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Abstract 

 

History matching production data in finite difference reservoir simulation 

models has been and always will be a challenge for the industry. The 

principal hurdles that need to be overcome are finding a match in the first 

place and more importantly a set of matches that can capture the uncertainty 

range of the simulation model and to do this in as short a time as possible 

since the bottleneck in this process is the length of time taken to run the 

model. This study looks at the implementation of Particle Swarm 

Optimisation (PSO) in history matching finite difference simulation models.  

 

 Particle Swarms are a class of evolutionary algorithms that have shown 

much promise over the last decade. This method draws parallels from the 

social interaction of swarms of bees, flocks of birds and shoals of fish. 

Essentially a swarm of agents are allowed to search the solution hyperspace 

keeping in memory each individual’s historical best position and iteratively 

improving the optimisation by the emergent interaction of the swarm. An 

intrinsic feature of PSO is its local search capability. A sequential niching 

variation of the PSO has been developed viz. Flexi-PSO that enhances the 

exploration and exploitation of the hyperspace and is capable of finding 

multiple minima.  This new variation has been applied to history matching 

synthetic reservoir simulation models to find multiple distinct history 
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matches to try to capture the uncertainty range. Hierarchical clustering is 

then used to post-process the history match runs to reduce the size of the 

ensemble carried forward for prediction. 

 

The success of the uncertainty modelling exercise is then assessed by 

checking whether the production profile forecasts generated by the ensemble 

covers the truth case. 
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Chapter 1 

Introduction 

 

Although much attention is focussed on new oil and gas developments, more 

than 70% of the worlds production comes from fields that are more than 30 

years old. Maturing reservoirs come with a unique set of management 

challenges, from increased water cuts and gas-oil ratios through to aging 

technologies and health and safety implications. An added challenge to these 

reservoirs is that they often require more detailed forecasts of production 

behaviour, even though production volumes and hence revenues are lower. 

With the importance of understanding and forecasting the production 

increasing as well as the oil and gas becoming more difficult to extract, 

production costs also rise. 

 

This leads to searching for an effective tool that can predict production 

behaviour. Reservoir simulation is one of the principal tools employed in the 

oil and gas industry to develop oil and gas bearing formations. This tool is 

used to evaluate different field development/management options against one 

another and thus maximise the economic value of the project. For the 

simulation model to be of any value, it needs to be representative of the 

subsurface structure, rock and fluid properties. For fields that have already 
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been on production, the engineer can use the historical production data in an 

inverse manner to calibrate uncertain geological/fluid-flow parameters in the 

simulation model. This process of adjusting the reservoir model until it 

closely reproduces its past behaviour is typically referred to as “history 

matching”, and is probably the number one topic of interest within the 

reservoir simulation community. History matching also plays a key role in 

developing an integrated approach to reservoir management because it 

allows the static geological model to be rationalised with production data. 

 

Initially the objective of the history match study needs to be defined. The 

objective is mainly driven by the underlying business decision process in 

reservoir management e.g. reservoir planning, infill drilling campaigns, 

decisions on EOR incremental reserves, platform requirements, investigation 

of the impact of subsurface uncertainties on the reserves etc.  

 

Multiple solutions exist to the history matching problem i.e. different history 

matched simulation models may not differ in the quality of their match 

criteria, but they may produce different results in the forecasting stage. This 

model diversity provides a basis for the quantification of uncertainties related 

to production forecasts and the estimation of the remaining reserves of a 

producing field.  
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Quite often the history matching process is undertaken deterministically 

where the engineer defines a set of reservoir / well parameters and some 

sensible ranges through which these parameters can be varied. He then goes 

through a tedious trial and error process varying these parameters, often one 

at a time to gain a sensitivity of the effect of that parameter on the system, 

analyse the results on completion of each run and then try some other 

combination of parameters that he intuitively feels would result in a lower 

error between the simulated and the historical data. This can often take 

many months, the outcome of which is not certain to yield a decent match at 

all particularly if the field is large and there are complex mechanisms at play 

within the reservoir.  

 

In addition there is no guarantee that the match would be able to predict 

future reservoir performance either, which is why an ensemble of matches 

would give a better idea of what the prediction range may be. The 

shortcoming of the deterministic method is that the human brain can hardly 

visualise in more than four dimensions and most field history matches have 

many parameters that can be varied. With such a large number of unknown 

parameters to consider, traditional manual history matching remains very 

much a work in progress. 
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There are technological developments in both history matching and reservoir 

simulation that are helping to address today’s reservoir management 

challenges. The rise of computer assisted history matching is an example of 

this. Computer assisted history matching allows the engineer to focus on 

developing an understanding of reservoir mechanisms and their relative 

impact on production behaviour. Through such tools, match modifiers are 

updated intelligently to try to increasingly improve the history match. It also 

makes it possible to consider more information when developing a history 

match or sensitising an appraisal. With manual history matching it can be 

impossible to evaluate all aspects of the reservoir description that could have 

an effect on the reservoir behaviour.  

 

With computer assisted history matching however, large numbers of 

modifiers can be evaluated in a full physics simulator and in fewer runs to 

provide multiple matches of the reservoir to the production history. The 

results are then used with the simulator to predict how a field will perform 

and give measures of the uncertainty of these predictions. This in turn leads 

to valuable information on the economics of the reservoir. 

  

This thesis addresses the area of assisted history matching where an 

algorithm is devised to search the hyperspace, and be quicker than a human 

at finding combinations of the uncertain parameters that would match the 
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historical production data. We begin with a brief journey through the Society 

of Petroleum Engineers (SPE) literature to put into perspective the various 

approaches that have been used over the years and where the proposed 

methodology fits in. It is also to delineate the key advantages and 

disadvantages of the various methodologies. The Particle Swarm 

Optimisation method and its performance on benchmark mathematical 

functions, training a feed-forward neural network model and integer 

problems will be discussed. Then the Flexi-PSO will be tested on the Imperial 

College Fault Model that is widely regarded as a benchmark test case for 

history matching due to its difficult fitness landscape. The Flexi-PSO is then 

used to history match a synthetic version of a real North Sea gasfield model. 

 

1.1. Introduction to Numerical Reservoir Simulation 

 

Numerical reservoir simulation is the mathematical replication of the real 

physical processes of fluid flow that occur within oil and gas reservoirs 

(Ertekin et al, 2001). It is a model that represents the reservoir by a set of 

mathematical equations derived from first principles of flow through porous 

media. These equations can be solved analytically or numerically. As is so 

often found in engineering systems, the model can require assumptions to 

simplify the problem statement. If however, there are too many simplifying 
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assumptions or the simplifying assumptions deviate too far from the true 

physics of the system, then the simulation can lead to unreliable results. 

 

A reservoir simulation model is typically composed of a representation of the 

reservoir as well as a set of equations describing fluid flow through the 

reservoir. The reservoir representation begins with the geophysics discipline 

where the boundaries of the reservoir are demarcated. This is followed by the 

geology and petrophysics disciplines that determine the content of this 

demarcated volume. This volume is then populated by a geological model 

which could be a river channels, turbidite systems, etc. This geological model 

then uses information from wells which have been drilled as well as seismic 

data from the geologist to populate a set of rock parameters within this 

volume.  

 

This geological model is discretised into a grid of blocks or cells as they are 

commonly known. An example of this is shown in Figure 1.1. This figuire 

shows a reservoir grid with wells penetrating the gridblocks at locations 

where they are in reality. Each gridblock has an associated set of reservoir 

rock properties that represents the volume that the gridblock is associated 

with. These properties can change with time as the reservoir undergoes 

production and injection, however the model is initialised with properties as 

found when initially drilled. 
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Figure 1.1.  Example of a reservoir simulation grid 

Typically the following data is required for any simulation model (Koederitz, 

2005) :- 

 

A. Gridblock location dependent parameters 

• Location of each gridblock node in space viz. x, y, z  co-ordinate 

• Net to Gross (that amount of rock volume which can allow fluid 

flow) 

• Effective Porosity (ϕ) – the ratio of connected void space to bulk 

volume of the rock 

• Absolute permeability in each direction viz. kx, ky and kz. This 

determines the speed of fluid flow through the reservoir rock. 
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• Pressure (P) expected over the gridblock volume 

• Phase saturations typically oil, water and gas (So, Sw & Sg). 

However if enhanced oil processes are being undertaken, 

additional liquid and/or solid phases could be present) 

 

B. Saturation dependent properties 

• Capillary pressue (Pc) is the difference in pressure across the 

interface of two immiscible fluid phases. This is used to initialise 

the saturation profile of the various phases in the reservoir 

simulator 

• Relative permeability (kro, krw & krg) is the measurement of the 

ability of two or more fluid phases to pass through a formation 

matrix. When more than phase is present in the reservoir rock, 

each phase tends to inhibit the flow of the other. Relative 

permeability (kr) is multiplied by absolute permeability (k) to 

give an effective permeability (ke) for each phase flow  

 

C. Fluid and Rock parameters which are pressure dependent 

• Formation volume factors of oil, water and gas (Bo, Bw and Bg) 

which is the ratio of a unit volume of reservoir fluid to the 

volume it would occupy at standard conditions (1 atm, 60 °F) at 

the surface 
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• Gas-Oil Ratio (Rs) which is the ratio of the volume of gas 

dissolved in the oil to the volume of oil itself at standard 

conditions 

• Densities of each fluid phase viz. oil, water and gas (ρo, ρw & ρg) 

• Viscosities of each fluid phase (µo, µw & µg) 

• Fluid (oil, water and gas) and Rock Compressibilities (co, cg, cw & 

cf). This is a measure of the change in volume of the fluid and 

rock with a change in pressure 

 

D. Well and Surface Facilities data 

• Location of perforations of each well in the grid co-ordinate 

system. This is important as these gridblocks act as pressure 

sinks for the movement of fluid from other parts of the reservoir 

• Production and injection data comprising of phase rates and 

pressure when history matching 

• Production and injection constraints due to facilities handling 

limits and pressure drawdown constraints on the wells when 

forecasting 

 

The reservoir simulator uses all the above data in a set of mathematical 

equations to describe the simultaneous fluid flow of multiple phases as well 

as transfer of mass between the phases (usually between oil and gas) in the 
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reservoir. The equations essentially describe the interaction between gravity, 

viscous and capillary forces within the porous media. Darcy’s Law is the basis 

of these fluid flow equations which when applied to multiple phases over time 

is formulated as partial differential equations which are solved numerically 

in the simulator. 

 

Darcy’s Law is based on experimental work done by a civil engineer Henry 

Darcy in1856 on the water filtration systems in Dijon, France. In 1-

dimension and for linear flow for a fluid with viscosity µ, his law expounds 

that in a horizontal plane the volumetric flow rate, q, through a porous 

medium of length L and cross-sectional area A (Figure 1.2) is given by the 

following equation (1.1.1) :- 

( )
L

PPkA
q inout

µ

−
−=     (1.1.1) 

    

 

Figure 1.2.  Diagram of Darcy’s Experiement 

 

k (permeability) in this equation is a derived property since all the other 

parameters are experimentally known. The equation can be formulated in the 
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x, y and z directions by introducing pressure gradient and directional 

permeability tensor terms.  

 

The equations used in the reservoir simulator are derived from Darcy’s Law 

that honour the mass balance between flow for each phase through adjacent 

gridblocks and from gridblocks into wells and hence give the saturation and 

pressure changes at any spatial point in the reservoir with time. The 

equations are complex nonlinear partial differential equations which are 

difficult to solve analytical and typically numerical methods are used.  Finite 

difference techniques are used to discretise the reservoir model in space and 

time. The equations then need to be linearised and can be solved explicitly or 

implicitly. Explicitly means that gridblock, fluid, rock and saturation 

dependent parameters are updated at the end of every timestep with the 

calculated pressure whereas Implicit schemes solve all the parameters 

including pressure simultaneously at the end of the timestep. Usually a 

direct or an iterative technique e.g. Newtons method is used to solve the 

system of linearised equations. 

 

Simulation models with a large number of gridblocks can take quite long to 

simulate particularly if a detailed fluid model using an Equation of State is 

required. An Equation of State is a rigourous thermodynamic representation 

of the reservoir fluid at any pressure and temperature (Whitson et al, 2000). 
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The reservoir simulator now needs to solve an additional set of 

thermodynamic equations for each compositional component in all the active 

gridblocks. This increases the computing cost tremendously and for large 

reservoirs with many gridblocks can take an uncertainty modelling exercise 

into many months. However the reservoir simulator is the best tool in 

assessing the performance of a reservoir and is the preferred technique used 

in uncertainty modelling. 

 

1.2. A Brief History of History Matching 

 

This section covers methods attempted in assisted history matching viz. 

derivative and non-derivative techniques, stochastic methods, population 

based evolutionary techniques and the use of designed experiments/proxy 

modelling. 

 

One of the first attempts at assisted history matching was by (Solorzanom et 

al., 1973) using a direct search method. Direct search is a method for solving 

optimization problems that does not require any information about the 

gradient of the objective function. As opposed to more traditional 

optimization methods that use information about the gradient or higher 

derivatives to search for an optimal point, a direct search algorithm searches 

a set of points around the current point, looking for one where the value of 
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the objective function is lower than the value at the current point. You can 

use direct search to solve problems for which the objective function is not 

differentiable, or even continuous.  

 

With direct searches, the algorithm computes a sequence of points that get 

closer and closer to the optimal point. At each step, the algorithm searches a 

set of points, called a mesh, around the current point, which is the best point 

computed at the previous step of the algorithm. The algorithm forms the 

mesh by adding the current point to a scalar multiple of a fixed set of vectors 

called a pattern. If the algorithm finds a point in the mesh that improves the 

objective function at the current point, the new point becomes the current 

point at the next step of the algorithm. 

 

Other methods that have been proposed are those using sensitivity 

coefficients (e.g. Cui et al, 2005) where a sensitivity coefficient matrix of 

production data to reservoir parameters is built up by perturbing each 

reservoir parameter individually and then calculating the change in history 

match quantities (e.g. pressures and saturations) per change in reservoir 

parameter. This was found to be prohibitively expensive when dealing with a 

large number of dimensions as observed by (Yang et. al, 1988), particularly 

when using the classical finite difference method as it meant rerunning the 

simulation for each reservoir parameter perturbation.  
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(Chen et al., 1974) proposed using optimal control theory where the gradient 

of the performance index is computed. This in conjunction with first-

derivative minimization methods like steepest descent and conjugate 

gradient were the focus of attention of many researchers (Chavent et al., 

1975, Watson et. al, 1980, Wasserman et. al, 1975, Brun et. al., 2004, Bissell 

et al., 1994). (Yang et al., 1987) proposed quasi-Newton methods viz. 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Self-Scaling Variable Metric 

(SSVM) as these methods could incorporate constraints unlike steepest 

descent and conjugate gradient techniques. 

 

(Parish et al., 1993) created a knowledge-based system in conjunction with 

Sequential Bayes methods to assist the engineer with history matching. The 

knowledge-based element contained a rule base derived from interviews with 

engineers. The rules were typically IF … THEN …  statements and though 

no quantitative results were reported, they concluded that the tool was 

effective in assisting the engineer with decision support rather than replacing 

him.  

 

Whilst these techniques were of assistance to the simulation engineer, a 

caveat soon became apparent. These methods were great at finding a 

minimum of a function but who was to say whether that minimum was really 
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the global optimum of the system particularly when one had no real clue as to 

what the fitness landscape looked like (Yamadi,2000, Mantica et al, 2001). 

Hence the realization of the non-uniqueness of a particular history match 

dawned and that the non-convex nature of the problem would be better 

tackled by global optimization methods as these techniques have a better 

chance of escaping local optima as opposed to local search techniques. To this 

end, attention was turned towards generating multiple matches. (Mantica et 

al, 2001) proposed a stochastic chaotic search method combined with a 

gradient based optimizer. Other attempts have also been made to use global 

and local optimization techniques. (Gomez et al, 2001) tried using a limited 

memory BFGS gradient optimization technique and once there was no 

improvement in the objective function, a tunnelling method was employed to 

escape the local minimum.  

 

Other stochastic methods such as simulated annealing are worth mentioning. 

Simulated Annealing (Kirkpatrick et al, 1983) operates analogously to the 

physical process of annealing where the temperature of a metal is reduced to 

its minimum energy level by a slow cooling process. Rapid cooling would lead 

to the metal being left in a brittle state, however the usual tradeoff of time 

versus strength needs to be made. The method is able to escape local minima 

by accepting an uphill move dependent on a temperature function. The 

probability of an uphill move is reduced during the course of the run hence it 
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is anticipated that many minima would have been visited during this trip 

and that the system would finally settle in the global optimum (Ouenes et al, 

1983, Ouenes et al, 1994). 

 

The principal drawback of the above mentioned techniques is that they are 

sequential, hence time consuming from a simulation time point of view. This 

is where evolutionary population based techniques become attractive. 

(Schulze-Reigert et al, 2001) proposed an evolutionary algorithm that made 

use of distributed computing. The nature of evolutionary algorithms is that 

they are slower to converge than gradient based search algorithms, but their 

parallel nature does not limit them to be solved on a single processor. They 

are also attractive in that they are much simpler to understand than gradient 

based techniques and do not require any derivative information. Other 

evolutionary based methods like genetic algorithms have been extensively 

studied (Sen et al, 1995, Romero et al, 2000). A genetic algorithm tries to 

drive towards a better objective function value by mating the fittest members 

of the population. It also has a mutation operator often seen as a necessary 

evil to prevent the algorithm from converging too rapidly. Population based 

algorithms however do require many iterations and hence are slower to 

converge. 
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Experimental design and response surface modelling methods have been 

attempted to address this problem. (Allessio et al, 2005, Li et al, 2006, Cullick 

et al, 2007) amongst others, used designed experiments in the initial stage of 

the history match to which a response surface was fitted. This response 

surface acts as a proxy to the simulator and guides future sampling. 

[Ramgulam et al, 2007] used a neural network to model the response surface 

and claimed that such a model reduced the number of simulations required to 

find a history match. Such experimental design-response surface techniques 

need to be approached with caution. Whatever their sophistication, they 

would be effective as interpolative tools and should never be used to 

extrapolate. Another issue associated with experimental design is that high 

dimensional problems require an exponentially increasing number of design 

points, something that may not be practical.  

 

Scatter Search Metaheuristics have been used by  (de Sousa et al, 2007) to 

history match two synthetic models. The term metaheuristic refers to 

methodologies that combine a high level controlling heuristic with a low level 

local search engine. In Scatter Search, in an initial random set of solutions 

(RefSet), two or more solutions are used to generate new trial solutions. This 

is done via a non-convex linear combination of solutions in the RefSet. The 

new trial solutions are ranked by their fitness, and the fittest members then 

undergo a local search. A collection of the best points is then extracted to be 
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used as the RefSet for the next iteration. This method is advantageous as it is 

virtually parameterless and simple to understand, however the drawback is 

that there is not much that you can further do to the algorithm to increase its 

performance. (de Sousa et al, 2007) report good scalability of the algorithm 

but found it to be simulation intensive particularly with the addition of the 

local search. 

 

Uncertainty analysis has also been used in assisted history matching. (Costa 

et al, 2006) statistically analyzed simulations and uncertainty variables to 

create a risk curve to avoid unnecessary simulation runs. (Erbas et al, 2007) 

used a Neighbourhood Algorithm (multiple start non-derivative local search 

which can be used in distributed computing) in a Bayesian framework to 

sample the parameter space and generate an ensemble of history match 

models, which are then assigned probabilities by posterior inferencing. An 

uncertainty range in a set of forecasts from these models can then be 

assessed. 

 

1.3. General History Matching Approaches 

 

History matching is essentially an inverse problem where plausible 

parameter values need to be determined given inexact (uncertain) data from 

an assumed theoretical model that relates the observed data to the model 
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(Oliver et al, 2008). Simply put, the parameter set x needs to be determined 

that fits data y in model f :- 

y = f(x) 

 

From a mathematical standpoint, the history matching process reduces to an 

optimisation problem for which a large number of numerical algorithms are 

available.  Generally, optimisation algorithms are from two distinct classes :- 

 

a) Techniques that use derivatives like Levenberg-Marquardt and Quasi-

Newton. They have relatively fast convergence but are capable of only 

finding local minima. 

b) Techniques that donot use derivative information like genetic 

algorithms and particle swarms. They are slower to converge since 

they search a wider area of the parameter space but are capable of 

finding multiple minima. They also lend themselves to distributed 

processing and treating the simulator as a black box. 

 

This thesis deals with the latter category, however it is worth discussing the 

former category as well. Firstly it must be noted that for simple convex 

problems, there is no need to use vastly complicated algorithms. Often using 

something simple like Newton-Raphson is sufficient. With the Newton-

Raphson technique for root finding, one starts with an initial guess 
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somewhere on the function f(x). A tangent is then drawn from the initial 

guess to the x-intercept and typically this point would be a better 

approximation to the functions minimum than the original starting point as 

depicted in Figure 1.3.  

 

 

 

 

 

 

 

 

Figure 1.3.  Diagram of Newton-Raphson Method 

 

In optimisation, if a real number x* is a minimum of f(x), then x* is a root of 

the derivative of f(x) and hence x* can be solved by applying Newton-Raphson 

to f(x). The Taylor expansion of a function f(x) (1.3.1) :- 

( ) ( ) ( ) ( ) 2''
2

1
' xxfxxfxfxxf ∆+∆+=∆+    (1.3.1) 

has a minimum (or maximum) when (1.3.2) is met :- 

0)('')(' =∆+ xxfxf       (1.3.2) 

and if f’’(x) is positive. This implies that it must be possible to calculate the 

second derivative of f(x), something that is not achievable is discontinuous 

xn+1 

xn 

f(x) 
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functions. Hence the solution will converge to x* from an initial guess xo, 

using the sequence as follows (1.3.3) :- 

0,
)(''

)('
1 ≥−=+ n

xf

xf
xx

n

n

nn      (1.3.3) 

 

There are two main classes of methods to calculate the derivates viz. the 

forward method, also known as the simulator-gradient and the adjoint 

method. The adjoint method requires a backward in time simulation, but it is 

able to compute the gradient of the objective function with cost proportional 

to a single simulation no matter how many parameters there may be. This 

property makes the adjoint method much better to solve models with a large 

number of parameters. (Rodrigues et al, 2006) showed field models with more 

than 250 parameters which this technique was still able to solve efficiently. 

However (Oliver et al, 2008) noted that the sensitivity coefficients to partial 

derivatives could not be reliably calculated for those parameters to which the 

observed historical data was not very sensitive to.  

 

Experimental design together with response surface modelling can also be 

effective emulator in history matching. (Busby et al, 2008) proposed a 

hierarchical nonlinear approximation scheme to obtain an accurate 

approximation of the response surface using few function evaluations. The 

response surface from their sequential experimental design results was 

generated by kriging. Response surface or proxy models as they are more 



Chapter 1  Introduction 

 28

commonly known are attractive since they are very quick to solve, and a full 

simulation run is not required. Further evaluation points for the simulator 

are obtained by optimising on this response surface, and these results are 

added to experimental design to update the response surface. The technique 

was tested on the Imperial College Fault Model. (This model is presented 

later in Chapter 6). Very low errors were achieved using relatively few 

function evaluations attesting to the efficacy of this method. 

 

By and large, the challenge of statistical prediction is to assess the 

uncertainty in the predicted results. This reduces to the propagation of errors 

from the input parameters to the simulated results. The biggest hurdle in 

analysing the impact of uncertainties is the “curse of dimensionality” 

(Christie et al, 2005). High dimensional spaces can lead to complex fitness 

landscapes which can be impossible to resolve within a reasonable timeframe, 

particularly for systems that require simulation.  

 

When solving inverse problems, scientists and engineers are faced with 

firstly trying to find at least one model that can be consistent with 

observations. Secondly, in problems where multiple models are consistent 

with observations, how can the non-uniqueness of these results be 

quantified? (Tarantola, 2006). The intention of the various history matching 
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algorithms is to generate an ensemble of models that can be used in the 

quantification of the uncertainty of the model to the true reservoir behaviour. 

 

Uncertainty arises from a lack of information, therefore uncertainty 

quantification means describing the state of information at hand which is 

typically done by probability distributions. Two different philosophies exist 

for quantifying uncertainty. The first avoids using any a priori information 

on the model parameters that could ‘bias’ the inferences drawn from the data. 

This means the parameter set is defined as a uniform distribution. The 

second philosophy is Bayesian which asks the question: how does the newly 

acquired data modify our previous information?  

 

The Bayesian framework for statistical inference provides a methodical 

procedure for updating current knowledge of a system based on new 

information (Kaipio et al, 2005). Let simulation model n represent the system 

at hand, and be a formalisation of all information necessary to solve an 

objective. n would contain the fundamental equations describing the system 

(usually in the form of partial differential equations), the model parameters 

and their ranges, as well as initial and boundary conditions. In real world 

applications, much of the information in system n can contain uncertainty. 

This uncertainty can be represented by an ensemble of models N, with n ∈ N. 

A probability distribution on N can be defined, and is referred to as the prior 
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distribution p(n). Hence the uncertain parameters in the model and their 

prior distributions p(n) need to be determined; a process called 

parameterisation.  

 

If some information exists as to the likely values of n then a prior distribution 

that reflects this can be selected. As an example, permeability (k) normally 

has a log-normal distribution due to the heterogeneity in the reservoir rock. If 

there is plenty of core data available, then the shape of the distribution can 

be delineated and if little data is available then a distribution that supports a 

wide range of n should be selected. 

 

Additional information from observations of the system behaviour (O) can be 

used to update the estimate for the probability of n. This is referred to as the 

posterior distribution and denoted as p(n|O) by using Bayes’ formula. Bayes 

theorem (Bayes, 1763) states that considering two events A & B, 
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Bp

ApABp
BAp =     (1.3.4) 

 

This formula describes how a belief about an event changes as new 

information is obtained. Let event A have an initial prior probability p(A) of 

occurring. If event B then occurs then the description of how likely A is 

considering that B has occurred is the posterior probability p(A|B). Bayes 
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theorem updates the prior probability to the posterior by multiplying the 

p(B|A)/p(B). The following example illustrates Bayes theorem. 

 

Suppose there is a co-ed school having 60% boys and 40% girls as students. 

The girls wear trousers or skirts in equal numbers whilst all the boys wear 

trousers. An observer sees a (random) student from a distance and that this 

student is wearing trousers. What is the probability this student is a girl? 

The correct answer can be computed using Bayes' theorem. 

 

The event A is that the student observed is a girl, and the event B is that the 

student observed is wearing trousers. To compute P(A|B), we first need to 

know: 

• P(A), or the probability that the student is a girl regardless of any 

other information. Since the observers sees a random student, meaning 

that all students have the same probability of being observed, and the 

fraction of girls among the students is 40%, this probability equals 0.4.  

• P(A'), or the probability that the student is a boy regardless of any 

other information (A' is the complementary event to A). This is 60%, or 

0.6.  
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• P(B|A), or the probability of the student wearing trousers given that 

the student is a girl. As they are as likely to wear skirts as trousers, 

this is 0.5.  

• P(B|A'), or the probability of the student wearing trousers given that 

the student is a boy. This is given as 1.  

• P(B), or the probability of a (randomly selected) student wearing 

trousers regardless of any other information. Since P(B) = P(B|A)P(A) 

+ P(B|A')P(A'), this is 0.5×0.4 + 1×0.6 = 0.8.  

Given all this information, the probability of the observer having spotted a 

girl given that the observed student is wearing trousers can be computed by 

substituting these values in Bayes’ formula :- 
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(1.3.4) is the discrete form of Bayes’ Theorem. For continuous distributions 

the posterior probability density function of n is expressed as (1.3.5) :- 
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p(O|n), the probability of observations O given parameter/s n is referred to as 

the likelihood function.  This together with the prior distribution p(n) must be 

specified in any Bayesian computation. 

 

Relating this to reservoir simulation, the posterior distribution of reservoir 

parameters n (e.g. pore volume and permeability multipliers, aquifer sizes 

etc) are estimated from the observed field production data O (e.g. phase rates, 

bottomhole pressures etc). By comparing reservoir simulation production 

profiles to the observed field production data, one can create the likelihood 

function. Consider a certain phase rate measurement. If measurement errors 

are independent i.e. at time t is not dependent on a measurement at any 

other time tn, are normally distributed around zero with variance σ2 for all 

measurements, then the likelihood function for M measurements can be 

defined as (1.3.6) :- 
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    misfitenOp −∝)|(      (1.3.7) 

 

A general Bayesian framework as developed by the Uncertainty 

Quantification Group at Heriot-Watt University is shown in Figure 1.4. 

 

 

 

 

 

 

 

 

Figure 1.4.  Bayesian Framework for Uncertainty Quantification 

 

The cumulative distribution function of the posterior can now be calculated 

and credible intervals reported. As an example, a 10% maximum credible 

interval (a,b) is the widest interval whose posterior probability of containing 

the true n is 0.1. If a = 0, then b corresponds to the 0.1 quantile of the 

cumulative distribution. Subsurface quantities such as recovery and 

porosity/permeability are often reported as P10, P50 and P90. These terms 

correspond to the 10%, 50% and 90% probabilities that the actual value is 

below the reported value. 
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Against this backdrop of historical work, a simple attractive population based 

evolutionary technique is investigated. 

 

1.4. Swarm Intelligence 

 

Increasingly the trend in the scientific community is to use algorithms 

employing natural metaphors to model and solve complex optimisation 

problems. This is primarily due to the inefficiency of classical optimisation 

algorithms in solving large scale combinatorial and highly non-linear 

problems. The situation is exacerbated if integer/discrete variables are also 

present in the problem formulation.  

 

It is well known that classical optimisation techniques impose limitations on 

solving mathematical programming and operations research models. This is 

due to the intrinsic solution mechanisms of these techniques. Solution 

strategies of classical optimisation algorithms are generally dependent on the 

type of objective and constraint functions (linear, non-linear etc) and the type 

of variables used in the problem modelling (discrete, real etc) and are hence 

weak in their general applicability to a wider set of problems which have a 

combination of different types of variables and or constraints. An example is 
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the Simplex method used in Linear Programming, where only real variables, 

linear objectives and linear constraint functions can be used. 

However most of the time real-life problems require different types of 

variables, constraint and objective functions in their problem formulation and 

hence classical methods are often not adequate or easy to use. Their efficiency 

is also very much dependent on the size of the solution space, number of 

variables and constraints used in the problem definition, the structure of the 

solution space (convex, non-convex), and the starting point in the solution 

space for the optimisation procedure. If the starting point is in the wrong 

place you could easily land in a local optimum and not be able to escape from 

there.  

 

Researchers in many areas have spent a great deal of effort in order to adapt 

their optimisation problems to classical procedures by sometimes rounding or 

transforming variables, relaxing constraints etc. This certainly affects 

solution quality and creates a challenge to find alternative optimisation 

methods that are more generic in their use. 

 

Insects that live in colonies like ants and bees have fascinated naturalists for 

decades. “What is it that governs here? What is it that issues orders, foresees 

the future, elaborates plans, and preserves equilibrium?,” wrote (Maeterlinck, 

1901). This is indeed very puzzling. Every insect in a social insect colony 
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seems to have its own plans, yet an insect colony as a whole appears so well 

organised. The seamless integration of all the individuals does not seem to 

require any controlling supervisor. 

 

Social insects like ants, bees, termites and wasps can be viewed as powerful 

problem solving systems with sophisticated collective intelligence. Composed 

of simple interacting agents, the intelligence lies in the networks of 

interactions among individuals, and between individuals and the 

environment. Social insects lend themselves to metaphors for artificial 

intelligence. The problems they solve viz. finding food, dividing labour among 

nestmates, building nests, responding to external threats – all have 

important counterparts in engineering. 

 

A branch of nature inspired algorithms viz. Swarm Intelligence which derives 

inspiration from natural populations like bees, insects, birds and fish, have 

meta-heuristics which can mimic an individual’s behaviour in a population as 

well as the population as a whole, thus taking advantage of their natural 

problem solving abilities. Particle Swarm Optimisation and Ant Colony 

Optimisation (Socha et al, 2008) belong to this domain of algorithms. The 

meta-heuristics mimic the communication mechanisms for food 

foraging/group motion behaviour and exploit this for solving engineering 

objectives.  
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Swarm Intelligence being derived from this kind of paradigm has as its 

intrinsic property a system whereby the collective behaviours of 

(unsophisticated) agents interacting locally with their environment cause 

coherent functional global patterns to emerge. Swarm Intelligence provides a 

basis from which it is possible to explore collective (or distributed) problem 

solving without centralized control or the provision of a global model. 

 

Swarm Intelligence was popularised by (Crichton, 2002) in the book Prey 

which dramatised the use of nano-robots. Though fictional, the book did 

expound the mechanisms of swarm intelligence where a population of 

individuals are programmed with an objective (military reconnaissance 

imaging, medical nanotech-based imaging) and have mechanisms to 

communicate with each other to achieve this objective. The key concept here 

is “communication”. Evidence of swarm intelligence in humans is also 

common. A recent BBC report revealed that oil market traders’ principal 

mechanism of decision making is actually the use of Instant Messaging 

(Yahoo! in particular) with other traders to glean information from one 

another as to market movements (Reuben, 2008). 
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Chapter 2 

Review of Particle Swarm Optimisation 

 

2.1. Background to Particle Swarms 

 

Particle Swarm Optimisation was first introduced by (Kennedy and 

Eberhart, 1995). Since then there has been a significant increase in 

publications on this optimisation methodology. Particle swarms are attractive 

to the user as they do not require gradient and derivative information, are 

intuitive to understand and can be parallelised (Schutte et al, 2003). They 

can be used to solve a wide variety of problems, including neural network 

training (Eberhart et al, 1995), static function optimisation (Shi et al, 1995), 

dynamic function optimisation (Blackwell et al, 2005), multimodal 

optimisation (Brits et al, 2002) and data clustering (Cohen et al, 2006). 

 

The idea was originally derived from modelling social behaviour, in particular 

modelling the flight of a flock of birds, the social outlook of this methodology 

being discussed in (Kennedy and Eberhart, 2001). This population based 

approach is different from other population based evolutionary methods 

which use some form of evolutionary operators in order to move the 

population towards the global optimum. Here the “particles” which make up 
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the population move in the search range with a velocity that is determined by 

a simple equation relating the experience of each individual particle and the 

population. In essence each individual particle memorises the best position it 

has encountered and uses this together with the memory of the best position 

of its neighbours/population found thus far. Hence changes in the particles 

trajectory from these influences are then made to its velocity in each iteration 

and this gives the particle direction in the search space. Position updates are 

then made from the new calculated velocity. 

 

The resulting effect of these interactions is that particles move towards an 

optimal solution while still searching the surrounding territory. A large body 

of work is aimed at manipulating the particle’s ability to move in the search 

space using different configurations and other operators to manipulate the 

particles velocity during the run of the optimiser. Ideally, an optimiser that 

has good exploration ability while still being able to do fine local searches 

would be highly desirable. Even more beneficial would be an optimiser that 

has the ability to escape from local minima, which is something that this 

thesis addresses later. 

 

Each particle of a population of n members in d dimensions has the position  

Xi = (xi1, xi2, … ,xid)   i ∈ [1,n], j ∈ [1,d] 
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All the particles are randomly initialised within a predefined search range for 

each variable (Xmin,j, Xmax,j). The velocity vector of each particle is represented 

as 

Vi = (vi1, vi2, … , vid)   i ∈ [1,n], j ∈ [1,d] 

An upper and lower bound, Vmax,j, also cap the velocities. In this study Vmax,j 

is taken to be half the search range of each variable, as was suggested by 

(Eberhart and Shi, 2000) after doing numerical experiments on several 

benchmark functions. 

( )
jjj XXV min,max,max, 5.0 −=      (2.1.1) 

In addition each particle has a memory of the best position it has attained 

thus far called the pbest   

Pi = (Pi1, Pi2, … , Pid)   i ∈ [1,n], j ∈ [1,d] 

The particle with the best fitness found thus far is usually represented as Pg 

and known as the gbest. There is a variation of the neighbourhood topology 

where a localised neighbourhood is used and is known as lbest. This is 

usually represented as Pl. Here the swarm is divided into overlapping 

neighbourhoods of particles where each neighbourhood is usually about 

twenty percent of the size of the population and in each neighbourhood an 

lbest particle is defined as the particle with the best fitness. Dynamic 

neighbourhoods can also be defined and are discussed by (Suganthan et al, 

1999, Zhang et al, 2003). 
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2.2. The Canonical PSO 

 

The following formulation represents the canonical particle swarm optimiser 

introduced by (Kennedy & Eberhart, 1995) :- 

    

( ) ( ) ( ) ( ))()(1 2211 txPrctxPrctvtv ijgjijijijij −+−+=+                 (2.2.1) 

if vij > Vmax,j  then  vij  =  Vmax,j    (2.2.2) 

elseif  vij < -Vmax,j  then  vij  =  -Vmax,j 

)1()()1( ++=+ tvtxtx ijijij       (2.2.3) 

 

(2.2.1) represents the velocity update for each dimension j of particle i. r1 and 

r2 are numbers in the range [0, 1] generated by a uniform random number 

generator. c1 and c2 are the acceleration constants for the personal and global 

bests respectively. Typically c1 = c2 = 2 is used. As can be seen from (2.2.1) the 

velocity update for each particle is a random weighted average of its personal 

best and the global best of the swarm, while the first (momentum) term in 

equation (2.2.1) allows the particle which may have just achieved the best 

fitness value to still move in the search space. (2.2.2) is a checking 

mechanism that limits the velocity in each dimension to the maximum 

allowable Vmax. Finally the position of each particle in each dimension is 

updated according to (2.2.3). 
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2.3. The Inertia Weight PSO 

 

The inertia weight method for particle swarm optimisation was first proposed 

by (Shi et al, 1998). It is a way of trying to balance the explorative and 

exploitative ability of the swarm particles. It also ensures that the particles 

do not accelerate out of the search range. The inertia weight parameter 

resembles simulated annealing in that initially the PSO can search a larger 

range as the particle velocities are allowed to be bigger, while at the end of 

the run exploitation is facilitated with a smaller value of the inertia weight. 

They show experimentally that varying the inertia weight results in better 

performance than using a fixed value of the inertia weight during the course 

of a run. The inertia weight method is defined by the following equations :- 

 

( ) ( ) ( ) ( ))()(1 2211 txPrctxPrctwvtv ijgjijijijij −+−+=+         (2.3.1) 

if vij > Vmax,j  then  vij  =  Vmax,j    (2.3.2) 

elseif  vij < -Vmax,j  then  vij  =  -Vmax,j 

)1()()1( ++=+ tvtxtx ijijij       (2.3.3) 

 

w is the inertia weight and is usually varied linearly decreasing from wmax to 

wmin during the course of an optimisation and is represented in (2.3.4), 

 



Chapter 2  Review of Particle Swarm Optimisation 

 44
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where t_max is the user specified maximum number of iterations and t is the 

iteration number. wmax is usually 0.9 and wmin 0.4 as experimentally 

determined by (Shi et al, 1998). With time the decreasing inertia weight 

limits the movement of this particle and allows the swarm to converge. 

Figure 2.1 depicts the typical trajectory of a particle with respect to each 

term in (2.3.1). 

 

 

 

 

 

 

 

 

 

Figure 2.1.  Inertia Weight Particle Trajectory 

 

Figure 2.2 displays the typical velocity profile of a particle over each 

iteration. The energy dissipating effect of the inertia weight method can 

clearly be seen and it is this effect that leads to convergence of the particle at 
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later times. Initially the particle can be seen exploring the search space while 

at later times it is exploitative by taking small velocity steps. 

 

 

 

 

 

 

 

 

Figure 2.2.  Inertia Weight Velocity Profile 

 

Another PSO variant, known as the cognition only version was demonstrated 

by (Kennedy, 1997). Here c2 = 0 and hence only the personal best position 

found thus far is used when calculating the new velocity. Hence there is no 

wider sharing of information between the particles and each particle is more 

likely to end up searching a local area where it was initialised. The algorithm 

keeps iterating until the maximum number of iterations is reached, the 

fitness function has reached a certain threshold or until velocity updates are 

close to zero. In this way, each particle in the swarm behaves as an individual 

hill-climber and this is beneficial if the objective function is multimodal. If c1 

= 0 then the swarm behaves as a stochastic hillclimber as no individual 

information is used and is beneficial when the objective function is unimodal. 
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The coefficients used in (2.2.1) determine the swarm behaviour, and many 

studies have been done in order to optimise these coefficients as well as 

maintain the explorative ability of the swarm. (Ratnaweera et al, 2004) 

proposed time varying acceleration coefficients and the mutation of particles 

to address this issue since it has been commonly observed particularly with 

benchmark functions, that the PSO finds a good local optima but can remain 

stuck in this optima sometimes for the entire duration of the run with little to 

no improvement.  

 

A predator-prey type optimiser was introduced in (Silva et al, 2002, Silva et 

al, 2003) where a predator particle was used to chase the gbest particle and 

the predator randomly repelled particles in the swarm. The extent to which 

they were repelled also depended on how close the swarm particle was to the 

predator. This method however suffered from determining just how often 

swarm particles were to be repelled, and added another level of complexity to 

the tuning process. Other methods of gaining better performance include 

using mating, breeding and subpopulation mechanisms that were introduced 

by (Løvbjerg et al, 2001). Co-operative particle swarm optimisation is another 

promising area that has been introduced to allow the swarm to use 

information from the genes of different members of the population (van den 

Bergh et al, 2000). 
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2.4. The Constriction Factor PSO 

 

The canonical PSO can still have fairly large velocities at the end of a run, 

hence the reason why inertia weights were introduced in an effort to control 

the velocities. The constriction factor PSO is another attempt to control the 

particle velocities and was proposed by (Clerc, 1999) as a way of ensuring 

convergence. This technique has the following formulation :- 

 

( ) ( ) ( ) ( )])()([1 2211 txPrctxPrctvKtv ijgjijijijij −+−+×=+   (2.4.1) 

  
ϕϕϕ 42

2

2 −−−
=K , where ϕ  = c1 + c2, applicable for ϕ  > 4 

 

In the above formulation, if c1 = c2 = 2.05, K will then be 0.729 and will result in 

the previous velocity (momentum term) being multiplied by 0.729 and the (P-

x) being multiplied by 0.729*2.05 = 1.49445 (times a random number between 

0 and 1).  This is different from the inertia weight formulation where only the 

velocity of the previous iteration (momentum term) was lowered at every 

iteration, here the entire velocity step is reduced. Intuitively, it is expected 

that the velocities in the constriction factor method will decrease much more 

rapidly than the inertia weight method, hence leading to convergence. 

(Eberhart & Shi, 2000) analysed the constriction factor PSO and concluded 

empirically that setting Vmax = Xmax significantly improved their results. 
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Furthermore (Zhang, Yu, Hu, 2005) analysed the effect of ϕ  on the solution 

of unimodal and multimodal problems. ϕ  was varied between 4.0 and 4.4. 

They concluded that the best choice for unimodal problems was to take ϕ  = 

4.1 and for multimodal problems ϕ  = 4.05. 

 

2.5. Parameter Sensitivities 

 

It is important to have an understanding of the effect of the parameters of 

the PSO in order to design a version of the algorithm that would be suitable 

for history matching. In order to do this, a test is conducted here on the 

canonical, inertia weight and constriction factor versions to gain some insight 

to their behaviour. A test function (2.5.1) is used to get an idea of their 

velocity profiles.  
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22
1

)( +−−+= xxxxxf ππ   (2.5.1) 

 

Firstly, the canonical version is tested by varying the acceleration 

coefficients. Typically c1 = c2 = 2. Figure 2.3 displays the effect of varying c1 & 

c2  from 1.0 to 3.0 on their velocity profiles. There are two aspects that should 

be noted from this Figure. Firstly, the velocity magnitudes are proportional to 

the acceleration coefficient. Secondly, it doesn’t matter what the coefficient is, 
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the velocities continue to increase with time since there is no damping 

mechanism in (2.2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  Acceleration Coefficient effect on the velocity profile of the Canonical PSO 

 

The canonical PSO is clearly going to have convergence problems in history 

matching and can be rendered unusable. The next step is then to compare it 

with the inertia weight and constriction factor versions to see whether there 

is any benefit in using those techniques. Figure 2.4 displays the resulting 

profiles for 50 iterations of each PSO version. The canonical version suffers 
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from high velocities all through the run and does not converge. The inertia 

weight version with w = 0.9 and linearly decreasing to w = 0.4 at the end of 

the run also shows fairly high velocities for most of the run, however does 

constrain itself towards the end. The constriction factor version quickly 

reduces its velocity and is able to make small steps for most of the run, hence 

fine tuning its solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.  Velocity profile comparison of the Canonical, Inertia Weight and Constriction 

Factor PSO’s 
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The next step is to investigate the effect of changing the inertia weight 

ranges to see if any improvement can be made to its convergence behaviour. 

A comparison is made with w = 0.9 → 0.4 (Shi et al, 1995), w = 0.4 → 0.9 and 

w = 0.5 → 0. Figure 2.5 displays the velocity profiles of this test. Clearly, 

varying w = 0.5 → 0 shows convergent behaviour that is even better than the 

constriction factor in Figure 2.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.  Velocity profile comparison of the Inertia Weight PSO with different w ranges 
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It does make sense to use this range for the inertia weight as taking it down 

to 0 will lead to very small velocities at later iterations and hence be able to 

fine tune a search. Although the constriction factor version does have 

velocities that are dampened with time, it does not have the flexibility of the 

inertia weight as the constriction factor K operates over the entire velocity 

update. 

 

The objective is to design a Particle Swarm optimiser suitable for history 

matching purposes. The inertia weight version appears to be a better 

candidate for further development and it will be used as the basis for the rest 

of this thesis. 
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Chapter 3 

Development of a new Particle Swarm Variant 

 

3.1. The Flexi-PSO 

 

Particle Swarms are similar to fractals. Fractals produced intricate patterns 

based on simple recursive equations. Similarly the swarm also produces an 

exciting emergence of interaction between its particles that leads to good 

solutions in global optimisation also using simple recursive equations. The 

analogy of particles interacting at the social level makes intuitive sense and 

heuristics can be developed to make the canonical algorithm much more 

powerful. 

 

This thesis looks at intuitive mechanisms and heuristics to increase the 

effectiveness of the swarm. This will be judged by comparing a particle 

swarm variant developed in this thesis viz. the Flexi-PSO (Kathrada, 2009) to 

the original Inertia Weight method on a non-convex function. Further tests 

will be conducted on benchmark mathematical test sets and the training a 

neural network to assess the performance of the Flexi-PSO in relation to 

other state of the art techniques. 
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The first mechanism that is introduced here is to use an extended particle 

swarm optimiser that updates the velocities using pbest, gbest as well as 

lbest. lbest here is implemented for a neighbourhood with a ring topology 

where each particle has a neighbour on either side of it, with the end member 

particles also being connected and hence forming a ring as in Figure 3.1. 

Particles are numbered according to the sequence in which they are 

initialised. 

 

If the neighbourhood size is taken to be two, then any particle (i) compares 

itself to particle (i-1) and particle (i+1), e.g. particle 1 would compare itself to 

particle 2 and particle 8 since the topology is a ring. The neighbourhood size 

used in this study is 25% of the population size. This idea was also introduced 

by (Jun-jie & Zhan-hong, 2005), however it was applied to the constriction 

factor method of PSO (Eberhart and Shi, 2000).  Here, advantage is taken of 

the neighbourhood best position, and this additional information helps the 

swarm to search more of the solution space. 
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Figure 3.1.  Ring Topology for a population of particles 

 

 (3.1.1) is the extended PSO equation :- 

 

( ) ( ) ( ) ( ) ( ))()()(1 332211 txPrctxPrctxPrctwvtv ijljijgjijijijij −+−+−+=+  (3.1.1) 

 

r1, r2 and r3 are numbers in the range [0, 1] generated from a uniform random 

number generator and are updated for each dimension in each iteration. w is 

the inertia weight parameter and is varied linearly down from wmax = 0.5 at 
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the beginning of the run to wmin = 0.0 at the end of the run. The shorter range 

of w used here is to aid exploitation of the particles towards the end of the 

run. 

 

The issue then arises as to how to assign the acceleration coefficients. (Jun-jie 

& Zhan-hong, 2005) chose various configurations in order to keep the sum of 

the acceleration coefficients equal to 4. This is in keeping with the original 

PSO where c1 = 2 and c2 = 2. In this study a dynamic approach has been used 

to select the acceleration coefficients for each particle and on every iteration. 

The simple heuristic that is followed is that a flexible PSO is desired to be 

able to deal with both multimodal and unimodal problems. The acceleration 

coefficient heuristic for d variables is represented as follows :- 

 

for i = 1:d        (3.1.2) 

  if rand() < 0.333   

then  c1i = 2.0, c2i = 0.0, c3i = 0.0 

  elseif rand() > 0.666   

then  c1i = 0.0, c2i = 2.0, c3i = 0.0 

  else  

c1i = 1.333, c2i = 1.333, c3i = 1.333 

end 
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where rand() is a uniformly drawn random number in the range [0,1]. Hence 

each particle on each iteration has an equal probability of either acting as an 

individual hillclimber, a stochastic hillclimber or to use both cognitive and 

social information from the swarm. This makes the swarm as a whole much 

more flexible in being able to deal with an objective function, particularly if 

one does not have much idea of what the fitness landscape may look like. 

 

The underlying motto behind this enhancement is “Big moves coupled with 

small moves”. In the traditional inertia weight formulation, particles in the 

swarm are more likely to make big moves in the search space which 

progressively decreases with each iteration. Conceptually this leads to a big 

problem, in that a particle may be in a valley which contains the global 

minimum of the function, but because the particles are taking large steps, 

they can easily fly out of this region to a poorer region. However, if the swarm 

can be designed such that from outset, it does have the possibility of making 

small moves as well as big moves, this can greatly enhance its convergence 

and explorative ability.  

 

There have been other techniques that have explored the same idea but with 

a different implementation. (Li et al, 2007) proposed a random velocity 

boundary condition on the swarm such that at each iteration, Vmax was set 
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randomly so that particles now had a higher probability of taking small 

moves early on in the run. 

 

The next issue that arises in the implementation is how to deal with particles 

that go out of the boundary range. Figure 3.2 depicts different mechanisms 

that can be employed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Boundary handling mechanisms 

 

In Figure 3.2a, the boundary acts as an absorbing wall, effectively stopping 

the particle from going any further. This can be especially useful for those 

functions whose optimum is located at the boundary. In Figure 3.2b, the 

particle is reflected back into the search space by reversing its velocity after 
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impact with the boundary wall. In Figure 3.2c the particle is allowed to 

escape the boundary but this particle is typically ignored when it comes to 

being function evaluated. Finally in Figure 3.2d the velocity is reversed and 

dampened when it impacts the boundary wall.  

 

The damping wall boundary handling mechanism is chosen to be used in the 

Flexi-PSO. The absorbing walls mechanism does appear attractive at first 

glance particularly since functions can have their optimums on the boundary, 

however in practise it was found to lead to many redundant function 

evaluations. The problem arises that once the particle is stopped at the 

boundary, for it to get back into the search space can take many iterations 

since the sign of the velocity needs to be reversed. Reflecting walls were 

deemed to be inappropriate since the particle is reflected right back and this 

can equally lead to many redundant function evaluations if the optimum is 

near the boundaries. Invisible walls were not considered since a history 

match function evaluation is desired for every iteration and it would be a 

waste of the distributed computing resources to subtract a function 

evaluation on an iteration. Damping walls is the most attractive option since 

function evaluations are not wasted, and at the same time the particle can 

move progressively closer to the boundary if indeed the optimum is located 

close to it. 

 



Chapter 3                                                          Development of a new Particle Swarm Variant 

 60

3-Dimensional animations over a benchmark function presented later in this 

paper are used to give a qualitative understanding of the behaviour of the 

swarm. It was found that while the acceleration coefficient heuristic did allow 

particles some degree of freedom, at the end of the run they still tended to 

congregate very closely around the gbest and lacked the desired explorative 

ability. This was wasteful as often the particles congregated around the gbest 

early on in the run with the result that the particles had very small velocities 

and from that point onward were only performing local exploitation with 

little improvement in the gbest. This is an intrinsic drawback of the particle 

swarm method as the entire swarm surrounds an attractor and cannot break 

free from it to search a wider area. If w were varied from wmax = 0.9 to wmin = 

0.4 then the particles tend to flicker around the gbest with little ability to fine 

tune the search as also noted by (Vesterstroem et al, 2002). 

 

This premature convergence problem was addressed using the following 

heuristics. One half of the population should be allowed to perform local 

exploitation (denoted as “exploitation” particles) while the other half (denoted 

as “exploration” particles) should be repelled from gbest if they came too close 

to it. As a measure of “closeness” to the gbest, the repulsion is induced in two 

ways. If an exploration particle comes to within a fitness tolerance or a 

distance tolerance of the gbest, then a perturbation to a randomly selected 

dimension of the velocity vector is added. The fitness repulsion is invoked 
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when the difference between fitness of the exploratory and gbest particles is 

less than a fitness tolerance ε viz. 

 

  ε≤− gbesti ff       (3.1.3) 

 

The distance repulsion is invoked when the normalised absolute difference 

between the exploratory and gbest particles in all dimensions is less than a 

threshold of the search range viz. 

 

   α≤
−

−

min,max,

,

jj

jgj

XX

PX
, j ∈ [1,d]   (3.1.4) 

 

Once a repulsion is invoked for an exploration particle, the velocity is 

perturbed in a randomly selected dimension and is represented in equation 

(3.1.5): 

 

( )
2

1 max

4

V
rtvij =+                     (3.1.5) 

 

where r4 is a random number drawn uniformly in the range [-1,1]. 

Qualitative animations using this concept of exploration and exploitation 

particles showed “atomic-like” behaviour, similar to what was observed by 

(Blackwell and Branke, 2004). This “atomic-like” behaviour is explained by 
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the observation that whenever an exploration particle came too close to the 

gbest it was repelled outwards only for it to be attracted back to the gbest 

where it was once again repelled outwards. However this repulsion often 

enables particles to find better solutions. The repulsion step size is set 

proportional to half of Vmax. If there is some idea as to how far apart the 

optima are expected to be on the fitness landscape then this step size can be 

set accordingly. The exploitation particles on the other hand close in on the 

gbest and try to improve it by doing a fine local search. If an exploration 

particle finds a better gbest, then the rest of the swarm moves towards this 

new position and the process continues until the termination criterion is met. 

Figure 3.3 displays the pseudo-code for the entire procedure. 
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Begin 

  initialize the population 

  initialize the velocities 

  evaluate fitness of all particles 

  set current position as pbest, set particle with best fitness as gbest and find 

the neighbourhood lbests 

      While  iter < total_iterations 

          update inertia weight factor (2.3.4) 

          set acceleration constants with (2.4.2) 

              For i = 1 to population 

 update fitness distance (fd) and variable difference (vd) using 

(2.4.3) and (2.4.4) respectively 

   If  fd > ε |  fd = 0 | vd > α | 
2

population
i ≤  

       For j = 1 to dimensions 

    update velocities (2.4.1) 

    check velocity magnitudes with (2.3.2) 

       EndFor j 

   Else  

       reset acceleration constants  

       pick = rand().dimensions   //    is the ceiling operator 

       For j = 1:dimensions 

          If j ≠ pick   

    update velocities with (2.4.1) 
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          Else 

    update velocities with (2.4.5) 

               check velocity magnitudes with (2.3.2) 

           EndIf      

       EndFor j 

   EndIf  

EndFor i 

update positions with (2.3.3) 

  evaluate fitness of all particles 

  update pbest, gbest and lbest if necessary 

EndWhile 

End 

 

Figure 3.3. Pseudo-code for the Flexi-PSO 

 

3.2. Qualitative Behaviour of the PSO 

 

In order to gain a greater understanding of the behaviour of the swarm, some 

qualitative analysis from experiments is necessary. To this end 3-dimensional 

animations have been set up for the following function (3.2.1) {same as (2.5.1) 

presented earlier & will red thread its way through this thesis} :- 

7.0)
2

4cos(4.0)
1

3cos(3.02
2

22
1

)( +−−+= xxxxxf ππ   (3.2.1) 
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This is a highly multimodal function with many local minima and is depicted 

in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. 3-D plot of multimodal Equation (3.2.1) 
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Figure 3.5. Cognition only inertia weight PSO 

 

Figure 3.5 shows the behaviour of the cognition only particle swarm. This is 

the variation proposed by (Kennedy, 1997) and is essentially a local search. 

The particles in red are the initial population positions. It can clearly be seen 

that the global optimum has not been found but that each particle converges 

to its best found position. If a particles initial velocity is large, it can climb 

over the nearest hills to another area of the search space, but if it cannot 

improve upon its best position then it is attracted back to its best position. 

This makes the cognition only variation of the particle swarm an individual 

hill climber. This is however very useful and was used in the development of 

the Flexi-PSO, represented as heuristic (3.1.2). Convergence is achieved 
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much quicker by allowing each particle to randomly use the cognition only 

variation. 

 

Figure 3.6 and Figure 3.7 are contour plots of this function upon which the 

history of a swarm run using the Inertia Weight PSO and Flexi-PSO are 

superimposed respectively. Each run comprised of 10 particles and 100 

iterations. The red circles in both figures are the initial population positions. 

In Figure 3.6 the population is deliberately initialised away from the global 

optimum and in a small volume of the search space yet the swarm is still able 

to migrate its way to the global optimum. The efficiency of the Flexi-PSO 

algorithm (Figure 3.7) is clear as there is a dense cluster of particles 

searching the niche with the global optimum and a sparse search away from 

this niche. Other nearby niches have also been searched. This is especially 

important in history matching due to the expensive computational time for 

each function evaluation and it is along these lines that further development 

of the algorithm has been carried out. In contrast the traditional inertia 

weight PSO (Figure 3.6) converges much slower to the global optimum.  

 

In Figure 3.7 the Flexi-PSO exhibits repulsion along the principal axis as 

equation (3.1.5) is invoked for a single dimension only. For rotated functions, 

the repulsion can be invoked in multiple dimensions. 
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Figure 3.6. Inertia Weight PSO search of Equation (3.2.1) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Flexi-PSO search of Equation (3.2.1) 
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(Vesterstroem et al, 2002) proposed a diversity metric in order to measure the 

convergence behaviour of the swarm. This metric is simply a summed 

average distance measure of each particle from the mean position of the 

swarm given in (3.2.2) where n is the number of particles and d the number 

of dimensions :- 

 

( )∑ ∑
= =

−=
n

i

d

j

jij xx
n

diversity
1 1

21
    (3.2.2) 

 

This metric is independent of the shape of the objective function, and is a 

qualitative indicator of the behaviour of the swarm. Figure 3.8 is an 

illustration of the diversity of the traditional inertia weight PSO versus the 

Flexi-PSO. 

 

 

 

 

 

 

 

 

 



Chapter 3                                                          Development of a new Particle Swarm Variant 

 70

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Diversity metric of the swarm history 

 

It can be immediately seen that the Flexi-PSO converges quicker than the 

traditional inertia weight formulation but that it also maintains a level of 

diversity at later iterations by repulsion of the exploration particles thus 

enabling the Flexi-PSO to escape local minima more easily. These are key 

elements for history matching as we do want to get to a match as quick as 

possible but be flexible enough to move on searching for other suitable 

matches as well. This is further illustrated in the velocity profiles of both 

methods in Figure 3.9 of variable x1.  
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Figure 3.9. Velocity profile of variable x1 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Global best value history 
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Figure 3.10 also shows that Flexi-PSO reaches the true global optimum 

faster than the inertia weight method, once again due to the modifications 

made to it. The Flexi-PSO appears to halt at around iteration 75 however this 

is just due to the precision of MATLAB being reached. 

 

3.3. Sequential Niching 

 

The Flexi-PSO does have the ability to escape local minima more easily than 

traditional PSO formulations, however the goal of this thesis is to develop an 

algorithm for history matching that would be able to find multiple niches to 

be used in uncertainty modelling. To this end niching variations of the PSO 

have been investigated. 

 

Two variations of niching algorithms exist viz. parallel and sequential 

niching. Parallel niching seeks to locate and maintain several niches in a 

population simultaneously and the fitness landscape is not modified in doing 

so. The challenge is in finding a good measure to locate possible solutions and 

to organise individuals in the population around solutions. Sequential 

niching methods on the other hand successively locate and isolate niches such 

that future searches do not duplicate sampling in niches that have already 

been identified, usually by modifying the fitness landscape around the niche. 
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There have been many studies on niching using genetic algorithms but very 

little using particle swarms. Fitness sharing and deterministic crowding are 

popular techniques employed in genetic algorithms for locating multiple 

optima. A seminal paper on sequential niching using fitness sharing GA’s is 

by (Beasley et al, 1993). In this paper, fitness sharing was used to locate 

niches, and derating functions applied to modify the fitness function within 

the niche radius. Fitness sharing was introduced by (Goldberg, 1987) and is a 

technique that modifies the fitness landscape by lowering an individual’s 

fitness by an amount nearly equal to the number of individuals within the 

same niche.  

 

The primary drawback to this approach is that the niche radius calculation 

requires prior knowledge of the number of optima in the fitness function. This 

is something that clearly cannot be used in history matching or when 

working with “black boxes” as the number of optima are unknown. 

Nevertheless this paper did highlight key elements in sequential niching viz. 

selection of an appropriate derating function such that false optima are not 

created (mexican hat effect) and estimation of the niche radius. Deterministic 

crowding is another method introduced by (Mahfoud, 1995) that uses 

competition between parents and children in the same niche. Essentially 
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after crossover and mutation, each child replaces its nearest parent if it has a 

better fitness. 

 

There have been a few attempts at using particle swarms to find multiple 

niches. (Engelbrecht, 2005) argued that the gbest PSO was incapable of 

niching while the lbest PSO was inefficient. Nevertheless there have been 

studies on modifying the basic algorithm that have achieved some success. 

(Kennedy, 2000) used a clustering technique that assigns each particle to a 

cluster and substitutes the cluster centre for the particle’s personal best. 

Although a niche radius is not employed in this approach, it is necessary to 

set the number of clusters before hand, which can be difficult to estimate for 

different functions particularly “black boxes”. (Brits et al, 2002) proposed a 

cognition only model that iterates and when there is little improvement, a 

sub-swarm is created around the particle in a small area to further refine the 

search. The algorithm is however dependent on proper initial distribution of 

the particles, something which cannot be guaranteed for complex functions. 

 

(Zhang et al, 2005) attempted using the concepts in fitness sharing GA’s to 

train multiple sub-swarms by employing a power law derating function and 

calculating the niche radius from a prior knowledge of the fitness landscape. 

They do however introduce an interesting concept of convergence similar to 
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the diversity metric used by (Vesterstroem et al, 2002) to stop the training of 

each sub-swarm. 

 

(Vaz & Fernandes, 2005)  used the inertia weight PSO in conjunction with an 

approximate descent direction to enable the computation of multiple niches. 

This is an interesting approach though somewhat computationally expensive 

since gradients need to be calculated for each particle at each iteration, and 

would not be appropriate for functions with discrete variables. 

 

(Zhang et al, 2006) proposed one of the most rigorous methods of sequential 

niching in particle swarms with the only drawback being the computational 

expense of additional function evaluations to estimate the niche radius. They 

successively train sub-swarms to find new niches by isolating old niches 

using the hill valley function approach which continuously moves in each 

dimension taking interior sample points until the monotonic change in the 

fitness stops. This is very well suited to mathematical functions but not 

expensive function evaluations. 

 

Since run times in reservoir simulation models can be quite long, and the 

simulator is a “black box” many of these approaches would not be suitable. In 

niching the primary elements are choice of a suitable derating function to 

steer the algorithm away from previously identifies niches and estimation of 
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the niche radius. The approach taken in this thesis is not to use a derating 

function due to the computational expense. Instead any particle falling 

within a previously identified niche is not evaluated but accelerated out of 

that niche instead. It is difficult to address the second problem of choosing a 

niche radius as each simulation model is going to have a completely different 

fitness landscape and hence we are left with either trying to rigorously 

evaluate the niche radius by making many more function evaluations or 

empirically set the niche radius beforehand and live with a certain amount of 

inefficiency.  

 

In this study, neural networks were used to train the sampled points once 

there was less than a 2% improvement in the globalbest over the last 5 

iterations. Once the neural network was trained, it was then interrogated in 

both directions of each dimension to estimate the niche radius, however this 

was found to be ineffective due to the scarcity of sample points. This becomes 

a contradictory problem since niches need to be identified with the fewest of 

function evaluations whereas neural networks being proxy models require 

large amounts of data to be trained with to be effective and this line of work 

was abandoned.  

 

The niche radius is now taken as a user defined limit and in this study is set 

to 10% of the dimensional range of each variable. This radius is purely up to 
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the user to define as the niche radius will vary within each function, vary 

with different objective functions and for different problem setups, hence 

there is no further sensitivity study on this parameter in this thesis. Figure 

3.11 shows the effect of adding this to the Flexi-PSO.  

 

The lowest valleys are extensively sampled by the swarm using the same 

number of function evaluations as in the previous cases. Once there is no user 

specified threshold improvement within a user specified number of iterations, 

the global best position is cordoned off by the niche radius and the swarm is 

reinitialised randomly ensuring that no particle is reinitialised in the 

cordoned off area. To preserve useful information that the swarm already 

has, the global best on re-initialisation is set to the best position visited by 

the swarm that is not in the niche cordoned area. Figure 3.12 shows the 

pseudo-code for this procedure. 
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Figure 3.11. Sequential Niching Flexi-PSO search of Equation (3.2.1) 

 

Figure 3.12 displays the pseudo-code for the Sequential Niching Flexi-PSO. 
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Begin 

  initialize the population 

  initialize the velocities 

  evaluate fitness of all particles 

  set current position as pbest, set particle with best fitness as gbest and find 

the neighbourhood lbests 

      While  iter < total_iterations 

          update inertia weight factor (2.3.4) 

          set acceleration constants with (2.4.2) 

              For i = 1 to population 

 update fitness distance (fd) and variable difference (vd) using 

(2.4.3) and (2.4.4) respectively 

   If  fd > ε |  fd = 0 | vd > α | 
2

population
i ≤  

       For j = 1 to dimensions 

    update velocities (2.4.1) 

    check velocity magnitudes with (2.3.2) 

       EndFor j 

   Else  

       reset acceleration constants  

       pick = rand().dimensions   //    is the ceiling operator 

       For j = 1:dimensions 

          If j ≠ pick   

    update velocities with (2.4.1) 
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          Else 

    update velocities with (2.4.5) 

               check velocity magnitudes with (2.3.2) 

           EndIf      

       EndFor j 

   EndIf  

EndFor i 

update positions with (2.3.3) 

For I = 1 to population 

 While (niches > 0 & particle lies within any niche) 

  Reinitialise particle randomly 

 EndWhile 

EndFor 

  evaluate fitness of all particles 

  update pbest, gbest and lbest if necessary 

  if |gbest(iter) – gbest(iter-user_iter)| < tolerance 

   set niche boundary = gbest ± niche_radius 

   reinitialise population 

   reinitialise velocities 

   set gbest = best position found outside niche boundary 

EndWhile 

End 

Figure 3.12. Pseudo-code for the Sequential Niching Flexi-PSO 
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3.4. Function Stretching 

 

Function Stretching is a technique that can be used to find multiple minima. 

(Parsopoulos et al, 2004) proposed a two-phase transformation of the 

objective function once a detected minimum has been found. The first phase 

stretches the objective function upwards eliminating all minima with values 

higher than the detected minimum. In the next stage, the detected minimum 

is turned into a maximum whilst still leaving all minima with objective 

function values lower than the detected minimum unaltered. 

 

Let x* be a minimiser of an objective function f. The stretching is defined as :- 

 

( ) ( ) ( ) ( )( )( )1**1 +−−+= xfxfsignxxxfxG γ    (3.4.1) 

  ( ) ( ) ( ) ( )( )
( ) ( )( )( )*tanh

1*
2

xGxG

xfxfsign
xGxH

−

+−
+=

µ
γ     (3.4.2) 

 

where γ1 = 5000, γ2 = 0.5 and µ = 10e-10 are arbitrary parameters. The 

following function is used to evaluate whether this transformation process 

can be useful in the history matching process. 

 

( ) ( ) 10cos.sin ++= xxxy     (3.4.3) 
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Figure 3.13. Plot of (3.4.3) 

 

Figure 3.13 illustrates (3.4.3). This function is then taken through the two-

stage transformation process and is depicted in Figure 3.14. The local 

minimum used is x* = 3.68 (highlighted in Figure 3.12). G stretches the 

function upwards and H has turned this local minimum into a maximum 

whilst leaving everything lower than f(x*) = 6.328 intact. This appears to be a 

promising technique that can be used in conjunction with the PSO however, if 

the first detected minimum is indeed the global minimum, then no other 

minima will be detectable thereafter and the algorithm will have to be rerun, 

albeit you are better off since the global minimum is now known. 
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Figure 3.14. Function Stretched depiction of minimum @ x* = 3.68 

 

Figure 3.15 shows the effect of the stretching transformation on the global 

minimum at x* = 9.61. In a way, one would actually hope that the first 

minimum that is found is not the global minimum with this technique, but it 

does lend itself to the Flexi-PSO since the Flexi-PSO has the ability to take 

small steps and hence find a local minimum quicker than its counterparts. 

Testing this technique on a local minimum ( x* = [-0.6 –0.5], f(x)* = 0.9127 ) 

gives the transformed fitness landscape in Figure 3.16. Figure 3.17 then 

shows the globalbest progression when the Flexi-PSO is run on this 

transformed function. 
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Figure 3.15. Function Stretched depiction of global minimum @ x* = 9.61 

 

The Flexi-PSO is not initialised anywhere in the area of the hollows of Figure 

3.15, since the initial globalbest value is in the region of 105, and the Flexi-

PSO is still able to make its way into the hollows of the transformation and 

find the global optimum. This technique looks promising and will be 

attempted when history matching the case studies presented later in this 

thesis. 
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Figure 3.16. Function Stretched depiction of local minimum @ x* = [-0.6 –0.5] on (3.2.1) 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Flexi-PSO performance on the function stretched transformation of (3.2.1) 
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3.5. Handling Mixed Integer Problems 

 

Another area of particular importance in history matching is mixed integers. 

Mixed integer problems are where you have both discrete variables and 

continuous variables simultaneously in the problem formalisation. This is 

relevant to history matching as the most common approach has been to use a 

single static model and deterministically find a suitable history match, but 

this approach was largely due to a lack of computing power. With widely 

available distributed computing resources and reservoir simulators that can 

decompose the grid and run the sub-grids in parallel over multiple 

processors, past limitations are no longer that critical. This opens the way for 

wider uncertainty handling by using multiple static models either based on 

different grids, geological models or property realisations. Hence when the 

assisted history match is launched, the Flexi-PSO will sample from the 

available static models (discrete variable/s) and fluid/rock parameters 

(continuous variables) simultaneously and gravitate towards the static 

model/s that give the best performance on the objective function. 

 

This turns the history match problem from being solely in the continuous 

domain to the mixed integer domain. In our case it is unlikely that binary 

integer problems arise, but it is more of a case where an integer variable can 

take on a number of discrete values e.g. realisation 1, realisation 2 etc. There 
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have been quite a few attempts at mixed integer problems using particle 

swarms of which a few will be mentioned. (Gaing, 2005) used a simple 

rounding off method in the velocity updates for the discrete variables. Hence 

(3.1.1) would be rounded off to give a discrete value that would then be used 

in the position update. (Rongshan & Xia, 2007)  proposed using the sigmoid 

function (commonly used as transfer functions in neural networks) to deal 

with binary integer problems. The updated velocity is used as the sigmoid 

function argument and the position is updated as zero if the sigmoid function 

result is less than a uniform random value within [0,1] and 1 otherwise.  

(Kitayama & Masuda, 2006) developed a penalty function approach to 

handling discrete variables. In the velocity updates all variables are treated 

as continuous but the fitness function is augmented with a penalty if the 

continuous equivalent of the discrete variables departs from discrete values. 

 

In this study a simple round-down approach to each discrete variable is 

taken, where the discrete variable represented in the swarm is just the index 

to the actual underlying variable value. This is by far the simplest approach 

to mixed integer problems and is used in a mathematical benchmark function 

test in the next chapter to test its effectiveness. (3.5.1) formalises this 

representation for tubing sizes :- 
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 Actual size (ID)  :  [ 1.867”, 2.259”, 2.323”, 2.441”, 3.068” ] 

 PSO index  :  X = [1, 2, 3, 4, 5] 

 PSO update (2.3.3)  :  x = 1.45 → X = floor(x) = 1   (3.5.1) 

Function evaluation  :  f(X) = f(1.867”) 
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Chapter 4 

Mathematical Testing of the Flexi-PSO 

 

4.1. CEC 2005 benchmark test set 

 

There have been many optimisation methods proposed over the years for 

history matching but there has been no qualitative way of judging their 

effectiveness in relation to other each other, except for those that have used a 

common benchmark test model like the Imperial College Fault model. In this 

study 25 non-linear functions have been used as an experiment to gauge how 

well the Flexi-PSO can deal with unimodal and highly multimodal functions. 

The test set is developed by (Suganthan et al., 2005) for the 2005 Congress on 

Evolutionary Computation Special Session on Real Parameter Optimisation. 

This test set in particular is good to assess bias in algorithms as many 

functions are shifted and rotated. Details of these functions can be found in 

Appendix A. 

 

Some functions are asymmetrically initialised to assess the robustness of the 

algorithm. When the PSO was first introduced, symmetric initialisation was 

common where the initial population was uniformly distributed in the entire 

search space. (Angeline, 1998) suggested initialising the population 
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asymmetrically, where the population is initialised in only a portion of the 

search space and away from the global optimum.  

 

Each function was run twenty five times so as to obtain a mean fitness value 

and standard deviation, and each run used a different seed for the random 

number generator hence each population initialisation was different.  All the 

runs were conducted in 10 dimensions, using a population size of 20 particles 

for 500 iterations resulting in 10 000 function evaluations per trial. A 

comparison is made with another PSO paper presented by (Liang & 

Suganthan, 2005) in which a dynamic multi-swarm inertia weight method is 

combined with a quasi-Newton search method to improve local optimisation. 

In order to maintain parity, the Flexi-PSO is combined with the quasi-

Newton (Fletcher, 1970) option FMINUNC within MATLAB. The Flexi-PSO 

uses the first 9500 function evaluations whilst the last 500 function 

evaluations use the FMINUNC function. Figure 4.1 and Table 4.1 displays 

the comparison of the mean values achieved between these two methods in 

addition to a differential evolution (Tasgetiren et al, 2005) and memetic 

algorithm (Molina et al, 2005) presented at the conference. (Tasgetiren et al, 

2005) present results for only the first 14 functions.  

 

The first five functions are unimodal functions; function 1 is the Shifted 

Sphere Function, function 2 the Shifted Schwefel’s problem 1.2, and function 
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3 the Shifted Rotated High Conditioned Elliptic function. These three 

functions have different condition numbers leaving them in increasing order 

of difficulty respectively. The condition number associated with a problem is 

a measure of that problem's amenability to digital computation, that is, how 

numerically well-conditioned the problem is. A better result is achieved for 

function 1 than function 2 which in turn is better than function 3. Function 4 

is shifted Schwefel’s problem 1.2 with noise in fitness which makes the 

search process much more difficult. The Flexi-PSO does show good 

performance on this function relative to the other techniques but is still far 

from the optimum.  

 

Function 5 is Schwefel’s problem 2.6 with the global optimum on the bounds. 

For 10-D, 3 dimensions are on the low bounds, 3 dimensions on the high 

bounds and other 4 dimensions randomly distributed in the search range. 

The Flexi-PSO does not perform very well on this problem mainly due to the 

fact when a particle goes out of the search space it is damped back in the 

search space rather than limiting the position to the boundary. In practice 

this can be problematic with particle swarms as it can take many iterations 

for the particle to move back into the search space if it is stopped at the 

boundary and many function evaluations are wasted during this time. 
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Functions 6-25 are multimodal problems. Function 6 is the Shifted 

Rosenbrock’s Function, a problem between unimodal and multimodal and an 

algorithm with good local search ability can achieve good results on 

Rosenbrock’s Function. The Flexi-PSO achieves a good comparable 

performance. Function 7 is the Shifted Rotated Griewank function without 

bounds, only the initialization range is given and the search range is [−∞,+∞]. 

Griewank’s function is more difficult with decreasing dimension and it is 

difficult to achieve the global optimum. The Flexi-PSO performs relatively 

well on this function. Function 8 is the Shifted Rotated Ackley function with 

global optimum on bounds, which has a very narrow global basin and half the 

dimensions of this basin are on the bounds. This is akin to finding a needle in 

a haystack and the Flexi-PSO is not able to find the minimum on any run.  

 

Functions 9 and 10 are shifted Rastrigin’s function and shifted rotated 

Rastrigin’s function respectively, both of which have a huge number of local 

optima. The Flexi-PSO performs well on all 25 runs for function 9, but the 

results are poorer for function 10 owing to the rotation. Function 11 is the 

Shifted Rotated Weierstrass function and the poor results that the Flexi-PSO 

achieves is due to the complexity of this function. Function 12 is Schwefel’s 

problem and for the 100 000 feval case, the optimum is found more than half 

the time but when it fails to locate the optimum region, it results in a 

solution with a poor fitness. Functions 13 and 14 are expanded functions on 
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which the Flexi-PSO performs relatively well, while functions 15-25 are 

eleven novel composition functions. They are composed of basic functions and 

are extremely challenging to any search algorithm. The Flexi-PSO performs 

poorly on all these functions but as can be seen from Figure 4.1 and Table 

4.1, to be relatively the same as the other algorithms. 

 

The Flexi-PSO compares well with other methodologies and gives confidence 

for further use. Figure 4.2 and Table 4.2 compare the performance on the 

same function set but this time in 30 dimensions and for 100 000 function 

evaluations. The population size is increased to 40 particles for this test and 

the results are once again averaged over twenty five runs. The Flexi-PSO is 

compared to a Flexible Evolutionary Algorithm (Alonso et al, 2005), Real 

Coded Memetic Algorithm (Molina et al, 2005) and a steady state Real 

Parameter Genetic Algorithm (Ballester et al, 2005). 

 

It is evident from Table 4.2 that the Flexi-PSO outperforms the other 

techniques on most of the functions underlining its scalability to higher 

dimensions. One reason for this is that the Flexi-PSO maintains explorative 

capability through the exploration particles even when the exploitative 

particles begin to converge, hence the swarm as a whole can continually 

search the dynamic range. 
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Figure 4.1. CEC-2005 Comparison (10-D, 100 000 fevals) 
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Function 
Random 
Search 

DE RCMA DMS-PSO Flexi-PSO 

1 3972.6 18.816 0.00000459 0.0048732 6.0999E-09 

2 9856 194.33 3.659 100.7 0.0001715 

3 6.32E+07 1001049 515354.8 843760 343160 

4 7777.8 267.16 553.511 270.52 5.5735 

5 11920 0.0188126 125.378 52.905 516.32 

6 3.83E+08 15560 7.10789 82.235 27.273 

7 2271.6 1.3767 0.484082 0.84928 0.33796 

8 20.509 20.547 20.247 20.365 20.415 

9 74.54 35.894 5.309446 7.4393 0.75681 

10 90.36 50.082 8.832397 23.521 19.82 

11 10.798 9.78996 7.334553 7.3131 4.9684 

12 54498 2912.3144 264.37 1180.7 3813.8 

13 6.6614 4.99484 1.425342 1.3832 0.70825 

14 4.1269 3.99999936 3.513988 3.3758 3.4664 

15 727.08  305.706 131.28 296.6 

16 340.69  112.8299 141.05 142.41 

17 414.52  156.661 161.23 155.1 

18 1178.6  806.7819 897.28 922.45 

19 1118.3  772.03 879.85 863.56 

20 1079.9  800.116 901.32 935.48 

21 1352.4  741.413 851.41 1023.9 

22 1045.2  721.052 756.64 854.66 

23 1377.8  981.28 860.76 1127.8 

24 1312.2  224.017 248.75 421.75 

25 1338.4  399.9965 1005.7 499.89 

 

Table 4.1.  Comparison between Random Search, Differential Evolution, Real-Coded 

Memetic, Dynamic Multi-Swarm and Flexi-Particle Swarm Optimisation Algorithms on 

the CEC 2005 Mathematical Benchmark Test Set (best solution in bold) for 10-D, 10 000 

fevals 
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Figure 4.2. CEC-2005 Comparison (30-D, 100 000 fevals) 
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Function 
Random 
Search 

FEA RCMA SPC-PNX Flexi-PSO 

1 61517 117.33 9.53E-09 9.3524E-09 1.6389E-11 

2 74634 3573.8 7.289625 5.8753 1.9705E-07 

3 5.47E+08 17094000 5508628 3317500 40481 

4 77629 14525 779.1663 6.8783 5614.6 

5 31898 10174 2213.529 4336.6 6035.8 

6 1.96E+10 514.15 61.4232 868.07 3.2214 

7 9833.6 11.137 0.01329727 0.95537 0.020672 

8 20.975 20.464 20.79068 21 20 

9 415.46 42.879 7.550987 143.38 2.6034E-12 

10 638.52 217.37 110.197 170.61 103.63 

11 40.951 31.486 34.65414 18.119 26.395 

12 1.13E+06 31652 6432.686 23408 1193.8 

13 181.72 7.3701 8.659078 3.7176 1.6729 

14 13.784 13.057 12.747 13.452 12.521 

15 926.61 331 356.1009 368.29 354.35 

16 701.59 269.95 335.0033 133.34 250.61 

17 776.21 338.36 296.6728 124.14 270.19 

18 1236.1 967.17 877.9795 907.64 832.97 

19 1236.5 943.55 882.1409 907.15 831.1 

20 1233 973.6 879.902 907.23 832.67 

21 1385.6 695.48 500 500.06 821.83 

22 1404.8 1082.5 913.7631 908.67 579.96 

23 1407.3 965.89 559.1006 534.17 797.6 

24 1418.8 328.16 200 200 260.51 

25 1433 517.86 212.8011 226.76 231.07 

 

Table 4.2.  Comparison between Random Search, FEA, Real-Coded Memetic, Real 

Parameter GA (SPC-PNX) and Flexi-Particle Swarm Optimisation Algorithms on the 

CEC 2005 Mathematical Benchmark Test Set (best solution in bold) for 30-D, 100 000 

fevals 
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4.2. Neural Network model of the IRIS Dataset 

 

A further test of the effectiveness of an optimisation algorithm is the training 

of a neural network. In this study the Iris dataset (Appendix B) is used to test 

the effectiveness of the Flexi-PSO and a comparison made with the standard 

backpropagation method of updating the weights of a feed-forward single 

hidden layer neural network. This subsection first introduces the basics of a 

feedforward neural network before moving on to comparing the performance 

of the Flexi-PSO and typical backpropagation error minimisation techniques 

long used in the training of neural networks. The commonly used IRIS 

dataset used for classification of three different flower types is used in this 

comparative study. 

 

An Artificial Neural Network (ANN) is an information processing paradigm 

that is inspired by the way biological nervous systems, such as the brain, 

handle information (Masters, 1993). The key element of this paradigm is the 

novel structure of the information processing system. It is composed of a 

large number of highly interconnected processing elements (neurons) working 

in unison to solve specific problems. Typically they are used on problems 

involving pattern recognition or data classification, proxy or response surface 

modelling, time-series modelling and have seen implementation in most 

industries. 
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ANNs, like people, learn by example. An ANN is usually configured for a 

specific application through a learning process. Learning in biological 

systems involves adjustments to the synaptic connections that exist between 

the neurons. This is true of ANNs as well.  From a computational point of 

view we also know that the fundamental processing unit of the brain is a 

neuron. A neuron consists of a cell body, or soma, that contains a nucleus 

(Figure 4.3). Each neuron has a number of dendrites that receive connections 

from other neurons.  Neurons also have an axon that goes out from the 

neuron and eventually splits into a number of strands to make a connection 

to other neurons. The point at which neurons join other neurons is called a 

synapse.  

 

Signals move from neuron to neuron via electrochemical reactions. The 

synapses release a chemical transmitter that enters the dendrite. This raises 

or lowers the electrical potential of the cell body. The cell body sums the 

inputs it receives and once a threshold level is reached an electrical impulse 

is sent down the axon (often known as firing). These impulses eventually 

reach synapses and the cycle continues. Synapses that raise the potential 

within a cell body are called excitatory. Synapses that lower the potential are 

called inhibitory. It has been found that synapses exhibit plasticity. This 

means that long-term changes in the strengths of the connections can be 
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formed depending on the firing patterns of other neurons. This is thought to 

be the basis for learning in the brain. 

 

Figure 4.3. Schematic of a biological neuron 

 

Artificial neural networks “artificially” replicate the behaviour of a system of 

biological neurons. Figure 4.4. displays a feed-forward neural network with 2 

inputs, 2 hidden neurons, and a single output neuron. I1 and I2 contain the 

input data that is used to train the network which is usually scaled before 

use in the network. This is done to remove biasness towards variables that 

are large in magnitude or vary over log scales as opposed to other variables 

that are linear. Weights (Wij) are usually real numbers and can take on any 

value.  
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Figure 4.4. Schematic of an artificial neural network 

 

The neurons in the hidden and output layers of Figure 4.3. are represented 

by transfer functions that could in theory take on any shape. Typically 

sigmoid transfer functions in the hidden layer are used together in 

conjunction with linear transfer functions in the output layer. This design is 

reported to be capable of approximating any continuous function arbitrarily 

well (Mathworks, 2005). Figure 4.5 depicts the processing in an artificial 

neuron with a sigmoid function. The signal into the neuron is the product of 

each input and its weight to the neuron in addition to a bias (threshold). This 

is then mapped onto the transfer function and the evaluation thereof is sent 

as an output signal. 

 

 

 

signal 
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Figure 4.5. Processing in an artificial neuron 

 

This inner workings can be represented as the following for neuron i (in this 

study a tan-sigmoid function is used) :- 

 

∑
=

+=
inputs

j

ijji biasWain
1

     (4.2.1) 

).tanh()( iii inkinga ==     (4.2.2) 

 

The tan-sigmoid function has k = 1, however in this study, k (the slope of the 

sigmoid functions) is allowed to vary to increase the flexibility of the network. 

Networks used for data classification usually use step functions as transfer 

functions that give a hard threshold for a neuron to fire, thus making clear 

distinctions in data. Step functions can be approximated with a sigmoid 

function that has a relatively large value of k. Figure 4.6 illustrates the effect 

bias 
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of k on the shape of the transfer function. Naturally if k = 0 there is a flat 

response from the neuron for any input and hence this neuron can be 

removed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Effect of k on the transfer function (4.2.) 

 

There has been work done before in this area using particle swarms and is 

worth testing as neural networks pose highly non-convex fitness landscapes 

due to the number of weights (variables) involved and the non-linearity of the 

transfer functions within each neuron.  
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(Ribeiro & Schlansker, 2004) used the canonical particle swarm to train a 

neural network for reactive power systems successfully. (Al-kazemi & Mohan, 

2002) used a multi-phase PSO to train a feed-forward neural network on the 

commonly used Iris, New Thyroid and Glass classification datasets (Blake et 

al, 1998). This variation of the algorithm only uses the global best and 

current position of the particle in the velocity updates. (Eberhart and Shi, 

1998) went as far as to state that scaling was unnecessary in pre-processing 

input data to a neural network when using the inertia weight PSO and a 

high slope threshold on the sigmoid transfer function.  

 

A test was put forward to the Flexi-PSO to train a feed-forward neural 

network with a single hidden layer on the IRIS dataset (Appendix B). The 

hidden and output layer neurons contained the tan-sigmoid transfer function 

and the Flexi-PSO is used to update the weights and evolve the structure of 

the network. This is then compared to a standard back-propagation (Masters, 

1993) technique of updating the weights. 

 

The IRIS dataset is commonly used as a test case for data classification 

algorithms. There are fifty samples each of flowers of three species viz. 

Setosa, Veriscolor and Virginica. There are four attributes used to distinguish 

each species, viz. Sepal Length, Sepal Width, Petal Length and Petal Width. 
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This set is commonly used as the Veriscolor and Virginica flower types are 

not linearly separable from each other. The network is trained to 10 000 

epochs using the Flexi-PSO and standard backpropagation. Results of the 

classification are presented in Figure 4.7. 

 

The Flexi-PSO achieves a very good match to the actual classification 

whereas the standard backpropagation fails on many samples. The 

backpropagation algorithm has two parameters to be set viz. learning rate (η) 

and momentum (α). In this comparison η = 0.5 and α = 0.8. Testing on other 

combinations of the learning rate and momentum did not yield any better 

results. This is another test in robustness that the Flexi-PSO passes. 
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Figure 4.7.  Measured and Predicted Comparison of the Flexi-PSO and Standard 

Backpropagation techniques on the IRIS Dataset 
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4.3. Integer Problems 

 

In testing integer problems, the method used is as discussed in Section 3.4. 

Three commonly used test problems found in the literature (Laskari et al, 

2002) are used to test the Flexi-PSO. These problems are defined as follows :- 

 

22

21

22

2

2

11 )743()1129()( −++−+= xxxxxF       (4.3.1) 

with solution x* = (1, 1) and F1(x*) = 0 
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with solution x* = (0, 0, 0, 0) and F2(x*) = 0 
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2

1213 25.18264.20308.12392.23208.13884.3803)( xxxxxxxF +++−−−=  (4.3.3) 

with solution x* = (0, 1) and F3(x*) = -3833.12 

 

A comparison is made with results obtained by (Laskari et al, 2002) who used 

an inertia weight (PSO-In), constriction factor (PSO-Co) and both inertia 

weight and constriction factor (PSO-Bo) particle swarm to solve the above 

problems. Table 4.3 reports the comparison in both function value and mean 

number of function evaluations required to find the optimum over an average 

of 30 runs. All methods do find the global optimum but the Flexi-PSO is able 

to do so much quicker. 
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Function Method Mean F(x') Mean fevals 

    

F1 PSO-In 0 304.0 

 PSO-Co 0 297.3 

 PSO-Bo 0 302.0 

 Flexi-PSO 0 76.0 

    

F2 PSO-In 0 1728.6 

 PSO-Co 0 1100.6 

 PSO-Bo 0 1082.0 

 Flexi-PSO 0 438.0 

    

F3 PSO-In -3833.12 334.6 

 PSO-Co -3833.12 324.0 

 PSO-Bo -3833.12 306.6 

 Flexi-PSO -3833.12 65.3 

    

 

Table 4.3.  Comparison performance on benchmark integer problems 
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Chapter 5 

Hierarchical Clustering 

 

An assisted history match run could lead into hundreds of simulations and in 

order to select matches that fall into distinctly different niches, some post-

processing of the results is required. This is even more essential for the 

Sequential Niching Flexi-PSO, as it has already been shown that it has the 

capability of moving into different niches. However, many other niches could 

also have been searched by some particles during the course of the run and 

these need to be isolated as well. It may be difficult to analyse a table of 

results directly particularly if there a large number of variables, hence 

clustering would be useful in this regard. 

 

5.1. Agglomerative Hierarchical Clustering Methods 

 

Many clustering techniques exist viz. self-organising maps, k-means, fuzzy-c 

means and hierarchical clustering to name a few. The goal of this thesis is 

not to design a new clustering method but to use it in conjunction with other 

graphical tools. Hence for simplicity hierarchical clustering has been chosen. 

Hierarchical clustering is a method of cluster analysis that builds a hierarchy 

of clusters. There are different methods that can be used to generate the 
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hierarchical cluster tree information based on ways of measuring the distance 

between two clusters of objects. If nr is the number of objects in cluster r and 

ns is the number of objects in cluster s, and xri is the ith object in cluster r, the 

definitions of the various measurements are as follows :-  

 

Nearest neighbour, uses the smallest distance between objects in the two 

clusters :- 

d(r,s)  =  min( dist( xri,xsj ) ),  i ∈ (1, ..., nr),  j ∈ (1, ..., ns)  (5.1.1) 

Furthest neighbour, uses the largest distance between objects in the two 

clusters :- 

d(r,s)  =  max( dist( xri,xsj ) ),  i ∈ (1, ..., nr),  j ∈ (1, ..., ns)  (5.1.2) 

Average linkage uses the average distance between all pairs of objects in 

cluster r and cluster s :- 
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where dist is the normalised Euclidean distance function.  
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Fig. 5.1.  Nearest Neighbour 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2.  Furthest Neighbour 
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Fig. 5.3.  Average Linkage 

 

The following is the procedure for the nearest neighbour measure 

implementation :- 

Consider a set S of m-dimensional data points within a tree structure Y. 

a) Place each data point instance of S in its own cluster (singleton), 

creating a list of clusters L (initially, the leaves of Y):  L = S1, S2, S3, 

..., Sn-1, Sn 

b) Compute the shortest normalised Euclidean distance between every 

pair of elements in L to find the two closest clusters {Si, Sj}  

c) Remove Si and Sj from L  

d) Merge Si and Sj to create a new internal node Sij in Y which will be 

the parent of Si and Sj in the result tree 

e) Go to (b) until there is only one set remaining 
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An example illustration of the resulting dendrogram is shown in Fig. 5.4. 

 

 

 

 

 

 

 

 

 

Fig. 5.4.  Simple Dendrogram 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5  Hierarchical Clustering 

 114

5.2. Clustering the IRIS Dataset 

 

This section examines a few hierarchical distance measures in clustering the 

IRIS dataset. Figure 5.5 is the cross plot of the dataset and illustrates the 

non-separability of the Veriscolor and Virginica flower types. Table 5.1 

displays the numbers of samples misclassified by each distance measure. 

Average linkage has the least number of classification errors and will be used 

later in this study. It is to be expected that the nearest neighbour measure 

would result in more errors, as it would be less susceptible to picking up 

linearly non-separable clusters. 

 

 

Distance Measure Misclassifications 

Nearest neighbour 51 

Furthest neighbour 18 

Average 17 

 

Table 5.1.  Classification errors on the IRIS dataset 
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Fig. 5.5.  Cross plots of the IRIS dataset 
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Chapter 6 

History Matching & Forecasting : Case Study of 

The Imperial College Fault Model 

 

This section deals with the Imperial College fault model as a case study. A 

description of the model is given followed by the results of the history 

matching exercise using the Flexi-PSO and an overall uncertainty evaluation 

that includes forecasting with the ensemble that is generated in the history 

matching phase. But firstly, lets look at some qualitative ways in which to 

enhance the performance of the algorithm. As was discussed in Chapter 3.2, 

the swarm is more than capable of finding optima even it is asymmetrically 

initialised. However the goal of this thesis is to find ways to quicken the 

process of history matching due to the expensive nature of running 

simulation models, and to minimise the number of simulations to be run. It is 

intuitively better to initialise the swarm as uniformly as possible over the 

hypercube and this chapter begins with a technique to address this issue. 
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6.1. Low Discrepancy Sequences 

 

Faure sequences are low discrepancy sequences where successive numbers 

are added in a position as far as possible from one another in order to avoid 

clustering (Faure, 1992). The numbers generated sequentially fill in the gaps 

between the previous numbers in the sequence. These sequences produce low 

error bounds for multidimensional integration and global optimisation (Fox, 

1986) and have seen extensive application in finance (Joy et al, 1996).  

 

(Van der Corput, 1935) was the first to introduce low discrepancy sequences 

and many sequences developed thereafter are based on this work. In general 

for base b, if the n’th term of the sequence is indexed as decimal-base :- 

∑
=

=
m

j

j

j bnan
0

)(      (6.1.1) 

The reflection of (6.1.1) is then used to generate the n’th term as :-  

∑
=

−−=
m

j

j

j bnanb
0

1)()(      (6.1.2) 

The n’th term of the van der Corput sequence, for base b, is generated as 

follows:-  

 

the decimal–base number n is expanded in the base b, example n = 4 in base 

2 is 100100100100 ( 4 = 1111 x 22 + 0000 x 21 + 0000 x 20 ) from equation (6.1.1). The number in 

base b is reflected. In the example, 100100100100 becomes 001001001001. Mapping into interval 
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[0,1). 001 becomes 0.001 (binary decimal) and this corresponds to the decimal 

number 1/8, that is 1/8 ( = 0x(1/2) + 0x(1/4) + 1x(1/8) ) from equation (6.1.2). 

The algorithm for the Faure sequence uses (6.1.1) and (6.1.2), however before 

(6.1.2) is used, there is a combinatorial rearrangement of the aj. This is 

performed using a recursive equation, from dimension (d-1) to the new 

dimension d:- 

 

∑
≥

−

−
=

m

ij

d

j

d

i bna
iji

j
na mod)(

)!(!

!
)( 1     (6.1.3) 

 

The first dimension uses the van der Corput sequence with the specific 

Faure's base b, then the numbers are reordered for dimension d > 1 with 

(6.1.3). Figure 6.1 compares the difference between the internal random 

number generator within MATLAB and a Faure sequence for 200 points in 

2 dimensions. Clearly the Faure Sequence tends to fill in the space much 

more evenly than the random number generator and it is this greater 

uniformity of spacing that intuitively is sensible to use in the initialisation of 

any population based optimiser. 
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Figure 6.1.  2-D comparison of a random number generator and a Faure Sequence 
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6.2. IC Fault Model Description 

 

The Imperial College Fault Model has become a well known benchmark 

history matching model. It is a simple model that is quite difficult to history 

match (Carter et al, 2006). The geological model with no-flow boundary 

conditions consists of six layers of alternating good and poor quality sands 

(Figure 6.2). The good and poor quality layers have identical properties 

respectively. Starting from the top layer, the thicknesses are 12.5ft, 11.5ft, 

10.5ft, 9.5ft, 8.5ft and 7.5ft for each layer resulting in a total thickness of 60 

feet. The simulation model is 100 x 12 grid blocks, with each geological layer 

divided into two simulation layers with equal thickness, each grid block is 10 

feet by 10 feet aerially. The width of the model is 1000 feet, with a simple 

fault at the mid-point, which offsets the layers. Water is injected at the left-

hand edge, and a producer well on the right-hand edge. Both wells are 

completed on all layers, and are operated on bottom hole pressures. The 

model is constructed such that the vertical positions of the wells are kept 

constant and equal, even when different fault throws are considered. The well 

depths are from 8325 feet to 8385 feet. This model has been simulated in the 

Shell proprietary simulator MoReS. 

 

There are three parameters in this model viz. fault throw (h), high 

permeability (kg) and low permeability (kp). A truth case is run for 5 years to 
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generate synthetic monthly production data with the set of parameter values 

being fault throw = 10.4 ft, high permeability = 131.6 md and low 

permeability = 1.31 md. The first three years of production data is used in the 

history match and the last 2 years used as prediction data to measure the 

predictive quality of the history matches. The swarm is initialized from a 

random uniform distribution in the ranges viz. h ∈ [0,60] ft, kg ∈ [100,200] 

md and kp ∈ [0,50] md. 

 

 

 

Figure 6.2.  Imperial College Fault Model 
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The fitness is defined as the root mean square error between the simulated 

data of each realisation and the production data from the truth case :- 
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Here n denotes the number of measurements in the history matching period 

which is thirty six. The superscript obs refers to the truth case production 

data and the superscript sim refers to the realization case production data for 

oil and water respectively. σo and σw are the standard deviations for oil and 

water production rates respectively in the truth case and behave as 

weighting factors for normalization purposes. In this instance they are taken 

to be 3% of the truth case production data viz. 

 

σo = 0.03Qoobs       (6.2.2) 

σw = 0.03Qwobs       (6.2.3) 

 

The Flexi-PSO is set up with 20 particles running for 50 iterations leading to 

a maximum of 1000 function evaluations. 
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6.3. Results and Discussion 

 

The aim of this history matching exercise is to use the sequential niching 

capability of the Flexi-PSO to capture as much of the uncertainty range as 

possible, in other words to identify as many distinctly different minima as 

possible in the search space thus creating an ensemble of history matches. 

Creating an ensemble of matches that are similar to one another is just 

taking a set of points from around single minima and that is not the objective 

of this study. Such an approach would in all likelihood lead to similar 

prediction profiles and this study is aimed at searching for good history 

matches that in fact have divergent prediction characteristics and hence lead 

to more confidence in the predictive uncertainty range. Another reason is 

that in practical terms one can only take forward a reasonable number of 

history matches into the prediction phase. Taking forward too many history 

matches and multiplying them by the number of prediction scenarios, will 

likely give an unmanageable and undecipherable set of profiles that would be 

very time consuming. 

 

The nature of the Flexi-PSO is that it explores and tries to exploit different 

valleys in the search space, hence it is anticipated that this behaviour would 

be reflected in the results. Models were ranked in increasing order of fitness 

and their history match profiles analysed. Models with a RMSE less than 3 
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were deemed acceptable. The RMSE value of 3 does not correspond to any 

statistical framework, but is chosen pragmatically by visual inspection of the 

matches.  Fig. 6.3 is a normalized plot of each variable and it is immediately 

visible that the swarm has explored and exploited different areas of the 

search space. The throw axis shows distinctly different accepted fault throws 

indicating exploration and around these distinct areas are clusters of points 

indicating exploitation. The challenge now is to select a set of history matches 

from this set.  

 

The normalized profile chart of Figure 6.3 is used in conjunction with 

hierarchical clustering. Firstly from Figure 6.3, there appears to be about ten 

cluster areas. The next step is to use agglomerative hierarchical clustering 

with the average linkage normalized Euclidean distance as a criterion for 

separation. To verify the appropriateness of the visually derived number of 

clusters, the dendrogram just needs to be cut at the level that leaves ten 

clusters. The clusters formed from this procedure are then visually checked 

against Figure 6.3 to ensure they are sensible. Such profile charts are 

valuable to visualise systems with many variables. Figure 6.4 displays the 

clusters in 3-D. 
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Figure 6.3.  Normalised profile chart of acceptable matches 
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Figure 6.4.  3-D plot of acceptable matches that are clustered 
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The next step is to determine which members of each cluster to take into 

forecasting. In this thesis a practical approach is taken, considering CPU 

availability, disk space and most importantly time available to the engineer 

for an uncertainty study task. In this regard, the minimum of each cluster is 

only taken into a table for a final qualitative analysis as in Table 3.  

 

It can be seen that there are still some similarities between the various 

matches, though they appear distinctly different on Figure 6.3. This is 

because Figure 6.3 is a normalised plot hence is very useful qualitatively, not 

quantitatively. Similar matches are grouped in Table 6.1, and the minimums 

of each group taken as the final set to carry forward into the prediction viz. 

Match 2, 7, 9 and 10. It can be seen that Match 9 is very close to the truth 

case, in fact the Flexi-PSO would be able to refine the match closer to the 

truth case if the improvement tolerance is slackened before reinitialisation. 
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 Throw Hi-perm Lo-perm Fitness 

Truth 10.60 131.60 1.31 0.00 

Match 1 20.41 130.44 1.50 1.67 

Match 2 19.58 129.53 1.48 0.99 

Match 3 20.25 130.69 2.21 2.62 

Match 4 19.92 130.66 2.49 2.93 

Match 5 17.91 129.86 2.17 2.86 

Match 6 18.10 129.92 2.80 2.91 

Match 7 22.66 131.99 2.05 2.58 

Match 8 13.53 129.03 1.57 2.09 

Match 9 11.13 130.98 1.99 1.73 

Match 10 6.47 124.96 4.14 2.88 

 

Table 6.1.  List of final history matches 

 

Figures 6.5-6.8 show the production plots for five years. The first three years 

are the history match period and the last two years is the prediction phase. 

Matches 1-10 were all carried through to check whether eliminating them 

loses any valuable information. For the history match period the ensemble is 

able to track the truth case well, and the final reduced set (in bold lines) is 

adequate to capture the range of the ensemble. It must be noted from Figures 

6.5 & 6.7 (oval demarcated area) that late in the prediction the ensemble is 

not able to track the truth case. This is important as it makes one realize that 

generating an ensemble is quite valuable to give an idea of the uncertainty 

range but is by no means definitive. 
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Figure 6.5.  Oil Production Rate 
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Figure 6.6.  Cumulative Oil Production 
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Figure 6.7.  Water Production Rate 
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Figure 6.8.  Cumulative Water Production 
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Figure 6.9 illustrates the fitness history of the Flexi-PSO. It can be seen that 

up to the 30th iteration the swarm converges very quickly but from here on 

(oval demarcated area) there doesn’t appear to be any improvement in the 

global best solution and in fact the swarm appears to be finding progressively 

poorer solutions. This is due to the sequential niching nature of the Flexi-

PSO, where minima that have already been found have been isolated and as 

the swarm is now exploring other areas of the search space it cannot find any 

other reasonable minima.  
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The minimum fitness is obtained on the 24th iteration and is represented by 

Match 2 (Table 6.1). Unlike any other method previously reported this 

divergence is in fact an encouraging indicator because one now has the option 

of stopping the global search procedure and complete the analysis of the 

assisted history match. Finally one always has the option of taking this a 

step further, time and resources permitting, to execute the cognition only 

version of the PSO or a local search algorithm to fine tune the final set of 

matches to see if any slightly better solution can be found.  

 

A further attempt at history matching the ICF model using the Flexi-PSO 

and function stretchingfunction stretchingfunction stretchingfunction stretching was investigated. This also serves to investigate the 

effect on a different starting population on another run. The final list of 

history matches is presented in Table 6.2. Distinct matches have been 

isolated using this technique, but this time the niche containing the truth 

case has not been found. Since function stretching elevates the fitness 

landscape, niches with a narrow valley can be even more difficult to identify 

as the stretching can lead to narrow needle like valleys in the transformed 

fitness landscape. This also leads onto the conclusion that any uncertainty 

modelling task should preferably be done with different starting populations 

on different runs to ensure that the fitness landscape has been searched more 

thoroughly.  
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 Throw Hi-perm Lo-perm Fitness 

Truth 10.60 131.60 1.31 0.00 

Match 1 5.5064 119.82 9.9581 2.4606 

Match 2 5.9013 120.47 9.5479 2.6728 

Match 3 17.566 129.32 1.9041 1.6375 

Match 4 17.586 129.39 2.1557 1.2772 

Match 5 17.589 129.38 2.3202 2.0165 

Match 6 17.59 129.37 4.3485 2.7946 

Match 7 17.601 129.35 2.1453 1.325 

Match 8 17.64 129.26 2.1185 1.5769 

Match 9 17.765 128.96 2.0321 2.4119 

Match 10 2.2419 121.61 2.9937 1.2027 

 

Table 6.2.  List of final history matches for function stretching transformation 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10.  Fitness history for function stretched transformation 
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Figure 6.10 illustrates the fitness history of the function stretched 

transformation. For scale purposes the true fitness values are plotted and not 

the transformed fitness. Once the first niche is isolated at the 25th iteration, 

successive niches are then visited as the model objective is transformed. This 

is valuable as it directs the swarm fairly quickly to the non-transformed 

areas. The drawback is that it is much more difficult to get into the niche 

that contains the truth case since the transformation results in a very “spiky” 

fitness landscape. In a multimodal landscape this will result in niches 

residing in the spiked areas and hence being separated in a somewhat 

discontinuous fashion. This would require many more iterations to find the 

truth case as once the swarm finds the first niche, the objective function is 

transformed and the swarm will then search for the next niche and once a 

particle finds the next niche and the globalbest is updated, the rest of the 

particles will rush into that niche without much exploration of the rest of the 

search space since the contrast in fitness is so large. 

 

This enhances the sequential niching nature of the Flexi-PSO but it does 

mean that the more spikes there are in the objective transformation, the 

longer it will take to find the region of the truth case as evidenced in this 

study. 
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Using the Nelder-Mead Simplex direct search method (Lasgarias et al, 1998) 

to history match the ICF Model makes a further test as to the efficiency of 

the Flexi-PSO. A brief description of direct search was given in Chapter 1.2. 

The FMINSEARCH option within MATLAB was employed for this task. 

Since the original formulation of the Nelder-Mead technique was not 

designed to handle bounds, direct usage of this option always led to solutions 

outside the desired range of the uncertainty parameters.  

 

A modified version FMINSEARCHBND (D’Errico, 2006) that is able to 

handle boundary constraints by an internal transformation of the variables 

(quadratic for single bounds, sin(x) for dual bounds)  was then used to history 

match the ICF Model. 10 attempts were made using random starting points 

and each attempt was allowed 1000 function evaluations to be commensurate 

with the Flexi-PSO. The results are shown in Table 6.3. Each attempt 

terminated once the improvement in the objective function was less than the 

specified tolerance that was set very low at 0.001 to allow 

FMINSEARCHBND to make as many function evaluations as possible. 

 

The resulting best fitness on all attempts was very poor and it is clear that 

the Flexi-PSO outperforms it. 
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 Throw Hi-perm Lo-perm Fitness fevals 

Truth 10.60 131.60 1.31 0.00  

Match 1 52.03 170.07 9.70 4.67 243 

Match 2 49.56 162.02 9.70 4.98 303 

Match 3 28.05 138.41 1.01 12.98 224 

Match 4 54.16 174.61 11.78 4.64 252 

Match 5 57.56 101.05 41.19 13.03 204 

Match 6 12.33 136.00 1.22 18.16 175 

Match 7 55.98 102.25 35.37 12.99 119 

Match 8 55.98 180.29 13.33 4.53 184 

Match 9 16.69 128.99 1.68 3.32 197 

Match 10 47.10 152.41 2.82 11.16 216 

 

Table 6.3.  List of history matches from modified Nelder-Mead Simplex method 
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Chapter 7 

History Matching & Forecasting : Case Study of a 

North Sea Gasfield 

 

A North Sea Gasfield is now studied to check the effectiveness of the Flexi-

PSO and to further investigate the uncertainty evaluation conclusions of the 

ICF model case study. It could be that since the ICF model has a very 

difficult fitness landscape and quite a simple cross-sectional grid that the 

uncertainty results are anomalous to it, hence further research into a real 

field model is warranted.  

 

A Gasfield that Shell operates in the North Sea is selected for this case study. 

To be able to meaningfully assess the performance of the Flexi-PSO on 

history matching this real field model, a set of modifiers and a respective set 

of values are defined as the truth case for the model. The model is then run 

for ~ 4 years and this production regarded as the truth case history. The 

Flexi-PSO is then unleashed on the model modifiers with predefined ranges 

and the fitness history is then analysed and clustered to isolate a final set of 

matches to be taken into forecasting. A synthetic model like this is much 

more useful than matching to true production data since there is no way of 
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evaluating whether the forecasts from the matches obtained will in fact 

encapsulate the true future production. 

 

7.1. Field Description 

 

This is a clastic reservoir with combined structural and stratigraphic traps. 

There is some internal faulting but the faults do not compartmentalise the 

reservoir. The sands were deposited in a sand-rich turbidite system. The 

reservoir section is subdivided into 4 lithostratigraphic units (E – laterally 

variable thin heterogeneous, D – laterally extensive massive sand, C – 

laterally extensive mudstone rich heterogeneous & A – laterally restricted 

sand rich) as in Figure 7.1. The bulk of the gas occurs in Unit D, which, with 

high overall net/gross, porosity and permeability, has excellent reservoir 

quality. The mud-rich Unit C is expected to mitigate against bottom-water 

influx, so that most of the water drive is expected to come from edge aquifers. 

The reservoir production mechanism is gas expansion drive supplemented by 

aquifer influx. 

 

The fluid is a fairly dry gas with very little liquid dropout at the facilities. 

There are five vertical, partially penetrated wells, all completed in the E and 

D units. In this study, a set of modifiers are taken as the truth case (Table 
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7.1) which in fact reflect the real uncertainty in the field. The production 

rates used  in the history match are derived from the real production as well.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.  Lithostratigraphic x-section of the reservoir 

 

Since primary depletion is the main drive mechanism, a pore volume 

multiplier is applied to the synthetic case (PV mult). A vertical 

transmissibility multiplier is also applied to the main D unit to accelerate the 

flow vertically and exacerbate any effect of coning (CTRZ Dsand). An integer 

variable is applied to the connectivity between the C & D units with the 

default being no connectivity (CTR CD). Since gas expansion is the primary 

drive mechanism, the connected volume would play an important role.  
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History Match 
Modifier 

Min Max Truth 

PV mult 0.8 1.2 0.9 

CTRZ Dsand 20 50 45 

CTR CD 0 1 0 

AQFW Length 20000 50000 45000 

AQFE Length 15000 35000 20000 

AQFW Perm 50 300 250 

AQFE Perm 400 800 650 

Rock Compr. 2e-6 5e-6 3e-6 

Res. Gas 0.1 0.25 0.14 

 

Table 7.1.  History Match Modifiers and their range 

 

There are linear finite analytical aquifers attached to the grid on the western 

and eastern flanks of the field and their respective lengths and permeabilities 

are a source of uncertainty (AQFW Length, AQFE Length, AQFW Perm, 

AQFE Perm). Rock compressibility is thrown into the history match as a red 

herring to test whether the Flexi-PSO would concentrate its efforts on this 

variable. Finally the residual gas saturation is added to add to the effect of 

the primary drive mechanism as it affects the movable gas volumes. The 

simulator automatically scales the relative permeability according to 

whatever residual gas saturation is specified at initialisation. 

 

A One-Parameter-at-a-Time (OPAT) sensitivity test is run on all the 

variables to get an initial gauge of the effect of each variable on the gas 

production. Figure 7.2 displays the tornado chart for this sensitivity analysis 
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where the base case is taken as the mid-point of the modifier range. The 

production is especially sensitive to the pore volume multiplier and 

intuitively this makes sense as the gas volume is the main driving force in 

the system. The connectivity of the C & D units also appears to play a role, as 

this naturally would add more connected volume to the system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.  Tornado plot of OPAT sensitivity 

 

The Faure Sequence presented in Chapter 6.1 is also useful as a designed 

experiment (since they are evenly space filling) to quickly screen variables 

and have a relative idea of their effect. Trends in the effect of variables can 

also be ascertained and variables with little/no effect can be discarded at this 
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stage. To this end, one hundred runs were set up within the ranges specified 

in Table 7.1. Figure 7.3 shows the results of these runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.  Faure Sequence “designed experiment” 

 

Figure 7.4 plots the relative effect of each variable on the fitness using the 

well known correlation function (7.1.1) (µ - mean, σ- standard deviation). 
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Figure 7.4.  Correlation of each variable to fitness from Faure Sequence designed 

experiment 

 

As expected the pore volume multiplier and residual gas saturation show a 

larger effect than the other variables. The aquifer properties also play a role 

while the rock compressibility plays little effect since the gas compressibility 

dominates.  

 

-0.4 -0.2 0 0.2 0.4 0.6 0.8

Res. Gas

AQFW Length

AQFE Perm

CTRZ Dsand

AQFW Perm

CTR_CD

Rock Compr

AQFE Length

PVmult

Correlation Coefficient



Chapter 7  North Sea Gasfield Case Study 

 146

There are ~ 170 000 gridblocks in the model with ~ 53 000 active. Figure 7.5 

is a water saturation gridview of the model at an arbitrary point in time. 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 7.5.  Overall Sw gridview of the model 

 

7.2. Results and Discussion 

 

The simulator used is MoReS (Shell proprietary). The Flexi-PSO was set up 

in the same way as in the ICF Model case study with a population of 20 

particles and 50 iterations. Each run took about three hours and distributed 

over a cluster of CPU’s the entire Flexi-PSO run took six days to complete. 

W3 
W4 

W2 

W5 

W1 

N 



Chapter 7  North Sea Gasfield Case Study 

 147

All matches with RMSE less than 1 were considered acceptable from a visual 

judgement of the history match versus production plots. There were 50 

acceptable matches, which were then clustered into 10 groups using average 

linkage hierarchical clustering. The match with the lowest fitness in each 

group was then taken forward into forecasting. Table 7.2 presents these final 

matches. 

 

It is encouraging to note that the Flexi-PSO has performed well on this 

mixed-integer problem with all the acceptable matches having no 

transmissibility between the C & D units as in the truth case. 

 

 PVmult 
CTRZ 
Dsand 

CTR_CD 
AQFW 
Length 

AQFE 
Length 

AQFW 
Perm 

AQFE 
Perm 

Rock 
Compr 

Res. Gas Fitness 

Truth 0.9 45 0 45000 20000 250 650 3e-6 0.14 0 

Match 1 0.952 29.46 0 41249 34384 116.14 465.71 4.26E-06 0.158 0.813 

Match 2 0.943 23.92 0 43293 25611 104.46 518.18 4.48E-06 0.151 0.239 

Match 3 0.940 27.09 0 47665 29593 112.41 514.12 3.51E-06 0.135 0.317 

Match 4 0.940 28.71 0 39158 24162 155.06 588.34 3.67E-06 0.164 0.768 

Match 5 0.951 34.01 0 28844 23173 98.62 634.53 4.14E-06 0.176 0.526 

Match 6 0.935 35.76 0 26781 23856 163.16 566.98 3.94E-06 0.166 0.439 

Match 7 0.962 22.15 0 30491 33770 119.33 546.00 3.87E-06 0.150 0.932 

Match 8 0.964 39.58 0 21796 28192 105.20 561.41 4.13E-06 0.200 0.871 

Match 9 0.948 21.59 0 27098 22328 131.82 756.51 3.77E-06 0.158 0.887 

Match 10 0.930 25.44 0 25547 22377 235.35 732.47 2.72E-06 0.168 0.771 

 

Table 7.2.  Final set of history matched models 
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Figure 7.6 displays the fitness history of the Flexi-PSO. The restarts are 

highlighted where the sequential niching process takes effect. The range of 

each niche is set to 10% of the dynamic range for each modifier. In this run 

there have been three restarts of the algorithm. On each restart the 

algorithm does reduce the fitness rapidly but still explores the search space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6.  Fitness history of the Flexi-PSO ( x – globalbest tracker in each niche 

sequence ) 

 

Figures 7.7 - 7.12 display the history match per well and field for each 

realisation. The history period starts at 01/11/2004 and ends at 01/03/2008 
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(demarcated on each plot). The forecast ends at 01/01/2011. To make the 

forecasting more challenging in terms of uncertainty modelling, it is assumed 

that the production facilities can no longer handle any more water 

throughput. In this way, the forecasts can now be analysed with respect to 

the truth case to see whether they do encapsulate it and if so, how wide is the 

forecasted uncertainty band. The forecast has a surface pipeline network 

with a compressor attached to it. The compression logic built into the deck 

states that whenever the tubing head pressure drops below a certain 

threshold, the compressor speed is then ramped up to compensate for this 

pressure drop which in turn leads to an increase in production. 

 

Figure 7.7 shows the matches to Well 1 to be acceptable. Each match is able 

to produce the rates and track the flowing bottomhole pressure. The truth 

case forecast for this well is interesting as it is around 20 Bscf away from the 

ensemble as the truth case produces for a much longer duration that the rest 

of the cases. In Figure 7.8, the matches to Well 2 are also acceptable, with the 

flowing bottomhole pressure being tracked quite nicely. This well shuts in at 

the end of 2008 and hence its no surprise then that the ensemble does 

capture the truth case for the cumulative production for this well. In Figure 

7.9, the matches to Well 3 are all acceptable with a slight deviation of the 

ensemble to the flowing bottomhole pressure near the end of history. The 



Chapter 7  North Sea Gasfield Case Study 

 150

truth case for this well shuts in before the rest of the ensemble and hence has 

a cumulative production below the range of the ensemble.  

 

In Figure 7.10, Well 4 has acceptable matches to the gas production and 

bottomhole pressure. This is the only well in the history that does produce 

water and its water production rate is in Figure 7.10. The ensemble does 

encapsulate the water production, but there is quite a wide uncertainty band 

(~ 3400 bbl/d to  ~ 4200 bbl/d). In Figure 7.11, Well 5 has acceptable matches 

with the flowing bottomhole pressure deviating slightly towards the end of 

the history. The truth case shuts in before the rest of the ensemble and hence 

this well has a cumulative production that is lower than the ensemble. All 

the wells show an upturn in the bottomhole pressure towards the end of the 

forecast. This is due to the continuous charging of the reservoir from the 

aquifers. 

 

In Figure 7.12, the ensemble does encapsulate the cumulative field 

production but not the field rate. This is because Well 1 continues to produce 

much later in the truth case than the history match cases. The results of this 

gasfield study are in stark similarity to that obtained with the ICF Model. 

Once again, we are faced with the likelihood that the ensemble will not be 

able to encapsulate the range on the production rate, but for the field as a 
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whole it is more likely that the ensemble will encapsulate the truth case for 

the cumulative production. The reason for this is simple.  

 

Lets assume we have a set of realisations, the only difference between them 

being pore volume multipliers while all other parameters are held constant. 

In this case, when the realisations are simulated the “likely outcome” will be 

a forecast range that is proportional to the pore volume multipliers. If we 

have a set of realisations that have similar volumes but differing properties, 

the “likely outcome” is that they will all produce similar forecasts in terms of 

the overall volume drained from the reservoir. As in this North Sea Gasfield 

study, the truth case sees Well 2 and Well 3 water out earlier than the 

history matches, but Well 1 sees more production than the history match 

cases as it now has a greater volume available to drain. Hence the reason for 

the fairly tight forecast envelope on the cumulative gas production. 

 

It is important to note here that even with a perfect structural model, correct 

set of uncertainty parameters, ranges that cover the truth case and perfect 

measurements, as well as a set of excellent history matches, that the truth 

case production still cannot be encapsulated for the wells when forecasting! 

This makes the case for using uncertainty modelling to identify infill drilling 

targets somewhat tenuous. (Millar, 2005) quotes an example of an oil major 

identifying an infill location as being better than two other targets with 
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similar average cumulative production because its forecast envelope was 

narrower. If as shown in this North Sea Gasfield case study, producing wells 

with a good set of matches and modifiers that are appropriately conditioned 

to historical production cannot encapsulate the truth case production for a 

gasfield, it hardly seems plausible that an infill location for an oil well (where 

relative permeability effects are more pronounced) can be identified to be 

better than any other location with similar production but a narrower 

forecast envelope.  
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Figure 7.7.  Well 1 matches (QGP – mmscfd, CGP - bscf, BHP - psia) 
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Figure 7.8.  Well 2 matches (QGP – mmscfd, CGP - bscf, BHP- psia) 
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Figure 7.9.  Well 3 matches (QGP – mmscfd, CGP - bscf, BHP - psia) 
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Figure 7.10.  Well 4 matches (QGP – mmscfd, CGP - bscf, BHP - psia, QWP – bbl/d) 
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Figure 7.11.  Well 5 matches (QGP – mmscfd, CGP - bscf, BHP - psia) 
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Figure 7.12.  Field matches (QGP – mmscfd, CGP - bscf, QWP – bbl/d, CWP - mbbl/d ) 
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Chapter 8 

Conclusions 

 

The theme of this thesis has been to examine key issues that we are faced 

with in history matching and try to develop an effective workflow in the 

history matching process that will generate meaningful results to practising 

reservoir engineers.  In this regard, the focus is on further advancements in 

the area of assisted history matching. The key areas that this thesis 

contributes to can be summarised as follows :- 

 

• Introduction of Particle Swarm Optimisation to the oil industry 

• Understanding the effects of the parameters in the Particle Swarm 

Optimiser 

• Development of a state of the art variant of the Particle Swarm 

Optimisation algorithm for history matching purposes (Flexi-PSO) 

• Techniques of post-processing an assisted history match run 

• Insight into the possible implications of the results of an uncertainty 

modelling exercise 

 

Particle Swarms are a novel optimisation technique and are used in this 

thesis to history match finite difference reservoir simulation models. Particle 
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Swarms form part of the so-called evolutionary class of optimization 

algorithms that are population based and use various communication 

mechanisms to move towards optimal solutions. This is the first known 

implementation of particle swarms in the oil and gas industry and has been 

successfully applied to the Imperial College Fault Model to locate distinctly 

different history matches. 

 

Particle swarms if designed properly can be very effective in moving through 

the search space and are effective in balancing global exploration and local 

exploitation. In this regard, a particle swarm variant dubbed “Flexi-PSO” has 

been specifically created that can quickly locate multiple niches and also 

handle multiple static realisations or discrete parameters. The motto behind 

the Flexi-PSO is “Big moves coupled with small moves”. This theme enables 

the swarm to scan niches more thoroughly and the reason behind its success 

in dealing with benchmark mathematical functions and the history matching 

case studies presented. The reason for this is that in the canonical and 

inertia weight versions of the PSO, particles concentrate on doing a global 

search and have high velocities from the outset which can lead to a particle 

that may be in a niche that contains the global optimum to fly out of that 

region. The Flexi-PSO reduces that possibility by enabling particles to also 

make local searches during the course of the run. 
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Before any optimisation algorithm can be deployed, it is best to test it against 

a wide range of problems to assess its robustness, and in doing so any 

shortcomings of the algorithm can be addressed. This thesis interrogated the 

Flexi-PSO with convex and highly non-convex mathematical functions, a 

neural network and integer problems. The Flexi-PSO is shown to have 

comparative efficacy as current state of the art algorithms. The algorithm is 

further modified to increase its effectiveness in dealing with multimodal 

problems via a sequential niching routine, which has shown to be effective in 

locating multiple optima.  

 

The Flexi-PSO is then used to history match the Imperial College Fault 

Model and returns a match that is very close to the truth case, however this 

is not the case on every single run as was shown when function stretching 

was applied to niches. The results of the history matching procedure do 

require some post processing. A simple graphical approach combined with 

hierarchical clustering can be used to narrow down a final set of realizations 

to carry forward into prediction.  

 

Even with the best algorithms and methods of processing results, it is still 

imperative to understand that the model is not a perfect reflection of the 

reservoir properties. This thesis shows that even with a highly effective 

algorithm like the “Flexi-PSO”, the ensemble of matches that we are left with 
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(even with one match that is very close to the truth case), there is no 

guarantee that their predictions will cover the true reservoir behaviour.  

 

It is useful that unlike unstable systems in chaos theory which have a 

multiplicative effect if the starting point is incorrect and leads to less 

accurate behaviour over time, petroleum reservoirs are dissipative in energy 

and cumulative production predictions tend to flatten out the longer the 

prediction is in time. In this regard an ensemble is likely to create a 

prediction envelope that will cover the truth case with regards to field 

cumulative production (provided that the initial volumes in place are 

representative), however it is less likely that it will do so for well production 

rates.  

 

The Flexi-PSO is then used to history match a synthetic version of a North 

Sea Gasfield. The results of this case study are indeed very interesting. 

Although the Flexi-PSO has successfully managed to find multiple matched 

cases, the matched cases in fact point to an interesting insight into 

evaluating uncertainty. All the history match cases have similar volumes in 

place and their narrow forecast range does encapsulate the cumulative 

production of the truth case. However, as was observed in the ICF Model case 

study, the same cannot be said of the production rate. It becomes even more 

interesting on a well level, where we see that it is much more difficult for the 
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ensemble to track the truth case production. In this case where wells are 

being shut in due to the limit on the water handling capacity, the remaining 

gas volume is then left available for other wells to drain. 

 

Essentially, it appears that the wider the hydrocarbon in place volume range 

there is from a set of history match realisations, the wider it can be expected 

the reserves forecast will be. For a narrow in place volume range, the wells 

will compete for production and wells that are shut-in will just leave more 

volume for the remaining wells to access. 

 

As shown in the North Sea Gasfield case study, producing wells with a good 

set of matches and modifiers that are appropriately conditioned to historical 

production cannot encapsulate the truth case for a gasfield, it hardly seems 

plausible that an infill location for an oil well can be identified to be better 

than any other location with similar production but a narrower forecast 

envelope. This criteria needs to reviewed very carefully, and other 

environmental factors should be called into account e.g. drilling cost when 

making a final decision. 

 

In short any history matching exercise requires a good optimisation 

algorithm together with post processing of results to take meaningful 

realisations forward into prediction. The end result is as is commonly 
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quipped only as good as the model itself, hence some degree of common sense 

needs to be exercised in the allocation of time and resources with respect to 

any history matching exercise.  
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Appendix A 

Problem Definitions for the CEC 2005 Special Session 

on Real-Parameter Optimisation 

 

Summary of the 25 Test Functions 

� Unimodal Functions (5): 

� F1: Shifted Sphere Function  

� F2: Shifted Schwefel’s Problem 1.2 

� F3: Shifted Rotated High Conditioned Elliptic Function 

� F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness  

� F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds 

 

� Multimodal Functions (20): 

� Basic Functions (7): 

� F6: Shifted Rosenbrock’s Function 

� F7: Shifted Rotated Griewank’s Function without Bounds 

� F8: Shifted Rotated Ackley’s Function with Global Optimum on 

Bounds 

� F9: Shifted Rastrigin’s Function  

� F10: Shifted Rotated Rastrigin’s Function  

� F11: Shifted Rotated Weierstrass Function  

� F12: Schwefel’s Problem 2.13 
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� Expanded Functions (2): 

� F13: Expanded Extended Griewank’s plus Rosenbrock’s Function 

(F8F2) 

� F14: Shifted Rotated Expanded Scaffer’s F6  

� Hybrid Composition Functions (11): 

� F15: Hybrid Composition Function 

� F16: Rotated Hybrid Composition Function  

� F17: Rotated Hybrid Composition Function with Noise in Fitness 

� F18: Rotated Hybrid Composition Function 

� F19: Rotated Hybrid Composition Function with a Narrow Basin for 

the Global Optimum 

� F20: Rotated Hybrid Composition Function with the Global Optimum 

on the Bounds 

� F21: Rotated Hybrid Composition Function 

� F22: Rotated Hybrid Composition Function with High Condition 

Number Matrix 

� F23: Non-Continuous Rotated Hybrid Composition Function 

� F24: Rotated Hybrid Composition Function 

� F25: Rotated Hybrid Composition Function without Bounds 
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Unimodal Functions 
 

 F1: Shifted Sphere Function 
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D: dimensions.  1 2[ , ,..., ]
D

o o o=o  : the shifted global optimum. 

 
Figure A-1. 3-D map for 2-D function 

 

Properties: 

� Unimodal  

� Shifted 

� Separable 

� Scalable 

� [ 100,100]D∈ −x , Global optimum: * =x o , 1( *)
1

F f_bias=x = - 450 
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F2: Shifted Schwefel’s Problem 1.2 
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Figure A-2.  3-D map for 2-D function 

 

Properties: 

 

� Unimodal  

� Shifted 

� Non-separable 

� Scalable 

� [ 100,100]D∈ −x , Global optimum * =x o , *
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F3: Shifted Rotated High Conditioned Elliptic Function 
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Figure A-3. 3-D map for 2-D function 

 

Properties: 

 

� Unimodal  

� Shifted 

� Rotated  

� Non-separable 

� Scalable  

� [ 100,100]D∈ −x , Global optimum * =x o , *
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F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness 
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Figure A-4. 3-D map for 2-D function 

 

Properties: 

 

� Unimodal  

� Shifted 

� Non-separable 

� Scalable 

� Noise in fitness 

� [ 100,100]D∈ −x , Global optimum * =x o , *
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F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds 
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Figure A-5. 3-D map for 2-D function 

 

Properties: 

 

� Unimodal  

� Non-separable 

� Scalable 

� If the initialization procedure initializes the population at the bounds, this problem 

will be solved easily. 

� [ 100,100]D∈ −x , Global optimum * =x o , *
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Basic Multimodal Functions 
 

F6: Shifted Rosenbrock’s Function 
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Figure A-6. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Shifted 

� Non-separable 

� Scalable 

� Having a very narrow valley from local optimum to global optimum 

� [ 100,100]D∈ −x , Global optimum * =x o , *

6 ( )
6

F f_bias=x = 390 
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F7: Shifted Rotated Griewank’s Function without Bounds 

 
2

7 7

1 1

( ) cos( ) 1 _
4000

DD
i i

i i

z z
F f bias

i= =

= − + +∑ ∏x  , ( )*= −z x o M , 1 2[ , ,..., ]
D

x x x=x  

D: dimensions 

1 2[ , ,..., ]
D

o o o=o  : the shifted global optimum 

M’: linear transformation matrix, condition number=3 

M =M’(1+0.3|N(0,1)|) 

 

 
 

Figure A-7. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Rotated 

� Shifted 

� Non-separable 

� Scalable 

� No bounds for variables x 

� Initialize population in [0,600]D , Global optimum * =x o is outside of the 

initialization range, *

7 ( )
7

F f_bias=x = -180 
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F8: Shifted Rotated Ackley’s Function with Global Optimum on Bounds 

 

2

8 8

1 1

1 1
( ) 20exp( 0.2 ) exp( cos(2 )) 20 _

D D

i i

i i

F z z e f bias
D D

π
= =

= − − − + + +∑ ∑x , 

( )*= −z x o M ,  1 2[ , ,..., ]
D

x x x=x , D: dimensions 

1 2[ , ,..., ]
D

o o o=o  : the shifted global optimum;  

After load the data file, set 2 1 32
j

o − = − 2 j
o  are randomly distributed in the search range, 

for 1, 2,..., / 2j D=     

M: linear transformation matrix, condition number=100 

 

 
 

Figure A-8. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Rotated 

� Shifted 

� Non-separable 

� Scalable 

� A’s condition number Cond(A) increases with the number of variables as 2( )O D  

� Global optimum on the bound 

� If the initialization procedure initializes the population at the bounds, this problem 

will be solved easily. 

� [ 32,32]D∈ −x , Global optimum * =x o , *

8 ( )
8

F f_bias=x = - 140 
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F9: Shifted Rastrigin’s Function 

 

2

9 9

1

( ) ( 10cos(2 ) 10) _
D

i i

i

F z z f biasπ
=

= − + +∑x , = −z x o , 1 2[ , ,..., ]
D

x x x=x  

 

D: dimensions, 1 2[ , ,..., ]
D

o o o=o  : the shifted global optimum 

 

 
 

Figure A-9. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Shifted 

� Separable 

� Scalable 

� Local optima’s number is huge 

� [ 5,5]D∈ −x , Global optimum * =x o , *

9 ( )
9

F f_bias=x = - 330 
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F10: Shifted Rotated Rastrigin’s Function 

 

2

10 10

1

( ) ( 10cos(2 ) 10) _
D

i i

i

F z z f biasπ
=

= − + +∑x , ( )*= −z x o M , 1 2[ , ,..., ]
D

x x x=x     

 

D: dimensions, 1 2[ , ,..., ]
D

o o o=o  : the shifted global optimum 

M: linear transformation matrix, condition number=2 

 

 
 

Figure A-10. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Shifted 

� Rotated 

� Non-separable 

� Scalable 

� Local optima’s number is huge 

� [ 5,5]D∈ −x , Global optimum * =x o , *

10 ( )
10

F f_bias=x = - 330 
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F11: Shifted Rotated Weierstrass Function 

 
max max

11 11

1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)] _
D k k

k k k k

i

i k k

F a b z D a b f biasπ π
= = =

= + − ⋅ +∑ ∑ ∑x ,  

a=0.5, b=3, kmax=20, ( )*= −z x o M   , 1 2[ , ,..., ]
D

x x x=x  

D: dimensions, 1 2[ , ,..., ]
D

o o o=o  : the shifted global optimum 

M: linear transformation matrix, condition number=5 

 

 
 

Figure A-11. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Shifted 

� Rotated 

� Non-separable 

� Scalable 

� Continuous but differentiable only on a set of points 

� [ 0.5,0.5]D∈ −x , Global optimum * =x o , *

11( )
11

F f_bias=x = 90 
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F12: Schwefel’s Problem 2.13 

 

2

12 12

1

( ) ( ( )) _
D

i i

i

F f bias
=

= − +∑x A B x , 1 2[ , ,..., ]
D

x x x=x  

1

( sin cos )
D

i ij j ij j

j

a bα α
=

= +∑A ,
1

( ) ( sin cos )
D

i ij j ij j

j

x a x b x
=

= +∑B , for 1,...,i D=  

D: dimensions 

A, B are two D*D matrix, 
ij

a ,
ij

b  are integer random numbers in the range [-100,100], 

1 2[ , ,..., ]
D

α α α=αααα ,
j

α  are random numbers in the range [ , ]π π− . 

 

 
 

Figure A-12. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Shifted 

� Non-separable 

� Scalable 

� [ , ]Dπ π∈ −x , Global optimum * =x αααα , *

12 ( )
12

F f_bias=x = - 460 

 



Appendix A  CEC-2005 Testset 

 181

Expanded Functions  
 

Using a 2-D function ( , )F x y as a starting function, corresponding expanded function is: 

1 2 1 2 2 3 1 1( , ,..., ) ( , ) ( , ) ... ( , ) ( , )
D D D D

EF x x x F x x F x x F x x F x x−= + + + +  

 

F13: Shifted Expanded Griewank’s plus Rosenbrock’s Function (F8F2)  

 

F8: Griewank’s Function: 
2

1 1

8( ) cos( ) 1
4000

DD
i i

i i

x x
F

i= =

= − +∑ ∏x  

F2: Rosenbrock’s Function: 
1

2 2 2

1

1

2( ) (100( ) ( 1) )
D

i i i

i

F x x x
−

+
=

= − + −∑x  

1 2 1 2 2 3 1 18 2( , ,..., ) 8( 2( , )) 8( 2( , )) ... 8( 2( , )) 8( 2( , ))
D D D D

F F x x x F F x x F F x x F F x x F F x x−= + + + +

 

Shift to 

13 1 2 2 3 1 1 13( ) 8( 2( , )) 8( 2( , )) ... 8( 2( , )) 8( 2( , )) _
D D D

F F F z z F F z z F F z z F F z z f bias−= + + + + +x

1= − +z x o  , 1 2[ , ,..., ]
D

x x x=x  

D: dimensions  1 2[ , ,..., ]
D

o o o=o  : the shifted global optimum 

 

 
 

Figure A-13. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Shifted 

� Non-separable 

� Scalable 

� [ 3,1]D∈ −x , Global optimum * =x o , *

13( )
13

F f_bias=x (13)=-130 
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F14: Shifted Rotated Expanded Scaffer’s F6 Function 

 
2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))

x y
F x y

x y

+ −
= +

+ +
 

Expanded to  

14 1 2 1 2 2 3 1 1 14( ) ( , ,..., ) ( , ) ( , ) ... ( , ) ( , ) _
D D D D

F EF z z z F z z F z z F z z F z z f bias−= = + + + + +x ,

( )*= −z x o M , 1 2[ , ,..., ]
D

x x x=x  

D: dimensions, 1 2[ , ,..., ]
D

o o o=o  : the shifted global optimum 

M: linear transformation matrix, condition number=3 

 

 
 

Figure A-14. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Shifted 

� Non-separable 

� Scalable 

� [ 100,100]D∈ −x , Global optimum * =x o , *

14 ( )
14

F f_bias=x (14)= -300 
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Composition functions 
 

( )F x : new composition function    

( )
i

f x : i
th

 basic function used to construct the composition function 

n : number of basic functions              

D : dimensions  

i
M : linear transformation matrix for each ( )

i
f x  

i
o : new shifted optimum position for each ( )

i
f x  

1

( ) { *[ '(( ) / * ) ]} _
n

i i i i i

i

F w f bias f biasλ
=

= − + +∑x x o M
i

 

i
w : weight value for each ( )

i
f x , calculated as below: 

2

1

2

( )

exp( )
2

D

k ik

k

i

i

x o

w
Dσ

=

−

= −
∑

， 

max( )

*(1-max( ).^10) max( )

i i i

i

i i i i

w w w
w

w w w w

==
= 

≠
 

then normalize the weight 
1

/
n

i i i

i

w w w
=

= ∑  

 

i
σ : used to control each ( )

i
f x ’s coverage range, a small 

i
σ  give a narrow range for that 

( )
i

f x  

i
λ  : used to stretch compress the function, 

i
λ >1 means stretch, 

i
λ <1 means compress 

o
i
 define the global and local optima’s position, 

i
bias  define which optimum is global 

optimum. Using o
i
, 

i
bias , a global optimum can be placed anywhere. 

 

If ( )
i

f x  are different functions, different functions have different properties and height, 

in order to get a better mixture, estimate a biggest function value 
max i

f  for 10 functions 

( )
i

f x , then normalize each basic functions to similar heights as below: 

max'( ) * ( ) /i i if C f f=x x , C is a predefined constant. 

max if  is estimated using max if = (( '/ )* )
i i i

f λx M , 'x =[5,5…,5].  

 

In the following composition functions, 

Number of basic functions n=10. 

D: dimensions  

o: n*D matrix, defines ( )
i

f x ’s global optimal positions 

bias =[0, 100, 200, 300, 400, 500, 600, 700, 800, 900]. Hence, the first function
1
( )f x  

always the function with the global optimum. 

C=2000 
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Pseudo Code: 

 

Define f1-f10, σ , λ , bias, C, load data file o and rotated linear transformation matrix 

M1-M10 

y =[5,5…,5]. 

For i=1:10 

2

1

2

( )

exp( )
2

D

k ik

k

i

i

x o

w
Dσ

=

−

= −
∑

， 

((( ) / )* )
i i i i i

fit f λ= −x o M  

max (( / )* )
i i i i

f f λ= y M , 

* / max
i i i

fit C fit f=  

 

EndFor 

 

1

n

i

i

SW w
=

=∑  

max( )
i

MaxW w=  

 

For i=1:10 

*(1- .^10)

i i

i

i i

w if w MaxW
w

w MaxW if w MaxW

==
= 

≠
 

/
i i

w w SW=  

EndFor 

 

1

( ) { *[ ]}
n

i i i

i

F w fit bias
=

= +∑x  

( ) ( ) _F F f bias= +x x  
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F15:  Hybrid Composition Function 

 

1 2
( )f − x : Rastrigin’s Function 

2

1

( ) ( 10cos(2 ) 10)
D

i i i

i

f x xπ
=

= − +∑x  

3 4
( )f − x : Weierstrass Function 

max max

1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)]
D k k

k k k k

i i

i k k

f a b x D a bπ π
= = =

= + − ⋅∑ ∑ ∑x , 

 a=0.5, b=3, kmax=20 

5 6
( )f − x : Griewank’s Function 

2

1 1

( ) cos( ) 1
4000

DD
i i

i

i i

x x
f

i= =

= − +∑ ∏x  

7 8
( )f − x : Ackley’s Function 

2

1 1

1 1
( ) 20exp( 0.2 ) exp( cos(2 )) 20

D D

i i i

i i

f x x e
D D

π
= =

= − − − + +∑ ∑x  

9 10
( )f − x : Sphere Function 

2

1

( )
D

i i

i

f x
=

=∑x  

1
i

σ =   for 1,2,...,i D=   

λλλλ = [1, 1, 10, 10, 5/60, 5/60, 5/32, 5/32, 5/100, 5/100] 

i
M  are all identity matrices 

 

Please notice that these formulas are just for the basic functions, no shift or rotation is 

included in these expressions. x  here is just a variable in a function.  

Take 
1

f  as an example, when we calculate
1 1 1 1
((( ) / )* )f λ−x o M , we need 

calculate 2

1

1

( ) ( 10cos(2 ) 10)
D

i i

i

f z zπ
=

= − +∑z , 
1 1 1

(( ) / )*λ= −z x o M . 
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Figure A-15. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Separable near the global optimum (Rastrigin) 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Sphere Functions give two flat areas for the function 

� [ 5,5]D∈ −x , Global optimum *

1
=x o , *

15
( )

15
F f_bias=x = 120 
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F16: Rotated Version of Hybrid Composition Function F15 

 

Except
i

M  are different linear transformation matrixes with condition number of 2, all 

other settings are the same as F15. 

 

 
 

Figure A-16. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Rotated 

� Non-Separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Sphere Functions give two flat areas for the function. 

� [ 5,5]D∈ −x , Global optimum *

1
=x o , *

16
( )

16
F f_bias=x =120 
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F17: F16 with Noise in Fitness 

 

Let (F16 - f_bias16) be ( )G x , then   

17 17( ) ( )*(1+0.2 N(0,1) ) _F G f bias= +x x    

All settings are the same as F16. 

 

 
 

Figure A-17. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Rotated 

� Non-Separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Sphere Functions give two flat areas for the function. 

� With Gaussian noise in fitness  

� [ 5,5]D∈ −x , Global optimum *

1
=x o , *

17 17
( ) _F f bias=x =120 
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F18: Rotated Hybrid Composition Function 

 

1 2
( )f − x : Ackley’s Function 

2

1 1

1 1
( ) 20exp( 0.2 ) exp( cos(2 )) 20

D D

i i i

i i

f x x e
D D

π
= =

= − − − + +∑ ∑x   

3 4
( )f − x : Rastrigin’s Function 

2

1

( ) ( 10cos(2 ) 10)
D

i i i

i

f x xπ
=

= − +∑x  

5 6
( )f − x : Sphere Function 

2

1

( )
D

i i

i

f x
=

=∑x  

7 8
( )f − x : Weierstrass Function 

max max

1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)]
D k k

k k k k

i i

i k k

f a b x D a bπ π
= = =

= + − ⋅∑ ∑ ∑x ,  

a=0.5, b=3, kmax=20 

9 10
( )f − x : Griewank’s Function 

2

1 1

( ) cos( ) 1
4000

DD
i i

i

i i

x x
f

i= =

= − +∑ ∏x   

σσσσ =[1, 2, 1.5, 1.5, 1, 1, 1.5, 1.5, 2, 2]; 

λλλλ = [2*5/32; 5/32; 2*1; 1; 2*5/100; 5/100; 2*10; 10; 2*5/60; 5/60] 

i
M  are all rotation matrices. Condition numbers are [2 3 2 3 2 3 20 30 200 300] 

10
[0,0,...,0]=o  

 

 
 

Figure A-18. 3-D map for 2-D function 
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Properties: 

 

� Multi-modal  

� Rotated 

� Non-Separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Sphere Functions give two flat areas for the function. 

� A local optimum is set on the origin 

� [ 5,5]D∈ −x , Global optimum *

1
=x o , *

18
( )

18
F f_bias=x = 10 
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F19: Rotated Hybrid Composition Function with narrow basin global 

optimum 

 

All settings are the same as F18 except 

σσσσ =[0.1, 2, 1.5, 1.5, 1, 1, 1.5, 1.5, 2, 2];, 

λλλλ = [0.1*5/32; 5/32; 2*1; 1; 2*5/100; 5/100; 2*10; 10; 2*5/60; 5/60] 

 

 
 

Figure A-19. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Non-separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Sphere Functions give two flat areas for the function. 

� A local optimum is set on the origin 

� A narrow basin for the global optimum 

� [ 5,5]D∈ −x , Global optimum *

1
=x o , *

19 19
( )F f_bias=x (19)=10 
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F20: Rotated Hybrid Composition Function with Global Optimum on the 

Bounds 

 

All settings are the same as F18  except after load the data file, set 
1(2 )

5
j

o = , for 

1, 2,..., / 2j D=     

 

 
 

Figure A-20. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Non-separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Sphere Functions give two flat areas for the function. 

� A local optimum is set on the origin 

� Global optimum is on the bound 

� If the initialization procedure initializes the population at the bounds, this problem 

will be solved easily. 

� [ 5,5]D∈ −x , Global optimum *

1
=x o , *

20 20
( ) _F f bias=x =10 
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F21: Rotated Hybrid Composition Function 

 

1 2
( )f − x : Rotated Expanded Scaffer’s F6 Function 

2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))

x y
F x y

x y

+ −
= +

+ +
 

1 2 2 3 1 1
( ) ( , ) ( , ) ... ( , ) ( , )

i D D D
f F x x F x x F x x F x x−= + + + +x  

3 4
( )f − x : Rastrigin’s Function 

2

1

( ) ( 10cos(2 ) 10)
D

i i i

i

f x xπ
=

= − +∑x  

5 6
( )f − x : F8F2 Function 

 
2

1 1

8( ) cos( ) 1
4000

DD
i i

i i

x x
F

i= =

= − +∑ ∏x  

1
2 2 2

1

1

2( ) (100( ) ( 1) )
D

i i i

i

F x x x
−

+
=

= − + −∑x  

1 2 2 3 1 1
( ) 8( 2( , )) 8( 2( , )) ... 8( 2( , )) 8( 2( , ))

i D D D
f F F x x F F x x F F x x F F x x−= + + + +x  

7 8
( )f − x : Weierstrass Function 

max max

1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)]
D k k

k k k k

i i

i k k

f a b x D a bπ π
= = =

= + − ⋅∑ ∑ ∑x ,  

a=0.5, b=3, kmax=20 

9 10
( )f − x : Griewank’s Function 

2

1 1

( ) cos( ) 1
4000

DD
i i

i

i i

x x
f

i= =

= − +∑ ∏x   

[1,1,1,1,1,2,2,2,2,2]=σσσσ , 

λλλλ = [5*5/100; 5/100; 5*1; 1; 5*1; 1; 5*10; 10; 5*5/200; 5/200]; 

i
M  are all  orthogonal matrix 

 
Figure A-21. 3-D map for 2-D function 
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Properties: 

 

� Multi-modal  

� Rotated 

� Non-Separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� [ 5,5]D∈ −x , Global optimum *

1
=x o , *

21
( )

21
F f_bias=x =360 
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F22: Rotated Hybrid Composition Function with High Condition Number 

Matrix 

 

All settings are the same as F21 except 
i

M ’s condition numbers are [10 20 50 100 200 

1000 2000 3000 4000 5000] 

 

 
 

Figure A-22. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Non-separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Global optimum is on the bound 

� [ 5,5]D∈ −x , Global optimum *

1
=x o , *

22
( )

22
F f_bias=x =360 
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F23: Non-Continuous Rotated Hybrid Composition Function 

 

All settings are the same as F21. 

Except 
1

1

1/ 2

(2 ) / 2 1/ 2

j j j

j

j j j

x x o
x

round x x o

 − <
= 

− >=

for 1, 2,..,j D=  

1 0 & 0.5

( ) 0.5

1 0 & 0.5

a if x b

round x a if b

a if x b

− <= >=


= <
 + > >=

,  

where a is x ’s integral part and b is x ’s decimal part 

All “round” operators in this document use the same schedule. 

 

 
 

Figure A-23. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Non-separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Non-continuous  

� Global optimum is on the bound 

� [ 5,5]D∈ −x , Global optimum *

1=x o , *( )f ≈x f_bias (23)=360 
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F24: Rotated Hybrid Composition Function 

 

1( )f x : Weierstrass Function 

max max

1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)]
D k k

k k k k

i i

i k k

f a b x D a bπ π
= = =

= + −∑ ∑ ∑x , 

 a=0.5, b=3, kmax=20 

2 ( )f x : Rotated Expanded Scaffer’s F6 Function 

2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))

x y
F x y

x y

+ −
= +

+ +
 

1 2 2 3 1 1( ) ( , ) ( , ) ... ( , ) ( , )
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Figure A-24. 3-D map for 2-D function 

 

Properties: 

 

� Multi-modal  

� Rotated 

� Non-Separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Unimodal Functions give flat areas for the function. 

� [ 5,5]D∈ −x , Global optimum *

1=x o , *

24 ( )
24

F f_bias=x = 260 
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F25: Rotated Hybrid Composition Function without bounds 

 

All settings are the same as F24 except no exact search range set for this test function. 

 

Properties: 

 

� Multi-modal  

� Non-separable 

� Scalable 

� A huge number of local optima 

� Different function’s properties are mixed together 

� Unimodal Functions give flat areas for the function.  

� Global optimum is on the bound 

� No bounds 

� Initialize population in[2,5]D , Global optimum *

1=x o  is outside of the 

initialization range, *

25 ( )
25

F f_bias=x =260 
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Appendix B 

Iris Dataset 

 

Sample # Sepal Length Sepal Width Petal Length Petal Width Type 

1 5.1 3.5 1.4 0.2 Setosa 

2 4.9 3 1.4 0.2 Setosa 

3 4.7 3.2 1.3 0.2 Setosa 

4 4.6 3.1 1.5 0.2 Setosa 

5 5 3.6 1.4 0.2 Setosa 

6 5.4 3.9 1.7 0.4 Setosa 

7 4.6 3.4 1.4 0.3 Setosa 

8 5 3.4 1.5 0.2 Setosa 

9 4.4 2.9 1.4 0.2 Setosa 

10 4.9 3.1 1.5 0.1 Setosa 

11 5.4 3.7 1.5 0.2 Setosa 

12 4.8 3.4 1.6 0.2 Setosa 

13 4.8 3 1.4 0.1 Setosa 

14 4.3 3 1.1 0.1 Setosa 

15 5.8 4 1.2 0.2 Setosa 

16 5.7 4.4 1.5 0.4 Setosa 

17 5.4 3.9 1.3 0.4 Setosa 

18 5.1 3.5 1.4 0.3 Setosa 

19 5.7 3.8 1.7 0.3 Setosa 

20 5.1 3.8 1.5 0.3 Setosa 

21 5.4 3.4 1.7 0.2 Setosa 

22 5.1 3.7 1.5 0.4 Setosa 

23 4.6 3.6 1 0.2 Setosa 

24 5.1 3.3 1.7 0.5 Setosa 

25 4.8 3.4 1.9 0.2 Setosa 

26 5 3 1.6 0.2 Setosa 

27 5 3.4 1.6 0.4 Setosa 

28 5.2 3.5 1.5 0.2 Setosa 

29 5.2 3.4 1.4 0.2 Setosa 

30 4.7 3.2 1.6 0.2 Setosa 

31 4.8 3.1 1.6 0.2 Setosa 

32 5.4 3.4 1.5 0.4 Setosa 

33 5.2 4.1 1.5 0.1 Setosa 

34 5.5 4.2 1.4 0.2 Setosa 

35 4.9 3.1 1.5 0.1 Setosa 
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Sample # Sepal Length Sepal Width Petal Length Petal Width Type 

36 5 3.2 1.2 0.2 Setosa 

37 5.5 3.5 1.3 0.2 Setosa 

38 4.9 3.1 1.5 0.1 Setosa 

39 4.4 3 1.3 0.2 Setosa 

40 5.1 3.4 1.5 0.2 Setosa 

41 5 3.5 1.3 0.3 Setosa 

42 4.5 2.3 1.3 0.3 Setosa 

43 4.4 3.2 1.3 0.2 Setosa 

44 5 3.5 1.6 0.6 Setosa 

45 5.1 3.8 1.9 0.4 Setosa 

46 4.8 3 1.4 0.3 Setosa 

47 5.1 3.8 1.6 0.2 Setosa 

48 4.6 3.2 1.4 0.2 Setosa 

49 5.3 3.7 1.5 0.2 Setosa 

50 5 3.3 1.4 0.2 Setosa 

51 7 3.2 4.7 1.4 Versicolor 

52 6.4 3.2 4.5 1.5 Versicolor 

53 6.9 3.1 4.9 1.5 Versicolor 

54 5.5 2.3 4 1.3 Versicolor 

55 6.5 2.8 4.6 1.5 Versicolor 

56 5.7 2.8 4.5 1.3 Versicolor 

57 6.3 3.3 4.7 1.6 Versicolor 

58 4.9 2.4 3.3 1 Versicolor 

59 6.6 2.9 4.6 1.3 Versicolor 

60 5.2 2.7 3.9 1.4 Versicolor 

61 5 2 3.5 1 Versicolor 

62 5.9 3 4.2 1.5 Versicolor 

63 6 2.2 4 1 Versicolor 

64 6.1 2.9 4.7 1.4 Versicolor 

65 5.6 2.9 3.6 1.3 Versicolor 

66 6.7 3.1 4.4 1.4 Versicolor 

67 5.6 3 4.5 1.5 Versicolor 

68 5.8 2.7 4.1 1 Versicolor 

69 6.2 2.2 4.5 1.5 Versicolor 

70 5.6 2.5 3.9 1.1 Versicolor 

71 5.9 3.2 4.8 1.8 Versicolor 

72 6.1 2.8 4 1.3 Versicolor 

73 6.3 2.5 4.9 1.5 Versicolor 

74 6.1 2.8 4.7 1.2 Versicolor 

75 6.4 2.9 4.3 1.3 Versicolor 

76 6.6 3 4.4 1.4 Versicolor 

77 6.8 2.8 4.8 1.4 Versicolor 
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Sample # Sepal Length Sepal Width Petal Length Petal Width Type 

78 6.7 3 5 1.7 Versicolor 

79 6 2.9 4.5 1.5 Versicolor 

80 5.7 2.6 3.5 1 Versicolor 

81 5.5 2.4 3.8 1.1 Versicolor 

82 5.5 2.4 3.7 1 Versicolor 

83 5.8 2.7 3.9 1.2 Versicolor 

84 6 2.7 5.1 1.6 Versicolor 

85 5.4 3 4.5 1.5 Versicolor 

86 6 3.4 4.5 1.6 Versicolor 

87 6.7 3.1 4.7 1.5 Versicolor 

88 6.3 2.3 4.4 1.3 Versicolor 

89 5.6 3 4.1 1.3 Versicolor 

90 5.5 2.5 4 1.3 Versicolor 

91 5.5 2.6 4.4 1.2 Versicolor 

92 6.1 3 4.6 1.4 Versicolor 

93 5.8 2.6 4 1.2 Versicolor 

94 5 2.3 3.3 1 Versicolor 

95 5.6 2.7 4.2 1.3 Versicolor 

96 5.7 3 4.2 1.2 Versicolor 

97 5.7 2.9 4.2 1.3 Versicolor 

98 6.2 2.9 4.3 1.3 Versicolor 

99 5.1 2.5 3 1.1 Versicolor 

100 5.7 2.8 4.1 1.3 Versicolor 

101 6.3 3.3 6 2.5 Virginica 

102 5.8 2.7 5.1 1.9 Virginica 

103 7.1 3 5.9 2.1 Virginica 

104 6.3 2.9 5.6 1.8 Virginica 

105 6.5 3 5.8 2.2 Virginica 

106 7.6 3 6.6 2.1 Virginica 

107 4.9 2.5 4.5 1.7 Virginica 

108 7.3 2.9 6.3 1.8 Virginica 

109 6.7 2.5 5.8 1.8 Virginica 

110 7.2 3.6 6.1 2.5 Virginica 

111 6.5 3.2 5.1 2 Virginica 

112 6.4 2.7 5.3 1.9 Virginica 

113 6.8 3 5.5 2.1 Virginica 

114 5.7 2.5 5 2 Virginica 

115 5.8 2.8 5.1 2.4 Virginica 

116 6.4 3.2 5.3 2.3 Virginica 

117 6.5 3 5.5 1.8 Virginica 

118 7.7 3.8 6.7 2.2 Virginica 

119 7.7 2.6 6.9 2.3 Virginica 
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Sample # Sepal Length Sepal Width Petal Length Petal Width Type 

120 6 2.2 5 1.5 Virginica 

121 6.9 3.2 5.7 2.3 Virginica 

122 5.6 2.8 4.9 2 Virginica 

123 7.7 2.8 6.7 2 Virginica 

124 6.3 2.7 4.9 1.8 Virginica 

125 6.7 3.3 5.7 2.1 Virginica 

126 7.2 3.2 6 1.8 Virginica 

127 6.2 2.8 4.8 1.8 Virginica 

128 6.1 3 4.9 1.8 Virginica 

129 6.4 2.8 5.6 2.1 Virginica 

130 7.2 3 5.8 1.6 Virginica 

131 7.4 2.8 6.1 1.9 Virginica 

132 7.9 3.8 6.4 2 Virginica 

133 6.4 2.8 5.6 2.2 Virginica 

134 6.3 2.8 5.1 1.5 Virginica 

135 6.1 2.6 5.6 1.4 Virginica 

136 7.7 3 6.1 2.3 Virginica 

137 6.3 3.4 5.6 2.4 Virginica 

138 6.4 3.1 5.5 1.8 Virginica 

139 6 3 4.8 1.8 Virginica 

140 6.9 3.1 5.4 2.1 Virginica 

141 6.7 3.1 5.6 2.4 Virginica 

142 6.9 3.1 5.1 2.3 Virginica 

143 5.8 2.7 5.1 1.9 Virginica 

144 6.8 3.2 5.9 2.3 Virginica 

145 6.7 3.3 5.7 2.5 Virginica 

146 6.7 3 5.2 2.3 Virginica 

147 6.3 2.5 5 1.9 Virginica 

148 6.5 3 5.2 2 Virginica 

149 6.2 3.4 5.4 2.3 Virginica 

150 5.9 3 5.1 1.8 Virginica 
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