349 research outputs found

    Evolution of swarming behavior is shaped by how predators attack

    Full text link
    Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of ``domains of danger.'' Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.Comment: 25 pages, 11 figures, 5 tables, including 2 Supplementary Figures. Version to appear in "Artificial Life

    Herding predators using swarm intelligence

    Get PDF
    Swarm intelligence, a nature-inspired concept that includes multiplicity, stochasticity, randomness, and messiness is emergent in most real-life problem-solving. The concept of swarming can be integrated with herding predators in an ecological system. This paper presents the development of stabilizing velocity-based controllers for a Lagrangian swarm of n∈N individuals, which are supposed to capture a moving target (intruder). The controllers are developed from a Lyapunov function, total potentials, designed via Lyapunov-based control scheme (LbCS) falling under the classical approach of artificial potential fields method. The interplay of the three central pillars of LbCS, which are safety, shortness, and smoothest course for motion planning, results in cost and time effectiveness and efficiency of velocity controllers. Computer simulations illustrate the effectiveness of control laws

    A nature-inspired multi-objective optimisation strategy based on a new reduced space searching algorithm for the design of alloy steels

    Get PDF
    In this paper, a salient search and optimisation algorithm based on a new reduced space searching strategy, is presented. This algorithm originates from an idea which relates to a simple experience when humans search for an optimal solution to a ‘real-life’ problem, i.e. when humans search for a candidate solution given a certain objective, a large area tends to be scanned first; should one succeed in finding clues in relation to the predefined objective, then the search space is greatly reduced for a more detailed search. Furthermore, this new algorithm is extended to the multi-objective optimisation case. Simulation results of optimising some challenging benchmark problems suggest that both the proposed single objective and multi-objective optimisation algorithms outperform some of the other well-known Evolutionary Algorithms (EAs). The proposed algorithms are further applied successfully to the optimal design problem of alloy steels, which aims at determining the optimal heat treatment regime and the required weight percentages for chemical composites to obtain the desired mechanical properties of steel hence minimising production costs and achieving the overarching aim of ‘right-first-time production’ of metals

    A Nature inspired guidance system for unmanned autonomous vehicles employed in a search role.

    Get PDF
    Since the very earliest days of the human race, people have been studying animal behaviours. In those early times, being able to predict animal behaviour gave hunters the advantages required for success. Then, as societies began to develop this gave way, to an extent, to agriculture and early studies, much of it trial and error, enabled farmers to successfully breed and raise livestock to feed an ever growing population. Following the advent of scientific endeavour, more rigorous academic research has taken human understanding of the natural world to much greater depth. In recent years, some of this understanding has been applied to the field of computing, creating the more specialised field of natural computing. In this arena, a considerable amount of research has been undertaken to exploit the analogy between, say, searching a given problem space for an optimal solution and the natural process of foraging for food. Such analogies have led to useful solutions in areas such as numerical optimisation and communication network management, prominent examples being ant colony systems and particle swarm optimisation; however, these solutions often rely on well-defined fitness landscapes that may not always be available. One practical application of natural computing may be to create behaviours for the control of autonomous vehicles that would utilise the findings of ethological research, identifying the natural world behaviours that have evolved over millennia to surmount many of the problems that autonomous vehicles find difficult; for example, long range underwater navigation or obstacle avoidance in fast moving environments. This thesis provides an exploratory investigation into the use of natural search strategies for improving the performance of autonomous vehicles operating in a search role. It begins with a survey of related work, including recent developments in autonomous vehicles and a ground breaking study of behaviours observed within the natural world that highlights general cooperative group behaviours, search strategies and communication methods that might be useful within a wider computing context beyond optimisation, where the information may be sparse but new paradigms could be developed that capitalise on research into biological systems that have developed over millennia within the natural world. Following this, using a 2-dimensional model, novel research is reported that explores whether autonomous vehicle search can be enhanced by applying natural search behaviours for a variety of search targets. Having identified useful search behaviours for detecting targets, it then considers scenarios where detection is lost and whether natural strategies for re-detection can improve overall systemic performance in search applications. Analysis of empirical results indicate that search strategies exploiting behaviours found in nature can improve performance over random search and commonly applied systematic searches, such as grids and spirals, across a variety of relative target speeds, from static targets to twice the speed of the searching vehicles, and against various target movement types such as deterministic movement, random walks and other nature inspired movement. It was found that strategies were most successful under similar target-vehicle relationships as were identified in nature. Experiments with target occlusion also reveal that natural reacquisition strategies could improve the probability oftarget redetection

    Analysis of the Niching Particle Swarm Optimization Algorithm

    Get PDF
    Multimodal optimization (MMO) techniques have been researched and developed over the years to track multiple global optima concurrently. MMO algorithms extend traditional unimodal optimization algorithms by using search strategies built around forming niches for multiple possible solutions. NichePSO was one of the first approaches to utilize particle swarm optimization (PSO) for MMO problems, using several small subswarms of agents working concurrently to form niches within the search space. Despite its promising performance NichePSO does suffer from some problems, and very little research has been done to study and improve upon the algorithm over the years. A main goal of this thesis is to analyze the NichePSO algorithm, gaining insight into the strengths and weaknesses of the algorithm. Empirical analyses were performed to study the NichePSO’s ability to maintain niches within complex problem domains, as well as methods for improving the overall performance and effectiveness of the algorithm. Two variants of the NichePSO algorithm are proposed, and experimental results show that they both significantly improve the performance of the NichePSO algorithm across several benchmark functions

    Uncertainty evaluation of reservoir simulation models using particle swarms and hierarchical clustering

    Get PDF
    History matching production data in finite difference reservoir simulation models has been and always will be a challenge for the industry. The principal hurdles that need to be overcome are finding a match in the first place and more importantly a set of matches that can capture the uncertainty range of the simulation model and to do this in as short a time as possible since the bottleneck in this process is the length of time taken to run the model. This study looks at the implementation of Particle Swarm Optimisation (PSO) in history matching finite difference simulation models. Particle Swarms are a class of evolutionary algorithms that have shown much promise over the last decade. This method draws parallels from the social interaction of swarms of bees, flocks of birds and shoals of fish. Essentially a swarm of agents are allowed to search the solution hyperspace keeping in memory each individual’s historical best position and iteratively improving the optimisation by the emergent interaction of the swarm. An intrinsic feature of PSO is its local search capability. A sequential niching variation of the PSO has been developed viz. Flexi-PSO that enhances the exploration and exploitation of the hyperspace and is capable of finding multiple minima. This new variation has been applied to history matching synthetic reservoir simulation models to find multiple distinct history 3 matches to try to capture the uncertainty range. Hierarchical clustering is then used to post-process the history match runs to reduce the size of the ensemble carried forward for prediction. The success of the uncertainty modelling exercise is then assessed by checking whether the production profile forecasts generated by the ensemble covers the truth case

    Individual-based artificial ecosystems for design and optimization

    Get PDF
    Individual-based modeling has gained popularity over the last decade, mainly due to the paradigm\u27s proven ability to address a variety of problems seen in many disciplines, including modeling complex systems from bottom-up, providing relationship between component level and system level parameters, and discovering the emergence of system-level behaviors from simple component level interactions. Availability of computational power to run simulation models with thousands to millions of agents is another driving force in the widespread adoption of individual-based modeling. This thesis proposes an individual-based modeling approach for solving engineering design and optimization problems using artificial ecosystems --Abstract, page iii

    Topological models of swarming

    Get PDF
    We study the collective behaviour of animal aggregations, swarming, using theoretical models of collective motion. Focusing on bird flocking, we aim to reproduce two main aspects of real world aggregations: cohesion and coalignment. Following the observation that interactions between birds in the flock does not have a characteristic length-scale, we concentrate on topological, metric-free models of collective motion. We propose and analyse three novel models of swarming: two based on topological interactions between particles, which define interacting neighbours based on Voronoi tessellation of the group of particles, and one which uses the visual field of the agent. We explore the problem of cohesion, bounding of topological flocks in free space, by introducing the mechanism of neighbour anticipation. This relies on going towards the inferred future position of an individuals neighbours and results in providing the bounding forces for the group. We also address the issue of unrealistic density distributions in existing metric-free models by introducing a homogeneous, tunable motional bias throughout the swarm. The proposed model produces swarms with density distributions corresponding to empirical data from flocks of Starlings. Furthermore, we show that for a group with a visual information input and individuals moving so as to seek marginal opacity that alignment and group cohesion can be induced without the need for explicit aligning interaction rules between group members. For each of the proposed models a comprehensive analysis of characteristics and behaviour under different parameter sets is performed

    A nature inspired guidance system for unmanned autonomous vehicles employed in a search role

    Get PDF
    Since the very earliest days of the human race, people have been studying animal behaviours. In those early times, being able to predict animal behaviour gave hunters the advantages required for success. Then, as societies began to develop this gave way, to an extent, to agriculture and early studies, much of it trial and error, enabled farmers to successfully breed and raise livestock to feed an ever growing population. Following the advent of scientific endeavour, more rigorous academic research has taken human understanding of the natural world to much greater depth. In recent years, some of this understanding has been applied to the field of computing, creating the more specialised field of natural computing. In this arena, a considerable amount of research has been undertaken to exploit the analogy between, say, searching a given problem space for an optimal solution and the natural process of foraging for food. Such analogies have led to useful solutions in areas such as numerical optimisation and communication network management, prominent examples being ant colony systems and particle swarm optimisation; however, these solutions often rely on well-defined fitness landscapes that may not always be available. One practical application of natural computing may be to create behaviours for the control of autonomous vehicles that would utilise the findings of ethological research, identifying the natural world behaviours that have evolved over millennia to surmount many of the problems that autonomous vehicles find difficult; for example, long range underwater navigation or obstacle avoidance in fast moving environments. This thesis provides an exploratory investigation into the use of natural search strategies for improving the performance of autonomous vehicles operating in a search role. It begins with a survey of related work, including recent developments in autonomous vehicles and a ground breaking study of behaviours observed within the natural world that highlights general cooperative group behaviours, search strategies and communication methods that might be useful within a wider computing context beyond optimisation, where the information may be sparse but new paradigms could be developed that capitalise on research into biological systems that have developed over millennia within the natural world. Following this, using a 2-dimensional model, novel research is reported that explores whether autonomous vehicle search can be enhanced by applying natural search behaviours for a variety of search targets. Having identified useful search behaviours for detecting targets, it then considers scenarios where detection is lost and whether natural strategies for re-detection can improve overall systemic performance in search applications. Analysis of empirical results indicate that search strategies exploiting behaviours found in nature can improve performance over random search and commonly applied systematic searches, such as grids and spirals, across a variety of relative target speeds, from static targets to twice the speed of the searching vehicles, and against various target movement types such as deterministic movement, random walks and other nature inspired movement. It was found that strategies were most successful under similar target-vehicle relationships as were identified in nature. Experiments with target occlusion also reveal that natural reacquisition strategies could improve the probability oftarget redetection.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore