier 

captures noisy data and/or spurious relationships (Freitas, 2002). Noisy data 

refers to errors in the training data whilst spurious relationships are 

relationships between attributes in the training data that are not statistically 

significant enough to help us in classifying future unseen data instances. 

Another effective way of dealing with this problem is by using a pruning 

technique. This involves growing a full-sized tree that perfectly fits the training 

data after which the pruning algorithm is used to reduce the size of the tree by 

removing certain nodes and branches that are believed to be insignificant to 

the predictive accuracy of the whole decision tree.  

 

Morgan and Sondquist (1963) presented one of the earliest works on decision 

tree building algorithms. They proposed a system called AID (Automatic 

Interaction Detection) that finds binary splits on ordinal and nominal 

attributes that most reduce the sum of squares of an interval target from its 

mean. Lookahead split searches were allowed whereas cases with missing 

values were excluded. The algorithm stopped splitting the data when the 

reduction in sum of squares is less than some constant multiplied by the 

overall sum of squares. Other similar decision tree induction programs followed 

such as MAID (Gillo, 1972), THAID (Morgan and Messenger, 1973) and 

CHAID (Kass, 1980). CHAID (CHi-squared Automatic Interaction Detector) 

is a decision tree induction algorithm that finds non-binary splits based on 

adjusted significance testing. When building a tree, splitting attributes are 
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chosen using the chi-square criterion. Splitting stops when the smallest 

adjusted p-value is greater than some user-defined threshold. 

 

Breiman et al (1984) proposed the well-known CART. This decision tree 

building algorithm uses the Gini index for finding binary splits that yield the 

“purest” partitions with respect to the classes. Breiman et al noted that the 

Gini index can yield splits that are unbalanced with respect to size if the 

number of classes is large. In such cases, it was suggested that the twoing rule 

should be used instead of the Gini index. CART does not use stopping rules 

when building trees, instead it prunes fully grown trees using a technique 

called cost complexity pruning that requires the use of a pruning data set 

separate from the training set used for growing the decision tree. CART can 

also build trees with nodes made up of linear combinations of attributes.  

These combinations are found using a hill climbing method which slows down 

the building process of the decision tree. Other disadvantages of having such 

combinations of attributes in the decision tree nodes is that such nodes would 

be harder to interpret and they ultimately do not guarantee a more accurate 

decision tree. This method for finding multivariate splits was later extended 

by Murthy et al (1993) to include randomization for escaping local minima. 

 

ID3 is another well-known algorithm that uses top-down induction for building 

decision trees. This was first proposed by Quinlan in 1979 but the last and 

definitive version was presented in (Quinlan, 1986). Quinlan argued that since 

there exist multiple trees that can classify all the objects in the training set as 

accurately as possible, the theory of Occam’s Razor dictates that one should 

go for the simplest tree as it is more likely to capture some meaningful 

relationship between an object’s class and the values of its attributes. For this 

reason, a simple tree would be expected to have a higher probability of 

classifying correctly objects outside the training set than a more complex one. 

This argument was later refuted by Domingos (1998) who presented various 

theoretical arguments supported by empirical evidence that though simplicity 
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itself might be a desirable attribute, it does not guarantee greater accuracy. 

Nevertheless, Quinlan first suggested using the information gain criterion as an 

attribute selection measure as it will always tend to yield very simple trees. 

Various strategies for dealing with missing values in both the training set and 

test set were discussed. The chi-square measure was suggested as a stopping 

criterion when building trees. Quinlan (1987) later suggested using reduced 

error pruning instead of stopping for producing trees with better accuracy. 

 

Quinlan also recognized that the information gain measure can unjustly favour 

attributes with many values. For this reason he recommended using the gain 

ratio criterion instead. ASSISTANT (Cestnik et al, 1987) overcame this 

problem by restricting the tree to binary splits only. Cestnik et al argued that 

the process of merging different attribute values for binary splitting helped the 

information gain criterion overcome the problem of favouring attributes with 

many values. Norton (1989) presented the IDX algorithm. This is like the ID3 

algorithm with the added capability of performing lookahead when building 

trees so that it uses information gain to choose combinations of nodes on 

different levels of the tree as opposed to just one node at a time. Pal et al 

(1997) proposed using a genetic algorithm to fine-tune the nodes of a decision 

tree after it is built by an ID3-style algorithm. Their method, called RID3, 

was presented as an alternative to ID3 for problems that work on real data. 

Esmeir and Markovitch (2006) presented an alternative to RID3 called LSID3. 

The proposed learner uses a lookahead technique that tries to estimate the size 

of the smallest possible tree after splitting with each attribute. The attribute 

chosen to split the data is the one that yields the smallest tree. 

 

Quinlan extended his ID3 algorithm to create one of the most widely-used 

classifiers: C4.5 (Quinlan, 1993). This program builds trees using the gain ratio 

criterion. It can also handle continuous attributes by choosing a threshold so 

as to split the attribute into two discrete sets: one containing values above the 

threshold and another containing values below or equal to the threshold. C4.5 
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can also be configured to consider attribute costs when building a tree. A post-

pruning technique called error-based pruning is preferred to stopping as it is 

argued that this produces more reliable trees. This pruning technique does not 

make use of a separate pruning set, instead it prunes trees by replacing nodes 

with leaves if it improves the upper confidence limit of the predicted error 

rate. The C4.5 algorithm was later revised and extended in Quinlan (1998), 

the result of which was the commercial C5.0 algorithm. Amongst many other 

things, C5.0 improved the speed at which the decision trees are built, the 

memory usage as well as the size of the resultant decision trees. 

 

Loh and Shih (1997) presented QUEST (Quick, Unbiased, Efficient, Statistical 

Tree), a binary-split decision tree algorithm that extends an earlier algorithm 

called FACT (Loh and Vanichsetakul, 1988). QUEST uses an unbiased 

attribute selection method in terms of number of values per attribute. For 

creating a node, it uses the F-statistic to first choose which attribute to split 

on. This is done before any of the attributes are actually split, giving QUEST 

an edge in terms of CPU time when compared to algorithms like CART that 

try to split each and every attribute before choosing one. QUEST then 

performs linear discriminant analysis for choosing split points, also allowing 

linear combinatons of attributes in a node. Kim and Loh (2001) extended this 

work to produce CRUISE (Classification Rule with Unbiased Interaction 

Selection and Estimation), a decision tree algorithm capable of producing 

multi-way splits. 

 

 

2.2.3 Splitting Criteria 

The literature contains several instances of decision-tree-building algorithms 

that use a criterion based on Shannon’s entropy (Quinlan, 1986) for choosing 

splitting attributes. Some of them build trees by choosing splits that maximize 

gain in global mutual information of the whole tree. Such algorithms that 

explore this concept for pattern recognition are presented in Glesser and 
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Collen (1972), Sethi and Sarvarayudu (1982) and Talmon (1986). Other 

algorithms use Shannon’s entropy to maximize information gain locally at each 

individual node. This has been applied to sequential fault diagnosis (Varshney 

et al, 1982), pattern recognition (Hartmann et al, 1982; Wang and Suen, 1984; 

Casey and Nagy, 1984; Hanisch, 1990) and machine learning (Quinlan, 1986). 

The G-statistic was introduced by Mingers (1987) as a replacement for the 

information gain metric in ID3 (Quinlan, 1986). This metric is based on 

information theory and is a very close approximation to the chi-square 

distribution. Baim (1988) developed a measure based on information theory 

called relevance and used it to create trees for a complex medical problem.  

 

Mántaras (1991) proposed using symmetric gain ratio as an alternative to the 

gain ratio criterion for choosing splits. This method tries to minimize the 

distance between the data set partitioned using the class values and the data 

set partitioned using the splitting attribute values. Mántaras also gave a 

formal proof that this measure is efficient in compensating for information 

gain’s bias towards attributes with a large number of values. Merckt (1993) 

proposed a splitting metric that combined information gain with geometric 

distance so as to choose splits that yield dense sets that are far apart. The J-

meausure was first introduced by Smyth and Goodman (1991) to estimate the 

information content of a rule. This was later adapted as a measure for 

choosing splitting attributes by Kononenko (1995). Abellán and Moral (2003; 

2005) presented the IIG criterion (Imprecise Information Gain). This measure 

calculates the maximum entropy of convex sets of probability distributions. 

Marques de Sá et al (2009) use a measure that used a minimum entropy-of-

error (MEE) strategy that works with the distribution of the errors originated 

by the node splits. 

 

Another class of splitting criteria are based on the distance between class 

probability distributions. The Kolmogorov-Smirnoff distance was used in 

(Friedman, 1977; Rounds, 1980) for growing trees for two-class problems after 
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which it was applied by Haskell and Noui-Mehidi (1991) to multi-class 

problems. The chi-square statistic has been used as a splitting criterion in 

(Hart, 1984; White and Liu, 1994). A distance-based measure called 

Bhattacharya distance was used in (Lin and Fu, 1983). Apart from CART 

(Breiman et al, 1984), the Gini index has also been used to construct trees in 

(Pattipati and Alexandridis, 1990) for sequential fault diagnosis and in 

(Gelfand et al, 1991) for pattern recognition. Zhou and Dillon (1991) extended 

the Gini index to create a splitting criterion for multiway splits called 

symmetric Gini. The authors argued that this measure, unlike the original 

Gini index, does not favour attributes with many values. The separabililty of 

features for different classes was used a basis for the splitting criteria used in 

(Fayyad and Irani, 1992; Zhengou and Yan, 1993). Kira and Rendell (1992) 

presented a splitting criterion for two-class data sets called RELIEF that 

works by trying to measure how well values of the same attribute are able to 

distinguish among instances that are close to each other. After comparing 

RELIEF (Kira and Rendell, 1992) to the Gini index, Konenko (1994) extended 

RELIEF to create a modified Gini index criterion that can deal with multi-

class data sets. Cieslak and Chalwa (2008) proposed a splitting criterion based 

on the Hellinger distance metric. This criterion was the result of the authors 

investigation of the DKM measured proposed in (Dietterich et al, 1996). 

Chandra et al (2010) proposed a splitting measure called DCSM (Distinct 

Class based Splitting Measure) that tries to minimize the number of distinct 

classes in each split so as to find the split that yields the purest partitions. 

 

There exist other splitting criteria that do not quite fall into any of the two 

classes mentioned above. One example is the criteria used in Moret et al 

(1980) and Miyakawa (1989) which uses the activity of an attribute. This 

measure takes into consideration the cost of testing an attribute as well as the 

probability that it will be tested. Kurzynski (1983; 1988; 1989) proposed an 

attribute selection method that takes into account the probability distribution 

of the training data so as to minimize the overall error probability. Grewe and 
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Kak (1995) also built decision trees using the probability distribution of 

attributes. Li and Dubes (1986) used a permutation statistic for finding binary 

splits when growing trees. Gaussian distribution based criteria were used in 

Luo et al (1987) and Wan et al (2006). Quinlan and Rivest (1989) proposed 

using the minimum description length statistic (Risannen, 1989) for growing 

trees as well as pruning them. The principle behind this criterion is to build 

trees that minimize training errors while keeping the size and complexity of 

trees to a minimum. Mehta et al (1995) used the same principle for pruning. 

Michie (1989) developed a measure called weight of evidence that is based on 

plausibility as an alternative to entropy from information theory. Kalkanis 

(1993) proposed using the upper bounds of the confidence interval estimate for 

the misclassification error of the classifier when choosing a splitting attribute. 

This is in contrast to measures like information gain and Gini index that do 

not consider a worse goodness value after splitting. Algorithms that make use 

of the number of misclassified points in their attribute selection criterion were 

proposed in (Heath et al, 1993; Lubinsky, 1993; 1994; Murthy et al, 1994). 

Azam et al (2007) use an impurity measure based on the exponent function for 

choosing good splits. 

 

 

2.3 Summary 

 

A significant part of the literature on decision tree building algorithms is 

dedicated to the splitting heuristic employed by these algorithms. It seems 

that the splitting heuristic is crucial to the performance of the resultant 

decision tree. Furthermore, there is no one splitting heuristic that is 

universally better - an issue that will be discussed in more detail in the 

following chapter. What seems to be lacking is a system for choosing which 

heuristic to use according to the problem at hand.  We believe that hyper-

heuristics would provide the perfect framework for automating this process. 

Hyper-heuristics have been successfully applied to a wide variety of problems. 
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Yet, to the best of our knowledge, there has been only one attempt at 

applying hyper-heuristics for discovering new data mining algorithms. Pappa 

and Freitas (2006) used genetic programming for creating novel rule induction 

algorithms. Barros et al (2011) also discuss a hyper-heuristic for designing 

novel decision tree induction algorithms but so far no implementation of the 

system has been reported. Given the promise hyper-heuristics have shown in 

Pappa and Freitas (2006), as well as other areas, we believe that they are 

worth considering for decision-tree based data mining.  
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Chapter 3 

 

 

Hyper-heuristic Rules using Partition Size 

 

 

 

 

 

 

3.1 Background 

 

3.1.1. Splitting Criteria for Building Decision Trees 

Imagine a dataset held by a loan company with the attributes “gender”, “salary”, 

“age” and the class attribute “high-risk”, where the values for high-risk are 

either “yes” or “no” based on past experience. A decision tree for this data may 

look like the one in Figure 3.1.  When we start to build a tree, the first 

decision to make is the choice of attribute for the root node. The key to this 

choice is to examine, for each attribute, how well it divides the data in terms 

of the target class. For example, if we found that all males were high risk and 

all females were low risk in the training data set, then “gender” is a perfect 

attribute to split on. If instead we found that male and female instances 

contained equal proportions of high and low risk cases, then we seem to gain 

nothing by splitting on gender. 

 

Notice that, once we have chosen the attribute for the root node, we create a 

child node for each value of that attribute. In the example in Figure 3.1, all of 
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the “male” data instances are carried to the left hand child, and all of the 

“female” instances are carried to the right-hand child. For each of these nodes, 

we now have the same decision to make, and will again use a heuristic to 

decide which attribute to split on. However, the difference is that each node 

“carries” a specific set of instances, and the heuristic scores will therefore 

depend on the position of the node in the tree. We illustrate the pseudo-code 

for this algorithm in Figure 3.2. 

 

 

Figure 3.1: An Example of a Decision Tree 

 

One of the most well-known decision tree building algorithms that works in 

this manner is ID3 (Quinlan, 1986). When building a decision tree, ID3 uses 

information gain to choose which attribute to use for creating a node in the 

tree.  More precisely, before creating a node ID3 calculates the information 

gain for each candidate splitting attribute, after which the attribute with the 

largest information gain is chosen for the tree node. This is equivalent to 

making h in the pseudo-code in Figure 3.2 equal to information gain. 
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Quinlan chose to work with information gain at the time as he argued that 

this heuristic tends to produce small trees and, using the principle of Occam’s 

Razor, simpler trees should be preferred over more complex ones as they are 

more likely to capture some meaningful relationship between an object’s class 

and the values of its attributes (Quinlan, 1986). 

 

Let D = our initial data partition /*the whole training set*/ 

Let A = list of all attributes in D 

Let h = some heuristic that sorts a list of attributes 

Let T = <empty tree> 

Let n = <empty tree node> 

 

Insert n in T 

CALL GrowTree(D, A, h, n) 

 

GrowTree(D, A, h, n) 

    IF <all instances in D are of the same class> THEN 

        c = class of instances in D 

        Create leaf at n with label c 

    ELSE 

        Sort A using heuristic h  

        a = attribute ranked first in A /*the splitting attribute*/ 

        Use attribute a for node n 

        V = set of all distinct values a can have 

        FOR EACH v in V 

            Create a branch b from n using value v 

            Create a new empty child node nv at branch b 

            Dv = data partition containing only instances where a = v 

            Av = A minus a 

      CALL GrowTree(Dv, Av, h, nv) 

        END /*FOR EACH*/ 

    END /*IF*/ 

END /*GrowTree*/ 

Figure 3.2 A Typical Decision Tree Building Algorithm 

 

The information gain of a splitting attribute can be thought of as the expected 

amount of information gained for the purpose of predicting the target class of 

a given instance, should we know beforehand the value of the splitting 

attribute for the same instance. The entropy of class attribute c in data 

partition d can be calculated as follows: 
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H(d, c) = -
= 1

m

i 
∑ ( P(d, c i).log2P(d,  c i) ) 

 

where, P(d, ci) is the probability of the categorical class attribute c having  

value i in partition d, 

 m is the number of unique values that class attribute c can have. 

Equation 3.1 

 

 

The conditional entropy of class attribute c in data partition d given the value 

of categorical attribute y can be calculated as follows: 

H(d, c | y) = -
= 1

n

i 
∑ ( P(d,  y i). H(d, c | y i) ) 

 

where, P(d, yi) is the probability of attribute y having value i in partition  

d, 

 n is the number of unique values that attribute y can have, 

 H(d, c | y i) is the entropy of class attribute c in partition d for only  

those instances that have attribute y with value i. 

Equation 3.2 

 

 

We can then calculate the information gain IG for splitting attribute y on 

data partition d as follows: 

 

IG(d, y) = H(d, c) – H(d, c | y)  

Equation 3.3 
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Information gain is just one possible heuristic for finding good splitting 

attributes. Another example of such a heuristic is gain ratio. This heuristic is 

used by C4.5 (Quinlan, 1993). Quinlan chose this heuristic over information 

gain as he argues that the information gain heuristic has a bias that favours 

attributes with many values. Gain ratio mitigates this by normalizing the 

information gain value using the entropy of the splitting attribute. Thus, the 

gain ratio GR for splitting attribute y on data partition d can be calculated as 

follows: 

 

GR(d, y) = 
( )

( )

IG , 

H ,

d y
d y

 

Equation 3.4 

 

The heuristic that chooses which attribute to place at each node has a big 

effect on the make-up of the resultant decision tree. Two similar decision tree 

building algorithms that use different heuristics for choosing splitting 

attributes can produce two very different decision trees of varying complexity 

and predictive accuracy. The importance of this heuristic in relation to the 

performance of the overall algorithm is reflected by the substantial amount of 

research work dedicated to the creation of such heuristics as well as to the 

improvement of existing ones. Nine other heuristics that have been used for 

the same purpose are: chi-square (Kass, 1980), symmetric gain ratio 

(Mántaras, 1991), gini index (Breiman et al, 1984), modified gini index 

(Kononenko, 1994), symmetric gini index (Zhou and Dillon, 1991), J-measure 

(Smyth and Goodman, 1991), minimum description length (Quinlan and 

Rivest, 1989), relevance (Baim, 1988), RELIEF (Kira and Rendell, 1992) and 

weight of evidence (Michie, 1989). 
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3.2 Experiments Comparing Splitting Criteria 

 

3.2.1. Background 

There are numerous studies that attempted to compare the performances of 

two or more of these splitting criteria. Some of these studies highlighted the 

different biases that come with using the various splitting heuristics (Ben-

Bassat, 1978; Mingers, 1987; White and Liu, 1994; Breiman, 1996; Badulescu, 

2007).  Some other studies suggested that different splitting heuristics tend to 

produce decision trees that are not too different from each other. Baker and 

Jain (1976) concluded that the rankings produced by various heuristics are 

similar while Raileanu and Stoffel (2004) discovered that information gain and 

the gini index only disagree on 2% of the cases after formally comparing the 

two heuristics. Other authors questioned the importance of the choice of the 

splitting heuristic. Breiman (1984) maintained that the choice of stopping 

rules is much more important than the choice of splitting criteria for building 

good decision trees. Mingers (1989) went so far as to conclude that a random 

attribute selection method is just as good as any other splitting criteria on the 

basis of experimental evidence. This was later refuted by Buntine and Niblett 

(1992) who demonstrated that random attribute selection is prone to build 

trees that overfit the training data and also performs significantly worse when 

noise is introduced in the training data. This conclusion was also backed by 

Liu and White (1994) after they conducted a number of experiments using 

synthetic data sets. 

 

However, the overall consensus in the literature seems to be that there is no 

one heuristic that is overall better than any other heuristic when taking its 

average performance over many different data sets. We decided to investigate 

this by testing each of the 12 different splitting heuristics mentioned in 3.1.1 

on 10 different data sets. 
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3.2.2 Experimental Details 

 

3.2.2.1 ID3 Algorithm 

We implemented and tested 12 different decision tree builders (DTBs) 

modelled on Quinlan’s ID3 mechanism for growing trees. They are all 

programmed to work as described in the pseudo-code of Figure 3.2. The 12 

DTBs only differ in the splitting heuristic they employ. The 12 splitting 

heuristics tested are: 

  

Chi-Square (CHI) 

Information Gain (IG) 

Gain Ratio (GR) 

Gini Index (GINI) 

J-Measure (JM) 

Minimum Description Length (MDL) 

Modified Gini Index (MGINI) 

Relevance (RLV) 

Relief (RLF) 

Symmetric Gain (SGAIN) 

Symmetric Gini (SGINI) 

Weight of Evidence (WOE) 

 

This effectively means that we tested 12 different DTBs: DTB-CHI, DTB-IG, 

DTB-GR, DTB-GINI, etc. - one for each splitting heuristic. 

 

All the DTBs allow for multi-way splits and do not group attribute values 

together when splitting on an attribute. This means that when a splitting 

attribute is chosen for a node in the decision tree, a branch for every distinct 

value of that attribute is created from that node. In the case of numerical 

attributes, we use a discretization of the attribute values that partitions the 

values into a small set of intervals. There are many ways to discretize (Kerber, 
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1992; Fayyad and Irani, 1993; Han and Kamber, 2000). In prior experiments 

we have found that, from the viewpoint of decision tree quality, equal-

frequency-binning (Han and Kamber, 2000) with five bins performs as well as 

most other methods. All of the numerical attributes in the data sets used in 

the experiments presented in this thesis are pre-processed into five discrete 

categories via equal-frequency-binning. This effectively means that the 

smallest 20% of values of a numerical attribute are in bin 1, the next largest 

20% are in bin 2, and so on. These bins might be labelled from “very small” to 

“very large” (for example), if we were to build an easily understandable 

decision tree. 

 

Our DTBs do not perform any stopping or pruning. We realize that we would 

have produced more accurate and compact decision trees had we allowed for 

stopping or pruning but the aim of our experiments was to compare different 

splitting heuristics and not to produce decision trees of optimal predictive 

accuracy. All problems were treated as binary-classification problems. This 

means that the decision trees built by our algorithms can predict whether a 

given instance is of the target class or not. This is in contrast to multi-class 

classifiers that can classify instances into one of three or more classes. Treating 

data sets whose class attribute consists of two possible distinct values as 

binary classification problems was trivial: one value is chosen to be the target 

class while the other value is treated as the non-target class. For data sets 

that contain a class attribute with more than two distinct values we pick one 

of the values to be the target class and the rest of the values are lumped 

together to form the non-target class. In such cases we used the 

documentation that came with the data sets to guide us in choosing an 

appropriate target class. When such documentation was missing, we used our 

best judgement in choosing a class attribute. 
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3.2.2.2 Data Sets 

The data sets we use were downloaded from the UCI Machine Learning 

repository (Asuncion and Newman, 2007) and their names along with their 

respective sizes are detailed in Table 3.1. For this set of experiments we used 

the following 10 data sets: car, credit, contrac, derma, ecoli, flags, heart, 

ionosphere, wine and yeast. 

 

Categoric Numeric

car 7 0 1728 70% car [unacc]

contrac 8 2 1473 43%
contraceptive 

method used [1]

credit 8 6 690 56% A16 [-]

derma 8 1 366 17%

eryhemato-

squamous disease 

[2]

ecoli 8 8 336 43%
localization site 

[cp]

flags 8 4 194 31% religion [1]

heart 8 6 270 44% disease present [2]

ionosphere 8 34 351 36% class [b]

spect 8 0 267 79%
overall diagnosis 

[1]

votes 8 0 435 45% party [democrat]

wine 8 14 178 39% c2 [2]

yeast 8 9 1484 31% protein site [CYT]

Target Class [target 

value]

Attribute Distribution
Name Instances

Percentage with 

Target Class

 

Table 3.1 Data sets 

 

When running a DTB on a data set we use 10-fold cross validation. This 

involves splitting the data set into 10 different folds (partitions) of 

approximately equal size. The folds are created in a random manner but we 

make sure that the class distribution in each fold is similar to the class 

distribution in the entire data set. One fold is chosen as the test set and the 

rest of the 9 folds are used to create a training set which the DTB uses to 

build a decision tree. The resultant decision tree is then tested on the test set, 
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i.e. the fold we did not use throughout training. This process is repeated 9 

more times, each time using a different fold for the test set. This way, for each 

DTB run on a data set, we end up with 10 different accuracy values, one for 

each of the 10 folds. We use the mean of these 10 values as the overall 

accuracy value for that particular DTB run. The accuracy value for a decision 

tree on a test set is simply the percentage of instances in the test set that are 

classified correctly by the decision tree. 

 

Each of the 12 DTBs were run 10 times on each data set, each time using a 

different make-up for the folds. This effectively means that for each <DTB, 

data set> combination we have 10 different average accuracy values, one for 

each of the 10 runs. 

 

 

3.2.3. Results and Discussion 

Tables 3.2 and 3.3 show the results of our experiments. Each numerical value 

represents the overall accuracy value (in the case of Table 3.2) or ranking (in 

the case of Table 3.3) of a DTB using a particular splitting heuristic (denoted 

by the column header) on a particular data set (denoted by the row header). 

The last row of values in Table 3.3 indicate the average ranking of each 

splitting heuristic over all the data sets. 

 

CHI IG GR GINI JM MDL MGINI RLV RLF SGAIN SGINI WOE

credit 80.435 79.71 80.87 80.725 80.435 80.725 78.696 78.116 72.319 83.043 80.29 81.304

car 93.979 94.269 85.532 94.153 84.49 93.922 93.863 94.096 80.378 85.474 93.747 80.036

ecoli 91.355 91.952 91.658 91.952 93.44 91.64 91.961 92.255 88.725 92.549 91.658 90.463

heart 73.704 74.074 75.556 73.704 78.519 72.963 72.222 74.444 67.407 76.296 74.074 73.333

contrac 62.394 62.392 64.087 62.392 63.953 61.983 61.641 62.46 60.69 63.545 62.46 62.525

wine 83.66 80.85 80.882 84.804 88.758 85.294 88.203 84.216 87.059 80.882 85.359 87.092

flags 85.105 85.658 82.921 85.105 80.947 83.105 83.553 81.974 72.711 84.579 84.632 79.316

yeast 68.266 68.397 69.409 67.726 69.407 68.536 67.386 67.93 70.013 69.745 68.263 68.399

derma 91.276 92.072 93.709 90.983 92.08 90.18 89.895 92.62 90.105 92.605 90.45 91.802

ionosphere 86.627 88.056 87.762 87.476 86.071 87.762 85.77 87.746 84.349 89.476 87.198 87.77

 Table 3.2 Results Comparing Different Splitting Criteria using Average Accuracy 



 

 

 
Chapter 3 - Hyper-heuristic Rules using Partition Size 

43 

The first thing to note from Table 3.2 is that for any given data set, different 

heuristics lead to decision trees with different predictive accuracies. The choice 

of which splitting heuristic to use does have an impact on the performance of 

the resultant classifier. The relevance of the splitting heuristic to the 

classification accuracy of the decision tree varies from one data set to another. 

For example, the difference in predictive accuracy between the worst-

performing classifier and the best-performing classifier on the yeast data set is 

2.627% while for the car data set this difference is of 14.233%. For data sets 

like car, choosing the appropriate splitting heuristic is of crucial importance. 

 

CHI IG GR GINI JM MDL MGINI RLV RLF SGAIN SGINI WOE

credit 6 9 3 4 6 4 10 11 12 1 8 2

car 4 1 8 2 10 5 6 3 11 9 7 12

ecoli 10 5 7 5 1 9 4 3 12 2 7 11

heart 7 5 3 7 1 10 11 4 12 2 5 9

contrac 7 8 1 8 2 10 11 5 12 3 5 4

wine 9 12 10 7 1 6 2 8 4 10 5 3

flags 2 1 8 2 10 7 6 9 12 5 4 11

yeast 8 7 3 11 4 5 12 10 1 2 9 6

derma 7 5 1 8 4 10 12 2 11 3 9 6

ionosphere 9 2 4 7 10 4 11 6 12 1 8 3

average 6.9 5.5 4.8 6.1 4.9 7 8.5 6.1 9.9 3.8 6.7 6.7

Table 3.3 Results Comparing Different Splitting Criteria using Average Ranking 

 

Table 3.3 demonstrates that there is no one heuristic that performs reasonably 

well on all the data sets we used for testing. None of the heuristics managed to 

rank within the top 8 for all the data sets. Each heuristic comes with its own 

bias for preferring one attribute over the others. Different biases are suited for 

different data sets. Relief fares very poorly when considering its average 

performance over all the data sets, however it still managed to outperform all 

the other heuristics on the yeast data set. This means that one cannot dismiss 

outright using such a splitting heuristic since it can prove to give the best 

results on data sets like yeast.  
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3.3 The Case for Hyper-heuristics for Decision Tree 

Induction 

 

Hyper-heuristics work above heuristics and meta-heuristics. Their job is to 

decide which heuristic to apply at any given problem situation. This is in 

contrast to customized, highly-specialized algorithms that have been purposely 

built or had their parameters optimized to solve one particular instance of a 

problem. Such specialized algorithms will give very good results for the 

problem instance that they have been built for. However they will generally 

perform very badly when the conditions of the problem change. This makes 

such algorithms very expensive to build as they cannot be effectively reused on 

different problems and because expert knowledge is needed to tune the many 

parameters of such an algorithm. 

 

Previous work on hyper-heuristics (see 2.1) highlights the need for general 

purpose algorithms that can be easily used on a variety of problems. They 

may not necessarily deliver the optimal results but their performance is at 

least competitive with that of a specialized algorithm. Such hyper-heuristics 

work by adapting the heuristics used to the current problem or problem state 

that they face. Hyper-heuristics have been successfully applied to many fields, 

including bin-packing problems, timetabling problems, scheduling problems, 

cutting stock problems and constraint satisfaction problems. There is now a 

sizeable body of work showing the effectiveness of hyper-heuristics. 

 

As we can see from the results of the previous experiments for decision tree 

building algorithms (see 3.2), each splitting heuristic comes with its own bias 

that helps it prefer one splitting attribute over another. Some biases suit data 

sets of a particular make-up while other biases suit other data sets of a 

different nature. Trying to identify which heuristic suits which data set is not 

easy. There is currently no hard and fast rule that can be used to find the 
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optimal splitting heuristic for any given data set. Indeed, making such a 

decision usually involves a lot of time and effort spent on experimentation, 

trying out different heuristics and then choosing one on the basis of empirical 

evidence.  

 

One could manage a database containing information on which heuristic is 

optimal for a particular data set. Such a database could be updated whenever 

a new data set is encountered. If we have to work on a data set that is already 

present in the database, we only need to consult the database to find out 

which heuristic works best for that problem. However, such a database would 

be infeasible to maintain. Finding out which heuristic works best with a 

newly-encountered data set means running the decision tree building algorithm 

numerous times (at least once for each heuristic) – this is a very time-

consuming task. Furthermore, the set of all possible data sets is huge when 

considering that new data sets are always being created and attributes are 

continuously being constructed, added or deleted from older data sets. Indeed, 

such a database would be very difficult to maintain. 

 

We believe that hyper-heuristics can be used to overcome this problem. What 

we need is a general purpose decision tree building algorithm that can give 

competitive results on a variety of data sets. When faced with a new data set, 

we could employ a hyper-heuristic to select the heuristic to be used by the 

decision tree building algorithm. The hyper-heuristic would adapt the heuristic 

used according to certain statistical features of the data set. Such a hyper-

heuristic could be a set of m IF-THEN rules of the form: 

 

IF (dsf1 = x1.1) AND (dsf2 = x1.2) … (dsfn = x1.n)  THEN use heuristic h1 

ELSE  IF (dsf1 = x2.1) AND (dsf2 = x2.2) … (dsfn = x2.n)  THEN use heuristic h2 

… 

ELSE  IF (dsf1 = xm.1) AND (dsf2 = xm.2) … (dsfn = xm.n)  THEN use heuristic hm 
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where, dsfi is the name of data set feature i, 

 xj.i is the value of data set feature i in rule j, 

 hj is the heuristic to be used if rule j is triggered. 

 

The above rules would represent a hyper-heuristic that decides on which 

splitting heuristic to use in the decision tree building algorithm by measuring 

n features of the data set. These n features would then be compared to each 

of the m rules so that the heuristic chosen is the one whose rule conditional 

best matches the data set features. Our task would then boil down to 

identifying the set of n data set features that can best characterize the 

problem for the purposes of choosing a suitable splitting heuristic as well as 

discovering the m rules that could successfully guide such a hyper-heuristic 

towards finding a good heuristic for any given data set. 

 

We go one step further. The way a traditional decision tree building algorithm 

works is by always applying the same heuristic at each step of the tree-

building process (see Figure 3.2). As the algorithm works its way down the 

tree, the data set partition which needs to be split gets smaller and smaller. 

Also, as you go deeper in the tree, the set of available candidate splitting 

attributes changes as fewer attributes remain. Since the problem state of our 

decision tree building algorithm is continuously changing as the tree is being 

built, we see no reason why the method for choosing a splitting attribute has 

to be fixed throughout the whole tree-building process. Indeed, we might get 

better trees if we adapt the heuristic to be used according to the data set 

partition that needs to be split. In such a scenario, our hyper-heuristic rules 

would be applied to any possible data set partition (instead of just the initial 

complete data set). Our decision tree building algorithm would employ a 

toolbox of heuristics and our hyper-heuristic would then pick and choose the 

best heuristic according to the features of the partition that needs to be split. 
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The rest of this chapter goes through our initial attempts at creating such a 

hyper-heuristic. 

 

 

3.4 Hyper-heuristic Rules that Choose Ranking 

 

3.4.1 Problem State Representation & Choice of Splitting 

Method 

As the decision tree building algorithm is running, our hyper-heuristic decides 

which method to use for choosing a splitting attribute at each node of the 

developing decision tree. The hyper-heuristic uses information about the 

current problem state, i.e. the data partition left to split, to make this 

decision. In our first attempt at creating such a hyper-heuristic, we represent 

the problem state in the hyper-heuristic rules as the number of instances left 

in the data partition. Recall from 3.1.1 that the data partition left to split gets 

smaller and smaller as we go deeper down the tree. Different methods for 

choosing a splitting attribute might be suitable for creating different tree 

nodes depending on the depth of the node in the decision tree. We therefore 

represent a hyper-heuristic that decides on how to split the data when faced 

with a data partition d as a set of 200 rules: 

 

IF (sized = 0.5%) THEN choose attribute ranked r1th 

ELSE IF (sized = 1.0%) THEN choose attribute ranked r2th 

ELSE IF (sized = 1.5%) THEN choose attribute ranked r3th 

… 

ELSE  IF (sized = 100%) THEN choose attribute ranked r200th 

 

where, sized is the percentage of instances left in data partition d, 

ri is the ranking of the attribute to use for splitting the data after 

sorting the set of available attributes using some heuristic h should rule 
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i be triggered (where each ri has a value between 1 and 6, chosen by 

the genetic algorithm). 

 

Let D = our initial data partition /*the whole training set*/ 

Let A = list of all attributes in D 

Let h = some heuristic that sorts a list of attributes 

Let T = <empty tree> 

Let n = <empty tree node> 

  

Insert n in T 

CALL GrowTree(D, A, h, n) 

 

GrowTree(D, A, h, n) /*creates node at n in T*/ 

    IF <all instances in D are of the same class> THEN 

        c = class of instances in D 

        Create leaf at n with label c 

    ELSE 

        Sort A using heuristic h 

        s = size of partition D 

        r = GetRanking(s) 

        a = attribute ranked rth in A /*the splitting attribute*/ 

        Use attribute a for node n 

        V = set of all distinct values a can have 

        FOR EACH v in V 

            Create a branch b from n using value v 

            Create a new empty child node nv at branch b 

            Dv = data partition containing only instances where a = v 

            Av = A minus a 

            CALL GrowTree(Dv, Av, h, nv) 

        END /*FOR EACH*/ 

    END /*IF*/ 

END /*GrowTree*/ 

 

GetRanking(s) 

    Use hyper-heuristic rules to return ranking r based on s 

END /*GetRanking*/ 

Figure 3.3 Hyper-heuristic Decision Tree Building Algorithm that Chooses Ranking 

 

Whenever the decision tree building algorithm is faced with the task of 

splitting a data partition to create a tree node, the hyper-heuristic first 

calculates the size of the current partition by counting the number of instances 

in it. Then this value is used together with the size of the initial training data 
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set so as to calculate the percentage of instances left in the current data 

partition.  

 

In this set of experiments, our hyper-heuristic has only one heuristic available 

for ranking the available candidate splitting attributes. What varies from one 

hyper-heuristic rule to another (i.e. from one problem state to another) is the 

ranking of the attribute chosen to split the data. Recall that in traditional 

decision tree building algorithms a splitting attribute is chosen by first sorting 

the available attributes into a list using some heuristic, after which the first-

ranked attribute is chosen as the splitting attribute. For our first set of hyper-

heuristic experiments we decided to keep the sorting heuristic fixed while only 

varying the ranking of the chosen splitting attribute from the sorted list of 

attributes. Note that heuristic h never changes. Figure 3.3 contains the 

pseudo-code for our first hyper-heuristic decision tree building algorithm. 

We tried two sets of experiments using this type of hyper-heuristic, one set 

uses information gain to sort the attributes while the other set uses gain ratio. 

 

 

3.4.2 Searching for Good Hyper-heuristics using Genetic 

Algorithms 

We use a genetic algorithm to search for good values for the rankings (r1, r2, 

r3, …, r200) in our hyper-heuristic rules. Genetic algorithms are popular search 

optimization methods inspired by Charles Darwin’s theory of evolution 

(Holland, 1975). A typical genetic algorithm maintains a population of 

candidate solutions at any one time. The initial population is created in a 

random manner after which other populations are evolved iteratively over a 

series of generations using three operators: selection, crossover and mutation. 

The selection operator works on the entire population and its job is to identify 

which individuals in the population will pass on their “genetic material” to the 

next generation’s population. Central to the effectiveness of the selection 
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operator is the fitness function that evaluates how good a solution each 

individual represents – the better the solution, the higher the probability of 

that individual’s genes being passed on to the next generation.  

 

The crossover operator works on two individuals in the population by 

swapping some of their “genetic material”. By “genetic material” we mean 

atomic parts of the solution encoded by the individual. The crossover operator 

produces two new individuals (offspring) that inherit genes from the original 

two parents. The purpose of this operator is to intensify the search so that the 

genes from the best individuals in the population are combined together in the 

hope of creating better offspring. Intensification is the process of combining 

good building blocks (i.e. sub-sections of an individual’s genes that contribute 

to a high fitness value) from different individuals. The mutation operator helps 

diversify the search by making random jumps in the search space. It achieves 

this by making very small random changes in the genes of an individual in the 

hope that it will land in a promising area of the search space previously 

unexplored. In this way, a genetic algorithm creates one generation after 

another using these three operators. This process stops after the fitness value 

of an individual in the population meets some requirement or after a preset 

number of generations. The individual with the best fitness value over all the 

generations is the one returned by the genetic algorithm.  

 

One can visualize the search space of a gentic algorithm using a fitness 

landscape (Jones, 1995). A fitness landscape consists of points that represent 

candidate solutions. Individuals that are very similar in genetic make-up are 

bound to be closer to each other on the landscape. Furthermore, the higher 

the fitness of an individual, the bigger the height of the respective point on the 

landscape. Please note that we did not carry out any investigations into the 

fitness landscapes of our genetic algorithms. 
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We are searching for a good hyper-heuristic. Thus, each individual in our 

genetic algorithm represents a complete set of 200 hyper-heuristic rules as 

presented in 3.4.1. We encode these rules as an integer string of length 200: r1, 

r2, r3, …, r200, where the first integer represents the ranking value for the first 

hyper-heuristic rule, the second integer represents the ranking value of the 

second hyper-heuristic rule, etc. Each ranking value gene was allowed to vary 

between 1 and 6, which means that the resultant hyper-heuristic can decide on 

choosing any attribute that ranks 1st to 6th. The value of 6 was chosen as the 

optimal lowest-ranking value on the basis of empirical evidence produced by 

experimentation. This involved running a series of preliminary experiments 

testing different ranges of allowed ranking genes. In our experiments, the range 

of 1-6 gave the best results. 

 

The choice of fitness function is crucial to the performance of any genetic 

algorithm. The fitness function we used involves running the decision tree 

building algorithm using the hyper-heuristic rules encoded by the individual 

on one or more data sets using cross validation (as described in 3.2.2.2). The 

fitness value of an individual is the average predictive accuracy of the decision 

trees produced by the hyper-heuristic encoded in that individual. 

 

The population was of size 40 and the genetic algorithm terminated after 60 

generations. The number of parents chosen by the selection operator is 75% of 

the population size. This means that 75% of any given population is made up 

of offspring created from individuals selected from the previous generation 

while the remaining 25% are direct copies of the best individuals from the 

previous generation. This is a very selective genetic algorithm, deliberately so 

to promote fast progress, since individual fitness evaluations are quite time-

consuming. 

 

Tournament selection without replacement was used as this has been shown to 

be an effective method when used in other similar problems. This selection 
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operator involves running a series of tournaments, one for each parent to be 

selected. A tournament is run by randomly selecting a number of individuals 

from the population and the individual with the highest fitness value from this 

set is chosen as the winner. The number of individuals competing in a 

tournament, i.e. the tournament size, was set to be 40% of the population size. 

Once an individual has been selected he is no longer eligible to participate in 

future tournaments – this ensures that an individual can only be selected once 

in one generation. 

 

After the parents have been selected, they are paired up and one-point 

crossover is applied to each pair. This crossover technique involves identifying 

a random single crossover point so that all the genes to one side of this point 

are swapped between parents. We also did some preliminary tests comparing 

this crossover technique to two-point crossover and uniform crossover. Our 

tests showed that one-point crossover has a slight edge over the other two 

crossover methods. Point mutation is then applied to each offspring produced 

by crossover. When applied to an individual, this mutation operator goes 

through each gene of the individual and randomly changes the value of the 

gene with a very small probability. In our case, mutation was applied with a 

probability of 5%. This figure was chosen on the basis of empirical evidence 

produced by experimentation. 

 

We also carried out experiments comparing the search results produced by our 

genetic algorithm to a simple hill-climbing method and to a genetic algorithm 

that does not employ a crossover method. Results suggested that our genetic 

algorithm is somewhat better at discovering hyper-heuristic rule sets than the 

other two search methods. 

 

 

 

 



 

 

 
Chapter 3 - Hyper-heuristic Rules using Partition Size 

53 

3.4.3 Data Sets 

For these experiments we use data sets car, contrac, credit and votes (see 

Table 3.1). We run two sets of experiments: the first set uses single data sets 

while the second set uses multiple data sets. The single data set experiments 

use only one data set which is split into two halves: one half is used for 

training the hyper-heuristic – called the hyper-heuristic training set (HHTRS) 

– and the other half is used for testing the hyper-heuristic produced by the 

training phase – called the hyper-heuristic test set (HHTES). The training 

phase we refer to here is actually the search conducted by the genetic 

algorithm. The HHTRS is the data set used by the fitness function of the 

genetic algorithm, hence it is the data set used to “learn” the hyper-heuristic. 

The fitness value of a candidate hyper-heuristic is the average predictive 

accuracy of the decision trees produced by that hyper-heuristic after running it 

on the HHTRS using 10-fold cross validation. This means that the HHTRS is 

split into a building set (for building a decision tree) and a validation set (for 

testing the resultant decision tree) 10 times, each time using a different 

validation set and building set. 

 

The HHTES is not used by the genetic algorithm in any way and so we are 

free to use it for testing our resultant hyper-heuristic. We test the resultant 

hyper-heuristic by using it to create a decision tree on the HHTRS which is 

then tested on the HHTES using 10-fold cross validation. The performance of 

the hyper-heuristic is measured by the average predictive accuracy it achieves 

on the HHTES. We compare our hyper-heuristics to traditional decision-tree 

building algorithms by running normal ID3 on the same HHTES using the 

same cross-validation method. We ran four such experiments: one for each of 

the data sets. 

 

The experiments that use multiple data sets work in the same manner with 

the difference that the hyper-heuristic is trained and tested on more than one 

data set. This means that our HHTRS would comprise of several halves of 
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data sets while the HHTES would be made up of the other halves of the same 

data sets. In this case, the fitness value would be the average performance of 

the hyper-heuristic over all the data sets in the HHTRS. Likewise, the 

performance measure of our resultant hyper-heuristic is the average result it 

obtains over all the data sets in the HHTES. We ran one such experiment 

using all four data sets. 

 

The motives for running these two sets of experiments are different from each 

other. In the case of the experiments using single data sets, we expect the 

resultant hyper-heuristic to be highly-optimized for the data set used during 

training. One would hope that it manages to outperform decision tree building 

algorithms that use static, non-adaptive heuristics on this same data set. We 

call this a specialized hyper-heuristic. In the case of the experiments using 

multiple data sets, we expect the resultant hyper-heuristic to be a good overall 

algorithm that can be reliably applied to any one of the data sets used for 

training. We do not expect such a hyper-heuristic to outperform traditional 

single-heuristic algorithms on each and every data set used for training the 

hyper-heuristic. However we do expect it to perform consistently well on each 

of the data sets it was trained on. We call this a generalized hyper-heuristic.  

 

We run each set of experiments 10 times, each time varying the way we split 

the data set into the HHTRS and the HHTES as well as the seeds of the 

initial population of the genetic algorithm. We present the average result for 

each experiment. 

 

 

3.4.4 Results 

 

3.4.4.1 Single Data Set Experiments 

Table 3.4 shows the results for the single data set experiments using the 

information gain heuristic while Table 3.5 shows the results for the same kind 
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of experiments using the gain ratio heuristic. The values under column HH 

represent predictive accuracy values achieved by our hyper-heuristic while 

those under column DTBA represent predictive accuracy values achieved by a 

regular decision tree building algorithm. This decision tree building algorithm 

works in the manner described in 3.2.2.1 (i.e. it always chooses the first ranked 

attribute when splitting the data) and it uses the same heuristic as the one 

used by the hyper-heuristic. This means that the DTBA in Table 3.4 uses 

information gain while the one in Table 3.5 uses gain ratio. A predictive 

accuracy value is the average percentage of correctly classified instances. The 

third column represents the p-values worked out using a Student’s two-tailed 

t-test.  

 

HH DTBA p-value

car 93.296 93.852 0.291

contrac 60.942 62.12 0.109

credit 77.492 78.35 0.284

votes 92.994 93.416 0.592

Using Information Gain

 

HH DTBA p-value

car 92.999 94.122 0.116

contrac 62.187 62.672 0.507

credit 79.213 79.594 0.796

votes 92.857 92.859 0.998

Using Gain Ratio

 

Table 3.4 Predictive Accuracy of Single Data 
Set Experiments Using Information Gain 

Table 3.5 Predictive Accuracy of Single Data 
Set Experiments Using Gain Ratio 

 

None of the hyper-heuristics managed to significantly outperform the 

traditional DTBAs on any of the data sets. All of the hyper-heuristics 

managed to get very competitive results, notably the hyper-heuristic running 

on the votes data set using the gain ratio heuristic. However, assuming a 

standard confidence level of 90%, none of the hyper-heuristic methods were 

signficantly different from the standard methods on any of the data sets. 

 

 

3.4.4.2 Multiple Data Set Experiments 

Tables 3.5 and 3.6 display results for the multiple data set experiments using 

information gain and gain ratio respectively. 
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HH DTBA p-value

car 92.847 93.797 0.046

contrac 61.802 61.706 0.883

credit 78.961 78.724 0.887

votes 93.089 92.961 0.915

Using Information Gain

 

HH DTBA p-value

car 92.733 93.275 0.329

contrac 62.836 63.855 0.260

credit 79.478 79.566 0.958

votes 92.662 92.193 0.503

Using Gain Ratio

 

Table 3.6 Predictive Accuracy of Multiple 
Data Set Experiments Using Information 

Gain 

Table 3.7 Predictive Accuracy of Multiple 
Data Set Experiments Using Gain Ratio 

 

The generalized hyper-heuristics methods never managed to perform 

significantly better than the standard DTBAs. This means that there is no 

benefit in using a hyper-heuristic for this group of data sets. However, it is 

interesting to note that when comparing the results of the hyper-heuristic to 

the DTBA on each data set individually, the hyper-heuristic seemed to achieve 

slightly better results in four instances. This is true for the hyper-heuristic 

that uses information gain in the case of data sets contrac, credit and votes 

as well as for the hyper-heuristic that uses the gain ratio heuristic in the case 

of the votes data set. However it turns out that none of these differences are 

statistically significant. 

 

 

3.4.5 Discussion 

With the single data set experiments we tried to evolve specialized hyper-

heuristics trained for data sets from a particular domain. The results we got 

suggest that we failed to do this. None of the specialized hyper-heuristics 

managed to outperform the regular decision tree building algorithms. It seems 

that our choice of problem state representation for the hyper-heuristic rules is 

not so effective. These hyper-heuristics failed to find a link between the 

number of instances within a data partition and the best way to split that 

same partition. The same holds for the multiple data set experiments. Our aim 

in this case was to evolve generalized hyper-heuristics that need not always 

outperform standard algorithms but at least give a better overall performance 
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over the set of data sets they were trained on. Again, the way we represent 

the problem state in our hyper-heuristic rules may have lead to these 

experiments giving disappointing results. 

 

It is interesting to note that even though the hyper-heuristics that were 

trained on multiple data sets did not outperform the regular algorithms when 

considering their overall average result, they did actually manage to achieve a 

slight improvement on half of the individual data sets. This suggests that 

there might be such a thing as hyper-heuristics for decision tree building 

algorithms that can improve over regular algorithms by adapting the splitting 

heuristic used. One of the reasons why the specialized hyper-heuristics may 

have failed to achieve this could be because they overfit the particular make-

up of the training set they were evolved on. The “extra” data sets used in the 

training phase of the multiple data sets experiments could have helped prevent 

the hyper-heuristic from overfitting any one of the data sets. 

 

In this chapter, we present one more hyper-heuristic that uses the same 

problem state representation but is given the option of choosing how to sort 

the candidate splitting attributes using either information gain or gain ratio. 

 

 

3.5 Hyper-heuristic Rules that Choose Heuristic and 

Ranking 

 

3.5.1 Problem State Representation & Choice of Splitting 

Method 

We decided to modify our first hyper-heuristic and re-run the same 

experiments as in 3.4 using this second hyper-heuristic. This modified hyper-

heuristic has two sorting heuristics available to use.  
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Let D = our initial data partition /*the whole training set*/ 

Let A = list of all attributes in D 

Let T = <empty tree> 

Let n = <empty tree node> 

  

Insert n in T 

CALL GrowTree(D, A, n) 

 

GrowTree(D, A, n) 

    IF <all instances in D are of the same class> THEN 

        c = class of instances in D 

        Create leaf at n with label c 

    ELSE 

        s = size of partition D 

        <h, r> = GetHeuristicAndRanking(s) 

        Sort A using heuristic h 

        a = attribute ranked rth in A /*the splitting attribute*/ 

        Use attribute a for node n 

        V = set of all distinct values a can have 

        FOR EACH v in V 

            Create a branch b from n using value v 

            Create a new empty child node nv at branch b 

            Dv = data partition containing only instances where a = v 

            Av = A minus a 

            CALL GrowTree (Dv, Av, nv) 

        END /*FOR EACH*/ 

    END /*IF*/ 

END /*GrowTree*/ 

 

GetHeuristicAndRanking(s) 

  Use hyper-heuristic rules to return ranking r and heuristic h based on s 

END /*GetHeuristicAndRanking*/ 

Figure 3.4 Hyper-heuristic Decision Tree Building Algorithm that Chooses Heuristic and 

Ranking 

 

The problem state representation is similar to the one described in 3.4.1 

except we use 100 rules instead of 200 in the following manner: 

 

IF (sized = 1%) THEN use heuristic h1 & choose attribute ranked r1th 

ELSE IF (sized = 2%) THEN use heuristic h2 & choose attribute ranked r2th 

ELSE IF (sized = 3%) THEN use heuristic h3 & choose attribute ranked r3th 

… 
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ELSE  IF (sized = 100%) THEN use heuristic h100 & choose attribute ranked 

r100th 

 

where, sized is the percentage of instances left in data partition d, 

hi is the heuristic to be used for sorting the available attributes should 

rule i be triggered, 

ri is the ranking of the attribute to use for splitting the data after the 

attributes have been sorted using hi should rule i be triggered. 

 

When faced with a data partition of a given size, the hyper-heuristic relays 

back to the decision tree building algorithm two pieces of information: a) the 

heuristic to be used for sorting the available candidate splitting attributes and 

b) which attribute to choose for splitting this partition from the sorted list of 

candidate splitting attributes. Thus, we update the pseudo-code of our hyper-

heuristic as shown in Figure 3.4. 

 

 

3.5.2 Genetic Algorithm 

We used the same genetic algorithm described in 3.4.2 with a different 

encoding for the individuals. A hyper-heuristic is now made up of 100 rules 

and each rule has associated with it a sorting heuristic as well as a ranking 

value. We encode such a hyper-heuristic as an integer string of length 200: h1, 

r1, h2, r2, …, h100,, r100. Each hi represents the sorting heuristic to be used if 

rule i is triggered. This gene can be either 0 or 1 where 0 represents the 

information gain heuristic and 1 represents the gain ratio heuristic. Each ri 

value represents the ranking of the attribute to be chosen for splitting the data 

should rule i be triggered. The ranking gene can vary between 1 and 6 as in 

the previous hyper-heuristic. 
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As for the previous experiments, we run each set of experiments 10 times, each 

time varying the way we split the data set into the hyper-heuristic training set 

and the hyper-heuristic test set as well as the seeds of the initial population of 

the genetic algorithm. We report the average result for each of the 10 runs. 

 

 

3.5.3 Results 

Tables 3.8 and 3.9 show results for our second hyper-heuristic. The values 

under DTBA IG refer to the results obtained by the regular decision tree 

building algorithm using information gain while the values under DTBA GR 

refer to results obtained by the same kind of algorithm using gain ratio. 

 

HH DTBA IG p-value DTBA GR p-value

car 93.565 93.518 0.904 93.599 0.932

contrac 61.857 62.228 0.540 62.789 0.244

credit 78.98 79.205 0.747 80.212 0.146

votes 92.903 93.182 0.784 92.208 0.516  
Table 3.8 Predictive Accuracy of Single Data Set Experiments 

using both Information Gain and Gain Ratio 

 

HH DTBA IG p-value DTBA GR p-value

car 92.674 93.566 0.207 93.658 0.157

contrac 61.178 61.014 0.888 61.095 0.939

credit 79.42 78.726 0.527 79.743 0.778

votes 91.894 93.095 0.275 92.584 0.469  
Table 3.9 Predictive Accuracy of Multiple Data Sets Experiments 

using both Information Gain and Gain Ratio 

 

The results of this hyper-heuristic are very similar to the results obtained by 

our initial hyper-heuristic. None of the hyper-heuristics managed to 

outperform the standard DTBAs. In fact, in all cases the hyper-heuristics’ 

performance was not significantly different from that of the standard methods. 

However, the hyper-heuristic that was trained on multiple data sets did 

manage to get the best results for data set contrac. However, this difference 

is not statisically significant. 
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3.5.4 Discussion 

The results achieved by the second hyper-heuristic are very similar to the ones 

obtained by the earlier hyper-heuristic that uses only one sorting heuristic. 

The specialized hyper-heuristics still seem to be overfitting the training set as 

not one of them managed to outperform the regular decision tree building 

algorithms. The overall results obtained by the “general” hyper-heuristic failed 

to outperform any of the regular decision tree building algorithms. However, 

as in the earlier experiments, they did manage to get slightly better results on 

one of the data sets. Though this difference is not statistically significant, we 

still feel that this seems to reinforce the notion that training our hyper-

heuristic on multiple data sets prevents it from overfitting any one of the data 

sets. 

 

 

3.6 Summary 

 

In this chapter we presented our first attempts at developing hyper-heuristics 

for decision tree induction. These hyper-heuristics base the decision on how to 

split a data partition on its size. We have presented two versions of this 

hyper-heuristic. The first version uses a fixed heuristic for sorting candidate 

splitting attributes while adapting the ranking of the chosen splitting 

attribute. The second version is given a choice of two sorting heuristics so that 

it also changes the way candidate splitting attributes are sorted according to 

the problem state. For both versions, we tried evolving specialized hyper-

heuristics that are trained on just one data set as well as generalized hyper-

heuristics that are trained on a group of data sets from different domains.  

 

All the results of our experiments suggest that there is no benefit in using such 

hyper-heuristics. The hyper-heuristic did not manage to find a strong 

correlation between the size of the partition that needs to be split and the best 



 

 

 
Chapter 3 - Hyper-heuristic Rules using Partition Size 

62 

way of choosing a splitting attribute from that same partition. One reason for 

this could be that this correlation is too weak. It might well be that the size of 

the partition bears no relevance to the best way it should be split when 

building a decision tree. Another possible cause for the poor results we 

obtained could be the length of the chromosone representing the hyper-

heuristic in the genetic algorithm. Having such a long chromosone makes it 

very hard for the genetic algorithm to converge to a good solution since the 

search space is so big. A possible improvement could be to ensure that the size 

of the partition varies monotonically with the value of the ranking gene when 

creating and manipulating the individuals of the genetic algorithm. We also 

noticed that during the lifetime of the genetic algorithm a considerable 

number of the hyper-heuristic rules were never triggered by the data partitions 

encountered by the decision tree building algorithms. This means that all the 

effort that went into evolving these genes by the genetic algorithm was wasted 

since these genes were never relevant to the fitness value of the individual. 

This issue together with the long length of the chromosone makes the search 

for a good hyper-heuristic a difficult task for the genetic algorithm. 
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Chapter 4 
 

 

Hyper-heuristic Rules using Attribute Information 

 

 

 

 

 

 

In chapter 3, we described hyper-heuristic rules that work within the 

framework of a typical decision-tree building algorithm. While building a 

decision tree, these rules help us decide on how to split the data at each node 

in the developing tree. They take into consideration the state of the current 

problem, i.e. the data partition to be split, so as to decide on which method to 

use for choosing the splitting attribute.  

 

When designing such rules, the choice of the problem state representation as 

well as the available heuristics for choosing a splitting attribute are vital to 

the performance of the resultant hyper-heuristic. The hyper-heuristics 

presented in chapter 3 all characterize the problem state by looking at the 

number of instances left in the partition to be split. Moreover, these hyper-

heuristics restricted themselves to using just two splitting heuristics: 

information gain and gain ratio.  

 

In this chapter we present four alternative hyper-heuristics for the same 

purpose. All of these hyper-heuristics use rules that represent the problem 

state by some statistical property of the candidate splitting attributes that 
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remain in the partition to be split. A bigger set of splitting heuristics is made 

available to these hyper-heuristics. We present experimental results for each of 

these hyper-heuristics. Instead of discussing the experimental results 

individually we present an analysis of all the results together with a discussion 

at the end of the chapter. 

 

 

4.1 Hyper-heuristic Rules using Number of Attributes Left 

 

4.1.1. Problem State Representation & Choice of Splitting 

Method 

When building a decision tree, the number of attributes available to split the 

partition gets smaller and smaller as we go deeper down the tree. The first 

hyper-heuristic we present in this chapter bases its decision on how to split the 

data on the number of candidate splitting attributes left in the data partition 

to be split. Recall from 3.1 that a splitting heuristic works on a set of 

candidate splitting attributes by sorting them in a list after which the top-

most attribute is chosen to split the data. The number of attributes left 

available to split the partition is an indicator of how deep we are in the tree. 

The effectiveness of the splitting heuristic in choosing a good splitting 

attribute might depend on the number of attributes it has to sort. 

 

We therefore represent a hyper-heuristic that decides on how to split the data 

when faced with a data partition d as a set of m rules: 

 

IF (attr_leftd < x1) THEN use splitting heuristic h1 

ELSE IF (attr_leftd < x2) THEN use splitting heuristic h2 

… 

ELSE IF (attr_leftd < xm-1) THEN use splitting heuristic hm-1 

ELSE  use splitting heuristic hm 
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where, attr_leftd is the number of candidate splitting attributes in data  

partition d, 

hi is the heuristic to use to sort the list of candidate splitting attributes 

in partition d should rule i be triggered, 

x1, x2, … xm-1 are integer values where x1 < x2 < x3 … < xm-1. 

 

Using this set of hyper-heuristic rules, whenever a data partition needs to be 

split, we look at the number of candidate splitting attributes left in the 

partition to select an appropriate rule from the list of m hyper-heuristic rules. 

We do this by testing the conditional of each rule, one by one, starting from 

the top. The heuristic chosen is the one dictated by the rule whose conditional 

evaluates to true to the current problem state. If none of the first m – 1 rules 

evaluate to true, we use the heuristic dictated by the default rule: hm. 

 

Note that in this hyper-heuristic we always choose the topmost attribute for 

splitting the data after the set of attributes are sorted using the chosen 

heuristic. This holds true for all the hyper-heuristics we present from this 

point onwards. We present the pseudo-code for the decision-tree building 

algorithm that uses this hyper-heuristic in Figure 4.1. 

 

We ran two sets of experiments using this type of hyper-heuristic. The hyper-

heuristic in the first set of experiments has all 12 heuristics mentioned in 3.1.1 

available to work with. These are chi-square, information gain, gain ratio, gini 

index, J-measure, minimum description length, modified gini index, relevance, 

relief, symmetric gain, symmetric gini and weight of evidence. The second 

hyper-heuristic has only 5 heuristics to work with: information gain, gain 

ratio, J-measure, relief and symmetric gain. We narrowed down the original 

set of 12 heuristics to this smaller set by choosing the 5 heuristics that gave 

the best performances on some of the individual data sets while also making 

sure that these heuristics produce sorted lists of attributes that are as different 
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from each other as possible. The reason for this is that a hyper-heuristic needs 

a pool of effective and diverse low-level heuristics in order for it to be robust 

(Cowling and Chakhlevitch, 2003). 

 

Let D = our initial data partition /*the whole training set*/ 

Let A = list of all attributes in D 

Let T = <empty tree> 

Let n = <empty tree node> 

  

Insert n in T 

CALL GrowTree(D, A, n) 

 

GrowTree(D, A, n) 

    IF <all instances in D are of the same class> THEN 

        c = class of instances in D 

        Create leaf at n with label c 

    ELSE 

        h = GetHeuristic(|A|) /*|A| is the number of attributes left*/ 

        Sort A using heuristic h 

        a = attribute ranked 1st in A /*the splitting attribute*/ 

        Use attribute a for node n 

        V = set of all distinct values a can have 

        FOR EACH v in V 

            Create a branch b from n using value v 

            Create a new empty child node nv at branch b 

            Dv = data partition containing only instances where a = v 

            Av = A minus a 

            CALL GrowTree(Dv, Av, nv) 

        END /*FOR EACH*/ 

    END /*IF*/ 

END /*GrowTree*/ 

 

GetHeuristic(x) 

    Use hyper-heuristic rules to return heuristic h based on x 

END /*GetHeuristic*/ 

Figure 4.1 Hyper-heuristic Decision Tree Building Algorithm that Chooses Heuristic using 
Number of Attributes Left 
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4.1.2 Genetic Algorithm 

We use a genetic algorithm to evolve our hyper-heuristic rules. An individual 

in the genetic algorithm represents the set of m rules described in 4.1.1. We 

encode these m rules as follows: 

 

x1, h1, x2, h2, x3, h3, …, xm-1, hm-1, hm 

 

where for any rule i, xi represents the x value and hi represents the heuristic 

(see rule set description in 4.1.1). The x value genes are integer values that 

represent thresholds for the number of attributes left in the partition. Special 

care was taken so that whenever an individual’s genes are created (when the 

first population is created) or manipulated (via crossover or mutation), these x 

values are given sensible values. This condition was met by a) making sure 

that none of the x value genes are smaller than 3 or bigger than the total 

number of attributes in the data set with the largest number of attributes, and 

b) respecting the condition x1 < x2 < x3 … < xm-1.  

 

For the heuristic hi genes we used integer values where each distinct value 

maps to a specific heuristic. These genes were allowed to range from 1 to 5 for 

the hyper-heuristics that use 5 heuristics and 1 to 12 for the hyper-heuristics 

that use 12 heuristics. The value of m was set to 3 so that we effectively 

evolved hyper-heuristic rule sets of size 3. Keeping the rule set to such a small 

size guaranteed chromosomes of a short length thus making it easier for the 

genetic algorithm to converge to a good solution. 

 

The population was of size 45 and the genetic algorithm terminated after 100 

generations. The rest of the genetic algorithm parameters were kept the same 

as for the one used in chapter 3. The number of offspring created after each 

generation was 75% of the population. Tournament selection without 

replacement was used with the tournament size set to 40% of the population 
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size. One-point crossover and point mutation with a probability of 5% was 

employed. 

 

 

4.1.3 Data Sets 

We utilized the data sets mentioned in Table 3.1. We ran single data set 

experiments and multiple data set experiments in the same way as described 

in 3.4.3. The only difference is that 9-fold cross validation was used in the 

hyper-heuristic training phase instead of 10-fold cross validation. Reducing the 

number of folds makes the folds themselves bigger thus adding confidence to 

the results of each test fold. We ran 12 different single data set experiments, 

one for each of the data sets listed in Table 3.1. We also ran 3 different 

multiple data set experiments using 3 different combinations of data sets: 

 

a) car, derma, ecoli, wine 

b) contrac, credit, ionosphere, spect 

c) yeast, votes, heart, flags 

 

We chose these particular combinations of data sets as we wanted each set to 

be made up of data sets that are as different from each other as possible in 

terms of size, number of attributes and attribute type distribution. Each 

experiment was run 10-20 times, each time varying the way the hyper-

heuristic training set and test set is generated as well as the random seed of 

the initial population of the genetic algorithm. 
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4.1.4. Results 

 

4.1.4.1 Single Data Set Experiments 

 

HH-5 2.938 p-value 5.350 p-value 5.250 p-value 3.800 p-value 5.550 p-value 5.350 p-value

CHI 2.188 0.386 8.700 0.012 5.950 0.553 4.900 0.283 4.300 0.340 5.150 0.856

IG 1.375 0.054 7.200 0.100 6.450 0.237 3.250 0.598 4.350 0.261 5.750 0.734

GR 1.875 0.194 4.200 0.282 5.500 0.796 6.650 0.028 5.700 0.905 4.000 0.185

GINI 1.688 0.146 8.000 0.015 6.150 0.430 4.550 0.466 4.350 0.261 5.750 0.701

JM 10.688 0.000 6.000 0.585 5.500 0.810 6.750 0.013 5.400 0.906 4.900 0.669

MDL 1.875 0.194 5.500 0.899 7.350 0.046 6.250 0.016 5.400 0.907 5.350 1.000

MGINI 2.563 0.679 9.050 0.003 6.800 0.145 8.050 0.000 4.500 0.352 5.350 1.000

RLV 3.125 0.864 6.700 0.215 6.550 0.258 3.000 0.377 4.250 0.230 4.500 0.421

RLF 12.813 0.000 6.200 0.508 12.150 0.000 9.850 0.000 9.550 0.005 10.250 0.000

SGAIN 10.250 0.000 4.550 0.498 5.250 1.000 2.250 0.070 3.350 0.044 5.100 0.826

SGINI 2.188 0.386 5.750 0.698 4.600 0.511 4.500 0.462 3.650 0.072 3.300 0.037

WOE 12.063 0.000 7.300 0.135 4.800 0.661 9.200 0.000 6.550 0.488 6.450 0.385

HH-5 4.000 p-value 6.250 p-value 3.813 p-value 4.600 p-value 5.400 p-value 5.300 p-value

CHI 6.550 0.032 6.400 0.903 5.625 0.135 3.350 0.238 4.000 0.180 6.000 0.543

IG 7.100 0.006 5.300 0.403 6.250 0.087 3.850 0.391 4.250 0.278 4.450 0.431

GR 6.200 0.085 5.100 0.324 6.813 0.048 3.350 0.177 2.250 0.000 6.300 0.416

GINI 8.100 0.001 5.750 0.656 5.375 0.188 3.700 0.295 4.600 0.439 5.100 0.846

JM 6.450 0.043 7.650 0.201 5.875 0.119 4.200 0.701 4.800 0.584 7.300 0.141

MDL 5.800 0.129 4.200 0.078 5.563 0.198 4.450 0.874 4.100 0.230 5.750 0.718

MGINI 8.100 0.000 6.050 0.870 8.250 0.002 3.850 0.432 6.300 0.419 6.000 0.541

RLV 6.700 0.026 4.900 0.255 4.813 0.449 6.450 0.072 4.900 0.669 6.250 0.444

RLF 3.700 0.790 10.100 0.001 4.063 0.829 11.250 0.000 7.900 0.063 9.450 0.001

SGAIN 5.400 0.219 4.200 0.043 3.375 0.696 3.350 0.181 6.650 0.262 5.300 1.000

SGINI 6.950 0.017 4.550 0.114 4.875 0.356 3.600 0.236 2.400 0.001 6.150 0.488

WOE 2.500 0.153 7.250 0.428 3.313 0.643 6.100 0.145 7.100 0.131 9.450 0.001

credit derma ecoli flags

heart ionosphere spect votes wine yeast

car contrac

Table 4.1 Hyper-heuristic using Number of Attributes Left and 5 heuristics compared to 
Standard Algorithms using Ranking Values of Single Data Set Experiments 

 

Tables 4.1 and 4.2 show results for hyper-heuristics trained and tested on 

single data sets. The first table shows results obtained by hyper-heuristics 

using 5 heuristics (HH-5) while the second table shows results obtained by 

hyper-heuristics using all 12 heuristics (HH-12). Each column contains pairs of  



 

 

 
Chapter 4 - Hyper-heuristic Rules using Attribute Information 

70 

HH-12 3.200 p-value 6.412 p-value 6.200 p-value 3.750 p-value 4.450 p-value 4.550 p-value

CHI 2.600 0.443 9.529 0.007 4.950 0.247 5.500 0.088 4.950 0.649 3.700 0.374

IG 1.300 0.013 6.294 0.910 6.000 0.859 4.050 0.725 2.050 0.002 5.100 0.598

GR 2.400 0.312 3.765 0.036 4.200 0.061 4.500 0.421 5.150 0.537 3.650 0.354

GINI 1.650 0.046 6.059 0.741 7.650 0.221 6.000 0.023 2.400 0.009 5.300 0.468

JM 11.050 0.000 5.294 0.389 5.850 0.764 6.450 0.030 3.500 0.374 6.250 0.142

MDL 2.400 0.312 6.412 1.000 6.250 0.962 6.700 0.007 6.500 0.088 3.150 0.097

MGINI 3.300 0.909 8.059 0.191 8.700 0.026 7.700 0.000 5.350 0.382 6.050 0.173

RLV 2.650 0.555 6.176 0.834 5.400 0.450 4.350 0.525 2.900 0.054 4.700 0.879

RLF 12.650 0.000 8.353 0.172 12.450 0.000 8.050 0.001 10.300 0.000 10.450 0.000

SGAIN 10.200 0.000 3.471 0.007 4.650 0.085 3.900 0.872 2.150 0.010 4.700 0.876

SGINI 2.850 0.674 5.471 0.414 4.450 0.115 5.100 0.156 5.000 0.567 2.700 0.030

WOE 11.950 0.000 7.765 0.298 6.300 0.928 7.150 0.001 7.400 0.016 7.500 0.014

HH-12 3.100 p-value 6.050 p-value 4.278 p-value 3.750 p-value 3.400 p-value 7.167 p-value

CHI 5.950 0.006 6.400 0.764 4.278 1.000 4.900 0.398 4.450 0.268 6.222 0.511

IG 7.300 0.000 5.750 0.801 5.056 0.498 4.250 0.661 4.450 0.275 4.056 0.023

GR 6.700 0.001 4.050 0.059 5.667 0.282 3.850 0.931 3.700 0.738 8.389 0.417

GINI 7.300 0.000 5.450 0.620 4.444 0.886 4.000 0.819 4.300 0.334 3.722 0.012

JM 5.800 0.012 6.950 0.462 5.611 0.335 4.350 0.601 4.500 0.298 5.944 0.388

MDL 5.250 0.027 4.300 0.101 4.167 0.927 4.150 0.696 3.850 0.649 7.222 0.967

MGINI 7.650 0.000 6.400 0.755 8.500 0.005 3.900 0.888 4.350 0.314 6.667 0.734

RLV 5.450 0.015 5.450 0.641 6.278 0.147 3.350 0.681 3.400 1.000 5.833 0.369

RLF 5.400 0.062 10.600 0.000 6.389 0.131 11.550 0.000 9.250 0.000 7.833 0.655

SGAIN 7.600 0.000 4.750 0.247 5.667 0.323 2.350 0.120 4.000 0.543 5.056 0.164

SGINI 7.650 0.000 5.100 0.400 4.444 0.882 2.950 0.425 4.100 0.412 5.222 0.165

WOE 2.050 0.154 5.650 0.740 4.000 0.820 5.400 0.160 8.350 0.000 9.000 0.174

ecoli flags

wine yeast

car contrac

heart ionosphere spect votes

credit derma

Table 4.2 Hyper-heuristic using Number of Attributes Left and 12 heuristics compared to 
Standard Algorithms using Ranking Values of Single Data Set Experiments 

 

values where the first value represents the mean rank of the method specified 

in the row header on the data set/s specified in the column header. We 

compare the various methods using ranking instead of classification accuracy 

because ranking is non-parameteric. The second value in each column is the 

resultant p-value when comparing the results of the method to the results of 

the hyper-heuristic on the same data set/s. The Student’s t-test also uses 

mean rank to compare the two methods. We use the terms HH-5 and HH-12 

to refer to the hyper-heuristic methods while for the rest of the methods we 

only specify the splitting heuristic used by the standard decision tree building 
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algorithm, since this is the only thing that sets them apart. For these we use 

the same abbreviations detailed in 3.2.2.1. 

 

In the single data set experiments, HH-5 did not manage to be the best overall 

performer on any of the 12 single data sets. HH-12 ranked first on both 

derma and wine however in neither of these cases is the difference between 

the hyper-heuristic and the second-best performing algorithm statistically 

significant. HH-5 managed to achieve an overall performance not significantly 

different (assuming a confidence level of 90%) to the best-performing method 

on 6 of the 12 data sets. HH-12 achieved this on 5 of the 12 data sets. The 

average predictive accuracy values for these results can be found in tables A.1 

and A.2 in the Appendix. 

 

 

4.1.4.2 Multiple Data Set Experiments 

Tables 4.3 and 4.4 show results for HH-5 and HH-12 trained and tested on 

multiple data sets. 

 

HH-5 3.850 p-value 5.353 p-value 4.500 p-value

CHI 5.900 0.021 5.412 0.962 7.200 0.089

IG 3.350 0.556 7.412 0.072 6.400 0.247

GR 5.250 0.141 7.059 0.151 5.400 0.522

GINI 6.200 0.020 7.353 0.104 10.100 0.002

JM 9.450 0.000 6.647 0.262 6.600 0.237

MDL 6.800 0.002 6.059 0.529 8.000 0.052

MGINI 7.050 0.002 10.529 0.000 9.700 0.002

RLV 4.250 0.691 6.882 0.205 5.000 0.760

RLF 12.550 0.000 10.059 0.000 9.900 0.007

SGAIN 7.750 0.000 3.824 0.220 5.000 0.756

SGINI 5.050 0.154 8.059 0.017 7.300 0.112

WOE 11.650 0.000 6.235 0.464 5.400 0.626

ca, de, ec, wi co, cr, io, sp ye, vo, he, fl

 
Table 4.3 Hyper-heuristic using Number of Attributes Left and 5 

heuristics compared to Standard Algorithms using Ranking Values 
of Multiple Data Set Experiments 
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Each of the three columns shows results for experiments run on different 

groups of data sets: 

 

ca, de, ec, wi: experiments using data sets car, derma, ecoli and wine. 

co, cr, io, sp: experiments using data sets contrac, credit, ionosphere and 

spect. 

ye, vo, he, fl: experiments using data sets yeast, votes84, heart and flags. 

 

In each case, the rank value of each method is calculated using the average 

ranking obtained by the method over all four data sets over all the runs.  

 

HH-12 4.900 p-value 4.857 p-value 3.867 p-value

CHI 4.300 0.545 5.762 0.367 5.867 0.126

IG 3.600 0.185 7.048 0.060 7.267 0.015

GR 6.750 0.079 6.381 0.129 6.000 0.092

GINI 5.450 0.620 8.143 0.002 9.467 0.000

JM 9.100 0.000 6.762 0.075 6.600 0.027

MDL 6.150 0.215 5.810 0.373 5.667 0.150

MGINI 7.050 0.036 9.905 0.000 10.067 0.000

RLV 4.500 0.684 7.429 0.021 7.200 0.019

RLF 12.800 0.000 12.000 0.000 10.533 0.000

SGAIN 7.900 0.010 4.524 0.751 6.733 0.015

SGINI 5.200 0.770 6.048 0.237 7.267 0.014

WOE 11.800 0.000 6.190 0.175 4.133 0.824

ca, de, ec, wi co, cr, io, sp ye, vo, he, fl

 
Table 4.4 Hyper-heuristic using Number of Attributes Left and 12 

heuristics compared to Standard Algorithms using Ranking 
Values of Multiple Data Set Experiments 

 

Though not statistically significant, both hyper-heuristics achieved the best 

overall ranking on the [ye, vo, he, fl] multiple data sets group. They were 

also never significantly worse than the top ranked method on the other data 

set groups. HH-5 managed to rank within the top three methods for all three 

data set groups. The average predictive accuracy values for all of these results 

can be found in tables A.3 and A.4 in the Appendix. 
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4.2 Hyper-heuristic Rules using Value Count of Attributes 

 

4.2.1. Problem State Representation & Choice of Splitting 

Method 

The second hyper-heuristic we present in this chapter uses the number of 

distinct values per candidate splitting attribute to characterize the problem 

state. We found various references in the literature to how this property can 

affect the performance of a splitting heuristic. For example, Quinlan devised 

the gain ratio heuristic as an alternative to the information gain heuristic as 

the latter suffers from a bias that favours attributes with many values 

(Quinlan, 1993). Mántaras (1991) proposed using symmetric gain ratio for the 

same exact reason. Zhou and Dillon (1991) extended the Gini index to create 

the symmetric Gini index because they maintained that the former, like 

information gain, has a bias favouring attributes with many values. It seems 

that the performance of some splitting heuristics can be effected by the 

number of values each attribute can take. We therefore represent a hyper-

heuristic that decides on how to split the data when faced with a data 

partition d as a set of m rules: 

 

IF   x1% < low_value_count1 AND  

y1% > high_value_count1 THEN use heuristic h1 

ELSE  IF  x2% < low_value_count2 AND  

y2% > high_value_count2 THEN use heuristic h2 

… 

ELSE  IF  xm-1% < low_value_countm-1 AND  

ym-1% > high_value_countm-1 THEN use heuristic hm-1 

ELSE   use heuristic hm 

 

where, xi and yi are both percentage values ranging from 0 to 100,  
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low_value_counti and high_value_counti are thresholds for value 

count, 

hi is the heuristic to use to sort the list of candidate splitting attributes 

should rule i be triggered. 

 

As in the earlier hyper-heuristics, each rule is effectively asking a question 

about the current problem state where the problem state is the partition that 

needs to be split. In this case, the hyper-heuristic is looking at the set of 

candidate splitting attributes remaining in the partition to be split and asking 

a question related to the number of distinct values each attribute has. More 

specifically, the question being asked by each hyper-heuristic rule is: “Do x% of 

the attributes have a low value count, (100-(x+y))% of the attributes have a 

medium value count and y% of the attributes have a high value count?”.  

 

What do we mean by low, medium and high value count? A low value count 

range is defined by an integer upper bound value low_value_count such 

that any attribute that takes a distinct values where a < low_value_count 

is said to be an attribute with a low value count. A medium value count range 

is defined by two integer values low_value_count and high_value_count 

such that that any attribute that takes b distinct values where 

low_value_count ≤ b ≤ high_value_count is said to be an attribute with 

a medium value count. A high value count range is defined by an integer 

lower bound value high_value_count such that any attribute that takes c 

distinct values where c > high_value_count is said to be an attribute with 

a high value count.  Within a hyper-heuristic rule set, each rule defines its 

own ranges for low, medium and high value count with the condition that 

these ranges cannot overlap – this means that each rule has its own definition 

for low_value_count and high_value_count while respecting the 

condition low_value_count ≤ high_value_count. 
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Let D = our initial data partition /*the whole training set*/ 

Let A = list of all attributes in D 

Let T = <empty tree> 

Let n = <empty tree node> 

  

Insert n in T 

CALL GrowTree(D, A, n) 

 

GrowTree(D, A, n) 

    IF <all instances in D are of the same class> THEN 

        c = class of instances in D 

        Create leaf at n with label c 

    ELSE 

        VC = <empty set> /*VC will contain value count of each attribute*/ 

        FOR EACH a in A 

            vc = number of distinct values a can take 

            Insert vc in VC 

        END /*FOR EACH*/ 

        h = GetHeuristic(VC) 

        Sort A using heuristic h 

        a = attribute ranked 1st in A /*the splitting attribute*/ 

        Use attribute a for node n 

        V = set of all distinct values a can have 

        FOR EACH v in V 

            Create a branch b from n using value v 

            Create a new empty child node nv at branch b 

            Dv = data partition containing only instances where a = v 

            Av = A minus a 

            GrowTree(Dv, Av, nv) 

        END /*FOR EACH*/ 

    END /*IF*/ 

END /*GrowTree*/ 

 

GetHeuristic(VC) 

    Use hyper-heuristic rules to return heuristic h based on VC 

END /*GetHeuristic*/ 

Figure 4.2 Hyper-heuristic Decision Tree Building Algorithm that Chooses Heuristic using 
Value Count of Attributes 

 

Using this set of hyper-heuritic rules, whenever a data partition needs to be 

split, we look at the number of distinct values each candidate splitting 

attribute can take. We then go through each of the rule conditionals one by 

one to see if the problem state described by any one of the conditionals 

matches the current state of the problem we are solving. If one of the rule 
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conditionals fits the description of the current partition we want to split, we 

use the heuristic dictated by that rule to sort the candidate splitting 

attributes. If none of the conditionals of the first m - 1 rules test positive to 

the problem state, the default heuristic hm is used. We present the pseudo-

code for the decision-tree building algorithm that uses this hyper-heuristic in 

Figure 4.2. 

 

We again ran two sets of experiments using this hyper-heuristic: one set uses 

all 12 heuristics while the other set uses the same reduced set of 5 heuristics 

described in 4.1.1. 

 

 

4.2.2 Genetic Algorithm 

We used the same genetic algorithm described in 4.1.2 to search for good 

hyper-heuristic rules that use the value count of attributes. The only difference 

between this genetic algorithm and the previous one is in the encoding of the 

individuals. In this case, for each hyper-heuristic rule we need to define the 

heuristic to be used, three ranges for low, medium and high value count as 

well as three percentage values a, b and c to represent the percentage of 

attributes that have a low, medium and high value count.  

 

To define three ranges for low, medium and high value count it suffices to 

specify two integer values l and u such that all attributes that have a value 

count smaller than l are considered to have a low value count, all attributes 

that have a value count bigger than u are considered to have a high value 

count while all other attributes are considered to have a medium value count. 

This means that any attribute is guaranteed to fall into anyone of these three 

categories. Thus, an individual in the genetic algorithm encoded our hyper-

heuristic in the following manner: 
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l1, x1, u1, y1, h1,  l2, x2, u2, y2, h2, …, lm-1, xm-1, um-1, ym-1,  hm-1, hm 

 

where for any rule i: 

 

- li and ui are integer values defining three ranges for low, medium and 

high value count,  

- xi and yi are integer values representing the percentage of attributes 

that have a low  value count and high value count respectively, 

- hi is an integer value indexing the heuristic to be used to split the data 

should rule i be triggered. 

 

In this way, we encode each hyper-heuristic rule using just 5 integer values. 

Whenever the genetic algorithm created or manipulated the genes of an 

individual, we made sure that these conditions were respected: 

- 2 ≤  ui ≤  6, 

- li ≤ ui, 

- xi, yi > 0, 

- (xi + yi) ≤ 100. 

 

In order to facilitate the search carried out by the genetic algorithm, we also 

decided to restrict the number of values each percentage gene (i.e. xi and yi) 

can take. More specifically, these percentage genes were only allowed to take 

one of eleven possible values from the set {0, 10, 20, …, 100}. This reduces the 

search space of the genetic algorithm thus making it easier for it to converge 

to an effective set of hyper-heuristic rules.  

 

For this hyper-heuristic we used rule sets of size 4 where the 4th rule is the 

default heuristic. The rest of the parameters of the genetic algorithm were 

kept the same as the ones used in the experiments described in 4.1. We also 

utilized the same data sets in the same exact manner. Each experiment was 
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run 20-40 times, each time varying the hyper-heuristic training set and test set 

as well as the random seed of the initial population of the genetic algorithm. 

 

 

4.2.3 Results 

 

4.2.3.1 Single Data Set Experiments 

 

HH-5 2.950 p-value 5.300 p-value 3.850 p-value 3.950 p-value 5.950 p-value 5.300 p-value

CHI 2.350 0.439 7.450 0.055 5.600 0.102 5.250 0.224 3.200 0.009 4.900 0.725

IG 1.400 0.028 6.400 0.284 7.700 0.000 4.800 0.444 2.300 0.001 4.350 0.373

GR 2.200 0.340 5.050 0.774 3.800 0.955 4.700 0.494 6.900 0.463 3.600 0.165

GINI 1.500 0.045 5.950 0.509 8.750 0.000 4.850 0.440 2.150 0.000 4.050 0.230

JM 11.000 0.000 5.150 0.891 5.950 0.038 5.500 0.186 6.700 0.578 6.400 0.403

MDL 2.100 0.255 6.000 0.540 6.300 0.034 6.000 0.071 5.700 0.838 6.000 0.594

MGINI 2.650 0.710 9.100 0.001 8.400 0.000 5.600 0.179 3.200 0.012 5.950 0.614

RLV 3.450 0.602 6.750 0.139 6.200 0.027 3.400 0.584 2.050 0.000 4.150 0.341

RLF 12.400 0.000 9.450 0.001 11.550 0.000 9.950 0.000 9.350 0.006 7.800 0.081

SGAIN 10.050 0.000 5.500 0.850 4.200 0.689 3.700 0.825 4.500 0.215 4.750 0.628

SGINI 2.100 0.251 5.250 0.961 4.600 0.486 4.250 0.779 4.250 0.124 5.050 0.838

WOE 12.400 0.000 6.400 0.319 5.750 0.116 7.850 0.002 7.800 0.179 8.800 0.006

HH-5 3.000 p-value 5.200 p-value 5.100 p-value 6.250 p-value 5.000 p-value 6.700 p-value

CHI 7.200 0.000 6.650 0.166 6.400 0.509 4.900 0.296 4.200 0.438 5.300 0.220

IG 5.050 0.015 5.850 0.546 5.100 1.000 4.400 0.115 4.250 0.448 6.300 0.717

GR 7.350 0.000 4.150 0.311 6.800 0.405 3.950 0.055 3.750 0.196 5.800 0.376

GINI 7.550 0.000 4.950 0.828 5.400 0.867 4.400 0.112 5.600 0.557 5.800 0.375

JM 4.850 0.053 8.200 0.016 3.400 0.360 5.850 0.755 3.450 0.163 7.500 0.519

MDL 6.500 0.000 3.900 0.170 6.000 0.652 3.150 0.004 3.250 0.082 7.150 0.678

MGINI 8.050 0.000 4.800 0.720 8.000 0.132 3.450 0.015 6.100 0.382 6.100 0.581

RLV 6.300 0.002 5.150 0.967 4.600 0.781 3.700 0.036 4.600 0.696 6.750 0.967

RLF 4.650 0.114 10.150 0.000 5.000 0.960 11.450 0.000 8.900 0.007 6.750 0.969

SGAIN 6.400 0.001 3.900 0.200 5.000 0.961 4.300 0.110 5.900 0.452 5.700 0.414

SGINI 7.000 0.000 4.550 0.532 6.200 0.561 2.900 0.002 5.500 0.645 5.300 0.253

WOE 3.100 0.908 5.350 0.902 3.800 0.506 5.450 0.533 6.350 0.267 6.850 0.903

wine yeast

car contrac

heart ionosphere spect votes

credit derma ecoli flags

Table 4.5 Hyper-heuristic using Attribute Value Count and 5 heuristics compared to Standard 
Algorithms using Ranking Values of Single Data Set Experiments 
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Tables 4.5 and 4.6 show results for HH-5 and HH-12 trained and tested on 

single data sets. Though not statistically significant, both HH-5 and HH-12 

managed to rank first on the hearts data set. The overall performance of HH-

5 on 8 of the 12 data sets was not significantly different from that of the best-

performing method in each case. HH-12 achieved managed this on 9 of the 12 

data sets. The average predictive accuracy values for all of these results can be 

found in tables A.5 and A.6 in the Appendix. 

 

HH-12 1.950 p-value 6.059 p-value 6.400 p-value 5.750 p-value 5.950 p-value 4.850 p-value

CHI 2.550 0.355 6.235 0.905 5.650 0.439 5.200 0.664 3.500 0.024 4.650 0.844

IG 1.400 0.290 7.941 0.169 7.050 0.509 4.100 0.154 4.250 0.110 5.100 0.825

GR 2.150 0.742 5.647 0.775 6.150 0.820 5.650 0.938 5.650 0.805 4.150 0.523

GINI 1.800 0.798 7.176 0.456 8.100 0.066 6.300 0.660 4.400 0.123 5.800 0.330

JM 10.900 0.000 6.412 0.810 3.600 0.010 5.850 0.932 4.500 0.229 6.350 0.182

MDL 2.000 0.935 6.353 0.845 6.200 0.853 6.150 0.751 4.600 0.261 4.600 0.805

MGINI 3.050 0.157 7.941 0.207 7.700 0.224 7.750 0.132 4.850 0.317 7.350 0.022

RLV 3.350 0.133 7.059 0.436 5.450 0.392 3.900 0.110 3.500 0.021 4.850 1.000

RLF 12.700 0.000 7.118 0.532 12.050 0.000 8.600 0.059 8.750 0.054 9.500 0.000

SGAIN 10.250 0.000 4.353 0.214 3.200 0.001 4.750 0.476 4.000 0.076 4.950 0.917

SGINI 2.550 0.355 5.471 0.660 6.350 0.964 4.950 0.502 5.700 0.829 3.300 0.059

WOE 11.850 0.000 6.471 0.776 4.550 0.074 7.200 0.243 6.200 0.853 8.050 0.009

HH-12 1.950 p-value 4.550 p-value 4.818 p-value 3.650 p-value 3.900 p-value 4.950 p-value

CHI 6.500 0.000 5.700 0.307 6.364 0.288 4.000 0.781 4.350 0.659 6.750 0.106

IG 5.850 0.000 5.350 0.492 5.909 0.450 4.650 0.369 4.150 0.799 5.500 0.589

GR 6.850 0.000 5.400 0.424 8.000 0.094 3.000 0.525 3.000 0.385 7.000 0.087

GINI 8.500 0.000 3.850 0.454 6.455 0.287 4.950 0.232 4.100 0.842 4.700 0.788

JM 6.900 0.000 7.800 0.004 6.091 0.402 4.150 0.660 2.500 0.184 6.850 0.099

MDL 6.350 0.000 4.900 0.736 4.182 0.659 3.350 0.780 4.400 0.627 7.250 0.060

MGINI 7.950 0.000 7.500 0.022 7.818 0.084 4.550 0.425 6.350 0.032 6.300 0.218

RLV 6.250 0.000 4.750 0.853 3.545 0.337 4.250 0.587 4.150 0.836 4.700 0.826

RLF 5.300 0.005 9.000 0.001 4.273 0.728 10.850 0.000 11.000 0.000 8.650 0.004

SGAIN 7.550 0.000 4.500 0.958 3.909 0.542 3.200 0.663 4.650 0.549 7.300 0.059

SGINI 7.400 0.000 6.150 0.134 6.636 0.226 2.900 0.416 2.900 0.284 6.050 0.281

WOE 2.700 0.196 5.900 0.236 3.818 0.467 6.750 0.027 4.650 0.580 6.000 0.409

ecoli flags

wine yeast

car contrac

heart ionosphere spect votes

credit derma

Table 4.6 Hyper-heuristic using Attribute Value Count and 12 heuristics compared to 
Standard Algorithms using Ranking Values of Single Data Set Experiments 
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4.2.3.2 Multiple Data Set Experiments 

Tables 4.7 and 4.8 show results for HH-5 and HH-12 trained and tested on 

multiple data sets. 

 

HH-5 5.150 p-value 6.000 p-value 5.179 p-value

CHI 4.500 0.339 5.864 0.903 6.786 0.121

IG 4.500 0.316 8.636 0.011 6.964 0.069

GR 5.575 0.552 4.591 0.206 6.250 0.292

GINI 5.350 0.779 6.500 0.638 7.464 0.024

JM 9.150 0.000 6.727 0.516 6.821 0.116

MDL 6.725 0.030 6.545 0.604 6.929 0.092

MGINI 6.425 0.064 10.545 0.000 9.179 0.000

RLV 4.925 0.733 6.091 0.934 5.857 0.497

RLF 12.450 0.000 12.227 0.000 9.536 0.000

SGAIN 7.650 0.001 4.955 0.352 8.071 0.005

SGINI 5.000 0.822 7.045 0.334 7.464 0.019

WOE 11.400 0.000 5.136 0.432 4.214 0.361

ca, de, ec, wi co, cr, io, sp ye, vo, he, fl

 
Table 4.7 Hyper-heuristic using Attribute Value Count and 5 

heuristics compared to Standard Algorithms using Ranking Values 
of Multiple Data Set Experiments 

 

HH-12 4.725 p-value 6.462 p-value 3.314 p-value

CHI 4.425 0.679 6.615 0.879 7.086 0.000

IG 4.800 0.918 6.769 0.750 7.114 0.000

GR 4.175 0.445 5.654 0.417 6.771 0.000

GINI 5.525 0.234 8.077 0.073 7.714 0.000

JM 8.775 0.000 7.000 0.601 6.429 0.000

MDL 6.525 0.016 6.346 0.913 7.143 0.000

MGINI 7.400 0.000 9.808 0.001 9.743 0.000

RLV 5.075 0.611 6.038 0.688 6.114 0.001

RLF 12.625 0.000 11.423 0.000 9.686 0.000

SGAIN 8.450 0.000 4.192 0.017 6.829 0.000

SGINI 5.350 0.391 6.885 0.677 7.200 0.000

WOE 11.500 0.000 5.654 0.423 5.686 0.007

ca, de, ec, wi co, cr, io, sp ye, vo, he, fl

 
Table 4.8 Hyper-heuristic using Attribute Value Count and 12 

heuristics compared to Standard Algorithms using Ranking Values 
of Multiple Data Set Experiments 
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HH-12 managed an average ranking significantly better than all the standard 

algorithms on the [ye, vo, he, fl] multiple data sets group. HH-5 did not 

manage to come first in this group of data sets though its performance is not 

significantly different from the best performing method (WOE). As regards to 

the other two groups of data sets, HH-5 was never significantly worse than the 

best performing method of each group. This is contrast to HH-12 whose 

performance on [co, cr, io, sp] was significantly worse than that of the best 

performing method. The average predictive accuracy values for all of these 

results can be found in tables A.7 – A.8 in the Appendix. 

 

 

4.3 Hyper-heuristic Rules using Attribute Entropy 

 

4.3.1. Problem State Representation & Choice of Splitting 

Method 

We have already discussed how the number of distinct values a splitting 

attribute can take affects the way it is ranked by certain splitting heuristics. 

This is due to the inherent bias found in some heuristics favouring attributes 

with many values, irrespective of whether choosing these attributes to 

construct tree nodes will actually produce accurate decision trees. We have 

seen how using information about the value count of splitting attributes can 

go some way in helping decide which heuristic to use to split the data while 

building a decision tree. This section presents an alternative solution to the 

same problem by proposing hyper-heuristic rules that use the entropy of each 

splitting attribute to characterize the problem state.  

 

Entropy (see Equation 3.1) is affected by various statistical features of an 

attribute. The higher the number of distinct values an attribute can take, the 

higher its entropy value will be. Also, the more balanced these values are in 

the data partition, the higher the entropy of that attribute. An attribute in a 



 

 

 
Chapter 4 - Hyper-heuristic Rules using Attribute Information 

82 

data partition is said to have perfectly balanced values if for each value there 

are the same number of instances in that data partition with that value. Since 

the entropy value is a reflection of more than one statistical feature of an 

attribute, one can say that a problem state description that uses entropy to 

characterize a data partition is a richer description than one that uses value 

count. 

We therefore represent a hyper-heuristic that decides on how to split the data 

when faced with a data partition d as a set of m rules: 

 

IF   x1 < low_entropy1 AND  

y1 > high_entropy1 THEN use heuristic h1 

ELSE  IF  x2 < low_entropy2 AND  

y2 > high_entropy2 THEN use heuristic h2 

… 

ELSE  IF  xm-1 < low_entropym-1 AND  

ym-1 > high_entropym-1 THEN use heuristic hm-1 

ELSE  use heuristic hm 

 

where, xi and yi are both percentage values ranging from 0 to 100,  

low_entropyi and high_entropyi are thresholds for entropy, 

hi is the heuristic to use to sort the list of candidate splitting attributes 

should rule i be triggered. 

 

As in the previous hyper-heuristic, when faced with a data partition each rule 

tries to insert each candidate splitting attribute into one of three bins. In this 

case, the three bins represent attributes with low entropy, medium entropy 

and high entropy. A low entropy bin is defined by a range that is specified by 

an upper bound real value low_entropy such that any attribute that has 

entropy a where a < low_entropy is said to be an attribute with low 

entropy. A medium entropy bin is defined by a range that is specified by two 
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real values low_entropy and high_entropy such that that any attribute of 

entropy b where low_entropy ≤ b ≤ high_entropy is said to be an 

attribute with medium entropy. 

 

Let D = our initial data partition /*the whole training set*/ 

Let A = list of all attributes in D 

Let T = <empty tree> 

Let n = <empty tree node> 

  

Insert n in T 

CALL GrowTree(D, A, n) 

 

GrowTree(D, A, n) 

    IF <all instances in D are of the same class> THEN 

        c = class of instances in D 

        Create leaf at n with label c 

    ELSE 

        E = <empty set> /*E will contain entropy of each attribute*/ 

        FOR EACH a in A 

            e = entropy of a 

            Insert e in E 

        END /*FOR EACH*/ 

        h = GetHeuristic(E) 

        Sort A using heuristic h 

        a = attribute ranked 1st in A /*the splitting attribute*/ 

        Use attribute a for node n 

        V = set of all distinct values a can have 

        FOR EACH v in V 

            Create a branch b from n using value v 

            Create a new empty child node nv at branch b 

            Dv = data partition containing only instances where a = v 

            Av = A minus a 

            CALL GrowTree(Dv, Av, nv) 

        END /*FOR EACH*/ 

    END /*IF*/ 

END /*GrowTree*/ 

 

GetHeuristic(E) 

    Use hyper-heuristic rules to return heuristic h based on E 

END /*GetHeuristic*/ 

Figure 4.3 Hyper-heuristic Decision Tree Building Algorithm that Chooses Heuristic using 
Entropy of Attributes 
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A high entropy bin is defined by a range that is specifed by a lower bound real 

value high_entropy such that any attribute that has entropy c where c > 

high_entropy is said to be an attribute with high entropy.  Each rule defines 

its own ranges for low, medium and high entropy with the condition that these 

ranges cannot overlap within the same rule – this means that each rule has its 

own definition for low_entropy and high_entropy while respecting the 

condition low_entropy ≤ high_entropy. 

 

Given a data partition that needs to be split, the hyper-heuristic calculates the 

entropy of each attribute and tries to find a rule whose conditional matches 

the make-up of the current problem state. If a match is found, the splitting 

heuristic of the matching rule is used to split the data; otherwise the default 

heuristic hm is used. The pseudo-code for the decision-tree building algorithm 

that uses this hyper-heuristic is displayed in Figure 4.3. 

 

 

4.3.2 Genetic Algorithm 

We use the same genetic algorithm described in 4.2.2 with the only difference 

being in the way each hyper-heuristic rule-set is encoded. Each hyper-heuristic 

rule set was encoded as a combination of integer and real values: 

 

l1, x1, u1, y1, h1,  l2, x2, u2, y2, h2, …, lm-1, xm-1, um-1, ym-1,  hm-1, hm 

 

where for any rule i: 

 

- li and ui are real values defining three ranges for low, medium and high 

entropy,  

- xi and yi are integer values representing the percentage of attributes 

that have low  entropy and high entropy respectively, 
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- hi is an integer value indexing the heuristic to be used to split the data 

should rule i be triggered. 

 

We used the same granularity for the percentage genes as in the previous 

experiments. This means that each percentage gene can take one of eleven 

possible values from the set {0, 10, 20, …, 100} while respecting the condition 

(xi + yi) ≤ 100. We programmed the threshold genes li that represent the low 

entropy range to take one of eleven possible values from the set {0.001, 0.05, 

0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. The genes ui that define the high 

entropy range were programmed to take one value from the set {1, 1.34, 1.68, 

2.02, 2.36, 2.7, 3.04, 3.38, 3.72, 4.06, 4.4}. We chose these values for the 

threshold genes after analyzing frequency distribution graphs of the entropy 

values of the attributes in our data sets. The values used to make up these 

graphs were produced by running standard ID3 on these data sets while 

storing the entropy of each candidate splitting attribute at each point of the 

decision-tree building process. 

 

As before, we ran single and multiple data set experiments where each single 

data set experiment was run 20 times and each multiple data set experiments 

was run 100 times, each time varying the hyper-heuristic training set and test 

set as well as the random seed of the initial population of the genetic 

algorithm. The results of this chapter were published in Vella et al (2009). 
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4.3.3 Results 

 

4.3.3.1 Single Data Set Experiments 

 

HH-5 1.900 p-value 5.533 p-value 4.750 p-value 5.450 p-value 4.450 p-value 5.450 p-value

CHI 2.300 0.466 6.400 0.535 5.300 0.613 5.150 0.790 3.150 0.250 3.950 0.184

IG 1.450 0.318 7.533 0.166 8.100 0.001 3.800 0.126 3.900 0.572 4.250 0.271

GR 2.300 0.466 4.867 0.613 5.550 0.423 3.900 0.190 3.750 0.520 5.150 0.771

GINI 1.450 0.318 7.667 0.147 7.800 0.004 5.100 0.761 4.000 0.640 4.600 0.452

JM 11.150 0.000 6.800 0.439 4.950 0.848 5.300 0.910 5.500 0.436 4.800 0.545

MDL 2.300 0.466 5.200 0.811 5.400 0.535 6.300 0.496 5.050 0.634 5.050 0.693

MGINI 3.100 0.092 9.067 0.015 8.700 0.000 7.350 0.146 5.650 0.294 6.800 0.213

RLV 3.050 0.174 6.533 0.455 5.800 0.323 4.150 0.262 3.700 0.448 5.650 0.859

RLF 12.700 0.000 8.867 0.027 12.300 0.000 9.450 0.002 9.250 0.001 10.600 0.000

SGAIN 10.150 0.000 4.933 0.653 3.900 0.376 4.200 0.323 3.850 0.586 4.250 0.277

SGINI 2.700 0.214 5.733 0.876 6.250 0.176 5.950 0.695 4.300 0.892 3.050 0.030

WOE 11.850 0.000 5.600 0.960 4.800 0.964 6.750 0.325 6.500 0.128 7.200 0.175

HH-5 3.100 p-value 4.650 p-value 4.538 p-value 3.400 p-value 4.100 p-value 5.727 p-value

CHI 6.450 0.001 6.300 0.121 7.231 0.030 4.150 0.467 4.300 0.864 6.818 0.512

IG 6.150 0.001 5.150 0.646 6.231 0.176 5.500 0.010 3.400 0.499 6.091 0.807

GR 7.650 0.000 3.850 0.348 6.000 0.313 3.100 0.702 3.300 0.450 7.818 0.250

GINI 8.200 0.000 5.600 0.343 7.000 0.039 5.000 0.045 4.550 0.712 7.091 0.390

JM 4.200 0.240 6.950 0.021 3.154 0.199 5.400 0.031 4.850 0.575 7.455 0.338

MDL 6.700 0.001 4.500 0.856 4.462 0.948 5.300 0.075 4.000 0.931 6.364 0.694

MGINI 9.350 0.000 6.850 0.072 7.538 0.035 5.450 0.022 7.050 0.022 7.182 0.366

RLV 4.750 0.026 5.400 0.503 4.846 0.780 5.300 0.026 3.350 0.498 4.727 0.455

RLF 4.000 0.350 9.900 0.000 3.769 0.505 8.800 0.000 9.700 0.000 6.455 0.657

SGAIN 7.800 0.000 3.850 0.370 4.538 1.000 3.150 0.686 4.900 0.516 4.727 0.520

SGINI 7.250 0.000 5.700 0.325 7.077 0.035 4.250 0.287 3.350 0.471 5.273 0.764

WOE 1.550 0.026 5.550 0.389 3.231 0.312 5.050 0.131 4.400 0.797 6.182 0.767

ecoli flags

wine yeast

car contrac

heart ionosphere spect votes

credit derma

Table 4.9 Hyper-heuristic using Attribute Entropy and 5 heuristics compared to Standard 
Algorithms using Ranking Values of Single Data Set Experiments 

 

Tables 4.9 and 4.10 show results for HH-5 and HH-12 trained and tested on 

single data sets. As in the experiments presented in 4.2, HH-12 ranked first on 

the hearts data set, though the difference in average ranking is not 

statistically signficant from the second best result. HH-5 did not manage to 
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top any of the results tables for these experiments. However, for 10 of the 12 

data sets, there was no significant difference between the performance of HH-5 

and the best performing method of each data set. The same can be said for 

HH-12 for 8 of the 12 data sets. The average predictive accuracy values for all 

of these results can be found in tables A.9 and A.10 in the Appendix. 

 

HH-12 3.900 p-value 5.000 p-value 5.000 p-value 3.350 p-value 3.450 p-value 6.550 p-value

CHI 2.500 0.111 6.500 0.252 4.600 0.684 4.250 0.372 5.100 0.163 5.200 0.283

IG 1.250 0.002 6.944 0.097 7.550 0.022 4.250 0.340 3.250 0.836 3.850 0.011

GR 1.950 0.022 4.444 0.663 5.150 0.900 5.750 0.060 6.500 0.012 3.350 0.004

GINI 1.600 0.008 7.444 0.061 8.300 0.007 5.100 0.080 3.000 0.628 4.350 0.033

JM 10.550 0.000 5.833 0.490 4.900 0.931 6.750 0.001 6.250 0.020 6.250 0.806

MDL 2.200 0.052 7.500 0.077 6.850 0.095 5.300 0.039 5.200 0.147 4.900 0.124

MGINI 3.350 0.580 8.556 0.006 8.500 0.006 7.250 0.001 3.050 0.673 6.450 0.930

RLV 2.300 0.102 6.222 0.313 6.100 0.327 4.450 0.290 2.800 0.468 4.950 0.095

RLF 12.750 0.000 8.778 0.003 11.800 0.000 9.450 0.000 9.200 0.000 9.000 0.055

SGAIN 10.200 0.000 4.556 0.727 3.850 0.317 3.300 0.959 3.700 0.820 4.900 0.104

SGINI 2.350 0.085 7.389 0.039 4.650 0.742 4.750 0.102 4.150 0.488 4.300 0.056

WOE 12.200 0.000 5.889 0.487 4.850 0.888 8.500 0.000 7.300 0.006 9.900 0.007

HH-12 1.550 p-value 4.350 p-value 5.000 p-value 5.650 p-value 4.550 p-value 7.455 p-value

CHI 7.100 0.000 4.000 0.682 6.000 0.374 6.150 0.706 3.850 0.507 8.091 0.687

IG 6.050 0.000 6.000 0.099 4.714 0.822 4.450 0.347 3.700 0.410 6.818 0.697

GR 6.950 0.000 4.600 0.757 5.500 0.741 2.350 0.003 3.900 0.561 6.818 0.692

GINI 7.750 0.000 6.150 0.080 6.214 0.314 4.050 0.167 3.000 0.101 5.000 0.121

JM 6.250 0.000 6.800 0.022 5.286 0.835 5.450 0.875 4.000 0.629 4.909 0.121

MDL 7.250 0.000 4.200 0.857 7.786 0.045 3.700 0.111 4.150 0.703 7.273 0.906

MGINI 9.850 0.000 6.450 0.055 7.857 0.026 4.500 0.323 6.100 0.175 4.455 0.062

RLV 5.100 0.000 3.900 0.590 5.643 0.644 5.800 0.902 6.450 0.121 5.909 0.300

RLF 4.450 0.001 9.900 0.000 5.643 0.663 10.800 0.000 8.100 0.015 6.182 0.515

SGAIN 6.200 0.000 5.350 0.291 3.857 0.370 3.100 0.024 4.500 0.962 7.455 1.000

SGINI 7.700 0.000 5.350 0.207 6.643 0.201 2.950 0.017 3.200 0.165 4.727 0.098

WOE 2.750 0.050 6.450 0.047 3.786 0.328 6.650 0.437 6.700 0.094 7.455 1.000

spect votes

credit dermacar contrac

heart ionosphere

ecoli flags

wine yeast

Table 4.10 Hyper-heuristic using Attribute Entropy and 12 heuristics compared to Standard 
Algorithms using Ranking Values of Single Data Set Experiments 
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4.3.3.2 Multiple Data Set Experiments 

Tables 4.11 and 4.12 show results for HH-5 and HH-12 trained and tested on 

multiple data sets. 

 

HH-5 5.070 p-value 5.680 p-value 4.530 p-value

CHI 4.730 0.409 7.210 0.002 6.850 0.000

IG 4.670 0.330 6.950 0.007 6.460 0.000

GR 5.310 0.589 5.760 0.868 6.220 0.001

GINI 5.500 0.285 7.770 0.000 7.870 0.000

JM 8.810 0.000 6.910 0.011 6.450 0.000

MDL 6.420 0.002 6.710 0.025 6.770 0.000

MGINI 6.540 0.001 9.610 0.000 9.140 0.000

RLV 4.340 0.076 6.570 0.078 6.140 0.001

RLF 12.700 0.000 11.400 0.000 10.070 0.000

SGAIN 8.240 0.000 4.400 0.005 7.220 0.000

SGINI 5.680 0.151 6.270 0.218 6.900 0.000

WOE 11.180 0.000 5.660 0.968 6.120 0.005

ca, de, ec, wi co, cr, io, sp ye, vo, he, fl

 
Table 4.11 Hyper-heuristic using Attribute Entropy and 5 heuristics 
compared to Standard Algorithms using Ranking Values of Multiple 

Data Set Experiments 

 

HH-12 5.460 p-value 4.560 p-value 3.660 p-value

CHI 4.420 0.015 6.860 0.000 7.020 0.000

IG 3.860 0.000 7.380 0.000 7.120 0.000

GR 5.490 0.944 5.240 0.130 6.850 0.000

GINI 5.130 0.441 8.600 0.000 8.220 0.000

JM 8.820 0.000 6.700 0.000 6.810 0.000

MDL 6.580 0.011 6.720 0.000 6.790 0.000

MGINI 7.240 0.000 10.280 0.000 8.360 0.000

RLV 4.640 0.048 6.310 0.000 7.080 0.000

RLF 12.600 0.000 11.770 0.000 9.850 0.000

SGAIN 8.060 0.000 4.210 0.410 6.560 0.000

SGINI 5.440 0.962 6.350 0.000 7.220 0.000

WOE 11.250 0.000 5.970 0.002 5.290 0.001

ca, de, ec, wi co, cr, io, sp ye, vo, he, fl

 
Table 4.12 Hyper-heuristic using Attribute Entropy and 12 heuristics 
compared to Standard Algorithms using Ranking Values of Multiple 

Data Set Experiments 
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As in the experiments presented in 4.1, both hyper-heuristics managed to get 

the best ranking on [ye, vo, he, fl]. Furthermore, all the standard decision-

tree building methods performed statistically significantly worse than both 

hyper-heuristics for this group of data sets. HH-5 performed poorly on the 

other two data set groups as the overall rankings it achieved are statistically 

significantly worse than those of the top ranked methods in each group. HH-12 

also performed very poorly on [ca, de, ec, wi] but its overall ranking on [co, 

cr, io, sp] is not significantly different from that of the top ranked method 

(SGAIN). The average predictive accuracy values for all of these results can be 

found in tables A.11 – A.12 in the Appendix. 

 

 

4.4 Hyper-heuristic Rules using Maximum Conditional 

Entropy 

 

4.4.1. Problem State Representation & Choice of Splitting 

Method 

When faced with a data partition to be split, the hyper-heuristics described so 

far have inspected each splitting attribute individually while ignoring any 

information about the class attribute. This last hyper-heuristic differs from the 

previous ones in that it does use information about the class attribute to make 

its decision on how to split the data. The rules used by this hyper-heuristic 

look at the relationship between each splitting attribute and the class 

attribute. More specifically, we use the maximum conditional entropy (MCE) 

of the class attribute after splitting the data using the candidate splitting 

attribute. This is formally described in equation 4.1. 

 

MCE(d, y) = maxi{ H(d, c | yi) } 
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where, H(d, c | yi) is the entropy of class attribute c in data partition d where 

d is made up of all the instances that have value i for attribute y. 

Equation 4.1 

 

The MCE for splitting attribute y represents the resultant worst entropy value 

of the class attribute after splitting the data partition using attribute y. We 

decided to involve the class attribute in the hyper-heuristic’s decision-making 

process in the hope of helping it choose splitting heuristics that will ultimately 

lead to decision trees of a higher predictive accuracy. A hyper-heuristic that 

decides on how to split the data when faced with a data partition d is 

represented as a set of m rules in the following manner: 

 

IF   x1 < low_MCE1 AND  

y1 > high_ MCE1 THEN use heuristic h1 

ELSE  IF  x2 < low_ MCE2 AND  

y2 > high_ MCE2 THEN use heuristic h2 

… 

ELSE  IF  xm-1 < low_ MCEm-1 AND  

ym-1 > high_ MCEm-1 THEN use heuristic hm-1 

ELSE  use heuristic hm 

 

where, xi and yi are both percentage values ranging from 0 to 100,  

low_ MCE i and high_ MCE i are thresholds for maximum 

conditional entropy, 

hi is the heuristic to use to sort the list of candidate splitting attributes 

should rule i be triggered. 

 

This hyper-heuristic rule set works in a similar manner to the rule set 

described in 4.3.1 with the difference that we use the MCE of the class 

attribute brought about by each splitting attribute instead of the entropy of 
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each splitting attribute. This means that each conditional represents a 

problem state defined by three bins: attributes with low MCE, medium MCE 

and high MCE. When a data partition needs to be split, the MCE of each 

splitting attribute is calculated afterwhich the conditional of each rule in the 

hyper-heuristic is compared to the current problem state on the basis of the 

MCE values calculated. If one of the rule conditionals matches the problem 

state, the heuristic dictated by that rule is used to split the partition. If no 

match is found, the default heuristic hm is used. One drawback of this method 

for representing the problem state is that the size of the partition with the 

maximum conditional entropy is not taken into consideration. 

 

 

4.4.2 Genetic Algorithm 

The genetic algorithm used to search for good hyper-heuristics that use MCE 

values remains almost entirely unchanged from the one that searches for 

hyper-heuristics that use attribute entropy values. The encoding is similar to 

the one used in 4.3.2: 

 

l1, x1, u1, y1, h1,  l2, x2, u2, y2, h2, …, lm-1, xm-1, um-1, ym-1,  hm-1,  hm 

 

where for any rule i: 

 

- li and ui are real values defining three ranges for low, medium and high 

MCE,  

- xi and yi are integer values representing the percentage of attributes 

that have low  MCE and high MCE respectively, 

- hi is an integer value indexing the heuristic to be used to split the data 

should rule i be triggered. 
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The only difference in this encoding is in the the genes that the define the 

ranges for MCE values. Since we are only dealing with two-class problems, the 

MCE value of any two-valued class attribute for any partition can never be 

greater than 1. For this reason, the genes ui that define high MCE values can 

take one of these eleven possible values: {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 

0.85, 0.9, 0.95, 0.99}. Otherwise, the granularity of the percentage genes and 

the genes that define the low MCE values is the same as described in 4.3.2.  

As before, we ran single and multiple data set experiments where each single 

data set experiment was run 20 times and each multiple data set experiments 

was run 100 times, each time varying the hyper-heuristic training set and test 

set as well as the random seed of the initial population of the genetic 

algorithm. 

 

 

4.4.3 Results 

 

4.4.3.1 Single Data Set Experiments 

Tables 4.13 and 4.14 show results for HH-5 and HH-12 trained and tested on 

single data sets. As in 4.2 and 4.3, HH-12 ranked first on the hearts data set 

though the average ranking value is not statistically different from the second 

best result. HH-5 topped the results table for the spect data set. This hyper-

heuristic achieved an overall ranking not significantly worse than the best 

ranked method in 8 of the 12 data sets. HH-12 achieved this on only 3 of the 

12 data sets. The average predictive accuracy values for all of these results can 

be found in tables A.13 and A.14 in the Appendix. 
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HH-5 2.350 p-value 5.700 p-value 4.100 p-value 4.350 p-value 4.350 p-value 6.650

CHI 3.000 0.395 7.050 0.302 4.450 0.699 5.600 0.199 4.800 0.724 5.100 0.156

IG 1.750 0.375 7.500 0.147 8.250 0.000 4.700 0.742 2.750 0.110 4.400 0.045

GR 3.600 0.150 5.200 0.704 5.400 0.157 3.650 0.488 4.800 0.715 4.650 0.071

GINI 1.750 0.375 7.550 0.147 8.350 0.001 4.650 0.764 3.100 0.221 4.600 0.046

JM 10.900 0.000 6.450 0.551 4.400 0.727 5.850 0.171 3.800 0.648 6.550 0.930

MDL 3.050 0.372 8.050 0.082 4.250 0.871 6.900 0.026 6.000 0.164 4.100 0.014

MGINI 2.550 0.782 8.250 0.057 9.650 0.000 7.900 0.005 4.250 0.931 6.000 0.548

RLV 2.200 0.858 6.100 0.745 7.350 0.001 4.050 0.767 3.100 0.221 4.150 0.013

RLF 12.600 0.000 6.700 0.457 11.700 0.000 9.200 0.000 9.350 0.000 10.550 0.001

SGAIN 10.050 0.000 4.950 0.540 3.100 0.237 2.950 0.119 3.000 0.230 4.250 0.015

SGINI 3.150 0.312 4.600 0.346 7.200 0.007 5.550 0.243 5.100 0.504 3.450 0.002

WOE 12.200 0.000 6.350 0.626 5.600 0.119 6.650 0.039 7.450 0.022 8.650 0.120

HH-5 3.500 p-value 5.400 p-value 3.150 p-value 3.950 p-value 6.100 p-value 5.350 p-value

CHI 5.850 0.013 3.350 0.047 6.000 0.007 4.450 0.664 3.950 0.070 6.450 0.356

IG 7.200 0.000 5.750 0.733 5.250 0.050 4.900 0.373 4.350 0.148 5.400 0.968

GR 6.350 0.004 4.100 0.153 5.400 0.068 2.850 0.235 3.050 0.009 7.050 0.164

GINI 7.350 0.000 4.550 0.380 6.150 0.004 4.200 0.812 3.150 0.007 5.700 0.773

JM 5.400 0.064 6.600 0.311 5.600 0.018 4.850 0.419 4.350 0.198 7.100 0.162

MDL 6.900 0.001 5.100 0.786 5.800 0.028 4.600 0.564 3.550 0.033 6.850 0.255

MGINI 7.900 0.000 8.450 0.013 7.400 0.001 3.350 0.553 5.000 0.376 5.950 0.633

RLV 5.700 0.034 4.000 0.148 6.550 0.006 4.650 0.540 4.350 0.151 6.650 0.331

RLF 4.000 0.617 9.400 0.001 4.250 0.320 11.500 0.000 10.150 0.001 8.650 0.016

SGAIN 7.500 0.000 5.700 0.786 4.100 0.395 2.900 0.259 5.700 0.755 4.550 0.506

SGINI 7.800 0.000 5.900 0.564 5.550 0.019 3.750 0.858 3.700 0.039 5.400 0.963

WOE 2.150 0.093 6.400 0.404 4.250 0.295 6.300 0.063 7.700 0.273 8.500 0.020

spect votes

credit dermacar contrac

heart ionosphere

ecoli flags

wine yeast

Table 4.13 Hyper-heuristic using Maximum Conditional Entropy and 5 heuristics compared to 
Standard Algorithms using Ranking Values of Single Data Set Experiments 
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HH-12 2.200 p-value 5.850 p-value 4.750 p-value 3.850 p-value 4.550 p-value 5.800 p-value

CHI 3.700 0.039 7.950 0.080 5.150 0.702 5.350 0.164 2.500 0.049 4.350 0.132

IG 1.800 0.484 7.300 0.248 6.500 0.086 4.200 0.740 3.500 0.277 4.950 0.425

GR 3.450 0.079 5.100 0.549 6.350 0.134 6.900 0.015 4.000 0.595 4.500 0.219

GINI 2.000 0.734 6.050 0.859 7.450 0.013 4.750 0.379 3.700 0.374 6.600 0.453

JM 10.850 0.000 6.400 0.651 6.800 0.089 5.950 0.041 7.450 0.031 4.550 0.232

MDL 3.100 0.180 6.450 0.645 6.800 0.048 7.250 0.006 6.200 0.228 3.200 0.014

MGINI 4.000 0.043 7.900 0.109 8.700 0.000 7.150 0.006 3.250 0.182 6.900 0.335

RLV 2.450 0.763 8.500 0.029 6.250 0.167 4.250 0.698 3.700 0.394 5.050 0.472

RLF 12.800 0.000 8.750 0.043 11.200 0.000 9.000 0.000 10.050 0.000 7.300 0.241

SGAIN 10.150 0.000 3.400 0.024 4.850 0.927 1.950 0.031 3.900 0.531 4.150 0.097

SGINI 3.100 0.170 5.650 0.862 6.050 0.210 5.350 0.130 3.200 0.154 4.450 0.192

WOE 12.050 0.000 5.600 0.844 2.500 0.012 8.950 0.000 6.900 0.084 7.150 0.273

HH-12 2.150 p-value 7.300 p-value 3.550 p-value 4.750 p-value 5.150 p-value 7.500 p-value

CHI 7.250 0.000 5.700 0.188 5.300 0.063 1.900 0.000 4.200 0.446 5.600 0.074

IG 6.800 0.000 5.100 0.061 5.300 0.086 6.000 0.239 4.400 0.531 6.100 0.189

GR 7.250 0.000 4.000 0.002 5.650 0.090 3.300 0.111 2.750 0.030 6.000 0.209

GINI 7.650 0.000 5.750 0.152 5.500 0.041 5.800 0.300 5.050 0.937 5.550 0.083

JM 4.300 0.003 5.850 0.193 4.300 0.474 4.800 0.964 5.500 0.794 7.150 0.777

MDL 6.000 0.000 4.350 0.012 5.650 0.040 3.000 0.070 3.750 0.247 6.500 0.413

MGINI 8.400 0.000 7.700 0.728 7.900 0.001 4.450 0.757 4.750 0.748 6.550 0.439

RLV 5.100 0.000 5.250 0.072 4.500 0.324 4.150 0.521 4.400 0.517 6.450 0.393

RLF 3.750 0.025 9.900 0.029 5.450 0.144 11.450 0.000 7.500 0.103 7.650 0.910

SGAIN 7.800 0.000 4.700 0.013 2.550 0.190 3.450 0.174 4.300 0.505 4.950 0.040

SGINI 8.200 0.000 5.700 0.135 6.000 0.009 4.600 0.867 3.000 0.050 4.950 0.023

WOE 2.500 0.565 5.500 0.137 5.500 0.090 6.100 0.268 8.000 0.041 7.650 0.908

ecoli flags

wine yeast

car contrac

heart ionosphere spect votes

credit derma

Table 4.14 Hyper-heuristic using Maximum Conditional Entropy and 12 heuristics compared 
to Standard Algorithms using Ranking Values of Single Data Set Experiments 
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4.4.3.2 Multiple Data Set Experiments 

Tables 4.15 and 4.16 show results for HH-5 and HH-12 trained and tested on 

multiple data sets. 

 

HH-5 5.250 p-value 5.800 p-value 4.850 p-value

CHI 4.450 0.325 5.600 0.839 6.600 0.076

IG 4.300 0.265 6.600 0.471 8.150 0.003

GR 5.450 0.826 6.350 0.607 6.350 0.187

GINI 5.900 0.408 7.000 0.237 8.200 0.004

JM 8.750 0.001 5.700 0.928 5.800 0.427

MDL 6.750 0.138 6.650 0.444 5.750 0.469

MGINI 7.200 0.040 9.650 0.000 9.350 0.000

RLV 4.250 0.263 7.250 0.244 6.950 0.070

RLF 12.250 0.000 11.550 0.000 10.500 0.000

SGAIN 7.800 0.018 5.750 0.966 6.700 0.097

SGINI 6.150 0.284 6.850 0.323 5.250 0.721

WOE 11.250 0.000 6.200 0.742 6.450 0.192

ca, de, ec, wi co, cr, io, sp ye, vo, he, fl

 

Table 4.15 Hyper-heuristic using Maximum Conditional Entropy 
and 5 heuristics compared to Standard Algorithms using Ranking 

Values of Multiple Data Set Experiments 

 

HH-12 5.080 p-value 4.850 p-value 4.420 p-value

CHI 4.910 0.686 6.830 0.000 6.670 0.000

IG 3.760 0.001 7.730 0.000 6.950 0.000

GR 5.780 0.104 5.650 0.109 6.880 0.000

GINI 4.850 0.580 8.090 0.000 7.630 0.000

JM 9.170 0.000 6.440 0.001 6.850 0.000

MDL 6.910 0.000 6.190 0.003 7.090 0.000

MGINI 6.490 0.001 10.050 0.000 8.690 0.000

RLV 4.840 0.585 7.110 0.000 7.140 0.000

RLF 12.710 0.000 11.620 0.000 9.880 0.000

SGAIN 7.670 0.000 4.560 0.516 7.270 0.000

SGINI 5.460 0.363 6.310 0.001 6.630 0.000

WOE 11.100 0.000 5.520 0.156 4.720 0.564

ca, de, ec, wi co, cr, io, sp ye, vo, he, fl

 
Table 4.16 Hyper-heuristic using Maximum Conditional Entropy 

and 12 heuristics compared to Standard Algorithms using 
Ranking Values of Multiple Data Set Experiments 
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As in almost all of the previous experiments, both HH-5 and HH-12 managed 

to get the best overall ranking on [ye, vo, he, fl], though in both cases the 

average ranking value is not statistically different from the second best 

ranking value. As regards to the other two data set groups, HH-5 managed to 

achieve an overall ranking not significantly different from the best ranked 

method of each group. HH-12 did not achieve this for data set group [ca, de, 

ec, wi]. The average predictive accuracy values for all of these results can be 

found in tables A.15 – A.16 in the Appendix. 

 

 

4.5 Discussion 

 

In this section we discuss the performances of the various hyper-heuristics 

presented in this chapter. We base our discussion on four different criteria: 

 

a) Ranked 1st: the number of data sets (or, in the case of multiple data 

set experiments, data set groups) on which the hyper-heuristic got the 

best overall ranking when compared to the standard methods. 

 

b) Stat Sign Better: the number of data sets (or data set groups) on 

which the hyper-heuristic got a result that is statistically significantly 

better than all the standard algorithms. 

 

c) NSDTB: Not Significantly Different To the Best Ranked method – the 

number of data sets (or data set groups) on which the hyper-heuristic’s 

overall ranking was not significantly different to that of the best ranked 

method, assuming a confidence level of 90%. 

 

d) Within Top 3: the number of data sets (or data set groups) on which 

the hyper-heuristic manage to rank within the top 3 methods. 
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We start by looking at how the various hyper-heuristics performed in the 

single data set experiments. In these experiments we attempted to evolve 

specialized hyper-heuristics geared towards building accurate decision trees for 

one particular data set. We did this by training the hyper-heuristic on just one 

training set – a training set built from the data set we want to specialize for. 

In doing so, we hoped to evolve hyper-heuristic rules that are fine-tuned for 

the make-up of the data set from which the training set was built. This 

experiment was carried out on 12 different problems. 

 

Hyper-heuristic Ranked 1st Stat Sign Better NSDTB Within Top 3

HH-5 Attr Left 0 0 6 6

HH-12 Attr Left 2 0 5 7

HH-5 Val Count 1 0 8 5

HH-12 Val Count 1 0 9 9

HH-5 Entropy 0 0 10 9

HH-12 Entropy 1 1 8 7

HH-5 MCE 1 0 8 9

HH-12 MCE 1 0 3 6  
Table 4.17 Hyper-heuristics Compared on Single Data set Experiments 
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Figure 4.4 Hyper-heuristics Compared on Single Data set Experiments 
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We evaluated the resultant hyper-heuristic by comparing its performance with 

those of 12 other standard decision-tree building algorithms on a test set that 

was never used in the evolutionary training phase of the hyper-heuristic. Each 

of the 12 standard algorithms uses a different static splitting heuristic. Table 

4.17 summarizes the performance of each hyper-heuristic presented in this 

chapter over all 12 problem cases using the four criteria mentioned above. We 

also present three of this criteria in the form of a graph in Figure 4.4. 

 

Most of the hyper-heuristics managed to outrank the rest of the standard 

methods in only 1 of the 12 problem cases. The exceptions are HH-5 Attr Left 

and HH-5 Entropy which never managed to rank first on any of the problem 

cases, though the overall performance of HH-5 Entropy was not significantly 

different to that of the best performing method in 10 of the 12 cases. HH-12 

Attr Left ranked first in 2 cases but was significantly worse than the best 

performing method on 7 other cases.  

 

The hyper-heuristics Val Count, Entropy and MCE all gave very good 

performances on the hearts data set. The performance of HH-12 Entropy is 

particularly impressive for this data set since it managed to rank first as well 

as achieve an overall ranking significantly better than the runner-up method 

(WOE). What we find really interesting though are the results achieved by 

HH-5 Val Count. The best performing standard method for the hearts data 

set uses the weight of evidence heuristic. HH-5 Val Count does not have this 

heuristic at its disposal1 yet it still managed to rank first while achieving a 

result that is slightly better than that of WOE. In this case, the hyper-

heuristic is at a disadvantage since it does not have the splitting heuristic that 

is best suited for this data set. Yet it still managed to top the results table by 

using the pool of heuristics made available to it. This suggests that HH-5 Val 

                                                 
1 Recall that HH-5 can only choose from heuristics information gain, gain ratio, J-measure, 
relief and symmetric gain. 
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Count is indeed adapting the splitting heuristic according to the problem state 

in an effective manner. 

 

These results suggest that problems similar to hearts would be well tackled 

by hyper-heuristic rules that take into consideration the number of distinct 

values of each attribute - Entropy and MCE are both heavily affected by this 

property. However there still remains the problem of identifying a template for 

problem cases of this nature. What is it that makes the hearts problem ideal 

for using such a hyper-heuristic? What is it that sets this data set apart from 

the rest of the data sets? All in all, these results suggest that in most cases 

there is no significant improvement to be achieved should one decide to use a 

hyper-heuristic trained on a single data set instead of one of the standard 

methods. 

Hyper-heuristic Ranked 1st Stat Sign Better NSDTB Within Top 3

HH-5 Attr Left 1 0 3 3

HH-12 Attr Left 1 0 3 2

HH-5 Val Count 0 0 3 1

HH-12 Val Count 1 1 2 2

HH-5 Entropy 1 1 1 2

HH-12 Entropy 1 1 2 2

HH-5 MCE 1 0 3 1

HH-12 MCE 1 0 2 2  
Table 4.18 Hyper-heuristics Compared on Multiple Data set Experiments 

 

We next analyze the results achieved by the hyper-heuristics that were trained 

and tested on multiple data sets. In this set of experiments we wanted to 

evolve generalised hyper-heuristics that perform consistently well on a number 

of problems. We do not expect such a hyper-heuristic to outrank every other 

standard algorithm on all of the problem cases. But we do expect it to give a 

better overall performance when applied to the same set of problems that were 

used for training. The goal in this case is to evolve hyper-heuristics that can 

adapt the heuristics used to build decision trees according to the problem 

being solved. For this set of experiments we used 3 groups of data sets where 
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each group contains 4 different data sets. The results are presented in Table 

4.18 and Figure 4.5. 

 

For all the three groups of data sets, HH-5 Attr Left, HH-12 Attr Left, HH-5 

MCE and HH-5 Val Count managed to achieve an overall ranking that is not 

significantly different to ranking of the best performing method. None of the 

standard algorithms managed to achieve this. This suggets the robustness and 

reliability of these hyper-heuristics when trained over multiple data sets. 

Furthermore, all of the hyper-heuristics except for HH-5 Val Count achieved 

the best overall ranking on the [ye, vo, he, fl] data set group. HH-12 Val 

Count, HH-5 Entropy and HH-12 Entropy also managed to achieve an overall 

ranking significantly better than the best performing standard method for this 

group: WOE. This is especially impressive for HH-5 Entropy since this hyper-

heuristic does not have the weight of evidence splitting heuristic at its 

disposal. In light of all this, we can safely say that there is a clear benefit in 

using such generalized hyper-heuristics. 

 

Hyper-heuristics Results for Multiple Data Sets

0

1

2

3

HH-5 Attr
Left

HH-12 Attr
Left

HH-5 Val
Count

HH-12 Val
Count

HH-5
Entropy

HH-12
Entropy

HH-5 MCE HH-12
MCE

Hyper-heuristic Method

N
um

be
r 

of
 D

at
a 

Se
t 

G
ro

up
s

Ranked 1st NSDTB Within Top 3

 
Figure 4.5 Hyper-heuristics Compared on Multiple Data set Experiments 
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It is also interesting to note that the average predictive accuracy achieved by 

HH-5 Attr Left on the flags data set is better than any of the standard 

algorithms (see A.3). The same kind of hyper-heuristic did not manage achieve 

this when it was trained solely on the flags data set. As strange as it sounds, 

training the hyper-heuristic on more than one problem can create rules that 

perform better on a particular problem than rules which have been specialized 

for that same problem. This corroborates with the arguments put forward in 

the previous chapter which state that training the hyper-heuristic on multiple 

data sets helps evolve rules that are less likely to overfit the make-up of any 

one particular training set. Such rules will be better at adapting the heuristic 

to be used according to the problem case that is to be solved. 
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Chapter 5 

 

 

Experiments with Synthetic Data Sets 

 

 

 

 

 

 

In the previous chapter we presented various hyper-heuristics for decision-tree 

induction. We compared the performance of these hyper-heuristics to standard 

decision tree building algorithms on a number of real data sets. The results of 

these experiments indicate that training with a pool of multiple data sets 

yields a hyper-heuristic that creates decision trees of a higher predictive 

accuracy than a hyper-heuristic that has been trained on just one data set. It 

seems that training on multiple data sets helps evolve hyper-heuristics that are 

better at adapting the heuristic applied according to the problem state. This 

notion is further explored in this chapter. 

 

We present experimental results that help analyse the relationship between 

the predictive accuracy of our hyper-heuristics and the data sets it uses for 

training. For this set of experiments we decided to use synthetic data sets 

instead of real ones. The main reason for this is that real data sets from 

different domains tend to vary considerably in terms of size, type of attributes, 

class distribution and complexity of the underlying classification model. Such 
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variation can introduce unwanted biases in the results of our experiments, 

making it harder to draw any conclusions.   

 

Another reason for using synthetic data sets is that in the second set of 

experiments presented in this chapter we investigate the relationship between 

the variety of class distributions in the pool of training data sets and the 

resultant hyper-heuristic. Custom-building synthetic data sets allows one to 

generate a pool of data sets with different underlying classification models that 

are similar in all properties (such as size, attribute types, complexity, etc.) 

except for one (in our case, class distribution). This made synthetic data sets 

an ideal choice for this set of experiments. 

 

 

5.1 Correlation between Number of Training Data Sets 

and Performance of Resultant Hyper-heuristic 

 

5.1.1 Experimental Setup 

In chapter 4 we tested our hyper-heuristics using two different experimental 

setups. The first setup uses only one training data set to evolve the hyper-

heuristic rules while the second setup uses a set of four training data sets. The 

results strongly suggest that the latter method yields hyper-heuristic rules that 

are better at adapting the splitting heuristic to be applied according to the 

partition that needs to be split. In this section we further investigate this 

notion by analyzing the relationship between the number of training data sets 

used and the performance of the resultant hyper-heuristic.  

 

Throughout these experiments we vary the number of training data sets used 

to evolve each hyper-heuristic while keeping other factors fixed. We evolve 

hyper-heuristics of the kind described in 4.4. This type of hyper-heuristic 

comprises of four rules that use maximum conditional entropy to characterize 
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the problem state. For these experiments all 12 splitting heuristics (see 3.1.1) 

are made available to the hyper-heuristics during the training phase. The 

genetic algorithm described in 4.4 is used to search for a set of hyper-heuristic 

rules. 

 

We compare 8 different hyper-heuristics: HH1, HH2, …, HH8 where HHx 

means that x different data sets were used for training hyper-heuristic HHx. 

As in previous experiments, each one of the x data sets is split into a training 

set and a test set. The training sets are used in the evolutionary search that 

produces the hyper-heuristic. The test sets are used to compare the 

performance of this hyper-heuristic to the standard decision-tree building 

algorithms.  

 

We perform 10 rounds of experiments. In each round we evolve all of the 8 

different types of hyper-heuristics afterwhich they are compared to the 

standard methods on the test sets. We use a set of 8 different synthetic data 

sets for each of the 10 rounds so that HH1 is trained on one of the data sets, 

HH2 on two, HH3 on three, etc. In each round we repeat each experiment 10 

times. This effectively means that for each hyper-heuristic type we run 100 

experiments (10 runs per 10 rounds). 

 

Using a unique set of 8 synthetic data sets for each round means that we had 

to generate 80 different synthetic data sets in all. The aim of these 

experiments is to investigate how the performance of the hyper-heuristic 

changes according to the number of training data sets used to create the 

hyper-heuristic. We want our results to be as unbiased as possible from other 

unrelated factors. For this reason, all of the 80 data sets utilized in these 

experiments adhere to the following criteria: 

 

- each data set contains 300 instances and 20 attributes, 
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- all the attributes in each data set are discrete with a value count ranging 

between 2 and 8, 

- the class attribute of each data set can only have two values, 

- each data set can be perfectly represented by a decision tree of depth 4. 

 

In this way, we create 80 different, relatively simple problem cases that are as 

similar as possible to each other in terms of complexity and size. 

 

 

5.1.2 Results & Discussion 

As in the previous chapter, we use rankings instead of predictive accuracy to 

compare the hyper-heuristic methods to the standard methods since ranking 

values are non-parametric. Table 5.1 shows the average ranking obtained by 

each type of hyper-heuristic in each round as well as the overall average 

ranking for all 10 rounds. These results are also presented in the form of a bar 

graph in Figure 5.1. 

HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8

Round 1 2 2 1 3 4 5 5 3

Round 2 4 2 1 1 3 2 1 2

Round 3 7 3 1 3 4 5 1 1

Round 4 3 4 2 4 4 4 2 4

Round 5 2 3 2 6 1 3 5 4

Round 6 3 3 4 4 2 5 5 4

Round 7 9 2 2 3 3 3 2 4

Round 8 4 5 2 5 3 3 2 1

Round 9 1 1 1 1 4 2 1 2

Round 10 2 4 2 2 3 4 2 3

Average 3.7 2.9 1.8 3.2 3.1 3.6 2.6 2.8  
Table 5.1 Ranking Values of Results for Hyper-heuristics HH1-HH8 on Synthetic Data 

Sets 
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Average Ranking For Each Hyper-Heuristic In Each Round
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Figure 5.1 Ranking Results for Hyper-heuristics HH1-HH8 on Synthetic Data Sets 

 

The graph in figure 5.1 indicates that there is some improvement in 

performance as more training data sets are used in the learning phase of the 

hyper-heuristic. The best overall results were achieved when 3 data sets were 

used for training while the worst overall results were achieved after training 

with just 1 data set. There is a steady improvement in performance from HH1 

to HH2 and from HH2 to HH3. However, when more than 3 training data sets 

are used, the hyper-heuristics’ performance deteriorates. One possible reason 

for this dip in performance is that a bigger set of hyper-heuristic rules is 

needed as more and more data sets are used for training and testing. Recall 

that all the hyper-heuristics in these experiments use a rule set of size 4. This 

rule set size seems to work best when 3 data sets are used for training. This 

could mean that the number of different problem states that require a 

different splitting heuristic in 3 unique data sets can easily be covered by a 

rule set of this size When more than 3 data sets are used, a bigger rule set is 

likely to be needed to accommodate the wider variety of problem states that 

the hyper-heuristic can encounter.  
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Applying the Pearson Correlation Coefficient to the number of training data 

sets and the overall average ranking on all eight hyper-heuristics gives us a 

value of -0.121. The same statistic applied to the first five hyper-heuristics 

(HH1-HH5) gives a value of -0.2031. This indicates a small degree of 

correlation between the two. We suspect that this correlation will become 

much stronger if the rule set size of the hyper-heuristic is increased in 

proportion with the number of training data sets used. 

 

 

5.2 Correlation between Variety of Class Distribution in 

Training Data Sets and Performance of Resultant Hyper-

heuristic 

 

5.2.1 Experimental Setup 

The hyper-heuristic’s success in adapting the heuristic according to the 

problem state depends on its ability to distinguish between problem states 

that require different heuristics. The problem state in our case is the partition 

that needs to be split. In section 5.1 we provide experimental evidence that 

indicates some degree of correlation between the number of training data sets 

used to create a hyper-heuristic for decision-tree building algorithms and its 

resultant performance on unseen data sets. Supplying more than one training 

data set to the learning process of the hyper-heuristic helps it discover rules 

that are better at identifying partitions that require different splitting 

heuristics. More training data sets means exposure to a wider spectrum of 

problem states for the hyper-heuristic – this makes for a “richer” learning 

phase for the hyper-heuristic. This also prevents the hyper-heuristic from 

overfitting the specific make-up of one particular training data set. 

 

                                                 
1 The correlation is negative as a smaller ranking value indicates a better performance. 
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However there still remains the question of which set of partition features does 

the hyper-heuristic actually need to look at so that it is able to distinguish 

between these different problem states. In chapter 4 we tried to answer this 

question by presenting four hyper-heuristics that each look at the partition 

that needs to be split through a different lens. In the next set of experiments 

we try to answer the same question using a different approach.  

 

The hyper-heuristic rules used in 5.1 use maximum conditional entropy to 

characterize the problem state. An increase in the number of training data sets 

brought about an increase in the quality of the hyper-heuristic rules. The 

hyper-heuristic must be latching onto one or more features of the data 

partition that needs to be split in order for it to be able to distinguish between 

one problem state and another. One such possible feature could be the 

distribution of the class values in the data set. Partitions with different class 

distributions might be better dealt with using different splitting heuristics. 

Class distribution affects the maximum conditional entropy – so such a feature 

would be, to some extent, indirectly captured by our hyper-heuristic rules. 

 

In this section we present experiments that investigate the idea that using 

training data sets with different class distributions provides for a richer and 

better learning phase for our hyper-heuristics. We do this by running 10 

rounds of experiments that each compare 5 different types of hyper-heuristics: 

HHC1, HHC2, HHC3, HHC4 and HHC5. The hyper-heuristic rules are the 

same as the ones used in 5.1. The only thing that varies from one type of 

hyper-heuristic to another is the set of training data sets used in the learning 

phase. Table 5.2 lists the synthetic data sets used to train the hyper-heuristics 

while table 5.3 illustrates which data sets are used in the learning phase of 

each hyper-heuristic. 
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Negative Instances Positive Instances

SDS1 90% 10%

SDS2 70% 30%

SDS3 50% 50%

SDS4 30% 70%

SDS5 10% 90%

Class Distribution
Synthetic Data Set

 
Table 5.2 Synthetic Data Sets Class Distributions 

 

Hyper-heuristic

HHC1

HHC2

HHC3

HHC4

HHC5

Training Data Sets

SDS1

SDS1, SDS2

SDS1, SDS2, SDS3

SDS1, SDS2, SDS3, SDS4

SDS1, SDS2, SDS3, SDS4, SDS5  

Table 5.3 Hyper-heuristic Type Details 

 

We recognize at this point that SDS1 and SDS5, as well as SDS2 and SDS4 

are equivlanet data sets since the class labels are symmetrical as regards to the 

decision-tree building algorithm. As in 5.1, each round of experiments uses a 

different set of synthetic data sets and each hyper-heuristic type is trained and 

tested 10 times. All of the 50 synthetic data sets utilized in these experiments 

also conform to the specifications mentioned in 5.1.1. so that the results are 

not biased by factors unrelated to class distribution. 

 

 

5.2.2 Results & Discussion 

Table 5.4 shows the average ranking obtained by each type of hyper-heuristic 

in each round as well as the overall average ranking for all 10 rounds. We 

again present these results in the form of a graph in figure 5.2. 
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HHC1 HHC2 HHC3 HHC4 HHC5

Round 1 4 5 2 6 1

Round 2 1 3 3 1 3

Round 3 8 4 3 3 4

Round 4 2 2 1 1 5

Round 5 3 2 4 4 1

Round 6 3 3 4 3 3

Round 7 6 2 3 1 5

Round 8 5 3 2 3 2

Round 9 2 1 1 3 3

Round 10 4 2 2 4 5

Average 3.8 2.7 2.5 2.9 3.2  
Table 5.4 Ranking Values of Results for Hyper-heuristics 

HHC1-HHC5 on Synthetic Data Sets 
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Figure 5.2 Ranking Values of Results for Hyper-heuristics HHC1-HHC5 on Synthetic Data 

Sets 

 

There are many similarities between these results and the previous ones. The 

best and worst overall results were achieved by the hyper-heuristics that use 3 

training data sets and 1 training data set respectively. Again, there is an 

improvement when the second data set is introduced and when the third data 
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set is introduced. As soon as the fourth data set is introduced, the hyper-

heuristic’s performance seems to deteriorate. In 5.1.2 we attributed this to the 

relatively small size of the rule set used by the hyper-heuristic.  

 

This time, when we apply the Pearson Correlation Coefficient to the number 

of training data sets and the overall average ranking on the five types of 

hyper-heuristics we get a value of -0.312. Recall the the correlation value we 

got in the previous experiments was -0.203. There is a stronger correlation 

between the performance of the hyper-heuristic and the number of training 

data sets when the training data sets have different class distributions. This 

suggests that using a variety of class distributions in the training phase results 

in a stronger hyper-heuristic. The hyper-heuristic rules must be exploiting this 

feature when trying to decide which splitting heuristic to apply when faced 

with a parititon to be split. 
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Chapter 6 

 

 

Conclusion 

 

 

 

 

 

 

This thesis has presented what is, to the best of our knowledge, the first 

attempt at applying the hyper-heuristic paradigm to decision tree building 

algorithms. We have shown how this is possible through the use of a simple 

rule set that is embedded within the framework of the typical decision tree 

building algorithm that creates a tree in a top down fashion. This rule set 

maps problem states to heuristics and is triggered every time the algorithm 

needs to create a new node in the tree. The problem state is the data partition 

left from the training set at that point in the developing tree, while the 

heuristic is the method by which an attribute is chosen from the ones present 

in the data partition for the purpose of creating the node in the decision tree. 

We start by specifying the main contributions of this thesis, after which we 

list four possible ways in which this work can be extended for the future. 
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6.1 Contributions 

 

6.1.1 Problem State Representation 

The rule set is critical to the performance of the resultant decision tree as it 

represents the brain of the hyper-heuristic. For this reason, a considerable 

portion of this thesis was dedicated to the different forms such a rule set can 

assume. We have presented five different ways in which the problem state 

could be represented in the hyper-heuristic rule set: 

a. partition size in terms of number of instances (3.4 and 3.5), 

b. number of attributes left in the partition (4.1), 

c. value count of attributes (4.2), 

d. entropy of  attributes (4.3), 

e. maximum conditional entropy of class attribute (4.4). 

 

Experimental evidence shows that hyper-heuristic rules that use some kind of 

information on the attributes left in the partition (i.e. b, c, d and e) yield more 

accurate decision trees than rules that simply use the size of the partition (i.e. 

a) while ignoring information about the attributes. One possible reason for this 

is because the rule set that uses the size of the partition is much bigger than 

the four other types of rule sets. This makes it harder for the evolutionary 

search algorithm to converge to a good set of rules since the search space is so 

much bigger. However, we believe that the main reason for this disparity in 

performance is because information about attributes is more relevant than 

information about the size of the partition to the task of deciding on which 

heuristic to use to create a tree node from the same partition. 

 

 

6.1.2 Heuristics for Choosing Splitting Attributes 

A hyper-heuristic would typically have a pool of low-level heuristics at its 

disposal so that it can choose which heuristic to use according to the state of 
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the problem being solved. We have tested three different ways in which our 

hyper-heuristic can adapt the method for choosing a splitting attribute given a 

data partition:  

a. the hyper-heuristic always uses the same heuristic for sorting 

attributes while adapting the ranking of the chosen attribute (3.4), 

b. given a set of 2 heuristics for sorting attributes, the hyper-heuristic 

adapts both the heuristic for sorting attributes as well as the 

ranking of the chosen attribute (3.5), 

c. given a set of  5 or 12 heuristics for sorting attributes, the hyper-

heuristic adapts the sorting heuristic while always choosing the first 

ranked attribute (4.1 - 4.4). 

 

Experimental evidence suggests that always choosing the first ranked attribute 

while adapting the heuristic for sorting attributes yields the most accurate 

trees from the three strategies just mentioned. We found no difference in 

performance between stategy a and b. As regards to strategy c, our 

experiments show no signficant difference in performance between hyper-

heuristics that use a pool of 5 heuristics and hyper-heuristics that use a pool of 

12 heuristics. We have also highlighted instances of when the hyper-heuristic 

managed to perform as well as the standard decision tree building algorithm 

that uses the best available heuristic for the data set being used for testing, 

even when the hyper-heuristic did not have this heuristic available to use. This 

proves that the hyper-heuristic is capable of exploiting its available pool of 

heuristics in an effective way regardless of the quantity and quality of these 

heuristics. 

 

 

6.1.3 Specialized and Generalized Hyper-heuristics 

We discussed two different applications for each of the hyper-heuristics 

presented in this thesis: specialized hyper-heuristics and generalized hyper-

heuristics. Specialized hyper-heuristics are trained on a single data set from a 
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particular problem domain while generalized hyper-heuristics are trained on 

multiple data sets from different domains. Specialized hyper-heuristics are 

meant to be tailored for the particular problem domain they have been trained 

on and are thus expected to outperform standard non-adaptive methods on 

data sets coming from this domain. On the other hand, generalized hyper-

heuristics are only expected to give a performance that is at least competitive 

to the best performing method on every problem case they were trained on. 

 

All the results of our experiments indicate that our hyper-heuristics are not 

suited for specialization - in most occasions the hyper-heuristic’s performance 

on the data set it was specialized for was not significantly better than that of 

the best performing standard algorithm. We believe that this is due to the 

hyper-heuristic overfitting the specific make-up of the data set it uses for 

training. This notion is supported by the more promising results achieved by 

the generalized hyper-heuristics in Chapter 4. In this case, we managed to 

achieve results that were very competitive to the best standard methods and 

in some cases we even achieved a significantly better overall performance than 

all of the standard methods. 

 

In Chapter 5 we investigated the link between the number of training data 

sets and the performance of the resultant hyper-heuristic through the use of 

controlled experiments utilizing synthetic data sets. These experiments 

confirm that increasing the number of training data sets results in a hyper-

heuristic that yields more accurate trees. We also noticed that this correlation 

weakens as the number of training data sets increases past a certain threshold. 

We believe that this can be circumvented by increasing the number of rules in 

the hyper-heuristic rule set so that it is able to accommodate a wider variety 

of problem states. Further experimentation revealed that this correlation 

becomes stronger if the data sets used for training contain different class 

distributions. This implies that the hyper-heuristic could be indirectly using 
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the class distribution of the data partition in order to make a choice on which 

heuristic to use to split that partition. 

 

 

6.2 Future work 

 

6.2.1 Searching for Good Hyper-heuristics 

Our decision to use genetic algorithms to search for good hyper-heuristics was 

based on the proven track record of evolutionary algorithms in the field of 

hyper-heuristics (Smith, 1985; Syswerda, 1991; Fang et al, 1993; Shing and 

Parker, 1993; Fang et al, 1994; Langdon, 1995; Dorndorf and Pesch, 1995; 

Fleurent and Ferland, 1996; Reeves, 1996; Schaffer and Eshelman, 1996; Corne 

and Ogden, 1997; Hart and Ross, 1998; Terashima-Marín et al, 1999; Cowling 

et al, 2002b; Ross et al, 2003; Vázquez-Rodríguez et al, 2007a) as well as on 

the results of some preliminary experiments we carried out that compare the 

performance of our genetic algorithm to that of a simple hillclimbing 

algorithm. Possible future work could involve using other types of advanced 

search techniques such as simulated annealing or tabu search.  

 

6.2.2 Analysis of Fitness Landscape 

The search space of our genetic algorithm consists of the set of all possible 

hyper-heuristic rule sets. It might be interesting to analyse the fitness 

landscape (Jones, 1995) produced by such a genetic algorithm. Looking at the 

ruggedness of such a landscape would help us understand the underlying 

complexity of the search problem faced by the genetic algorithm. Such studies 

might also yield valuable insight into which genetic operators to use so as to 

optimise the search process of the genetic algorithm.  
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6.2.3 Modifying the Size of Hyper-Heuristic Rule Set 

In Chapter 5 we noted how the performance of our hyper-heuristic deteriorates 

as the number of training data sets increase past a certain threshold. A 

possible future direction could be to analyze how increasing the size of the 

hyper-heuristic rule set would affect this problem. Another option would be to 

use messy genetic algorithms (Freitas, 2002) so that the evolutionary process 

is allowed to automatically choose the size of the rule set. 

 

 

6.2.4 Characterizing the Problem State using the Class 

Distribution 

The results obtained in chapter 5 indicate a correlation between the variety of 

class distributions in the pool of training data sets and the performance of the 

resultant hyper-heuristic. Given these promising results, it would be 

interesting to experiment with a hyper-heuristic that characterizes the problem 

state using the class distribution directly. The splitting heuristic would then 

be adapted according to how balanced or unbalanced the class distribution is 

in the current partition to be split. 

 

 

6.2.5 Characterizing the Problem State using a Mixture of 

Criteria 

Our hyper-heuristic rules have always used just one particular feature of the 

data set (ex. size, or attributes left) to characterize the problem state. Another 

possibility is to use rules that look at several different criteria of the data 

partition left to work with. For example, it might be useful for a hyper-

heuristic to know both the number of attributes left in the partition to split as 

well as the maximum conditional entropy of those remaining attributes before 

making a decision on which heuristic to use to split that data partition. Using 

different criteria might provide a richer description of the problem state to the 
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hyper-heuristic thus helping it make a more informed decision on which 

method is best suited to deal with that problem state. 

 

 

6.2.6 Adapting Discretization and Stopping or Pruning 

Techniques 

In our work, all the continuous attributes in the data sets were discretized 

before we used them for training and testing. We have also deliberately not 

used any stopping or pruning so as to prevent these processes from introducing 

any bias into our results. However, we see no reason why one cannot apply the 

hyper-heuristic paradigm to these processes as well. The heuristic used for the 

discretization of a continuous attribute could be adapted according to the 

distribution of unique values of this attribute. The heuristic for stopping the 

growth of the decision tree could be adapted according to the data left to work 

with as well to some features of the developing tree. Similarly, pruning would 

use some features of the fully grown decision tree and relate them to the 

training set used to grow that tree so as to choose a suitable heuristic for 

pruning. 
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A.1 Results for Hyper-heuristics that use Number of 

Attributes Left 

 

The hyper-heuristics in this section represent the problem state using the 

number of attributes left. Each column represents pairs of values where the 

first value represents the average accuracy percentage value while the second 

value is the resultant p-value when comparing the results of the method to the 

results of the hyper-heuristic on the same data set.  

 
 

HH-5 94.545 p-value 63.885 p-value 80.725 p-value 91.757 p-value 91.912 p-value 83.000 p-value

CHI 94.545 1.000 62.128 0.055 81.377 0.712 90.811 0.491 92.500 0.705 82.750 0.920

IG 94.689 0.801 62.635 0.189 80.145 0.730 91.892 0.929 92.059 0.910 81.500 0.589

GR 94.581 0.951 64.696 0.354 81.377 0.704 89.459 0.149 91.471 0.756 84.500 0.524

GINI 94.653 0.846 62.601 0.171 80.000 0.674 90.811 0.533 92.059 0.910 82.000 0.695

JM 85.441 0.000 63.378 0.600 80.942 0.893 89.189 0.095 91.618 0.850 82.750 0.922

MDL 94.581 0.951 63.953 0.942 80.000 0.666 89.595 0.148 91.471 0.751 82.250 0.787

MGINI 94.509 0.950 61.655 0.009 79.928 0.632 88.378 0.024 92.353 0.726 82.500 0.836

RLV 94.364 0.757 62.905 0.283 80.145 0.749 92.432 0.645 92.353 0.740 83.500 0.846

RLF 76.409 0.000 63.243 0.516 70.362 0.000 86.081 0.000 87.353 0.004 73.500 0.000

SGAIN 86.344 0.000 64.392 0.593 81.232 0.764 93.108 0.371 93.529 0.192 82.250 0.751

SGINI 94.545 1.000 63.480 0.640 81.812 0.537 90.811 0.530 92.941 0.434 85.000 0.418

WOE 80.672 0.000 62.264 0.136 81.449 0.645 87.297 0.003 88.971 0.172 80.000 0.190

HH-5 67.037 p-value 86.528 p-value 82.222 p-value 93.409 p-value 88.333 p-value 71.174 p-value

CHI 57.778 0.001 86.111 0.774 78.519 0.136 94.659 0.176 90.556 0.371 71.007 0.859

IG 57.407 0.000 87.083 0.729 79.012 0.182 93.636 0.813 90.278 0.398 71.544 0.710

GR 59.444 0.013 87.917 0.393 79.012 0.144 94.091 0.539 92.778 0.040 71.007 0.871

GINI 55.370 0.000 87.222 0.668 78.765 0.174 93.636 0.818 90.000 0.451 71.443 0.786

JM 58.704 0.002 85.000 0.294 79.259 0.212 93.523 0.902 91.111 0.170 70.168 0.322

MDL 59.444 0.014 88.611 0.183 79.506 0.240 93.409 1.000 90.556 0.364 71.443 0.795

MGINI 55.370 0.000 87.083 0.721 76.049 0.016 93.750 0.762 88.333 1.000 70.973 0.846

RLV 59.444 0.010 87.917 0.377 79.753 0.358 92.500 0.383 89.444 0.628 70.772 0.696

RLF 65.741 0.637 81.111 0.002 80.988 0.492 86.477 0.000 85.000 0.171 68.960 0.018

SGAIN 60.741 0.017 88.333 0.213 81.481 0.743 94.432 0.311 88.611 0.903 71.208 0.973

SGINI 57.222 0.001 88.056 0.347 79.012 0.206 93.864 0.670 92.778 0.059 71.007 0.866

WOE 70.370 0.268 85.139 0.445 81.481 0.732 93.182 0.796 86.944 0.513 69.329 0.034

heart

credit derma ecolicontrac flags

ionosphere spect votes wine yeast

car

Table A.1 Hyper-heuristic using Number of Attributes Left – Average Accuracy Results for Single Data 
Sets using 5 heuristics 
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Tables A.1 and A.2 show results for hyper-heuristics trained and tested on 

single data sets. The hyper-heuristics in A.1 have a set of 5 heuristics at their 

disposal while the ones in A.2 utilize a set of 12 heuristics. 

 

HH-12 94.277 p-value 63.116 p-value 81.449 p-value 92.838 p-value 91.912 p-value 87.250 p-value

CHI 94.538 0.638 61.288 0.096 82.464 0.462 90.811 0.170 91.176 0.546 88.500 0.631

IG 94.855 0.293 62.758 0.728 80.797 0.658 91.892 0.538 93.529 0.110 86.750 0.843

GR 94.566 0.607 64.706 0.117 83.043 0.217 91.892 0.483 91.324 0.608 89.000 0.407

GINI 94.740 0.390 62.838 0.797 79.420 0.218 89.865 0.048 93.088 0.238 86.750 0.834

JM 84.884 0.000 63.434 0.793 81.304 0.921 90.270 0.085 92.941 0.423 86.000 0.585

MDL 94.566 0.613 62.679 0.682 81.014 0.744 89.730 0.039 90.441 0.199 89.500 0.268

MGINI 94.364 0.871 61.804 0.232 78.696 0.074 89.189 0.015 91.324 0.554 85.000 0.423

RLV 94.653 0.497 63.076 0.971 82.246 0.532 92.027 0.580 92.647 0.450 87.500 0.910

RLF 75.751 0.000 61.765 0.187 70.000 0.000 87.838 0.006 87.206 0.003 74.500 0.000

SGAIN 86.590 0.000 64.785 0.109 82.681 0.345 93.378 0.683 94.118 0.033 87.250 1.000

SGINI 94.451 0.755 63.514 0.718 82.971 0.266 90.811 0.217 91.618 0.734 89.750 0.276

WOE 79.480 0.000 61.963 0.324 81.304 0.905 89.459 0.016 89.559 0.093 83.750 0.142

HH-12 74.074 p-value 85.833 p-value 78.395 p-value 94.773 p-value 88.056 p-value 69.687 p-value

CHI 60.370 0.000 84.861 0.666 77.572 0.733 94.773 1.000 86.944 0.655 70.097 0.701

IG 58.519 0.000 86.528 0.748 77.572 0.713 94.545 0.804 86.111 0.470 70.805 0.255

GR 60.000 0.000 87.639 0.368 76.955 0.551 94.773 1.000 87.500 0.837 69.016 0.504

GINI 57.963 0.000 86.389 0.793 77.778 0.799 94.773 1.000 86.944 0.678 70.992 0.193

JM 61.481 0.000 84.306 0.440 77.984 0.876 94.318 0.647 89.167 0.679 70.470 0.437

MDL 62.407 0.000 87.778 0.330 78.601 0.933 94.773 1.000 88.333 0.911 69.985 0.758

MGINI 57.037 0.000 85.833 1.000 73.045 0.035 95.000 0.774 87.500 0.803 70.134 0.666

RLV 61.852 0.000 87.083 0.563 76.132 0.443 95.000 0.774 88.611 0.819 70.358 0.488

RLF 65.741 0.017 80.278 0.013 76.543 0.390 87.614 0.000 79.722 0.002 69.239 0.626

SGAIN 58.889 0.000 87.222 0.473 76.749 0.497 95.455 0.405 88.611 0.802 70.619 0.386

SGINI 57.963 0.000 86.944 0.571 77.572 0.733 95.227 0.577 86.389 0.536 70.358 0.499

WOE 75.556 0.633 86.806 0.645 79.012 0.816 93.977 0.325 81.944 0.047 69.314 0.695

wine yeastheart ionosphere spect votes

car contrac credit derma ecoli flags

Table A.2 Hyper-heuristic using Number of Attributes Left – Average Accuracy Results for Single Data 
Sets using 12 heuristics 

 

 

Tables A.3 and A.4 show results for hyper-heuristics trained and tested on 

multiple data sets. The hyper-heuristics in A.3 have a set of 5 heuristics at 

their disposal while the ones in A.4 utilize a set of 12 heuristics. 
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car derma ecoli wine contrac credit ionosphere spect

HH-5 94.017 94.054 91.471 90.556 62.997 80.477 84.804 79.085

CHI 94.104 89.730 91.029 90.556 62.878 79.284 88.072 78.214

IG 94.133 91.486 92.353 92.222 62.639 78.517 86.111 77.560

GR 94.046 90.270 90.882 91.667 64.030 79.710 84.804 76.906

GINI 94.191 90.270 92.206 88.889 62.520 76.812 87.418 77.560

JM 84.624 90.000 89.706 89.444 64.030 78.772 84.150 79.085

MDL 94.017 89.189 90.294 90.556 63.593 79.540 87.092 77.778

MGINI 93.873 89.189 91.176 89.444 62.520 75.959 84.150 72.331

RLV 94.075 91.757 92.206 89.722 62.679 78.687 87.092 76.253

RLF 77.168 86.216 85.294 81.944 62.122 70.418 83.007 79.303

SGAIN 86.272 94.595 92.941 88.333 63.394 82.268 85.784 79.085

SGINI 94.046 90.946 91.029 91.111 63.235 77.579 84.804 76.906

WOE 80.405 89.595 88.088 84.722 63.235 81.586 83.497 77.996

yeast votes heart flags

HH-5 68.188 92.727 63.333 85.000

CHI 67.651 94.091 58.889 81.000

IG 67.919 92.955 58.148 84.000

GR 67.181 92.727 62.593 83.000

GINI 68.054 92.727 54.444 81.000

JM 67.718 92.273 58.889 84.000

MDL 67.383 91.591 60.000 81.500

MGINI 67.450 92.273 57.037 79.500

RLV 68.121 91.818 62.222 84.500

RLF 69.329 85.682 64.074 71.500

SGAIN 69.664 94.318 61.111 84.000

SGINI 68.389 92.955 57.778 83.000

WOE 67.987 92.727 68.519 76.000

co, cr, io, sp

ye, vo, he, fl

ca, de, ec, wi

Table A.3 Hyper-heuristic using Number of Attributes Left – Average Accuracy Results for Multiple 
Data Sets using 5 heuristics 
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car derma ecoli wine contrac credit ionosphere spect

HH-12 94.422 91.892 91.912 90.278 62.323 79.641 87.037 81.834

CHI 94.364 90.135 93.529 91.111 60.682 81.297 87.566 80.247

IG 94.711 92.162 92.206 91.667 60.907 78.951 86.905 79.894

GR 94.480 90.135 90.000 90.556 62.773 79.020 88.095 78.660

GINI 94.595 89.189 92.353 90.833 60.843 77.778 86.243 79.541

JM 85.520 90.811 89.706 90.833 61.068 79.434 86.640 80.071

MDL 94.509 88.919 91.618 91.667 61.873 79.434 88.095 79.541

MGINI 94.162 89.595 90.882 90.278 60.521 76.605 84.524 77.249

RLV 94.538 92.568 92.206 90.000 60.167 78.744 87.302 79.541

RLF 77.168 88.378 86.765 81.667 60.521 69.220 81.349 80.247

SGAIN 86.185 94.054 93.235 89.444 62.838 79.434 87.963 81.305

SGINI 94.393 90.676 91.324 91.389 61.454 80.262 87.037 79.718

WOE 80.838 89.865 88.971 85.278 61.615 81.988 84.656 80.423

yeast votes heart flags

HH-12 68.098 95.000 68.889 83.333

CHI 68.635 95.152 58.025 85.667

IG 69.396 95.000 56.543 84.333

GR 68.725 96.061 57.037 86.333

GINI 69.038 95.303 53.580 83.333

JM 69.664 94.394 60.494 82.000

MDL 68.322 95.455 58.272 86.000

MGINI 69.262 95.000 54.074 80.333

RLV 69.128 94.697 57.778 84.333

RLF 68.993 88.939 63.457 75.000

SGAIN 69.485 95.455 57.037 84.000

SGINI 68.859 95.909 55.802 84.333

WOE 68.501 93.636 70.617 82.333

ca, de, ec, wi co, cr, io, sp

ye, vo, he, fl

Table A.4 Hyper-heuristic using Number of Attributes Left – Average Accuracy Results for Multiple 
Data Sets using 12 heuristics 
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A.2 Results for Hyper-heuristics that use Attribute Value 

Count 

 

The hyper-heuristics in this section represent the problem state using the 

value count of the attributes left. Each column represents pairs of values 

where the first value represents the average accuracy percentage value while 

the second value is the resultant p-value when comparing the results of the 

method to the results of the hyper-heuristic on the same data set.  

 
 

HH-5 95.145 p-value 64.088 p-value 81.087 p-value 93.108 p-value 90.882 p-value 81.500 p-value

CHI 95.202 0.875 63.007 0.376 79.565 0.368 91.622 0.204 92.941 0.127 82.500 0.714

IG 95.347 0.573 63.345 0.511 77.174 0.024 92.027 0.377 93.235 0.093 83.000 0.552

GR 95.173 0.933 64.189 0.928 81.014 0.963 92.162 0.402 89.853 0.497 84.500 0.249

GINI 95.289 0.700 63.514 0.620 76.594 0.008 91.757 0.264 93.235 0.086 83.750 0.333

JM 84.798 0.000 64.493 0.759 78.841 0.182 90.946 0.112 90.000 0.615 79.750 0.459

MDL 95.202 0.873 63.851 0.843 78.913 0.212 90.811 0.079 90.735 0.916 81.250 0.929

MGINI 95.058 0.809 61.453 0.019 76.232 0.004 90.811 0.110 92.647 0.184 79.500 0.458

RLV 94.971 0.666 63.209 0.449 78.768 0.178 92.973 0.906 93.382 0.071 83.750 0.356

RLF 76.445 0.000 61.723 0.029 69.348 0.000 86.486 0.000 86.324 0.012 76.750 0.070

SGAIN 86.590 0.000 64.257 0.896 80.725 0.818 93.243 0.899 91.765 0.520 83.500 0.379

SGINI 95.173 0.936 64.155 0.957 80.145 0.578 92.162 0.429 91.765 0.504 82.500 0.682

WOE 78.584 0.000 63.277 0.543 78.913 0.208 89.595 0.018 88.971 0.273 77.500 0.129

HH-5 67.778 p-value 87.778 p-value 79.630 p-value 92.955 p-value 87.222 p-value 69.396 p-value

CHI 56.667 0.000 86.528 0.278 75.926 0.301 93.977 0.476 88.056 0.684 69.497 0.913

IG 60.741 0.001 86.944 0.492 77.778 0.638 93.636 0.598 87.778 0.752 69.161 0.771

GR 56.852 0.000 88.611 0.464 77.037 0.435 93.864 0.508 88.611 0.473 69.161 0.784

GINI 56.852 0.000 88.194 0.763 77.037 0.435 93.636 0.592 86.111 0.557 69.530 0.881

JM 61.852 0.009 84.444 0.019 80.000 0.916 93.523 0.651 91.111 0.074 68.993 0.681

MDL 58.519 0.000 88.472 0.544 76.296 0.367 94.205 0.319 90.000 0.182 68.826 0.515

MGINI 55.741 0.000 87.222 0.712 75.185 0.212 93.977 0.413 85.833 0.567 69.228 0.857

RLV 59.259 0.000 87.917 0.925 78.519 0.757 94.091 0.364 87.778 0.745 69.161 0.817

RLF 63.889 0.159 80.694 0.000 77.778 0.565 86.591 0.001 79.167 0.012 69.027 0.698

SGAIN 59.074 0.000 89.028 0.239 79.259 0.916 94.205 0.311 86.667 0.768 69.631 0.791

SGINI 57.037 0.000 87.917 0.915 76.667 0.387 94.659 0.154 86.389 0.685 69.732 0.721

WOE 67.963 0.945 87.500 0.845 80.000 0.909 93.409 0.709 85.833 0.530 69.060 0.739

wine yeastheart ionosphere spect votes

car contrac credit derma ecoli flags

Table A.5 Hyper-heuristic using Attribute Value Count – Average Accuracy Results for Single Data Sets 
using 5 heuristics 
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Tables A.5 and A.6 show results for hyper-heuristics trained and tested on 

single data sets. The hyper-heuristics in A.5 have a set of 5 heuristics at their 

disposal while the ones in A.6 utilize a set of 12 heuristics. 

 
 

HH-12 94.364 p-value 62.878 p-value 79.565 p-value 90.270 p-value 90.147 p-value 83.000 p-value

CHI 94.220 0.680 62.281 0.522 79.565 1.000 90.135 0.926 91.912 0.277 82.250 0.786

IG 94.451 0.798 61.566 0.202 78.913 0.618 91.081 0.548 91.471 0.400 83.250 0.931

GR 94.306 0.870 62.878 1.000 80.000 0.734 90.135 0.932 90.588 0.771 85.500 0.296

GINI 94.364 1.000 61.963 0.327 78.333 0.322 89.054 0.381 91.029 0.586 81.500 0.515

JM 84.335 0.000 62.560 0.759 81.957 0.079 89.459 0.571 91.471 0.429 81.000 0.445

MDL 94.364 1.000 62.639 0.812 79.130 0.737 89.324 0.530 91.029 0.557 82.750 0.922

MGINI 94.162 0.559 61.328 0.188 77.826 0.157 87.432 0.060 91.324 0.435 79.000 0.120

RLV 94.277 0.807 62.162 0.420 80.362 0.584 91.216 0.505 91.618 0.365 83.750 0.733

RLF 77.977 0.000 62.043 0.391 69.203 0.000 85.811 0.010 86.912 0.070 73.500 0.000

SGAIN 85.983 0.000 63.831 0.253 82.391 0.023 91.486 0.459 91.765 0.341 83.250 0.902

SGINI 94.220 0.680 62.917 0.963 79.493 0.956 90.405 0.926 90.588 0.769 85.500 0.272

WOE 80.491 0.000 62.560 0.757 81.377 0.126 87.973 0.141 90.147 1.000 77.500 0.035

HH-12 71.667 p-value 88.056 p-value 79.125 p-value 93.636 p-value 90.000 p-value 70.705 p-value

CHI 60.556 0.000 86.806 0.501 76.768 0.468 94.205 0.645 88.333 0.480 69.799 0.253

IG 61.481 0.000 87.639 0.835 77.778 0.635 93.182 0.716 88.889 0.582 70.235 0.565

GR 60.370 0.000 87.500 0.802 75.421 0.188 93.750 0.922 89.722 0.914 69.396 0.163

GINI 57.407 0.000 89.167 0.569 76.768 0.484 92.841 0.523 88.611 0.540 70.638 0.935

JM 61.111 0.000 85.833 0.268 76.768 0.468 93.523 0.925 93.056 0.141 69.497 0.101

MDL 60.741 0.000 88.056 1.000 79.798 0.797 93.523 0.929 88.333 0.486 69.497 0.187

MGINI 57.778 0.000 85.556 0.196 75.421 0.109 93.182 0.711 86.944 0.167 69.899 0.330

RLV 61.481 0.000 87.917 0.947 80.135 0.714 93.409 0.852 89.444 0.768 70.436 0.753

RLF 65.556 0.034 80.972 0.002 80.808 0.509 87.386 0.000 79.444 0.000 68.591 0.013

SGAIN 58.889 0.000 88.611 0.782 80.471 0.583 93.750 0.924 87.778 0.366 69.262 0.096

SGINI 58.889 0.000 87.222 0.685 76.431 0.420 93.750 0.928 89.444 0.807 69.866 0.334

WOE 72.037 0.897 87.083 0.663 80.135 0.718 91.591 0.160 89.444 0.828 69.765 0.222

wine yeastheart ionosphere spect votes

car contrac credit derma ecoli flags

Table A.6 Hyper-heuristic using Attribute Value Count – Average Accuracy Results for Single Data Sets 
using 12 heuristics 

 
 

Tables A.7 and A.8 show results for hyper-heuristics trained and tested on 

multiple data sets. The hyper-heuristics in A.7 have a set of 5 heuristics at 

their disposal while the ones in A.8 utilize a set of 12 heuristics. 
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car derma ecoli wine contrac credit ionosphere spect

HH-5 94.335 92.770 92.500 86.389 63.268 79.644 86.869 78.788

CHI 94.263 91.554 94.118 86.806 63.391 78.986 88.131 77.778

IG 94.465 92.905 93.088 85.972 62.346 78.195 86.616 76.094

GR 94.306 91.081 92.059 87.500 63.851 78.327 89.015 79.798

GINI 94.321 91.554 92.941 86.250 62.469 77.470 89.141 77.609

JM 84.653 91.014 91.544 88.472 63.053 78.788 85.859 78.788

MDL 94.350 90.676 91.471 86.389 63.667 78.327 87.753 77.273

MGINI 94.234 90.338 92.794 85.972 61.302 75.428 84.848 74.747

RLV 94.408 92.703 93.088 85.833 62.684 78.327 89.141 78.451

RLF 75.621 87.568 88.235 81.667 61.149 68.379 81.313 79.293

SGAIN 85.795 95.068 93.309 86.528 63.114 80.105 87.879 79.461

SGINI 94.191 91.284 93.162 86.528 62.991 78.920 87.374 77.441

WOE 81.358 89.797 89.559 83.056 63.360 79.183 87.121 80.135

yeast votes heart flags

HH-5 68.984 93.344 64.550 85.714

CHI 70.062 94.075 56.481 84.821

IG 70.973 93.831 56.878 83.750

GR 69.271 93.912 58.069 86.071

GINI 70.542 93.588 55.952 83.750

JM 69.799 93.101 60.450 84.107

MDL 70.350 93.019 58.333 84.464

MGINI 69.871 93.182 53.968 82.679

RLV 69.823 93.588 60.450 83.393

RLF 69.487 85.471 65.608 74.286

SGAIN 70.781 93.669 56.878 81.607

SGINI 70.062 93.506 56.481 83.750

WOE 69.343 92.532 71.561 81.071

ca, de, ec, wi co, cr, io, sp

ye, vo, he, fl

Table A.7 Hyper-heuristic using Attribute Value Count – Average Accuracy Results for Multiple Data 
Sets using 5 heuristics 
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car derma ecoli wine contrac credit ionosphere spect

HH-12 94.306 91.689 91.397 88.889 63.929 80.212 85.897 80.057

CHI 94.220 90.270 92.500 89.306 63.020 80.156 87.179 79.345

IG 94.668 90.743 91.765 88.611 62.604 79.543 87.393 79.630

GR 94.234 91.554 90.809 90.139 64.995 80.435 86.859 78.917

GINI 94.566 89.662 91.397 88.333 62.604 77.871 87.821 78.632

JM 84.335 89.932 89.853 91.806 63.695 78.763 86.004 80.627

MDL 94.220 88.986 90.441 89.306 63.384 78.986 87.286 80.199

MGINI 94.046 89.932 90.662 86.806 61.980 77.982 85.577 75.214

RLV 94.436 91.351 91.471 87.917 62.578 79.376 87.927 80.057

RLF 76.257 87.365 86.985 82.778 61.746 72.018 81.624 80.342

SGAIN 86.156 92.635 91.985 88.333 65.203 80.992 87.607 80.627

SGINI 94.205 89.797 90.735 89.861 63.565 80.602 86.752 78.917

WOE 80.621 88.446 88.015 85.694 63.436 80.212 86.218 81.766

yeast votes heart flags

HH-12 69.722 93.831 71.958 80.857

CHI 69.588 94.675 58.413 82.143

IG 70.297 94.416 57.143 82.571

GR 69.779 94.870 57.884 83.714

GINI 70.067 94.286 57.460 82.000

JM 69.760 94.675 59.365 82.571

MDL 69.012 94.091 58.624 83.143

MGINI 69.741 94.351 54.815 79.143

RLV 69.530 94.545 60.847 82.000

RLF 68.782 87.597 65.503 74.143

SGAIN 70.297 94.805 57.778 82.714

SGINI 69.377 94.740 57.143 82.714

WOE 68.667 93.182 68.677 78.714

ca, de, ec, wi co, cr, io, sp

ye, vo, he, fl

Table A.8 Hyper-heuristic using Attribute Value Count – Average Accuracy Results for Multiple Data 
Sets using 12 heuristics 
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A.3 Results for Hyper-heuristics that use Attribute 

Entropy 

 

The hyper-heuristics in this section represent the problem state using the 

entropy of the attributes left. Each column represents pairs of values where 

the first value represents the average accuracy percentage value while the 

second value is the resultant p-value when comparing the results of the 

method to the results of the hyper-heuristic on the same data set.  

 
 

HH-5 94.595 p-value 63.874 p-value 81.594 p-value 92.027 p-value 93.382 p-value 84.750 p-value

CHI 94.509 0.872 62.793 0.416 80.580 0.543 90.946 0.421 94.706 0.199 87.250 0.288

IG 94.653 0.913 62.432 0.336 77.391 0.011 92.297 0.849 93.088 0.800 87.250 0.276

GR 94.509 0.873 63.829 0.969 80.435 0.411 92.568 0.733 93.529 0.904 85.500 0.734

GINI 94.653 0.913 62.432 0.345 77.826 0.008 91.081 0.506 93.088 0.800 86.750 0.404

JM 84.191 0.000 63.243 0.564 81.232 0.806 91.351 0.704 92.206 0.459 86.250 0.508

MDL 94.509 0.873 63.829 0.972 80.870 0.593 90.000 0.174 92.941 0.743 85.750 0.622

MGINI 94.364 0.656 60.991 0.030 76.667 0.003 89.324 0.117 92.206 0.322 84.250 0.811

RLV 94.480 0.822 63.108 0.590 79.638 0.207 92.027 1.000 93.382 1.000 84.750 1.000

RLF 75.896 0.000 61.171 0.030 69.928 0.000 87.027 0.003 87.794 0.002 74.250 0.000

SGAIN 86.214 0.000 64.234 0.775 82.101 0.752 92.973 0.523 93.382 1.000 87.000 0.293

SGINI 94.480 0.830 63.559 0.806 79.855 0.309 90.541 0.342 93.235 0.895 88.000 0.189

WOE 80.289 0.000 63.468 0.691 81.522 0.959 90.135 0.223 90.294 0.092 82.250 0.270

HH-5 68.333 p-value 88.611 p-value 77.493 p-value 93.750 p-value 88.333 p-value 69.433 p-value

CHI 57.593 0.000 86.944 0.281 74.074 0.351 93.864 0.917 87.778 0.790 69.067 0.795

IG 58.519 0.000 88.333 0.883 75.783 0.631 92.273 0.140 88.611 0.887 69.555 0.926

GR 55.741 0.000 89.167 0.709 75.783 0.570 93.864 0.910 88.889 0.780 68.700 0.628

GINI 56.111 0.000 88.056 0.719 74.074 0.341 92.386 0.189 87.500 0.686 69.189 0.847

JM 63.889 0.117 87.083 0.250 78.917 0.679 92.386 0.183 87.500 0.674 68.517 0.524

MDL 57.407 0.000 88.750 0.926 76.638 0.789 92.614 0.320 88.889 0.799 69.738 0.830

MGINI 53.148 0.000 86.111 0.164 74.074 0.221 92.159 0.128 85.833 0.260 68.639 0.574

RLV 61.296 0.008 87.917 0.662 76.638 0.813 92.500 0.226 89.444 0.590 69.921 0.710

RLF 65.370 0.312 82.500 0.000 78.917 0.654 89.659 0.003 80.556 0.002 69.311 0.919

SGAIN 57.222 0.000 89.306 0.639 77.493 1.000 93.864 0.905 88.333 1.000 69.982 0.701

SGINI 56.667 0.000 87.500 0.506 74.359 0.387 93.068 0.534 89.167 0.641 69.616 0.896

WOE 74.074 0.051 88.472 0.928 78.917 0.670 93.182 0.563 88.333 1.000 69.189 0.857

car contrac credit derma ecoli flags

wine yeastheart ionosphere spect votes

Table A.9 Hyper-heuristic using Attribute Entropy – Average Accuracy Results for Single Data Sets 
using 5 heuristics 
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Tables A.9 and A.10 show results for hyper-heuristics trained and tested on 

single data sets. The hyper-heuristics in A.9 have a set of 5 heuristics at their 

disposal while the ones in A.10 utilize a set of 12 heuristics. 

 
 

HH-12 94.624 p-value 63.551 p-value 80.725 p-value 93.378 p-value 93.088 p-value 81.250 p-value

CHI 94.711 0.800 62.275 0.158 80.797 0.966 91.486 0.184 92.500 0.701 83.750 0.434

IG 94.942 0.334 62.162 0.122 77.971 0.108 92.568 0.519 93.088 1.000 85.750 0.079

GR 94.798 0.597 64.264 0.434 80.580 0.932 91.081 0.104 90.588 0.175 86.750 0.039

GINI 94.884 0.448 62.125 0.138 77.246 0.045 91.216 0.117 93.088 1.000 84.500 0.207

JM 85.838 0.000 63.026 0.537 80.217 0.749 90.000 0.009 90.882 0.141 82.250 0.694

MDL 94.769 0.663 62.012 0.143 78.478 0.202 90.811 0.040 91.618 0.381 83.750 0.382

MGINI 94.624 1.000 61.449 0.033 76.812 0.044 89.730 0.004 93.382 0.851 81.250 1.000

RLV 94.827 0.542 62.462 0.215 79.275 0.403 91.892 0.263 93.235 0.923 84.000 0.273

RLF 76.387 0.000 60.998 0.004 68.406 0.000 86.351 0.000 88.088 0.004 76.250 0.080

SGAIN 86.879 0.000 64.039 0.568 81.594 0.644 93.514 0.911 92.647 0.783 83.500 0.366

SGINI 94.740 0.740 62.462 0.192 80.942 0.903 91.081 0.074 92.353 0.638 84.750 0.222

WOE 79.422 0.000 63.176 0.668 80.797 0.968 88.514 0.004 90.294 0.095 74.750 0.016

HH-12 75.185 p-value 87.778 p-value 79.101 p-value 92.273 p-value 87.778 p-value 70.226 p-value

CHI 56.111 0.000 88.750 0.499 78.042 0.694 92.614 0.755 88.889 0.557 69.738 0.726

IG 57.963 0.000 86.528 0.466 79.630 0.849 93.409 0.372 88.333 0.794 70.287 0.961

GR 56.667 0.000 87.778 1.000 78.571 0.850 94.545 0.051 88.889 0.566 70.165 0.962

GINI 54.630 0.000 86.528 0.411 77.778 0.636 93.523 0.312 89.167 0.504 70.775 0.665

JM 58.519 0.000 86.250 0.317 79.630 0.864 92.727 0.715 88.889 0.656 71.019 0.538

MDL 55.926 0.000 87.917 0.930 75.926 0.220 93.864 0.195 88.611 0.688 70.470 0.837

MGINI 51.667 0.000 85.694 0.143 75.926 0.250 93.182 0.433 87.222 0.798 71.385 0.356

RLV 60.000 0.000 88.611 0.555 78.571 0.826 92.500 0.850 86.667 0.599 70.775 0.666

RLF 63.148 0.000 80.833 0.000 78.307 0.748 86.250 0.002 82.778 0.047 70.043 0.920

SGAIN 58.519 0.000 87.639 0.934 81.481 0.356 93.864 0.174 88.056 0.895 70.226 1.000

SGINI 55.370 0.000 87.222 0.719 77.249 0.516 94.091 0.123 89.167 0.504 71.141 0.478

WOE 71.296 0.189 85.833 0.237 81.481 0.392 92.159 0.924 86.111 0.477 69.372 0.521

car contrac credit derma ecoli flags

wine yeastheart ionosphere spect votes

Table A.10 Hyper-heuristic using Attribute Entropy – Average Accuracy Results for Single Data Sets 
using 12 heuristics 

 
 

Tables A.11 and A.12 show results for hyper-heuristics trained and tested on 

multiple data sets. The hyper-heuristics in A.11 have a set of 5 heuristics at 

their disposal while the ones in A.12 utilize a set of 12 heuristics. 
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car derma ecoli wine contrac credit ionosphere spect

HH-5 94.509 92.243 91.441 87.667 63.919 80.087 86.722 74.556

CHI 94.358 90.703 92.500 88.500 63.027 79.594 86.611 72.481

IG 94.601 91.757 91.735 87.778 62.959 78.333 87.556 73.593

GR 94.445 91.622 90.559 88.778 63.959 79.522 87.389 74.556

GINI 94.462 90.757 91.618 87.444 63.101 77.594 87.806 72.481

JM 85.029 90.189 91.206 89.278 63.628 80.188 85.194 73.667

MDL 94.358 89.459 90.588 88.667 62.872 78.797 87.528 73.926

MGINI 94.191 89.703 91.147 87.944 61.486 76.913 85.500 72.111

RLV 94.457 91.703 91.676 88.500 63.209 79.043 87.583 73.333

RLF 76.653 86.568 87.294 81.444 61.635 69.594 81.139 75.704

SGAIN 86.306 93.162 92.382 87.778 64.547 81.768 87.139 74.370

SGINI 94.231 90.324 91.206 88.833 63.655 80.145 87.417 72.296

WOE 80.607 89.243 90.118 86.278 63.446 80.928 85.806 75.407

yeast votes heart flags

HH-5 69.812 93.750 66.963 83.750

CHI 69.315 94.636 58.333 83.700

IG 69.530 93.773 59.037 84.950

GR 69.134 94.000 59.148 86.100

GINI 69.477 93.727 56.926 83.900

JM 69.275 93.864 62.593 82.650

MDL 69.403 93.682 59.741 83.850

MGINI 69.101 93.841 55.704 82.200

RLV 69.134 93.864 62.481 83.000

RLF 69.128 87.364 65.370 73.650

SGAIN 69.752 94.182 58.111 82.950

SGINI 69.154 94.023 57.593 84.500

WOE 68.752 92.864 69.926 78.350

ca, de, ec, wi co, cr, io, sp

ye, vo, he, fl

Table A.11 Hyper-heuristic using Attribute Entropy – Average Accuracy Results for Multiple Data Sets 
using 5 heuristics 
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car derma ecoli wine contrac credit ionosphere spect

HH 94.509 91.730 92.029 87.000 64.385 81.333 87.833 74.741

CHI 94.468 91.649 93.000 87.722 63.000 80.725 87.361 72.222

IG 94.659 92.486 92.324 88.278 62.959 78.638 88.250 72.667

GR 94.514 91.432 91.118 88.278 64.176 81.493 87.750 73.630

GINI 94.595 91.027 92.353 87.667 63.041 77.768 87.056 72.074

JM 84.988 90.865 91.765 89.222 64.304 81.043 85.583 73.296

MDL 94.497 90.243 91.294 87.333 62.709 80.203 88.139 72.852

MGINI 94.370 89.568 91.412 86.389 61.723 77.072 85.556 71.296

RLV 94.642 92.189 92.441 87.278 63.182 79.681 88.639 72.889

RLF 76.538 87.730 88.647 81.167 62.169 70.087 81.250 74.074

SGAIN 86.139 93.919 92.706 87.444 64.743 81.812 87.806 74.481

SGINI 94.428 91.162 91.676 88.222 63.608 80.493 87.944 72.222

WOE 80.942 89.459 90.676 85.833 64.277 81.696 85.250 74.370

yeast votes heart flags

HH 69.678 93.750 70.185 83.500

CHI 68.852 94.386 57.667 85.400

IG 69.416 94.227 58.148 85.200

GR 68.423 94.500 57.852 86.150

GINI 69.161 94.273 56.333 84.200

JM 68.966 94.432 59.704 84.050

MDL 69.134 93.955 58.778 85.500

MGINI 68.940 94.273 55.259 84.400

RLV 69.094 94.250 59.630 83.600

RLF 68.711 87.773 64.333 75.000

SGAIN 69.456 94.705 58.185 85.000

SGINI 68.960 94.841 56.074 86.100

WOE 68.779 93.295 69.852 80.050

ca, de, ec, wi co, cr, io, sp

ye, vo, he, fl

Table A.12 Hyper-heuristic using Attribute Entropy – Average Accuracy Results for Multiple Data Sets 
using 12 heuristics 
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A.4 Results for Hyper-heuristics that use Maximum 

Conditional Entropy 

 

The hyper-heuristics in this section represent the problem state using the 

maximum conditional entropy of the class attribute. Each column represents 

pairs of values where the first value represents the average accuracy 

percentage value while the second value is the resultant p-value when 

comparing the results of the method to the results of the hyper-heuristic on 

the same data set.  

 
 

HH-5 94.422 p-value 63.142 p-value 82.609 p-value 92.027 p-value 93.382 p-value 83.750 p-value

CHI 94.277 0.709 62.264 0.343 81.957 0.623 90.541 0.271 93.529 0.925 86.500 0.220

IG 94.451 0.941 61.892 0.266 78.116 0.003 91.081 0.539 93.971 0.705 86.750 0.226

GR 94.162 0.531 63.108 0.972 81.522 0.448 91.892 0.917 93.529 0.924 87.750 0.114

GINI 94.451 0.941 62.027 0.324 76.739 0.001 90.676 0.383 93.676 0.848 86.000 0.311

JM 85.202 0.000 62.635 0.665 82.174 0.721 90.135 0.192 94.118 0.614 84.000 0.916

MDL 94.220 0.618 62.128 0.321 82.174 0.734 89.324 0.032 92.647 0.612 87.000 0.107

MGINI 94.335 0.821 61.757 0.204 76.594 0.000 88.378 0.010 93.088 0.850 84.500 0.756

RLV 94.422 1.000 62.770 0.710 78.986 0.014 91.486 0.726 93.676 0.848 87.000 0.107

RLF 75.491 0.000 62.264 0.372 70.652 0.000 86.757 0.001 89.412 0.015 74.250 0.001

SGAIN 86.329 0.000 63.446 0.769 83.696 0.446 93.378 0.336 94.265 0.606 87.250 0.103

SGINI 94.191 0.574 63.750 0.550 79.275 0.025 90.000 0.199 93.088 0.840 89.250 0.012

WOE 78.092 0.000 62.770 0.738 81.087 0.233 89.459 0.078 91.029 0.190 78.750 0.076

HH-5 64.259 p-value 86.528 p-value 81.852 p-value 95.114 p-value 88.056 p-value 70.302 p-value

CHI 57.778 0.021 88.194 0.340 77.407 0.011 95.114 1.000 89.722 0.481 69.463 0.394

IG 56.481 0.004 85.417 0.537 78.519 0.098 94.659 0.589 89.167 0.648 70.067 0.815

GR 57.222 0.014 86.944 0.793 79.630 0.247 95.568 0.567 91.389 0.139 69.262 0.314

GINI 55.926 0.002 86.667 0.932 77.222 0.007 95.114 1.000 90.278 0.306 69.799 0.612

JM 59.444 0.061 85.417 0.474 78.889 0.082 95.000 0.899 90.556 0.253 69.295 0.196

MDL 56.296 0.012 86.667 0.935 77.593 0.035 95.114 1.000 90.556 0.253 69.362 0.327

MGINI 54.444 0.001 83.611 0.161 75.741 0.001 95.455 0.700 88.611 0.817 69.497 0.447

RLV 59.815 0.158 87.500 0.583 77.222 0.015 94.659 0.637 89.167 0.604 69.027 0.220

RLF 64.259 1.000 80.278 0.003 80.185 0.346 87.727 0.000 80.833 0.004 68.456 0.036

SGAIN 55.556 0.001 86.250 0.864 79.815 0.302 95.568 0.567 88.333 0.876 70.570 0.775

SGINI 54.259 0.001 85.556 0.526 77.778 0.020 95.114 1.000 90.000 0.433 70.101 0.833

WOE 69.259 0.086 85.833 0.679 80.556 0.391 94.318 0.348 85.000 0.206 68.289 0.017

credit derma ecoli flags

heart ionosphere spect votes wine yeast

car contrac

Table A.13 Hyper-heuristic using Maximum Conditional Entropy – Average Accuracy Results for Single 
Data Sets using 5 heuristics  
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Tables A.13 and A.14 show results for hyper-heuristics trained and tested on 

single data sets. The hyper-heuristics in A.13 have a set of 5 heuristics at their 

disposal while the ones in A.14 utilize a set of 12 heuristics. 

 
 

HH-12 94.711 p-value 63.716 p-value 81.232 p-value 92.703 p-value 92.206 p-value 80.250 p-value

CHI 94.162 0.319 62.466 0.172 80.942 0.847 91.081 0.195 94.265 0.090 82.750 0.398

IG 94.451 0.639 62.736 0.336 79.203 0.183 92.162 0.690 92.500 0.808 81.250 0.739

GR 94.191 0.344 64.257 0.556 80.000 0.425 89.595 0.024 92.500 0.816 83.000 0.353

GINI 94.422 0.607 63.209 0.579 78.478 0.058 91.351 0.298 92.353 0.906 79.250 0.752

JM 84.653 0.000 63.311 0.687 78.841 0.183 90.676 0.096 90.000 0.131 82.500 0.439

MDL 94.220 0.371 63.209 0.579 78.986 0.165 89.459 0.015 91.324 0.540 84.500 0.177

MGINI 94.046 0.243 61.892 0.081 77.174 0.010 89.865 0.026 92.794 0.643 78.750 0.617

RLV 94.566 0.813 62.196 0.120 79.783 0.324 92.027 0.573 92.353 0.911 81.000 0.803

RLF 75.607 0.000 61.216 0.019 70.580 0.000 87.297 0.004 86.912 0.002 77.250 0.284

SGAIN 86.185 0.000 65.000 0.156 81.304 0.960 94.730 0.068 92.206 1.000 83.750 0.226

SGINI 94.220 0.375 63.615 0.915 79.928 0.383 90.946 0.131 92.941 0.550 83.750 0.222

WOE 79.971 0.000 63.649 0.951 83.261 0.200 88.649 0.002 89.412 0.116 78.750 0.612

HH-12 72.222 p-value 84.167 p-value 80.556 p-value 92.841 p-value 86.667 p-value 69.396 p-value

CHI 56.481 0.000 87.083 0.143 78.519 0.246 94.318 0.074 87.222 0.773 70.403 0.354

IG 59.444 0.000 87.639 0.055 78.704 0.299 92.159 0.445 86.667 1.000 70.000 0.566

GR 58.148 0.000 87.917 0.042 77.963 0.147 93.409 0.541 88.611 0.219 70.067 0.523

GINI 57.037 0.000 86.389 0.177 78.333 0.211 92.045 0.374 85.833 0.668 70.201 0.447

JM 62.963 0.008 86.528 0.196 80.000 0.726 92.500 0.718 86.944 0.886 69.732 0.735

MDL 58.333 0.000 87.778 0.067 78.704 0.275 93.750 0.352 87.778 0.495 69.832 0.710

MGINI 55.000 0.000 83.750 0.813 75.185 0.003 92.386 0.609 87.500 0.622 69.832 0.684

RLV 60.741 0.001 86.389 0.225 79.259 0.401 92.841 1.000 86.667 1.000 69.597 0.856

RLF 67.222 0.162 80.972 0.069 79.630 0.576 86.477 0.000 83.056 0.128 68.960 0.712

SGAIN 55.926 0.000 87.778 0.054 81.852 0.398 93.523 0.466 88.333 0.326 70.772 0.195

SGINI 54.815 0.000 85.417 0.515 77.778 0.106 92.614 0.800 88.611 0.219 70.604 0.275

WOE 71.667 0.881 86.389 0.242 78.704 0.222 91.932 0.369 82.778 0.068 68.658 0.533

wine yeast

car contrac

heart ionosphere spect votes

credit derma ecoli flags

Table A.14 Hyper-heuristic using Maximum Conditional Entropy – Average Accuracy Results for Single Data 
Sets using 12 heuristics  

  

 

Tables A.15 and A.16 show results for hyper-heuristics trained and tested on 

multiple data sets. The hyper-heuristics in A.15 have a set of 5 heuristics at 

their disposal while the ones in A.16 utilize a set of 12 heuristics. 
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car derma ecoli wine contrac credit ionosphere spect

HH-5 94.277 90.946 93.088 88.056 64.324 80.507 84.722 77.778

CHI 94.509 90.000 95.147 87.778 63.243 82.101 87.083 75.741

IG 94.711 92.297 94.118 88.611 62.770 79.203 86.667 77.222

GR 94.538 89.324 93.529 88.889 63.649 81.087 85.694 76.296

GINI 94.653 89.595 93.971 87.500 62.973 79.348 86.944 75.741

JM 84.942 88.919 93.529 89.167 64.493 80.217 85.556 77.593

MDL 94.566 88.784 92.059 88.611 63.378 80.870 86.250 76.481

MGINI 94.364 88.784 93.382 86.389 62.061 77.536 86.528 74.444

RLV 94.711 91.757 94.412 88.333 62.872 79.203 85.694 76.852

RLF 76.705 87.297 88.088 82.222 62.466 72.464 80.139 77.778

SGAIN 86.214 93.243 94.853 87.500 63.818 81.739 85.278 77.963

SGINI 94.538 89.730 93.824 88.056 63.142 81.377 86.389 75.926

WOE 80.925 87.027 93.824 85.556 64.493 81.159 85.556 76.481

yeast votes heart flags

HH-5 69.597 93.409 67.593 82.000

CHI 68.926 93.864 60.000 83.000

IG 68.523 93.750 56.296 83.500

GR 68.557 94.205 58.333 85.000

GINI 68.221 93.636 57.963 81.250

JM 68.725 93.295 62.037 82.750

MDL 68.490 93.750 60.370 85.500

MGINI 67.953 93.750 55.185 81.750

RLV 67.315 94.091 61.667 81.000

RLF 68.792 86.250 62.037 74.250

SGAIN 69.430 93.750 58.704 82.750

SGINI 68.658 93.750 59.815 86.250

WOE 68.356 93.750 69.815 75.000

ca, de, ec, wi co, cr, io, sp

ye, vo, he, fl

Table A.15 Hyper-heuristic using Maximum Conditional Entropy – Average Accuracy Results for Multiple 
Data Sets using 5 heuristics 
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car derma ecoli wine contrac credit ionosphere spect

HH-12 94.526 90.757 92.235 88.222 63.439 80.855 86.833 78.778

CHI 94.509 89.892 93.176 88.167 61.824 80.870 86.556 76.741

IG 94.757 91.243 92.941 88.444 62.034 78.580 87.306 76.630

GR 94.538 90.514 91.529 88.222 63.628 81.188 87.194 76.333

GINI 94.682 90.027 92.765 88.000 61.980 77.754 86.972 76.852

JM 84.665 89.622 91.529 90.167 63.486 80.420 85.583 77.778

MDL 94.526 88.649 91.618 87.611 62.358 80.362 87.972 76.778

MGINI 94.480 89.297 92.147 87.167 60.872 76.594 85.639 74.111

RLV 94.584 90.676 92.882 87.500 62.324 79.203 87.333 76.519

RLF 76.272 86.703 88.147 80.389 61.162 69.986 80.250 78.333

SGAIN 86.058 92.973 93.412 88.333 63.838 81.493 87.472 78.444

SGINI 94.491 89.892 92.118 88.889 62.696 80.130 87.417 76.815

WOE 80.624 88.730 90.882 86.667 63.405 81.101 85.889 78.519

yeast votes heart flags

HH-12 69.523 93.614 70.074 80.300

CHI 69.416 94.614 58.778 82.750

IG 69.812 94.341 58.259 82.450

GR 68.886 94.795 57.926 83.600

GINI 69.530 94.477 57.815 81.550

JM 69.275 93.773 60.630 81.800

MDL 69.591 94.000 59.259 82.400

MGINI 69.745 94.159 56.074 80.700

RLV 69.523 94.182 60.148 81.200

RLF 68.678 86.591 64.000 75.150

SGAIN 69.664 94.545 57.630 82.500

SGINI 69.497 94.932 57.148 83.850

WOE 69.168 93.114 71.593 78.400

ca, de, ec, wi co, cr, io, sp

ye, vo, he, fl

Table A.16 Hyper-heuristic using Maximum Conditional Entropy – Average Accuracy Results for Multiple 
Data Sets using 12 heuristics 
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