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This paper presents the use of a recent developed algorithm inspired by the hunting mechanism of
antlions in nature, called ant lion optimizer (ALO) algorithm for solving optimal reactive power dispatch
(ORPD) problem considering a large-scale power system. The ORPD is formulated as a complex combina-
torial optimization problem with nonlinear characteristic. The ALO algorithm is inspired from the hunt-
ing mechanism of antlions. One of the most interesting things in antlions is that they have a unique
hunting behaviour and exhibit high capability of escaping the local optima stagnation. The ALO is used
to find the set of optimal control variables of ORPD problem, such as generators terminal voltage, position
of tap changers of transformers, and number of switchable capacitor banks. The performance and feasi-
bility of the proposed algorithm are demonstrated through several simulation cases on IEEE 30-bus, IEEE
118-bus power systems and large-scale power system IEEE 300-bus power system. Comparison of
obtained results with those reported in the literature shows clearly the superiority of ALO algorithm over
other recently published algorithms in regards to real power losses and computational time, and hence
confirmation of the efficiency of ALO algorithm in providing near-optimal solution.
� 2017 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

At the present time, meticulous researchers on the Optimal
Reactive Power Dispatch (ORPD) have been recorded due to the
vital role of ORPD in the power system planning and operation.
ORPD is considered as a complex combinatorial optimization prob-
lem with nonlinear characteristics. In the power system operation,
every variations of load demand tend to change the applied reac-
tive power generations, and hence load voltages variations. The
adjustment of voltages can be accomplished locally by proper reac-
tive power management. General objectives of ORPD are to mini-
mize total real power losses and to improve the voltage stability
index or voltage deviation. This is can be achieved through identi-
fication of optimal solution to the vector of control variables which
consists of generator voltages as continuous variables, tap position
of tap-changing transformers, and required number of shunt
capacitors as discrete variables. This issue has undergone a
growing interest over the last decade, to ensure safe and secure
operation of an electric power system [1–5].

Over the past quarter of the previous century, a variety of clas-
sical optimization algorithms have been successfully applied for
solving ORPD problem, among them the Newton Raphson meth-
ods’ (NR) [3], quadratic programming (QP) [4], nonlinear program-
ming (NLP) [5], and interior point methods (IP) [6]. However, from
the use literature survey on the conventional optimization
approaches (COA), appear that they are suffer from lack of flexibil-
ity with the practical systems and high computation time when
dealing with complex objective functions (nonlinear handling
characteristics). An additional problem is associated with these
algorithms when dealing with discrete control variables since it
sharply increases the complexity of the ORPD issue. This complex-
ity grows exponentially as the number of discrete variables
increases.

In recent years, numerous algorithms have been successfully
introduced to deal the ORPD problem in an effort to alleviate the
aforementioned drawbacks such as, genetic algorithms (GAs) [7],
differential algorithm (DE) [2,8,9], simulated annealing (SA) [10],
particle swarm optimization (PSO) [10,11], harmony search algo-
rithm (HSA) [13], artificial bee colony algorithm (ABC) [14], gravi-
tational search algorithm (GSA) [1] and Grey wolf optimizer (GWO)
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Nomenclature

ALO ant lion optimizer
GWO grey wolf optimizer
ABC artificial bee colony algorithm
BA bat algorithm
PSO particle swarm optimization
Ploss total power losses
gk conductance of kth branch connected between bus i and

j
Vi;Vj voltage magnitude of ith and jth bus
dij voltage angle difference between ith and bus jth
TK ratio of tap changing transformers
Tmax
k maximum tap ratio of kth tap changing transformer

Tmin
k minimum tap ratio of kth tap changing transformer

NPV ; NPQ number of PV and PQ buses respectively
Pg=Qg generator active/reactive power production
PL;NPQ ; QL;NPQ

active and reactive power at each PQ bus
NB number of bus in the test system

NTL number of transmission lines
NLB number of load bus
NT number of regulating transformer
NC number of shunt capacitor banks
Xmax maximum limit of state variables
Xmin minimum limit of state variables
VG voltage magnitude for generator i
VL;NPQ voltage magnitude for load bus i
Vmax
i ;Vmin

i maximum and minimum bus voltage magnitude at
bus i

Sl apparent power flow of branch
Smax
l maximum apparent power flow limit of branch i
jYijj; hij elements of the bus admittance matrix
Pd;i=Qd;i active/reactive load consumption at bus i
Qmin

Ci ; Qmax
Ci minimum and maximum VAR injection limits of

shunt capacitor banks
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[15]. Extensive competitions between researchers have been done
in last decade, in an effort to seek for a more suitable/reliable
approach for handling different power system optimization prob-
lems [16–22]. In [16], the authors applied seeker optimization
algorithm for solving optimal reactive power dispatch in larger
power system with a detailed description of critical performance
indices in which different objective functions are studied such as
minimization of active power losses, improvement of voltage pro-
file and minimization of voltage stability index. Also, in Xu et al.
[17], an application of multi-agent based reinforcement learning
for solving optimal reactive power dispatch problem is investi-
gated. The objective is to minimize the active power loss. In
another reported case, Ghasemi in [18], proposed an hybrid algo-
rithm based on modified teaching learning algorithm and double
differential evolution algorithm for solving ORPD problem, as a
comparative study. In [19] Li et al proposed parallel PSO algorithm
to deal the dynamic ORPD problem. In [20] the authors introduced
the modified version of Gaussian bare-bones teaching-learning-
based optimization (GBTLBO) algorithm to solve ORPD problem
with both discrete and continuous optimisation variables in a
medium-scale system. A firefly algorithm for real power loss min-
imization and voltage stability limit maximization as multi-
objective optimization, has been offered by Balachennaiah in
[21]. In [22] an novel hybrid particle swarm optimizer with multi
verse optimizer (HPSO-MVO) is proposed for ORPD problem. How-
ever, these approaches already suffer from some disadvantages
such as the susceptibility of falling into local optima, and difficulty
tuning the main internal parameters such as mutation and cross-
over rate. In addition, there is no a global optimization algorithm
for solving ORPD problem and on the basis of No-Free Lunch theo-
rem, the seeking a more suitable approach for a such problem is
remain necessary. The aforementioned reasons incite the present
authors to highlight a simple, recently, and efficient optimization
algorithm to solve the posed problem.

About one year ago, a new technique has been added to the
meta-heuristic optimization approaches field, based on simulating
of the hunting behaviour of antlions. This article proposes the use
of ant lion optimization algorithm for solving the ORPD problem
with an improved voltage stability index in power systems. The
medium-scale, larger and large-scale test systems namely IEEE-
30, IEEE-118 and IEEE 300-bus are selected to demonstrate the per-
formance of the proposed approach. The obtained results by using
ALO are compared with other results of recent published algo-
rithms. Therefore, the results prove the consistency and robustness
of ALO algorithm to find the optimal solution for each objective
function.

The rest of the paper is structured as follows: the general for-
mulations to the ORPD problem is introduced in Section 2 while
Section 3 explains the proposed approach. Then, Section 4 is pre-
sent the control variable treatment, and Section 5 of the paper is
reserved to provide the experimental results along with a detailed
comparison of ALO algorithm with some existing algorithms.
Finally, Section 6 presents the conclusion of this paper.
2. Mathematical formulation

The mathematical formulation of ORPD problem is amply
described in two parts as: objective functions and constraints, in
which minimizes some objective functions while fulfilling equality
and inequality constraints at the same time. Mathematically can be
formulated as follows:

Minimize Fðx;uÞ ð1Þ

Subject to :
gðx;uÞ ¼ 0
hðx;uÞ 6 0

�
ð2Þ

where, Fðx;uÞ is the objective function of transmission losses to be
minimized, gðx;uÞ ¼ 0 equality constraints, hðx;uÞ ¼ 0 inequality
constraints; x: is the vector of dependent variables or (control vari-
ables) consisting of load bus voltages, reactive power of generator,
and transmission line loading.

Accordingly, vector x can be written mathematically as follow:

xT ¼ ½VL . . .VL;NPQ ; Qg;1 . . .Qg;NPV
; S1 . . . SNTL� ð3Þ

u: is the vector of independent variables or (state variables) com-
prising: continuous and discrete control variables involving:

Voltages of PV bus as (continuous variables), transformer tap
settings (discrete variables), and switching shunt capacitor banks
(discrete variables). Hence, u can be illustrated mathematically as
follow:

uT ¼ Vg;1 . . .Vg;NPV

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{continuous

; T1 . . . TNT ; QC1 . . .QC;NC

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Discrete2
4

3
5 ð4Þ

In the present work, two different objective functions are
separately studied:
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� Minimization of total real power losses; and
� Minimization of voltage stability index (L-index).

2.1. Objective function

2.1.1. Minimization of power losses
In this objective we aim is to minimize the total active power

loss through an optimal adjustment of power system control
parameters [23]. Mathematically is described as follow:

f 1ðx;uÞ ¼ minPloss ¼
XNTL
k¼1

gk � ðV2
i þ V2

j � 2� Vi � Vj � cos dijÞ ð5Þ
2.1.2. Objective 2: improvement of voltage stability index
The principal interest behind study of voltage stability index

lies in the simplicity to provide the sufficient information’s about
the voltage instability or to quantify the vicinity of a power system
to the voltage collapse. This is can be achieved by the minimization
of the voltage stability indicator L-index (Lj) at every bus of the
electrical network, and consequently the total power system (L-
index), basing on information of normal load flow analysis of
which the operating range of indicator L is set between 0 and 1
[24]. One widely used method in the literature is that proposed
for the first time by Kessel P and Glavitsch H [25]. Therefore, the
problem mentioned above mathematically defined as follows:

f 2ðx;uÞ ¼ VSIðx;uÞ ¼ minðmaxðLjÞÞ ð6Þ
where Lj of the jth bus is formulated by the following equation:

Lj ¼ 1:0�
XNPV

i¼1

Fji � Vi

Vj
\hji þ di � dj

�����
����� j ¼ 1;2; . . . ;NPQ ð7Þ

with Fji ¼ jFjij\hji, Vi ¼ jVij\di, Vj ¼ jVjj\dj

Fji ¼ �½Y1��1 � ½Y2� ð8Þ
Y1; Y2 : are the sub-matrices related to the system matrix Ybus

obtained after rearrangement the PV and PQ bus bars parameters
as shown in Eq. (9):

½ IPQ
IPV

� ¼ ½Y1 Y2

Y3 Y4
�½VPQ

VPV
� ð9Þ
2.2. Constraints

2.2.1. Equality constraints: incequations which are given below

Pg;i � Pd;i �
XNB
j¼1

jVij � jVjj � jYijj � cos�ðhij � di þ djÞ ¼ 0

Qg;i � Qd;i �
XNB
j¼1

jVij � jVjj � jYijj � sin�ðhij � di þ djÞ ¼ 0

8>>>>><
>>>>>:

ð10Þ
2.2.2. Inequality constraints: include the power flow equation which
are given below

i. Generator constraints

Vmin
g;i 6 Vg;i 6 Vmax

g;i ; and;

Qmin
g;i 6 Qg;i 6 Qmax

g;i ; i ¼ 1;2 . . .Ng

(
ð11Þ

ii. Voltage magnitudes at each bus in the system test and
discrete transformer tap settings
Vmin
i 6 Vi 6 Vmax

i i 2 NB

Tmin
k 6 Tk 6 Tmax

k k 2 NT

(
ð12Þ

iii. The reactive power supplied by the capacitor banks is also
limited by upper and lower values as follow:

Qmin
Ci 6 QCi 6 Qmax

Ci i 2 NC
n

ð13Þ

iv. The transmission lines loading are also restricted by upper
values:

fSl 6 Smax
l l 2 NTL ð14Þ

In this work, the control variables are self-constrained, while of
stat variables are constrained by using the concept of penalty func-
tions, of which only the violated variables of (Vi; QG; andSl) are
added to the objective function in order to discard any obtained
unfeasible solution. Then, the modified objective function of the
problem is expressed as follows:

Ploss ¼ Fobjðx;uÞ þ kV �
XNPQ

i¼1

DVi þ kQ �
XNG
i¼1

DQi þ kS �
XNTL
i¼1

DSi ð15Þ

where kV ; kQ ; and kl are the penalty factors; Xlimit
i are the limit

value of the dependent variables.

DVi ¼
ðVmin

i � ViÞ
2

if Vi < Vmin
i

ðVi � Vmax
i Þ2 if Vi > Vmax

i

0 if Vmin
i 6 Vi < Vmax

i

8>><
>>: ð16Þ

DQi ¼
ðQmin

i � QiÞ
2

if Qi < Qmin
i

ðQi � Qmax
i Þ2 if Qi > Qmax

i

0 if Qmin
i 6 Qi < Qmax

i

8>><
>>: ð17Þ

DSi ¼ ðSi � Smax
i Þ2 if Si > Smax

i

0 if Smin
i 6 Si < Smax

i

(
ð18Þ
3. The ant lion optimization (ALO) algorithm

The Ant lion optimizer is a new optimization algorithm which
recently add to the meta-heuristics list, introduced by Seydali Mir-
jalili [26] for solving constrained engineering optimization prob-
lems. It is considered as a global optimizer, because it performs a
good balance between exploration and exploitation ability and
yields a high probability of avoiding stagnation into local optima
and hence; guarantees the convergence. Another interesting point
is that it has not any internal parameters to adjust (only external
parameters such as number of agent and max iteration).

The ALO algorithm mimics the hunting behavior of ant lions,
i.e., the interaction between predator (ant lions) and prey (ant).
The different steps that describe the relationship between antlions
and ants are depicted in Fig. 1. Like all other insects in nature, ants
can easily detect the location of food by using a stochastic move-
ment. This behavior is expressed mathematically by the following
equations:

XðtÞ ¼ ½0; cumsuð2rðt1Þ � 1Þ; cumsuð2rðt2Þ � 1Þ; . . . ; cumsuð2rðtnÞ � 1Þ�
ð19Þ

where XðtÞ is the random walks of ants, n is the max_iterations, t is
the step of random walk, and rðtÞ is a function defined as follows:

rðtÞ ¼ 1 if rand > 0:5
0 if rand < 0:5

� �
ð20Þ



Fig. 1. (a–c) Making traps and entrapment of ants in pits; (d-f) Catching the prey and re-building.
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where, rand is a randomly generated number uniformly distributed
in the range of [0,1].

The following steps describe the five main phases in hunting
technique of ant lions.
3.1. Random walk of ants

In every step of optimization, ants update their positions b to a
randomwalk search Eq. (19) To ensure that all the positions of ants
are inside the boundary of the search space, they are normalized by
using the following expression:

Xt
i ¼

ðXt
i � aiÞ � ðdt

i � cti Þ
ðbi � aiÞ þ cti ð21Þ

where the ai; bi are respectively the minimum and maximum of
random walk corresponding of ith variable. cti ; d

t
i : are respectively

indicated the minimum and maximum of ith variables at tth
iteration.
3.2. Trapping in antlions traps

The following equations describes the effect of antlions traps on
random walks of ants:

cti ¼ Antliont
j þ ct ð22Þ
dt
i ¼ Antliont

j þ dt ð23Þ
3.3. Building traps

During optimization, the ALO use the roulette wheel selection
operator, to choose antlions based on their fitness. This strategy
gives more chance for antlions to traps prey.
3.4. Sliding ants against toward antlion

According to the aforementioned mechanisms, antlions are able
to construct traps proportional to their fitness and the ants move
near of the center of pit. Once antlions catch an ant in trap, they
will shoot the sand outward the middle of the trap. This mecha-
nism mathematically modeled as follow, where I is the ratio.

ct ¼ ct

I
ð24Þ

dt ¼ dt

I
ð25Þ
3.5. Catching preys and rebuilding the traps

The catching the ants by predator and rebuilding the pit in
order to catch new prey can be described with the following
equations.

Antliont
j ¼ Antti ; if f ðAntti Þ > f ðAntliont

j Þ ð26Þ

where Antliont
j is jth the position of the selected antlion at iteration t

and Antti is the position of the selected ant at iteration t.

3.6. Elitism

Elitism is one of the most important characteristic of evolution-
ary algorithms. In ALO algorithm, at any iteration the best antlion
obtained (solution) is saved as an elite. Since the elite is the fittest
antlion which is able to guide the movements of the remaining
ants along the iterations. The elitism mechanism mathematically
described as follows.

Antti ¼
Rt
A þ Rt

E

2
ð27Þ

where Rt
A is the randomwalk around the antlion is selected by using

the roulette wheel at tth iteration, Rt
E is the randomwalk around the
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elite at tth iteration, and Antti denote the position of ith ant in tth
iteration.
Table 1
Description of test power systems.

30-Bus 118-Bus 300-Bus
3.7. Flowchart for optimal reactive power dispatch using ALO

The utility of ALO in solving ORPD problem lies to find the set of
optimal solution of control variables for minimizing the objective
function while satisfying all constraints imposed by power
systems.

The pseudo codes of ALO algorithm is defined by the following
instructions:

1. Read system data, bus data, line data, and unit data;
2. Initialize the parameter for ALO, search agents, dimension,

position, and maximum no of iterations;
3. Starts to initialize randomwalks of the ants and antlions like

the first population using Eq. (19), and then calculate their
values of fitness;

4. Map control variables from ants into power flow data, and
evaluated it in order to obtain the power losses,
L-index and voltage deviation from power flow calculation
(MATPOWER) (each ant represents a solution).

5. Find the best antlions and affected it as the elite;
While the end criterion is not reached
for i ¼ 1 : nbr of ants

6. Using roulette wheel to select the antlions and update
parameters c and d using Eqs. (24) and (25);

7. Create a random walk and normalize it using Eqs. ((19) and
(21))

8. Update the positions of ant obtained so far using Eq. (27)
End for

9. Checking the boundaries of the variables, and calculate the
fitness value of all solutions(ants);

10. Outplace an antlion with its corresponding ant it if becomes
fitter using Eq. (26);

11. Replace elite with antlion if an antlion is better than the
elite.

Firstly, set the control parameters of ALO algorithm like the
number of agents and maximum number of iteration. Construct
the set of initial solution X0

i that comprises the variables of vector
of control. The vector of initial solution can be expressed as
follows:
Number of control variables 19 77 190
Number of Generator 6 54 69
Number of Taps 4 9 107
Number of Q-shunt 9 14 14
Equality constraints 60 236 530
Inequality constraints 125 572 706
Discrete variable 13 21 107

P0
Loss (MW) 5.81 132.863 408.316
MAntlion ¼

ALi1 AL12 � � �AL1D

AL21
AL22 � � �AL2D

� � � � � � � � �
ALN;SA1 ALN;SA2 ALNSA�D

2
666666664

3
777777775

NSA�D

ð28Þ
Table 2
Control variables settings for all power systems.

Test system Variables Min Max Step

IEEE 30-bus [13,28] VPV and VPQ 0.95 1.1 Continuous
T 0.9 1.1 0.01
Q-shunt (9) 0 5 1

IEEE 118-bus [28] VPV and VPQ 0.94 1.06 Continuous
T 0.9 1.1 0.01
Q-shunt See in [29] 1

IEEE 300-bus [28] VPV and VPQ 0.9 1.1 Continuous
T 0.9 1.1 0.01
Q-shunt See in [30] 1
with ði ¼ 1;2; . . . ;NSA and j ¼ 1;2; . . . ;DÞ; where the NSA is the
number of search agents and D is the number of control variables
to be optimized or position of antlions.

At this stage, each initial solution (position) mapped into the
power flow data and then evaluated by using Newton-Raphson
program to obtain the value of desired objective function (power
losses Eq. (1), voltage deviation, or L-index value Eq. (5)). Once
the evaluation process is accomplished, the best fitness such as
minimum loss or L-index value with position is stored as elite
antlion-fitness and elite antlion-position. Then, the same principle
of evaluation process repeated by ALO using Eqs. (21)–(27) until
the maximum number of iterations is reached.
4. Treatment of control variables

In our formulation, two distinct types of optimization variables
are considered: discrete and continuous as mentioned in Eq. (4)
that requires a special initialization. The continuous variables are

initialized as follows, e.g., PGi ¼ random½Pmin
Gi ; Pmax

Gi � and UGi ¼
random½Umin

Gi ; Umax
Gi �. But in the case of discrete variables, tap chang-

ers and the reactive power supplied by capacitor banks or shunt
element are rounded off around their nearest decimal values. This
operation is achieved by the introduction of the rounding operator
in each step of ALO algorithm. Mathematically, the rounding can be

written as follows: roundðrandom ½Tmin
i ; Tmax

i �; 0:01Þ roundðrandom
½Qmin

Ci ; Qmax
Ci �;1Þ:

After initialization phase, the solution vector is then subjected
to update in changing the previous solution in order to find a
new better vicinity solution vector using the Eq. (21), yielding a
vector uniformly distributed random due from the addition of
two different nature of vectors. The rounding operator is solicited
again just after every update for acting only on the discrete control
variables. Once the rounding process is over, all solution elements
go through a feasibility check [14]. This simple rounding technique
guarantees that load flow calculation along with fitness function
are obtained only when all problem variables are correctly
assigned to their corresponding types.
5. Numerical results and discussions

In order to verify the capability and robustness of the proposed
algorithm, the IEEE 30-bus, IEEE 118-bus and large-scale power
system IEEE 300-bus are considered under different simulation
cases. In all cases of each power system, 50 independent runs were
executed to report the optimal solution. The proposed approach
was implemented in MATLAB Platform 7.10 and the simulation
conducted on a personal computer ‘‘Core (TM i3; CPU 1.80 GHz-
4Go RAM).” The number of control variables and real power losses
value in the initial conditions are respectively listed in Table 1.
Table 2 presents the limits on control variables and state variables
for each test systems.



Table 3
Comparison of simulation results of different algorithms for IEEE 30-bus power system.

Cont. varia PSO [12] CLPSO [12] BA GWO ABC ALO

VG1 1.1000 1.1000 1.100 1.1000 1.1000 1.1000
VG2 1.1000 1.1000 1.094 1.0938 1.0971 1.0953
VG5 1.0832 1.0795 1.074 1.0737 1.0866 1.0767
VG8 1.1000 1.1000 1.076 1.0797 1.0800 1.0788
VG11 0.9500 1.1000 1.100 1.1000 1.0850 1.1000
VG13 1.1000 1.1000 1.100 1.0944 1.1000 1.1000
T6–9 1.1000 0.9154 0.95 0.98 1.07 1.01
T6–10 1.0953 0.9000 1.03 0.97 0.95 0.99
T4–12 0.9000 0.9000 0.99 1.02 1.02 1.02
T28–27 1.0137 0.9397 0.97 0.99 1.01 1.000
QC10 5 4.9265 5 2 5 4
QC12 5 5 0 5 0 2
QC15 0 5 5 4 2 4
QC17 5 5 5 4 5 3
QC20 5 5 0 4 4 2
QC21 5 5 0 0 5 4
QC23 5 5 0 5 4 3
QC24 5 5 5 3 5 5
QC29 5 5 0 3 4 5
Min PLoss 4.6862 4.5615 4.628 4.6119 4.61100 4.5900
Max Lindex (p.u) NA NA 0.1247 0.1303 0.1326 0.1307
CPU (s) NA 138 129.4 127.2 130.6 119.3
% Psave 19.37 21.51583 20.344 20.759 20.636 21.292P

PG NA 2.87961 2.880 2.8800 2.8801 2.8799
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5.1. Results of IEEE 30-bus test power system

5.1.1. Minimization of total real power losses
Firstly, the ALO algorithm is applied on the IEEE 30-bus test

power system, which consists of six generators placed at the buses
1, 2, 5, 8, 11, and 13 while the remaining ones are the PQ buses. 4
transformers, between the branches 6–9, 6–10, 4–10, and 27–28,
equipped on-load tap-changers (OLTC). In addition, nine capacitor
banks installed at the buses 10, 12, 15, 17, 20, 21, 23, 24, and 29 as
given in [23].

Case 1: IEEE-30 bus test power system used in [24,1,2].
The set of optimal solutions of control variables obtained are

summarized in Table 3. The obtained results from ALO algorithm
are compared with other existing algorithms (PSO) and (CLPSO)
[27], including our implementation of the three approaches,
namely bat algorithm (BA), grey wolf optimizer (GWO), ant lion
optimizer (ALO), and artificial bee colony algorithm (ABC). The cor-
responding convergence curves are shown in Fig. 2. From Table 3
and Fig. 2, it can be observed that proposed algorithm converges
in 30th iteration achieving the least real power loss of 4.5900 in
less execution time for simulation than all the other presented
algorithms, but the real power loss reported by the CLPSO algo-
rithm is a little bit better than our result. However, the ALO algo-
rithm has a small value of CPU time compared to that obtained
by of CLPSO algorithm. Hence, it clearly appears that the ALO algo-
rithm has a great ability to locate the optimal or the near-optimal
solutions and efficiently handle the constraints of the optimization
problem at hand.

Case 2: Improvement of Voltage Stability Index for IEEE 30-bus
power system

The improvement of voltage stability index is the second objec-
tive function. The limit on control variables and dependent vari-
ables are similar to the first case as indicated in Table 2. The
optimal results by using the proposed algorithm and those of the
other approaches are exhibited in Table 4. Likewise, the obtained
maximum real power loss, minimum L-index, and average execu-
tion time for simulation are compared to those of the honey bee
mating optimization (HBMO), and Chaotic Parallel Vector Evalu-
ated HBMO (CPVEIHB). This comparison shows that the ALO algo-
rithm has better performance in both convergence speed and
global best solution. The consumed CPU time is equal at 97.9243
second for reaching optimal solution. Likewise, we can also remark
that all the taps positions transformers converge to a steady state
value after the 30th iteration. The convergence curves of four
implemented algorithms are depicted in Fig. 3.
5.2. Results of IEEE 118-bus test power system

5.2.1. Minimization of total real power losses
In order to illustrate the effectiveness and the robustness of the

proposed algorithm in a large-scale power system, the standard
IEEE 118-bus test power system is considered to solve the ORPD
problem. The bus data, the line data, the upper and lower limits
of reactive power sources for this test system are available in the
reference [28,29]. The set of optimal control variables achieved
by using the ALO and other approaches are given in Table 5. Table 5,
also depicts the comparison of minimum real power loss, average
saving percent of real power loss, maximum voltage stability
index, and average execution time for simulation with existing
results from the literature along with other meta-heuristics imple-
menting by us.

In the Table 6, the left column summarizes the reported results
from literature articles and the third column lists the calculated
power losses using the reported optimal control variables as input
parameters to the power flow. Again, it appears that the uncer-
tainty between reported and recalculated results marked with
‘‘(a)” are too large rather than the remaining approaches have an
error around to 10�3:

From this analysis, it can be seen that the results of ALO are
much better than all the listed other algorithms, in which the big-
gest reduction of total real power loss and stability index value are
accomplished by using ALO along with least amount of execution
time for simulation without any violation of system constraints.
The convergence curves of the ALO algorithm and ABC algorithm
are presented in Fig. 4 in which the proposed algorithm converges
to the steady value after 60th iteration. According to the compar-
ison presented in Tables 5 and 6, it appears that ALO algorithm
has the best performance along with lower computation time
among all presented algorithms. In addition, it is noteworthy to
mention that the ALO algorithm has an excellent convergence rate
in comparison with ABC Fig. 5.
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Fig. 2. Flowchart of proposed ALO algorithm.
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Table 4
Comparison of simulation results of case 2 for IEEE 30-bus test power system.

Control variables CPVEIHB-MOa [34] HBMOa [34] BA GWO ABC ALO

VG1 1.1 1.1 1.097 1.0965 1.0829 1.0992
VG2 1.1 1.1 1.093 1.0807 1.0730 1.0948
VG5 1.1 1.1 1.049 1.0693 1.0759 1.0975
VG8 1.1 1.1 1.071 1.0624 1.0744 1.0997
VG11 1.1 1.1 1.060 1.0977 1.1000 1.0979
VG13 1.1 1.1 1.097 1.0927 1.0804 1.1000
T6–9 0.900000 0.900 1.09 0.96 1.03 1.04
T6–10 0.839363 0.900 0.90 1.01 0.92 0.95
T4–12 0.895746 0.900 1.10 0.97 0.92 0.98
T28–27 1.023412 1.03241 0.93 0.94 0.97 0.97
QC10 5 5 3 2 5 5
QC12 5 5 4 1 5 3
QC15 5 5 3 1 5 3
QC17 5 5 5 2 4 4
QC20 5 5 5 2 5 3
QC21 5 5 0 1 3 2
QC23 5 5 0 4 4 1
QC24 5 5 0 4 4 2
QC29 5 5 3 4 5 4
Max PLoss (MW) 6.650192 6.6600 5.0748 4.8269 4.9688 4.8693
Min Lindex (p.u) 0.111029 0.11473 0.1191 0.1180 0.1161 0.1161
CPU (s) NA NA 94.65 104.29 105.04 97.92

V in [p.u]; Q in [MVAR].

Fig. 3. Convergence curve for PLoss minimization, IEEE-30 bus.
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5.3. Results of IEEE 300-bus power system (large-scale power System)

5.3.1. Minimization of total real power losses
In order to show the applicability of the proposed algorithm on

the large-scale power system, the IEEE 300-bus test system is con-
sidered. This system consists of 69 generators, 411 transmission
lines loads, in which 107 branches with off-nominal tap ratio dis-
cretized into 21 levels as [0.9 0.91 0.92. . .until, 1.1]. In addition, 14
reactive power sources as given in [30]. The total load demand is
(235.258 + j77.8797) p.u. at 100 MVA base MVA. Bus 258 is
selected as the slack bus. The data for this test system can be found
in [28,31]. The lower and upper limits of all control variables are
given in Table. 2.

The minimum real power losses, L-index value and computa-
tion time consumed obtained from proposed ALO algorithm are
summarized in Table 7. The corresponding convergence curve is
shown in Fig. 6. Likewise, the obtained results RE compared with
differential evolutionary particle swarm optimization (DEEPSO)
and mean variance mapping optimization (MVMO). The set of opti-
mal control variables corresponding of generator terminal voltage
are drawn under graphical in Fig. 7. The obtained easily found the
near-optimal solutions, even with a large-scale power system. In
addition, it is noteworthy to mention that all optimal control
variables are in the admissible limits.
6. Performance vs. computation efficiency

Extensive stochastic optimisation algorithms in the literature
have been addressed for handling the ORPD problems, in reason
to achieve both characteristics at same time, the good performance
along with lower computation time. However, these algorithms are
still favouring only one characteristic (performance or computa-
tion time), because the performances of stochastic search algo-
rithms are based on number of trials, i.e., it should be mandatory
to run many trials with different control parameter settings of such
algorithm in selecting the suitable control parameters to achieve
the best solution. Therefore, the ALO algorithm has only two
parameters to adjust, the maximum number of iterations and the
population size. In other hand, these two parameter are conflicting
to each other, i.e., when the population size increases, the algo-
rithm produces better results. However, after a sufficient value
for search agent, any increment in the value does not improve
the performance of the ALO algorithm significantly, and just con-
tribute only a wasting time of calculating during the converging
process. So, for best performance of any optimisation method, an
empirical study is required.
7. Conclusion

In this paper, a recently developed algorithm was successfully
implemented aimed to solve the ORPD problem. This algorithm
can overcome some already aforementioned problems with other
algorithms. Three different test systems including medium-scale
IEEE 30-bus and larger IEEE 118-bus and Large-scale power system
IEEE 300-bus are utilized to demonstrate the consistency of pro-
posed algorithm to reach the near optimal solutions to self-posed
problem. Therefore, the superiority of ALO algorithm in term of
solution quality and computation cost over recently published
algorithms is demonstrated through a detailed comparison in
numerous simulation cases. The obtained results prove the capa-
bility of ALO to locate the near-optimal solution compared to the
other well-known algorithms, and hence confirm the effectiveness
of the ALO approach to solve the discrete optimal reactive power
dispatch problem.



Table 5
Comparison of simulation results for IEEE 118-bus power system.

Control variables OGSA [27] ABC GWO ALO

Generator Voltage (p.u)
V1 1.035 1.0250 0.9960 1.0164
V4 1.0554 1.0440 1.0510 1.0299
V6 1.0301 1.0320 1.0480 1.0355
V8 1.0175 1.0240 0.9880 1.0247
V10 1.025 1.0600 1.0250 1.0469
V12 1.041 1.0320 1.0210 1.0259
V15 0.9973 0.9950 0.9860 1.0526
V18 1.0047 0.9710 0.9720 1.0580
V19 0.9899 0.9830 0.9820 1.0565
V24 1.0287 1.0050 1.0310 1.0549
V25 1.06 1.0300 1.0600 1.0600
V26 1.0855 0.9770 1.0140 1.0457
V27 1.0081 1.0060 1.0240 1.0583
V31 0.9948 0.9920 0.9980 1.0573
V32 0.9993 1.0030 1.0190 1.0455
V34 0.9958 1.0310 1.0200 1.0322
V36 0.9835 1.0270 1.0130 1.0264
V40 0.9981 0.9850 1.0390 1.0124
V42 1.0068 0.9770 1.0210 1.0321
V46 1.0355 1.0230 0.9930 1.0446
V49 1.0333 1.0350 1.0420 1.0572
V54 0.9911 1.0080 1.0490 1.0313
V55 0.9914 0.9980 1.0340 1.0305
V56 0.992 1.0040 1.0430 1.0292
V59 0.9909 1.0350 1.0450 1.0269
V61 1.0747 1.0360 0.9870 1.0373
V62 1.0753 1.0370 0.9910 1.0217
V65 0.9814 1.0410 1.0230 1.0582
V66 1.0487 1.0600 1.0540 1.0591
V69 1.049 1.0120 1.0060 1.0600
V70 1.0395 1.0520 0.9780 1.0577
V72 0.99 1.0150 1.0070 1.0592
V73 1.0547 1.0390 1.0360 1.0348
V74 1.0167 1.0140 0.9730 1.0533
V76 0.9972 1.0360 0.9980 1.0382
V77 1.0071 1.0230 0.9830 1.0395
V80 1.0066 1.0280 1.0090 1.0508
V85 0.9893 1.0180 0.9930 1.0529
V87 0.9693 1.0240 1.0540 1.0510
V89 1.0527 1.0250 1.0380 1.0600
V60 1.029 0.9960 1.0070 1.0382
V91 1.0297 1.0380 1.0060 1.0223
V92 1.0353 1.0130 1.0130 1.0532
V99 1.0395 1.0160 1.0170 1.0447
V100 1.0275 1.0300 1.0020 1.0445
V103 1.0158 1.0530 1.0050 1.0385
V104 1.0165 1.0210 1.0000 1.0218
V105 1.0197 1.0080 1.0000 1.0376
V107 1.0408 1.0240 0.9750 1.0285
V110 1.0288 0.9800 1.0120 1.0458
V111 1.0194 0.9980 0.9990 1.0254
V112 1.0132 1.0050 1.0020 1.0275
V113 1.0386 1.0010 0.9780 1.0567
V116 0.9724 1.0190 1.0190 1.0577

Transformer tap ratio
T8–5 0.9568 0.97 0.96 1.00
T26–25 1.0409 0.95 1.01 0.99
T30–17 0.9963 1.00 0.92 1.00
T38–37 0.9775 1.02 1.02 1.01
T63–59 0.956 1.02 0.98 1.03
T64–61 0.9956 0.93 1.02 1.02
T65–66 0.9882 0.94 0.96 0.97
T68–69 0.9251 0.95 1.01 0.94
T81–80 1.0661 0.99 0.94 1.00

Capacitor banks (MVAR)
QC-5 �33.19 32 �9 �19
QC-34 4.8 8 10 6
QC-37 �24.9 0 �13 �19
QC-44 3.28 7 6 3
QC-45 3.83 7 7 6
QC-64 5.45 4 6 5
QC-48 1.81 9 6 9
QC-74 5.09 10 6 7
QC-79 11.04 12 6 6

Table 5 (continued)

Control variables OGSA [27] ABC GWO ALO

QC-82 9.65 11 13 12
QC-83 2.63 8 4 6
QC-105 4.42 4 7 4
QC-107 0.85 2 4 3
QC-110 1.44 3 2 3
Min PLoss (MW) 126.99 120.4288 131.2620 119.7792
Max L-index (p.u) 0.14 0.0677 0.0668 0.0642
Pgslack (MW) NA 501.43 512.26 500.78
Psave (%) 4.4203 9.35 1.205 9.847
CPU (s) 1152 730.4 722.45 716.7

Table 6
Statistics of trial result to ALO algorithm and other algorithms for IEEE 118-bus.

Algorithms PLoss (reported) MW PLoss (calculated)
MW

CPU (s)

GSAa [1] 127.7603 152.886 1198.6583
OGSAa [27] 126.99 130.351 1152.32
ICA [32] 123.0825 123.0825 1263
GSA [32] 122.6139 122.614 936.43
PSOa [12] 131.99 274.160 1215
CLPSOa [12] 130.96 236.174 1472
CPVEIHBMOa [15] 124.098 139.743 1053.37
HFAa [33] 134.24 135.381 NA
ABC 120.4288 120.41 730.4
GWO 131.2620 131.269 722.45
ALO 119.7792 119.785 716.7565

a Are the infeasible solutions.

Fig. 4. Convergence curves for L_index minimization in case 2 of IEEE 30-bus power
system.

Fig. 5. Convergence curves for PLoss minimization of IEEE-118 bus power system.
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Table 7
Comparison of results of ALO algorithm and other algorithms for IEEE 300-bus.

Algorithms MVMO [31] DEEPSO [31] ALO

Min PLoss (MW) 385.6284 394.4343 384.9224
Max L-index (p.u) NA NA 0.3663
CPU (s) NA NA 4022.9

NA: not a number.

Fig. 6. Convergence curves for PLoss minimization of IEEE-300 bus power system.

Fig. 7. Bus voltage profile for IEEE-300 Bus power system.

Table A.1
Control parameter settings of ALO algorithm for test power systems.

Parameter Setting Value

IEEE 30-
bus

IEEE 118-
bus

IEEE 300-
bus

No of search agents (NSA) 40 40 40
No of iterations 100 100 200
Search domain (rand) [0 1]
Dimension Same as number of features in any given

database
Penalty factor of voltage kV 50 50 10�5

Penalty factor of reactive power
kQ

100 1000 10�6

Penalty factor of transmission line
kS

100 100 10�6
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