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ABSTRACT

Individual-based modeling has gained popularity over the last decade, mainly

due to the paradigm’s proven ability to address a variety of problems seen in many dis-

ciplines, including modeling complex systems from bottom-up, providing relationship

between component level and system level parameters, and discovering the emergence

of system-level behaviors from simple component level interactions. Availability of

computational power to run simulation models with thousands to millions of agents is

another driving force in the widespread adoption of individual-based modeling. This

thesis proposes an individual-based modeling approach for solving engineering design

and optimization problems using artificial ecosystems. The problem to be solved is

first “mapped” to the artificial ecosystem’s environment and individuals (one or more

species). The artificial ecosystems is then allowed to evolve. The optimal solution

emerges through the interactions of individuals, which makes this approach attrac-

tive for design and optimization in complex systems, where formulation of a global

fitness function (as required by conventional evolutionary techniques) is complicated.

To demonstrate the proposed approach, the problem of binary texture synthesis is

attempted using an artificial predator-prey ecosystem.
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1. INTRODUCTION

Ever increasing demand for better capabilities, performance and scalability is

driving engineering systems to new complexities. Interconnections and interdepen-

dencies among these large-scale systems only adds to the difficulties in designing,

modeling and analyzing them. These so called complex systems have been defined

by Marashi and Davis [1], as containing ‘many components and layers of subsystems

with multiple non-linear interconnections that are difficult to recognize, manage and

predict’. Almost every engineering and infrastructure related industry today (includ-

ing electric power, water, and telecommunications) are not only complex systems in

their own right, but also highly interdependent on one another, making them subsys-

tems of a much bigger and complex system. Maier [2] calls a system ‘which is built

from components which are large-scale systems themselves‘ as a system-of-systems.

Several approaches are in practice for the design and analysis of complex syste-

ms[3] such as iterative maps, statistical mechanics, neural networks and system

dynamics[4]. One of the newest approach gaining rapid popularity is bottom-up

modeling and simulation [5, 6, 7]. In this approach, the complex system is broken

up into its constituent subsystems up to the level of granularity required. These

subsystems (or subelements) are then designed/modeled using conventional methods

available for the problem domain. An interesting inherent characteristic of complex

systems is emergence, i.e., the behavior(s) of a complex system cannot be predicted

even with the complete knowledge of the behaviors of the subsystems. It is univer-

sally agreed that the interactions between the subsystems of a complex system are

responsible for emergent behaviors. Therefore to claim a representative design of a

complex system, it is necessary to model the interactions between the subsystems

with sufficient detail.

With the capability of modeling systems using a collection of autonomous, goal

driven, interacting entities called agents, Agent-based modeling1 appears to be an

appropriate choice for modeling complex systems. The availability of computational

1Also referred to as individual-based modeling. Both these terms indicate the same bottom-up
modeling paradigm using a collections of entities called individuals or agents. Hence, these terms
are used interchangeably in this thesis.
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power to run simulation models with millions of agents is another reason, agent-

based models (ABMs) are enjoying a widespread adoption in a variety of disciplines.

However, as a young field, agent-based modeling still has a long way to go before

becoming the first choice for complex systems design and analysis. Model validation

and efficient communication of results remain major challenges for researchers[8, 9,

10, 11]. The lack of efficient agent-based models for engineering systems design and

optimization is another problem which needs to be addressed.

1.1. THE BIG PICTURE

From ant colonies and ecosystems to immune systems and global climate, com-

plex systems can be found everywhere in nature. Continuously evolving and adapting

to changes in each other, these inherently robust, natural complex systems are en-

vied by even the best of engineers. Most inventions in the human history have taken

inspiration from natural systems or phenomena. Whether it is aviation, tribology or

robotics, almost every aspect of modern technology has drawn some form of inspi-

ration from nature. Even in computational sciences, bio-inspired techniques such as

artificial neural networks, artificial immune systems, genetic algorithms, ant colony

optimization have enjoyed a significant position.

This thesis proposes an individual-based modeling and computational emer-

gence approach to solve design and optimization problems. Inspired by naturally

occurring ecosystems, a generalized framework consisting of one or more evolving,

interacting species, is developed. Basic building blocks needed for engineering these

artificial ecosystems are identified by drawing on the wealth of information available

on biological and ecological systems, agent-based modeling and evolutionary tech-

niques. Research issues associated with representation of evolving and non-evolving

engineered species and their interactions, representation of the environment and asso-

ciated constraints, implementation of population dynamics, mating preferences and

life cycle dynamics will be addressed. Although the generalized framework formulated

here can also be used to enhance the understanding of complex biological, ecological

and social systems, this thesis does not delve in these topics.

Application of the proposed framework to a real complex system is beyond

the scope of this thesis. Therefore a simple yet classical problem of binary texture
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synthesis is attempted as an illustrative application of the framework. Even in the

case of this simple problem, signs of emergence can be seen.

1.2. ORGANIZATION OF THE THESIS

A brief overview of the organization of this thesis is as follows. In Section 2,

a review of the previous work done in the areas of ecological modeling, individual-

based modeling, evolutionary techniques, multi-objective optimization and system-

of-systems architecture relevant to this thesis is presented.

In Section 3, the proposed artificial ecosystems framework is discussed. Details

of various biological and ecological processes and their individual-based modeling are

presented.

In Section 4, several existing agent-based modeling softwares are evaluated using

a representative individual-based model.

In Section 5, as individual-based model of a single species environment ecosys-

tem is developed to investigate the population and life-cycle dynamics. Effects of

individual level parameters and model assumptions on system level behaviors are

analyzed.

In Section 6, an individual-based model of a predator-prey ecosystem is devel-

oped to investigate the effects of predation. Effects of individual-level parameters and

model assumptions on system level behaviors are also analyzed.

In Section 7, an adaptation of the predator-prey model is employed to solve the

problem of binary texture synthesis. Experiments are conducted using this model

and the result are presented and discussed.

Finally, this thesis is concluded in Section 8, followed by a discussion on the

future directions of research.

1.3. MAJOR CONTRIBUTIONS

The following are regarded as the major contributions of this thesis.

1. The design and description of an individual-based generalized framework in-

spired by natural ecosystems for solving engineering design and optimization

problems.
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2. The identification, description and comparison between important ecological

processes and their individual level counterparts.

3. The design and implementation of individual-based artificial ecosystems.

4. Demonstrating a set of capabilities of the proposed framework through the use

of an illustrative example.
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2. RELATED WORK

As mentioned earlier, this thesis derives on the knowledge of agent-based mod-

eling, ecological modeling theories and evolutionary techniques and their application

to multi-objective optimization problems. A lot of research effort has been devoted

to each of these topic individually, and there exists a huge body of literature on them.

In the following sections, previous work on these areas relevant to this thesis, espe-

cially over the recent years, is identified and discussed. In Section 2.1, agent-based

modeling or individual-based modeling techniques and applications developed over

the years are presented and their relative merits and demerits discussed. In Section

2.2, research in the field of ecological modeling especially related to ecosystem dynam-

ics, and individual-based modeling of ecosystems is reviewed. Sections 2.3 and 2.4

a review of current evolutionary techniques and their application to multi-objective

optimization problems is presented.

2.1. INDIVIDUAL-BASED MODELING

Individual-based modeling or agent-based modeling refers to the class of analysis

tools, in which the system being analyzed is modeled as a collection of autonomous,

goal driven, interacting entities called individuals or agents. Von Neumann [12] was

probably the first to use this kind of bottom-up modeling approach, which he called

Cellular Automata (CA). In CA, each cell’s current state depended on its own previous

state and its neighbors’ states. As noted by Wolfram [13], even with these simple

rules and local interactions CAs produce some fascinatingly complex global patterns.

Several seminal contributions to individual-based modeling came from a diverse array

of disciplines.

Individual-based modeling have been used in social sciences for a long time,

albeit sparingly. Schelling [14], demonstrated the relationships between individual

motives and group outcomes using social situations of interactive dependence. Gra-

novetter [15], developed threshold models for situations where actors (agents) have

two distinct and mutually exclusive behavioral alternatives, the costs and/or bene-

fits of which depend on how many other actors choose which alternative. Another
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interesting application was developed by Axelrod [16], who developed an individual-

based variation of the prisoner’s dilemma to study the circumstances under which

a selfish agent would spontaneously cooperate. To his surprise, cooperation arose

between agents in unimaginable situations including battles of World War I, battles

over trade barriers, strategic alliances between rival businesses, among others. During

the last decade, however individual-based modeling has seen an increasing interest in

social sciences [7, 5, 6, 17, 18]. Individual-based models (IBMs2) have been used for

modeling artificial societies [19, 20], anthropology [21, 22], epidemiology [23], human

systems [24, 25] such as crowds, traffic, and markets, and urban planning [26, 27].

Another discipline with long standing interest in individual-based modeling is

ecology. In his mini-review [8] of 50 odd individual-based animal population models,

Grimm identified several advantages of using IBMs for ecological modeling. He also

discusses the problems faced and errors made by modelers. DeAngelis et al. [28], in

a recent review, identified and discussed IBMs based on ecological and evolutionary

processes such as movement, foraging, local competition, modeling of fitness and trait

evolution. Grimm et al. [29, 10], argued that patterns3 are defining characteristics of

a system and are therefore possible indicators of essential underlying processes and

structures. Consequently, they suggested that, to make bottom-up modeling more

rigorous and comprehensive, IBMs should focus on explaining these observed patterns.

Applications of individual-based modeling in ecology include studies on population

dynamics [30, 31], predator-prey dynamics and co-evolution [32], migration [33, 34, 35]

and ecological resource planning [36, 37].

In computer science, agent-based systems4 stemmed from the research in the

fields of distributed artificial intelligence (DAI) and artificial life (Alife). Hewitt and

Inman [38] listed a number of limitations of classical DAI which MAS could potentially

solve. Additional information on multi-agent systems can be found in Sycara [39],

Wooldridge [40], and Weiss [41], who carried out extensive surveys of the architectures

and issues in this field along with their applications. Another important milestone

in the history of individual-based modeling was Reynolds’ BOIDS [42], in which an

2IBM will be used as an acronym for Individual-based Model and not Individual-based Modeling
3Defined in the work as ‘Observations of any kind showing nonrandom structure and therefore

containing information on the mechanisms from which they emerge.’
4Traditionally called by computer scientists as Multi-Agent Systems (MASs)
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individual-based local interaction scheme was used to replicate grouping behaviors in

animals.

This increase in popularity of individual-based modeling is mainly attributed to

the paradigm’s proven ability to address a variety of problems seen in many disciplines.

Axtell [6], Bankes [7], Bonabeau [25], Grimm and Railsback [10], and Macal and North

[17, 18] have all independently identified the following as merits of individual-based

modeling:

• The unsuitability/ inability of competing modeling methodologies such as dif-

ference or differential equation-based modeling or system dynamics based mod-

eling to represent individual variation. These approaches often made one or

more unrealistic assumptions such as uniform representative cases for the pur-

pose of simplification. In individual-based modeling however such unrealistic

assumptions need not be made. Individuals or agents can be made as diverse

and heterogeneous as necessary to model real world scenarios accurately. In

cases where a system’s equations are intractable or provably insoluble, IBMs

can shed light on the dynamics of the system as these do not involve solving

any equation(s).

• For many of the modern systems, individual-based modeling by its very nature

provides a natural description of the system. It is easier to imagine a system as

a collection of subsystems performing actions and behaviors, than to imagine it

as a set of levels and flows (as in the case of system dynamics approach) or set

of difference or differential equations.

• Availability of computational power to run simulations with thousands to mil-

lions of agents[43], has made it possible to achieve simulation scales that were

not plausible a couple of years ago. With advances made in sensor technolo-

gies, it is also possible now to collect data which was previously difficult if not

impossible.

• IBMs also provide flexibility. Unlike traditional equation-based models which

have to be totally re-solved to incorporate any changes in the assumption made

during design, IBMs allow an easy way to test multiple hypothesis to identify

the appropriate set.
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• The most important advantage of using IBMs is however, their ability to cap-

ture emergence. By definition emergent phenomena cannot be reduced to the

system constituents, i.e., the system is more than the sum of its components.

As traditional top-down approaches model the system as the whole, they can

neither identify the relationships between parameters and the emergent behav-

iors. In individual-based modeling however, the individuals interacting in their

environment, capture emergent phenomena from bottom-up. Identifying the

relationship between the individual parameters and emergent phenomena is a

simple case of rerunning the model a several times for different values of the

parameters.

As with any paradigm, several shortcomings of individual-based modeling have

been identified and frequently used as arguments against the paradigm. Several sim-

ilar solutions to these objections have been suggested by researchers from different

fields, which are aggregated into the following list.

• Generally, IBMs consists of numerous parameters which makes derivation of

governing equations from model results an impossible task, except via the use

of mathematics in highly stylized ways. This inability to validate IBMs is

usually used as an argument against individual-based modeling. Axtell [6], offers

‘computer programs as sufficiency theorems’ argument of Newell and Simon

[44], as a counter argument which states that if a model A, produces result

R, then it a sufficiency theorem for the formal statement R if A. Carley [11],

identified the types of validation, and the issues with model validation. One of

the validation schemes is to observe the patterns generated by the model and

match it against the patterns found in the real world system. This is identical

to the pattern-oriented modeling approach proposed by Grimm et al. [29].

The latter also assert that theories of complex systems may never be reducible

to simple analytical equations. In which case, individual-based modeling of

complex systems may help analyze the underlying theory of these systems using

an algorithmic, rather than an analytical approach.

• Another concern frequently expressed by IBM modelers and designers is that,

although IBMs may be a more natural representation of the system, they are
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difficult to communicate to others [37, 29]. Unlike population-level models,

IBMs take into account individual variability, and detailed behaviors of indi-

viduals, increasing the number of variable parameters and complexity of the

model. This makes the communication of results of an IBM via the familiar

language of mathematics, unrealistic. Grimm and Railsback [10], proposed a

standard protocol to facilitate communication and replication of IBMs. This

protocol was later revised by a consortium of researchers [9] and named the

ODD 5 protocol. This protocol is adopted to describe the IBMs presented in

this thesis.

• Bankes [7], pointed out that most of the published works, rely on human ob-

servers to identify and declare the occurrence of emergent phenomena based on

graphical outputs. He argues that unless a formal definition, rule and quan-

titative tests to detect and validate emergence are discovered, the scientific

importance of emergence and individual-based modeling will remain small. No

answers to these questions were found in the surveyed literature. Answering

these questions is a research in itself and beyond the scope of this thesis. Hence

the human observer approach is adopted.

2.2. ECOLOGICAL MODELING

Ecology is defined as the study of systems (called ecosystems) comprising of bio-

logical entities (biotic) functioning together with non-living physical matter (abiotic)

of the environment. The field of ecology can be broadly classified into

• Behavioral ecology – study of individual behaviors and their effect on individual

capability to adapt to its environment.

• Population ecology – study of population dynamics of a single species

• Community ecology – study of interacting populations of multiple species.

• Ecosystem ecology – study of energy and matter interactions between the biotic

and abiotic elements of an ecosystem.

5ODD stands for Overview, Design Concepts, Details. An online appendix contain-
ing significant number of previous IBMs translated to the ODD protocol is available at
http://www.ufz.de/oesatools/odd
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• Systems ecology – study of ecosystem development and organization.

• Landscape ecology – study of processes and relationships between multiple

ecosystems over a very large geographic area.

This thesis concerns itself with population and community ecology. Ecosystems

and processes discussed in the following literature survey are for single and multiple

species, population dynamics.

The simplest population dynamics model, the exponential model, was proposed

by Malthus [45]. In this model population size of a species had three outcomes, expo-

nential decrease, exponential increase or no change. Malthus [46] later observed that

while populations grow geometrically, vital resources in their environment remained

constant or grew only arithmetically. Thus, population size must eventually exceed

the size sustainable by the available resources. This idea was later proposed as the

logistic equation by Verhulst in 18386. According to the logistic equation, the rate

of population increase depends on the population density. Richards [48] proposed a

flexible growth model, which also described the rate of increase as a function of pop-

ulation density. Richards equation, however, has an additional parameter called the

shape parameter, which allows the equation to be equivalent to several other popular

population dynamics models, including the logistic equation.

For multiple interacting species, models such as predator-prey, host-parasite,

plant-herbivore, cooperation, ecological niching, food-web models exist. Several math-

ematical treatments of these models can be found in [49, 47, 50]. The literature survey

presented here concentrates only on the predator-prey ecosystem.

The predator-prey ecosystem consists of two interacting species, of which one

(prey) is the food source of another (predator). The predator-prey ecosystem is

one of the most widely studies interspecific competition models. The famous Lotka-

Volterra (L-V) predator-prey equations were proposed independently by Lotka [51]

and Volterra [52]. Nicholson and Bailey [53], proposed a discrete-time host-parasite

model. Although this model was based on parasitoid behaviors, it is identical to the

predator-prey theory, and is generally referred to as the discrete-time predator-prey

model. Further contributions to the predator-prey was made by Holling [54], who

6as noted by Kot [47].
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established the relationship between predator-prey population dynamics and prey

density. For a detailed historical account of predator-prey theory, see Berryman [55].

The applicability of predator-prey model is not confined to the realms of ecology

studies. Predator-prey models have been used for studying cooperative strategies

[56], robotics [57, 58], and multi-objective optimization [59, 60].

2.3. EVOLUTIONARY TECHNIQUES

Evolutionary computing techniques are the class of optimization algorithms in-

spired by natural systems and the concept of darwinian evolution. Most of these

algorithms consists of a population of individuals, each representing a single solution

in the solution space. Using an iterative process, the population is iterated through

generations. The attributes (chromosomes) of the the individuals is altered via the

use of processes comparable to biological processes such as mating, reproduction and

death. These algorithms draw inspiration from darwinian evolution theory, which

states that overtime only the fitter genes of a species survive and that these species

adapt to survive in their environment. Therefore, the population of individuals which

inhabit the simulation after few hundred to few thousand generations, must be highly

adapted to the environment and should therefore represent optimal solution to the

problem at hand.

Several evolutionary techniques are in use today. These techniques can be

broadly classified into evolutionary algorithms and swarm intelligence algorithms.

Genetic algorithms (GAs) is the most popular technique in the class of evolutionary

algorithms. Although previous work existed [61], Holland [62] is usually accredited

with popularizing GAs. The GA proposed by Holland used a population of individuals

whose chromosomes were represented using bitstrings. These bitstring chromosomes

represented the solutions to the problem. Every iteration (generation) consisted of

evaluating each individual using a fitness function. Predetermined percentage of top

performing (high fitness) individuals are kept alive and the rest killed. Offsprings are

generated to fill the deficit in population, by selecting two parents, based on a selec-

tion criteria and creating a chromosome for the offspring using a crossover function.

The resulting chromosome is mutated using a small fixed probability. This mutation
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function7 is responsible for maintaining diversity of the population. The simulation

is then advanced to the next iteration. A large number of variants of Holland’s GA

exist. For a detailed discussion, on these variants see [63, 61].

Co-evolution is another popular evolutionary technique. Co-evolutionary al-

gorithms consist of multi species whose evolution depends on the evolution of one-

another. Several types of co-evolution such as competition, amensalism, mutualism,

commensalism and parasitism have been identified [64]. Competitive co-evolutionary

algorithms include the predator-prey models, where the prey tries to adapt to sur-

vive predators and the predators adapt to catch the evolved prey. This can lead to

run-away evolutionary arms race called Red Queen Dynamics [65, 66, 57, 58]. Coop-

erative co-evolutionary algorithms (mutualism) on the other hand consists of multiple

species which co-exist in an environment. This co-existence is due to some form of

mutual benefit to each other. Example of such co-existence is a symbiotic relation,

in which one species provides some service to the other and vice-versa. De Jong

and Potter [67], proposed an cooperative co-evolutionary approach to designing and

learning complex structures. They argued that traditional evolutionary algorithms

evaluate solutions to complex problems only on the basis of performance and hence

structures involving modularity seldom evolve. In their approach, multiple instances

of an evolutionary algorithm are run in parallel, each producing useful substructures/

subcomponents. Representatives from each EA instance are selected and combined

to form a global solution whose fitness is used to send feedback to the EA instances,

reflecting how well they collaborated with each other.

Unlike evolutionary algorithms, swarm intelligence techniques, draw their inspi-

ration from grouping behaviors in animals. Many animals species form social groups

such as flocks in birds, schools in fish, herds in cattle, trails in ants, etc. In these

groups, individuals have only local information, i.e., information regarding their im-

mediate vicinity. Any global information8 is acquired through communication and

interaction with other individuals who share their vicinity. Particle Swarm Optimiza-

tion (PSO) and Ant Colony Optimization (ACO) are the two most popular swarm

intelligence techniques. PSO was proposed by Kennedy and Eberhart [68], inspired by

7In GA terminology, selection, reproduction, crossover and mutation are called operators.
8Any information about the group beyond an individual’s immediate vicinity can be considered

as global information.
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flocking behavior in birds. In PSO, particles representing possible solutions to a given

problem are flown through the solution space. Each particle evaluates the fitness of

its location based on a fitness function. Each particle keeps track of the best location

it has found so far and the best location its neighbors have found/communicated.

Based on this information, it updates its velocity and position. It is observed that

after few iterations the particles start flocking around the global optimal solutions.

Numerous variations of this algorithm can be found it literature (see [69, 61]).

ACO derives its inspiration from foraging behavior of ants. Via local inter-

actions, ants form trails connecting food sources and the ant colony. Dorigo [70]

proposed the ACO algorithm and later applied it to the traveling salesman problem

(TSP) [71]. ACO is generally applied in situations where the problem to be solved

can be represented as a graph. Examples of such applications include telecommu-

nication networks [72], shop floor management [73] and data mining [74]. For more

information on ACO and its variants, see9 [75].

2.4. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization (MOO) involves simultaneously optimizing two or

more objectives which are conflicting in general and subject to multiple constraints.

Due to their conflicting nature, all the objective functions cannot be simultaneously

optimized to their best solution and expect to find a global best solution. Therefore,

it is clear that no single absolute solution can be found for MOO problems. Instead,

a set of objective vectors (solution) can be obtained such that no other solution

can improve on one of the objective functions without worsening another. Such an

objective vector is called a Pareto-optimal set.

A variety of evolutionary techniques have been applied for MOO problems. This

thesis however concentrates on a small subset of the applications using predator-prey

models relevant to the current work. For a comprehensive overview of MOO using

evolutionary algorithms see10 [76, 77].

Laumanns et al. [59], were the first to consider a predator-prey model for multi-

objective optimization. They considered prey individuals as the possible solutions

9Another good resource on ACO is http://iridia.ulb.ac.be/∼mdorigo/ACO/
10Also see IEEE CIS Task Force on Multi-Objective Evolutionary Algorithms website at

http://www.cs.cinvestav.mx/∼emooworkgroup for EMOO repository.

http://iridia.ulb.ac.be/$\sim $ mdorigo/ACO/
http://www.cs.cinvestav.mx/$\sim $emooworkgroup
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of the MOO problem. The prey were placed at the vertices of a two-dimensional

toroidal grid. Additionally, the prey were considered immobile. The predators ran-

domly moved across this grid killing prey according to one of the optimization criteria.

Several predators for each optimization criterion were populated at the start of the

simulation run. The predators kill only the worst prey in their immediate neigh-

borhood and the vacated space is immediately replaced by another prey created by

discrete recombination of those prey which are part of the recombination neighbor-

hood. Later, Deb [76] identified that Laumann’s model suffered from the loss of

diversity and poor convergence rate. He proposed modifications such as weight vec-

tor assignment to the predators instead of individual objective function, offspring

creation through the recombination of the best prey instead of a random one, and

predators moving to the best prey location instead of a random walk. Deb reported

that these modifications improved the convergence rate, but loss of diversity was still a

problem. A revised version was reported by Deb and Rao [78], incorporating elite and

diversity preservation mechanisms. Elite-preservation was achieved by accepting new

prey only if they performed better than the prey to be killed by the predator. Each

prey was assumed to have an influence region defined by a hyper-cube around it on

the objective space. Diversity preservation was achieved by not accepting offsprings

which were created within the influence zone of any existing prey. Grimm and Schmitt

[60], proposed further modifications to the model including adoption of well known

self adaptive Evolution Strategy (ES) mechanism [79], and a rotation-independent

recombination operator to learn and adapt to the position of the Pareto-set in search

space.



15

3. ARTIFICIAL ECOSYSTEMS

Most current evolutionary techniques discussed in Section 2.3 can be summa-

rized by Figure 3.1. It can be noted that the fitness function and selection mechanism

are evaluated external to the evolving population. This is an unnatural way of accom-

plishing adaptation in contrast to the natural systems these algorithms are inspired

from. Survival of the fittest phenomena which this type of selection mechanism is

intended to enforce is an emergent behavior in nature and not something that is

explicitly enforced.

Although the fitness mechanism is internal to the ecosystem in the predator-

prey coevolutionary techniques discussed earlier, the selected mechanism was rather

unusual in that the recombination and reproduction operators created an offspring

from the best individuals in the neighborhood decided by the predators.

This thesis proposes a framework which uses closed adaptations of naturally

occurring ecosystems to solve design and optimization problems. These engineered

ecosystems will be referred to as artificial ecosystems. The term closed ecosystem

refers to an ecosystem which is self sustaining. Resource exchange (such as immi-

gration and emigration) between the environment and itself is assumed to be non-

existent. The general framework presented here is based on an ecological metaphor

Figure 3.1. Model for a conventional evolutionary technique.
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instead of any biological subsystem (like genetics or ant-colony). It is more natural

to define the problem into an artificial ecosystem as it allows for a fitness criterion

sustainable by the ecosystem to be automatically embedded and enforced internal to

the ecosystem.

Given a design or optimization problem11, a natural ecology model to which the

problem can be mapped is selected. When mapping the problem to the ecosystem,

the design parameter set that needs to be optimized is mapped as adaptable charac-

teristics of one of the biological species. If more that one parameter set needs to be

optimized, as in case of MOO problems, more than one species may have adaptable

characteristics. Other specified parameters, constraints and information available

about the problem are mapped to the environment. Finally, any modifications to the

ecosystem that may increase computational efficiency without the loss of generality

are applied.

Figure 3.2 shows a schematic model for an artificial ecosystem based on this

framework. In the figure, arrows between any two species indicate the interspecific

interactions such as predation, parasitoid, grazing, symbiotism and other similar be-

haviors, which can occur between individuals of different species. Apart from these,

intraspecific interactions (not depicted in the figure) which may occur between indi-

viduals of the same species such as mate selection, social and territorial dominance

can be modeled where required. Effects of the environment on each species are repre-

sented by the arrows between the environment and each of the species. These effects

can vary from species to species are used to represent the constraints on each parame-

ter set. All these different types of interactions together form the driving forces of the

ecosystem which exert the necessary evolutionary pressure on the evolving species’

genotypes to adapt optimally. This driving force can be thought of as a fitness func-

tion, which would be internal to the ecosystem and evaluated at a local level through

the interactions between individuals of various genotypes. Similarly, the selection cri-

terion for population dynamics is not enforced external but internal to the ecosystem

through the interactions between individuals of same or different genotypes.

Having mapped the problem to this artificial ecosystem, the resulting ecology

is simply allowed to evolve. Inspiration is taken from nature in assuming that the

11referred to as problem from here on.
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Figure 3.2. Model for artificial ecosystems methodology.

genotypes of the surviving individuals over time would have adapted optimally to the

environment and therefore, would have highest levels of fitness.

3.1. INDIVIDUAL-BASED MODELING OF ECOLOGICAL
PROCESSES

Modeling ecological and biological processes at individual-level allows explicit

inclusion of individual variation in greater detail. This allows the model to capture

and demonstrate emergent phenomena observed in natural systems in a more realistic

way.

Population dynamics is one of the most important ecological processes. Pop-

ulation dynamics of each species of a closed ecosystem has to exhibit some form of

stability. Extinction of even one species, might result in the collapse of the entire

ecosystem. Population dynamics of a species in a closed ecosystem is entirely gov-

erned by reproduction and mortality processes, that is, by the population growth

model of the species. The models of population growth discussed in Section 2.2 are
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however described at population level and not individual level. In the case of individ-

ual based modeling, population dynamics emerge from individual level reproduction

and mortality processes.

As an example, an individual-based version of the famous logistic growth model

is described here. Equation (1) gives the logistic equation in its discrete form. The

logistic model is density dependent, i.e. the population in the next time step (gener-

ation) depends on the population in the current time step.

N(t+1) = Nt · e{r0·(1−Nt
K )} (1)

where Nt and N(t+1) are population sizes at time t and (t + 1), respectively, K is the

carrying capacity, and r0 is the population growth rate.

Carrying capacity is the maximum population an environment’s available re-

sources can sustain. It is clear that the model assumes that the available resources

and population growth rate, which is the difference between birth and death rates are

constant. These assumptions are not always true.

For the individual-based growth model which can produce population dynam-

ics similar to the logistic equation, each individual is assumed to have the genetic

knowledge of the population density at the start of the IBM’s execution. Termed

here as genetic density, this piece of information is passed down from one generation

to another. Each individual keeps track of other individuals with in an interaction

area (Iarea). Let Pi be the number of interactions an individual experiences over a

time Page. The average population density experienced by an individual is therefore

given by
{

Pi/Page

Iarea

}
. Let Gd be the genetic density known to the individuals and Pd

be the death rate of an individual. Then, if each individual produces number of off-

springs given by equation (2) with probability of the birth rate Pb, the population

will eventually reach an equilibrium point, for the given Gd, Pb and Pd.

Noffsprings =
{Gd × Iarea}{

Pi

Page

} (2)

This equilibrium point, which is equivalent to the carrying capacity, emerges

from simple reproduction and mortality rules, rather than being specified. Other
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specific reproduction and mortality rules like age dependent mortality, seasonal vari-

ation in reproduction, fertility depending on the position in the group [30], etc., can be

added when required using simple rules to the individual reproduction and mortality

behaviors.

Another important biological process used in the artificial ecosystems method-

ology is mobility. Mobility is demonstrated by living creatures for a variety of reasons

including seasonal migration, foraging for food, escape from predators, search for re-

production site, and search for mate. At an individual-level mobility can be modeled

in its simplest form as random walk. At every time step, each individual can move by

a fixed distance in any direction. More elaborate rules [10, 42, 80] can be established

to achieve emergent patterns such as flocking, herding, schooling, etc. In this thesis

only the simple case of random walk model is considered for mobility.

3.2. INDIVIDUAL-BASED MODEL FORMULATION

To facilitate easy communication, replication and peer review of IBMs, Grimm

et al.[9] proposed a standard protocol called the ODD protocol. In this section, a

brief description of this protocol is presented. This protocol will be used later in this

thesis to describe the IBMs developed.

The ODD (Overview, Design Concepts and Details) protocol consists of seven

elements as shown in Figure 3.3. A brief description of the seven elements is as

follows:

Purpose: This element discusses the model purpose and intention of the modeler.

It also serves as the guide for the rest of the formulation.

State variables and scales: Description of the state variables of the low-level en-

tities such as individuals and habitat units are provided in this element. State

variables of higher-level entities such as population, metapopulation (commu-

nity of populations), or landscape (collection of habitat units) are described if

any. Finally, the spatial and temporal scales of the model such as size of habi-

tat units, extent of the model world, length of time steps, length of time of the

model are discussed.
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Figure 3.3. The seven elements of the ODD protocol. Reproduced from Grimm [9]

Process overview and scheduling: A verbal overview of individual processes su-

ch as reproduction, growth, movement, mortality, used in the model is provided.

The scheduling issues such as the order of the process execution, asynchronous

or synchronous updates and model ordering of processes which are concurrent

in nature are also discussed.

Design concepts: This element consists of a checklist of items that need to be

considered when designing an IBM. Item that do not apply to the model being

described are simply left out.

Emergence: This describes which system-level phenomena is expected to eme-

rge from individual traits, and which phenomena are simply imposed using

rules.

Adaptation: This describes which traits of individuals are adaptable to im-

prove their potential fitness in their environment.

Fitness: This describes how fitness-seeking modeled, if applicable. Fitness-

seeking can be achieved in two ways direct fitness-seeking, in which the

fitness consequence of a behavior, using a fitness measure is explicitly mod-

eled, and indirect fitness-seeking, in which model specific behaviors are
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assumed to contribute directly to fitness-seeking but are difficult to link to

fitness directly.

Prediction: This describes how individuals predict future conditions (if any)

to decide their current decisions.

Sensing: This describes which internal and state variables the individuals can

sense and which variables they are just considered to know.

Interaction: This describes what kinds of interactions among individuals and

their environment are modeled.

Stochasticity: This describes whether and why stochasticity is a part of the

model.

Collectives: This describes the aggregations (groups) of individuals used in

the model and their reason.

Observation: This describes what data is collected from the IBM execution

for analyzing it.

Initialization: This element answers questions about the start of the model exe-

cution, such as initial values of the state variables and initial conditions of the

model, and reasons for their selection.

Input: The input data used and methods to generate or obtain this data are dis-

cussed in this element.

Submodels: A detailed description of the processes listed in the “Process overview

and scales” is provided in this element.

The reason for using the ODD protocol for all the IBMs in this thesis is to

help the reader better understand the latter models due to the familiarity with the

structure of the protocol.
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4. SOFTWARE EVALUATION

The objective of this section is to evaluate and compare individual-based mod-

eling software available to the research community. A survey and review of existing

individual-based modeling platforms was conducted by Railsback et al. [81] in 2006.

However, new platforms have been released since, and additional features incorpo-

rated into the existing ones. A first hand experience of using the modeling platforms

seemed an ideal way to review and compare them.

Table 4.1 lists information about the software platforms evaluated.

Table 4.1. List of software platforms evaluated.
Name Base Language Current Website12

Ascape Java http://ascape.sourceforge.net/

MASON Java http://www.cs.gmu.edu/ eclab/projects/mason/

MetaABM Java, EMF http://www.metascapeabm.com/

Netlogo Java http://ccl.northwestern.edu/netlogo/

Swarm Obj-C, Java http://www.swarm.org/

Xholon Java, UML, XML http://www.primordion.com/Xholon/

4.1. EVALUATION CRITERIA

Software platforms can be evaluated based on a plethora of criteria depending

on the evaluator’s need and experience level. Possible criteria (not in any particular

order) for individual-based modeling software include the following:

Size and status of the user base and support group – This is probably the

most important criteria. A large and active user base indicates both the popu-

larity and usability of the platform. An active support group means additional

features requested by the user base can be expected to be implemented in a short

12As on 05-March-2008.

http://ascape.sourceforge.net/
http://www.cs.gmu.edu/~eclab/projects/mason/
http://www.metascapeabm.com/
http://ccl.northwestern.edu/netlogo/
http://www.swarm.org/
http://www.primordion.com/Xholon/


23

time. The size of the support group may not be an issue, but a larger support

group is always preferable. A small and active user base and support group

indicates that either the software is relatively new or that it is only suitable for

a specific category of applications.

Ease of use – It is understandable that some amount of learning is involved at start

of using any software, but it is possible to keep that learning curve as smooth

as possible by providing sample models and extensive documentation. Ease of

use criteria takes into account how difficult it is for an user to learn and use the

given software.

Execution speed – Another important criteria when evaluating any software plat-

form (not specifically to individual-based modeling softwares). It would be

unwise to conclude that nobody wants to use a slower software. If other fea-

tures offered by the software are exceptional, then execution speed might not be

a dictating criteria. However, with individual-based simulations reaching scales

of millions of agents [43], execution speed is becoming an important criteria.

Organization of the software – Organization of the software means how the files

and libraries that control the operation of the software are organized. This is

mainly of interest to an advanced user who might wish to add to or extend ex-

isting features of the software. A logical organization of the software simplifies

this process. A high interdependence with in the libraries and subcomponents of

the software makes updating/upgrading the software rather difficult and cum-

bersome.

Scalability – This indicates the capability of the software to solve problems of in-

creasing complexity. A software’s performance might be excellent when running

simulations with low number of individuals and small number of constraints and

interactions, but might perform below average due to a variety of reasons. The

use of the word scalability here, also refers to the ability of the software to work

in distributed and parallel systems. With the increasing availability of parallel

processing systems it is rather important for a software to be able to run a serial

version of the simulation on parallel architectures with little or no modification.
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Portability – Almost all of scientific research is carried out by groups. Portability

means how efficiently a model developed in a software can be communicated to

others in the group. Platform independent and web-based languages such as

Java perform well in this category. Again this is a situation specific criterion

and may not be one of the deciding factors in adoption of a software.

Display capabilities – Though not always important, several platforms include in-

built display capabilities. These are particularly useful for beginner and also

for debugging purposes.

Programming platform – As noted with scalability, some programming languages

are better suited for certain applications and therefore softwares developed on

these programming languages are favorable. User competency in the base lan-

guage of a software also plays an important role in its adoption.

Scheduling mechanisms – Scheduling is an important part of individual-based

modeling. Certain processes of a model might have a serious restriction on

the order in which they are executed. Hence, the ability of the software to

provide scheduling mechanisms for a wide variety of situations is important.

4.2. EVALUATION MODEL

4.2.1. Model Description. A model of single species population dynamics

is developed for evaluating platforms listed in Table 4.1. The model consists of 1000

individuals of a single species in a spatially explicit environment of size 141 × 141.

The environment is modeled as a 2-D toroidal grid to eliminate any edge effects.

Each individual has four behaviors – interact, move, reproduce, and death. Individuals

interact with others with in their local environment (called interaction area) and move

around their environment randomly (random walk). The life cycle of the individuals

is modeled using a constant mortality rate and reproduction according to Equation

(2) (Section 3.1). A complete model formulation according to the protocol described

in Section 3.2 is provided in the next section. Elements of the ODD protocol which

do not apply to the evaluation model are simply left out.
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4.2.2. Model Formulation.

Purpose – The purpose of this model is to investigate the emergence of popula-

tion dynamics of a single species ecosystem from individual biological processes

and interactions. Individuals with several behaviors (biological processes) and

ability to locally interact with other individuals are setup in a spatially explicit

environment.

State variables and scales – The low-level entities in this model are the indi-

viduals and the habitat units of the environment. Individuals’ state variables

include location, age (in time steps), and interactions with others. These vari-

ables vary from individual to individual. Other internal state variable which

are same for all individuals include genetic density, interaction radius and ma-

turity age. Genetic density is the density of the population at the start of the

simulation and is represented as genetic memory, passed from one generation

to another. Interaction radius is the radius of the local interaction zone of an

individual. Maturity age represents the age after which an individual may re-

produce. The environment is 2-D toroidal grid of size 141× 141, each location

of which is called habitat unit, capable of housing one individual at a time. A

toroidal grid13is assumed to eliminate any edge effects. The state variable of

the habitat units is a single boolean value representing whether the habitat unit

is occupied or not. The spatial scale of the simulation is confined to the envi-

ronment (141 × 141) and the temporal scale of the simulation is 3000 discrete

time steps. A time step is completed when all the individuals have executed all

their behaviors once. Therefore, time steps may or may not be of same duration

when measured in wall clock time.

Process overview and scheduling – Each individual is associated with four be-

haviors or processes. They are interact, move, reproduce and die. During

interact, each individual increments an internal counter by the number of other

individuals with its interaction radius. Individual movement is controlled by

the move behavior. At each time step, individuals try to move to a vacant

13In this case the right end of the wraps around to the left end, and the top end wraps around to
the bottom end forming a torus. This is also known as symmetric boundary condition.
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location in their immediate 8-neighborhood. If no vacancy exists, an individ-

ual remains in its current location. During reproduce, all mature individuals

produce offsprings with a certain success rate. If successful, the number of off-

springs is inversely proportional to the parent’s experienced population density

(Equation (2)). Offsprings are spawned one on each available vacant location in

the parent’s 8-neighborhood. If no locations are available, the offspring is not

spawned. A constant death rate is used in the model. During the die behavior,

each individual draws a number from an uniform random number generator to

test it chance of survival. If the number drawn is less than the death rate, the

individual dies, else lives for the next time step. Apart form these individual

behaviors, a global process, update age, is executed at the start of every time

step, which increments the age of all individuals by one.

Scheduling is done as follows. At the start of every time step, the update

age process is executed first. Then one randomly selected individual at a time

executes its behaviors in a predefined order, until the entire population has

executed all the behaviors. The behaviors are executed in the order – interact,

move, reproduce, and die.

Design concepts –

Emergence: Although individual life cycle (movement, reproduction, and

mortality) are described by empirical rules and probabilities, the popula-

tion dynamics emerge fro the behaviors and interactions of the individuals.

Sensing: Individuals can sense other individuals within their local interaction

radius. Also each individual is assumed to know its own age and reproduc-

tion capabilities, i.e., the individual does not receive information about its

maturity and number of offsprings to produce from any external agency.

Interaction: Interaction between two individual is explicitly modeled, and is

used to keep track of the number of other individuals in their interaction

radius.
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Stochasticity: Individual birth and death events are modeled via probabili-

ties, which add stochasticity to the model. To reduce the effect of stochas-

ticity, each simulation is repeated 10 times, from which respective mean

values are reported as results.

Observation: Population size is recorded at the end of each time step.

Initialization – At the start of the simulation, individuals are placed randomly

in the environment, with only one individual at any given location. The age

and interactions of the initial population are initialized using equations (3), (4),

and (5). Table 4.2, lists the parameters used in the evaluation model and their

default values.

Pma = round

{
0.25× 100

Pd

}
(3)

Pa = U {0, 3× Pma} (4)

Pi = round {Pa ×Gd × Iarea} (5)

where Pma is the maturity age of the individual, Pd is the death rate and U(x, y)

is an uniform random number generator, generating values from x to strictly

(y − 1) and Pi is the interaction counter of an individual.

Submodels –

Interact: During interact, the interaction counter Pi is incremented by the

number of individuals, including itself, in the interaction radius (Ri), as

shown in Figure 4.1.

Move: During move, each individual moves randomly to a vacant location in

their 8-neighborhood as shown in Figure 4.2. If no location is available the

individual stay in its current location.

Reproduce: During Reproduce, each mature adult (Pa > Pma) reproduces

with a probability of Pb. If successful, the number of offsprings is given

by (Equation (2)). However, the actual number of offsprings produced is
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Table 4.2. Overview and default values of parameters for the evaluation model.
Parameter Value

Environment Parameters

Habitat width (cells) (W ) 141

Habitat height (cells) (H) 141

Display width (cells) 564

Display height (cells) 564

Individual Parameters

Initial population size (NP ) 1000

Initial location randomly placed, with one
individual per location

Interaction radius (cells) (Ri) 5

Interaction area (cells). Number of cells in
Ri

81

Birth rate (%) (Pb) 20

Death rate (%) (Pd) 10

Genetic density (Gd)
Np

W×H

Mobility (cells) (Pm) 1

Maturity age (time steps) (Pma) 3 (See eqn. (3))

Offsprings produced (Noffsprings) (See eqn. (2))

Initial population age (Pa) (See eqn. (5))

Initial interactions (Pi) (See eqn. (5))

less than or equal to the number of vacant locations in the parent’s 8-

neighborhood. If no locations are available, then further offsprings are not

produced until a vacany is available.

Death: There is a constant probability, Pd, of death in each generation (iter-

ation). Each individual draws a random number between 0 and 100 with

uniform probability. If the number is less than Pd, the individual dies and

is immediately removed from the simulation state.

4.2.3. Implementation. The evaluation model is developed on each of the

softwares listed in Table 4.1. A brief description of the softwares and the implemen-

tation procedure is discussed in this section.
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Figure 4.1. Interact behavior of an individual. The red dot indicates the individual
whose radius Ri creates the interaction area bounded by blue lines. In
this case the interaction counter Pi is incremented by 5.

Figure 4.2. Move behavior of an individual. Red dot are the individuals who are exe-
cuting their move behavior. The blue lines indicate the possible locations
to move, out of which one location is selected with uniform probabil-
ity. The individual with no possible locations to move will remain in the
current location.

Ascape: Ascape is a open source, free to use software, developed for general-purpose

individual-based models. Ascape is written in Java and runs on any platform

which supports Java. Models are written in Java using additional classes and

functionality provided with Ascape. For users who prefer Integrated Develop-

ment Environments (IDEs), Ascape integrates easily into the popular Eclipse14

environment. Ascape provides good visualization capabilities which is useful

14Visit http://www.eclipse.org for more information on the Eclipse framework.

http://www.eclipse.org
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for demonstration purposes. Though not extensive, decent documentation on

Ascape exists at the project website (refer Table 4.1). Being based on Java,

Ascape is relatively easy to use for any one with experience Java or any other

Object-Oriented Programming (OOP) language.

Implementation of the evaluation model in Ascape was relatively easy with the

use of Eclipse IDE. Java/Ascape provides useful and easy to track error messages

which simplfy the implementation process. Figure 4.3 shows the evaluation

model running in Ascape.

Figure 4.3. Evaluation model running in Ascape. Red dots indicate the locations
occupied by individuals and the plot shows the population dynamics.

MASON: MASON is also Java based open source and free to use software for

individual-based modeling. MASON was developed with execution speed as

the main criteria [81]. Models in MASON typically consists of a layered struc-

ture [82] with the lowest layer being the classes describing one or more kinds
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of individuals. The next layer, called “Model Layer”, consists of the rules for

scheduling and executing individuals’ behaviors. Another decoupled layer, “Vi-

sualization Layer” controls the display aspects of the model. This kind of

layered structure enables easy modification of the model. Very good documen-

tation and large number of code sample are available at the project’s website

which make MASON easy to learn and use. Implementing the evaluation model

in MASON was easy due to the hierarchical structure of the code. Again de-

bugging any errors which occurred was simplified by the helpful error messages

and good documentation. Figure 4.4 shows the evaluation model running in

MASON.

Figure 4.4. Evaluation model running in MASON. Red dots indicate the locations
occupied by individuals and the plot shows the population dynamics.
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MetaABM: MetaABM is a recently introduced open source and free to use soft-

ware tool for individual-based modeling and is targeted towards modelers who

are not familiar with or not interested in programming. Although metaABM

allows Java code snippets to be integrated into the model, model development

is mainly carried out using Eclipe Modeling Framework (EMF) based GUI pro-

gramming. Figure 4.5 shows the MetaABM development environment. The

developed model is then run either in Ascape or Repast 15 environments. No

good documentation or code samples are provided which makes initial model

development rather cumbersome.

Figure 4.5. MetaABM development environment.

Implementing of the evaluation model was found to be rather difficult even with

the easy-to-use GUI programming facility. This can be mainly attributed to the

15For more information visit the project’s website at http://www.metascapeabm.com.

http://www.metascapeabm.com
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lack of proper documentation. Also the final model developed is rather com-

plicated, as many GUI programming steps were required to achieve something

which could have been done in couple of lines of code. Figure 4.6 shows the

evaluation model running in Ascape mode of MetaABM.

Figure 4.6. Evaluation model running in MetaABM. Red dots indicate the locations
occupied by individuals and the plot shows the population dynamics.

NetLogo: Although free to use, NetLogo is the only software in this evaluation

which is not open source. However, due to its extreme flexibility, and simplicity

it is one of the most used individual-based modeling software. A descendant

of the Logo16 family, NetLogo is written in Java and is available for a large

number of platforms. With the largest collection of code samples and extensive

documentation NetLogo is ideal for beginners in the field of individual-based

16A popular programming language for kids. For more information visit the Logo Foundation
website at http://el.media.mit.edu/Logo-foundation.

http://el.media.mit.edu/Logo-foundation
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modeling. An easy to use Logo-like language is used for developing models in

NetLogo. The language is very high-level and is very easy to learn. NetLogo

also has an in-built GUI display and a large collection of GUI elements like

buttons, sliders and charts ready for use.

Implementing of the evaluation model was the simplest in NetLogo. The pro-

gramming language is both simple to learn and intuitive. Error reporting in

NetLogois not only done via easy to track messages, but also via visual means

by pointing to the location in the code where the error has occurred. Figure

4.7 shows the evaluation model running in NetLogo.

Figure 4.7. Evaluation model running in NetLogo. Red dots indicate the locations
occupied by individuals and the plot shows the population dynamics.

Swarm: Swarm is one of the oldest and highly used platform for individual-based

modeling. Two versions of swarm, based on Objective-C and Java – both open
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source and free to use, are available for use. For the current evaluation, only

Objective-C based version is used as the Java based version was reported to be

extremely slow [81] and is in a process of complete reimplementation. Good

code samples and extensive documentation are available for Swarm. However,

Objective-C is not currently a popular programming language and adds to the

learning curve for Swarm. Models in Swarm are designed as a hierarchy of

“swarms”, in which each swarm schedules the lower-level swarms. The top-

most swarm, the Observer Swarm, is responsible for the visualization elements

of the model. Model Swarm is the next level swarm which is responsible for

scheduling the individuals’ behaviors. The lowest-level swarms are the “Agents”

which describe the behaviors of the individuals.

Implementing the evaluation model in Swarm was found to be relatively difficult

and can be attributed to the lack of familiarity with Objective-C. Due to the

concept of weak-typing17, incomprehensible run-time errors are reported when

programming with Objective-C, which cannot be easily tracked without famil-

iarity with the language. Swarm is the only software evaluated, that does not

provide a toroidal grid class/structure. Also, the restriction of one individual

per habitat unit was placed due to Swarm’s inability to handle more than one

individual per location. This places serious constraints on which models can be

developed using just the functionalities provided by Swarm. Figure 4.8 shows

the evaluation model running in Swarm.

Xholon: Xholon is another recently introduced software for individual-based mod-

eling and is both open source and free to use. Xholon is based on a combination

of Java and XML18. Models are programmed using Java and XML, or imported

from UML19 diagrams. A model in Xholon can be considered as a tree with all

the components of model as nodes in the tree. Both individuals and their habi-

tats are hence nodes and behaviors like movement are simply implemented as

moving one node of the tree navigating to another node of the tree to interact.

17As opposed to strong-typing (as in C++), where the arguments passed to a function are checked
for compatible class types during program compilation, weak-typing does not check for the class types
at compile time. This results in a run-time exception.

18Extended Markup Language.
19Unified Modeling Language
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Figure 4.8. Evaluation model running in Swarm. Red dots indicate the locations
occupied by individuals and the plot shows the population dynamics.

Navigation of trees is accomplished using XPath20 syntax, which is a simple and

easy to learn. Nodes can also create, delete or move other nodes and subtrees

(as allowed by the model). Communication between nodes is accomplished via

UML ports and connectors. Although recently introduced, a large collection of

code samples are provided for the beginner. However, the documentation is still

quite insufficient and incomplete.

Implementing the evaluation model in Xholon produced mixed reactions about

the software. Although the lack of proper documentation was hindering, fa-

miliarity with the languages involved permitted the development of the model

within a reasonable amount of time. Figure 4.9 shows the evaluation model

running in Xholon.

4.3. RESULTS AND RECOMMENDATIONS

Based on the development experience and results from the evaluation model,

observations for relevant criteria discussed in Section 4.1 are drawn about the software

platforms listed in Table 4.1.

20XML Path Language
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Figure 4.9. Evaluation model running in Xholon. Red dots indicate the locations
occupied by individuals.

Size and status of the user base and support group: Swarm and NetLogo

are probably the most used and supported of the platforms evaluated. MA-

SON has a very responsive support group, but the size and status of the user

base could not be determined. Information about the size of the user base or

support group could not be determined for Ascape, Xholon and MetaABM.

Ease of use : NetLogo is the easiest to learn and use among the platforms evaluated.

MASON comes in a close second due to the extensive code samples available.

Ascape and MetaABM are relatively easy to use when compared to Swarm,

which was most difficult to learn, even with extensive documentation and code

samples provided. This is attributed to the unfamiliarity with Objective-C,

which is used to develop Swarm models. Although Xholon requires experience

in a combination of languages, familiarity with these languages made model

development easy and relatively simple. However, the evaluation model devel-

oped ran much slower (see Table 4.3) than the sample models provided with the

software indicating that optimal features of the software were not used while

developing the model.
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Execution Speed: Table 4.3 shows the time (in sec) taken by each software to

run the evaluation. The evaluation model was developed with simple model

structure as the main criteria and was not optimized for speed in any of the

softwares. Hence, the results should not be construed as representative capabil-

ity of the software. Having said that, even when no attempt is made to optimize

the model for speed, MASON outperformed all the other software by more than

200%.

Table 4.3. Wall clock times (in sec) for running the evaluation model in each software.

Software With GUI Without GUI

Ascape 63.6 57.4

MASON 40.6 27

MetaABM 67.6 63.2

Netlogo 181.2 151.6

Swarm 202.4 174.4

Xholon21 2840 2580

Scalability: Of all the softwares evaluated, only MASON was found to have the

capability to run the model in a distributed processing environment. Although

NetLogo has the capability to run distributed simulations via the use of Hub-

Net22, it is only useful where each instance of the simulation is controlled by

a human operator and is not intended for improving speed. MASON on the

other hand provides separate classes to parallelize model on a multi-processor

system.

Display Capabilities: All the softwares evaluated provided a rich set of visual-

ization capabilities with Swarm and MASON being the ones which made it

transparent. In these two platforms, user is provided the option of configuring

21Times reported may not be representative of Xholon’s capabilites. Sample models provided with
Xholon ran much faster than the evaluation model.

22For more information on HubNet visit http://ccl.northwestern.edu/netlogo/hubnet.html.

http://ccl.northwestern.edu/netlogo/hubnet.html
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even the GUI elements of the model. Although NetLogo provides a large collec-

tion of GUI elements which can be used in a model, configuring them is limited

to altering the size, location and color of the elements. In Xholon, adding even

simple GUI elements like a chart/plot was found to be difficult and could not

be achieved.

Based on the above observations, MASON and NetLogo are adopted for the

models developed in this thesis. NetLogo is used for prototyping and MASON for

generating results.
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5. SINGLE SPECIES POPULATION DYNAMICS (SSPD)

An extension to the single species ecosystem developed in Section 4.2 is pre-

sented in this section. Constraints placed on the model due to limitations of software

platforms, namely, one individual per habitat unit and inability to spawn offsprings

due to non-availability of vacant locations are removed in the current model. The

effects of input parameters on the population dynamics are also explored.

5.1. MODEL FORMULATION

The formulation of the SSPD model is exactly the same as the model formulation

of the evaluation model discussed in Section 4.2, except for changes in the move and

reproduce behaviors of the individuals. Only these changes are discussed here.

Move: Unlike the evaluation model in which individuals could move only to vacant

locations in their 8-neighborhood, in the SSPD model, individuals are free to

move to any location (occupied or vacant) in their 8-neighborhood as shown in

Figure 5.1.

Figure 5.1. Move behavior of an individual in SSPD model. Red dots are the indi-
viduals who are executing their move behavior. The blue lines indicate
the possible locations to move, out of which one location is selected with
uniform probability.
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Reproduce: During the reproduce behavior, individuals spawn offsprings in one

of the locations in their 8-neighborhood whether it is occupied or vacant, this

way all the offsprings that were intended to be produced are infact produced,

giving a more realistic estimate of the population dynamics. Figure 5.2 shows

the reproduce behavior of the individuals.

Figure 5.2. Reproduce behavior of an individual in SSPD model. Red dots are the in-
dividuals who are executing their reproduce behavior and the green dots
are the offsprings spawned. The blue lines indicate the possible locations
to spawn their offsprings, out of which one location is selected with uni-
form probability. Locations pointed by the yellow lines are occupied by
more than one individual.

5.2. RESULTS AND DISCUSSION

Figure 5.3 shows the trend of population curve during ten runs. Average of the

ten runs is reported in Figure 5.4 as the representative trend of the SSPD model.

Averaging also eliminates any anomalies which may have occurred due to stochastic

birth and death processes.

Figure 5.5 shows the convergence of population towards the equilibrium size

determined by a given set of parameters. The plots of the figure were generated by

manually keeping the genetic density (Gd)
23 constant for various initial population

23Instead of calculating as density of initial population.
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Figure 5.3. Trend of population size during ten runs.

sizes. In each case, the population reaches the stable equilibrium point dictated by

the genetic density with 250 time steps and maintains this state for unlimited periods

of time.

For testing the effect of individual mobility on average population size, the

maximum distance that can be traveled by an individual in a single time step was

varied from zero to half the world size (70). Individuals could choose to travel any

distance from 0 to the max possible. Also the offsprings could be spawned within this

same distance, i.e. anywhere from the current location to the maximum distance that

can be traveled. Figure 5.6 demonstrates the effect of individual mobility on average

population size, which is approximately equal to the stable population size, for long

runs. As can be seen from the figure, except for zero mobility, any other mobility

does not have any effect on the average population size. In the case where mobility is

zero, locally concentrated clusters increase the average population density experience

by an individual and therefore lower number of offsprings are produced (see Equation

(2)). Due to this effect, population eventually goes to extinction. Figure 5.7 shows

the formation of these local clusters.
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Figure 5.4. Representative trend (average of ten runs) of population size.

For a given set of parameters, both genetic density and growth rate (birth

rate death rate), are equivalent to specifying the carrying capacity of an ecosystem

(See Equation (1)), i.e., increasing these parameters results in the increase of the

equilibrium population size. Figures 5.8 and 5.9 show the effect of genetic density

and birth rate on the average population size. Genetic density (Gd) is varied from 0

(no individuals) to 1 (number of individuals equal to the number of habitat units).

In Figure 5.9, the death rate is kept constant (Pd = 10) and the birth rate is varied

from 0 to 100. As can be seen from the figure, for birth rates lower than the death

rate (negative growth rate), the population goes to extinction.



44

 0

 500

 1000

 1500

 2000

 0  50  100  150  200  250

Po
pu

la
tio

n 
Si

ze

Generation (in time steps)

Initial population = 150
Initial population = 250
Initial population = 500

Initial population = 1000
Initial population = 2000
Initial population = 4000
Initial population = 8000

Initial population = 15000

Figure 5.5. Convergence of population size to the equilibrium dictated by a given
genetic density. Genetic density is calculated using an initial population
of 1000 (Gd = 0.0503).

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60  70

A
ve

ra
ge

 P
op

ul
at

io
n 

Si
ze

Mobility (in habitat units)

Figure 5.6. Effect of individual mobility on average population size.



45

Figure 5.7. Formation of local clusters when the individuals are immobile. Figure
reported at time step 500 and the number of individuals is over 700.
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Figure 5.8. Effect of genetic density on average population size.
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6. PREDATOR-PREY ECOSYSTEM (PPE)

Predator-prey ecosystem is one of the most widely studied interspecific compe-

tition models. It consists of two interacting species with one (prey) being the food

source of the other (predator). Lotka [51] and Volterra [52] independently proposed

the famous Lotka-Volterra (L-V) equations to model a predator-prey ecosystem. The

original L-V equations are given in Equations (6a) and (6b).

dN

dt
= aN − bNP (6a)

dP

dt
= cNP − dP (6b)

where N and P are numbers of prey and predators, a is the prey growth rate, b is

predation constant, c is the prey contribution to the predator population, and d is

the predator death rate.

The L-V equations consist of two parts, one for the prey and one for the predator

population. The prey equation consists of two parts. The first is the growth function

of the prey population (positive), and second is the loss of prey population due to

predation (negative). The predator equation also consists of two parts. The first is

the growth function of the predator population and the second is the loss of predator

population due to mortality.

The original L-V equations, used the exponential growth function (usually with

a positive malthusian coefficient24 for the prey population. Therefore, in the ab-

sence of predators, the prey population would increase exponentially. To remove this

unrealistic effect, the prey population is usually modeled using the logistic model

(Equation (7)).

dN

dt
= aN(1−N/K)− bNP (7)

where K is the carrying capacity of the prey population.

24A positive mathusian coefficient or population growth rate results in the case where the popu-
lation exponentially increases over time.
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The predator growth (cNP ) is a function of predation rate, i.e. if more prey are

eaten (killed) the predator population increases exponentially. This contributes to

the decline in prey population, second part of the prey equation (bNP ) and is termed

as the predator functional response [54].

6.1. MODEL DESCRIPTION

A simple PPE model is developed here, considering a prey population with

logistic growth and a constant predator population. The idea behind this is to evaluate

and demonstrate the functional response of the predator on the prey population.

The model consists of 1000 prey in a spatially explicit environment of size 128×
128. Prey in the current model are comparable to individuals in the SSPD model and

have the same four behaviors – interact, move, reproduce, and death. The predators

are modeled as immortal, immobile and impotent, i.e., the predators cannot move,

reproduce or die. Predators are associated with only one behavior – predation. The

prey population dynamics is modeled using the SSPD model.

6.2. MODEL FORMULATION

Purpose – The purpose of this model is to investigate the predator functional re-

sponse on a prey population. An interaction-based density-dependent popula-

tion model developed in Section 5 is used for the prey population. To simplify

the model, a constant predator population is used.

State variables and scales – Habitat units, predators, and prey are the low-level

entities of this model. Prey state variables include location, age (in time steps),

and interactions with other prey. Internal constants of the prey population

include – genetic density, which is the density of the prey population at the start

of the simulation, interaction radius, is the radius of the local interaction zone of

a prey, and maturity age, which represents the age threshold for reproduction.

Predators on the other hand, have no state variables. The environment is a 2-D

toroidal grid with each location – habitat unit, capable of housing any number of

individuals. The spatial scale of the simulation is confined to the environment

(128×128) and the temporal scale of the simulation is 3000 discrete time steps.
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As with the SSPD model, a time step is completed when all the individuals

have executed all their behaviors once. Therefore, time steps may or may not

be of same duration when measured in wall clock time.

Process overview and scheduling – Prey are associated with four behaviors and

predators with only one. Prey behaviors include interact, move, reproduce, and

death. These processes are exactly similar to the individual behaviors in the

SSPD model.

Design Concepts –

Emergence: Although prey life cycle (movement, reproduction, and mortal-

ity) and predation are described by empirical rules and probabilities, the

population dynamics emerge from the behaviors and interactions of prey

among themselves, and the with the predators.

Sensing: Predators can sense prey within their predation radius. Prey can

sense other prey within their local interaction radius. Each prey is also

assumed to know its own age and reproduction capabilities, i.e., when to

reproduce, how many offsprings to spawn is decided by the prey based on

its age and interactions.

Interaction: Interaction between a predator and a prey, and between two

prey is explicitly modeled. Interaction among prey is used to keep track

of the number of other prey in their interaction area. Interaction between

predator and prey includes, the predator sensing prey within its predation

radius and attempting to kill it.

Stochasticity: Prey birth and death events, and predators’ success during

predation are modeled via probabilities, which add stochasticity to the

model. To reduce the effect of stochasticity, each simulation is repeated

10 times, from which respective mean values are taken as representatives.

Observation: Prey population size is recorded at the end of each time step

(generation).
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Initialization – Predators are placed at the centers of the four quarters of the

environment as shown in Figure 6.1. Prey are randomly placed in the envi-

ronment. State variables age, and interactions of the prey are initialized using

Equations (3), (4), and (5). Table 6.1, lists the parameters used for the PPE

model and their default values.

Figure 6.1. PPE model setup. Red dots are the prey, green dots are the predators,
and the yellow areas represent predation zones.

Submodels –

Prey Processes:

Interact: During interact, the interaction counter Pi is incremented by the

number of prey, including itself, within the interaction radius (Ri), as

shown in Figure 4.1.

Move: During move, each prey moves randomly to another location in their

8-neighborhood as shown in Figure 5.1.
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Table 6.1. Overview and default values of the parameters for the PPE model.
Parameter Value

Environment Parameters

Habitat Width (cells) (W ) 128

Habitat Height (cells) (H) 128

Display width (cells) 512

Display height (cells) 512
Prey Parameters

Initial number of prey (Nprey) 1000

Initial prey location randomly placed

Interaction radius (cells) (Rprey) 5

Interaction area (cells). Number of cells in Rprey 81

Birth rate (%) (Pb) 20

Death rate (%) (Pd) 10

Genetic density (Gd)
Np

(W×H)

Mobility (cells) (Pm) 1

Maturity age (time steps) (Pma) (See eqn. (3)) 3

Offsprings produced (Nos)
{Gd×Iarea}n

Pi
Page

o
Initial prey population age (Pa) (See eqn. (4))

Initial prey interactions (Pi) (See eqn. (5))

Predator Parameters

Initial predator
population (Npred) 4

Initial predator location (W
4
, H

4
)

(W
4
, 3H

4
)

(3W
4

, H
4
)

(3W
4

, 3H
4

)

Predation radius (cells) Rpred 30

Predation success rate (%) (Pp) variable, default 10

Predation tries per time step (Pnt) variable, default 1

Reproduce: During Reproduce, each mature prey reproduces with a probabil-

ity of Pb. If successful, the number of offsprings is given by (Equation (2)).

Each offspring is randomly placed on one of the locations in the parent’s

8-neighborhood.
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Death: There is a constant probability, Pd, of death in each generation (itera-

tion). Each prey draws a random number between 0 and 100 with uniform

probability. If the number is less than Pd, the prey dies and is immediately

removed from the simulation state.

Predator Processes:

Predation: During predation, each predator picks Pnt number of prey, within

its predation radius. The selected prey are killed with a probability of Pp.

6.3. RESULTS AND DISCUSSION

Figure 6.2 shows the effect of predation on average population. For each pre-

dation success rate, beyond a particular number of attempts the prey density drops

rapidly. Beyond this particular threshold, the prey are killed faster than the offsprings

can mature and reproduce.

This analysis is particularly useful for solving design/optimization problems us-

ing an artificial predator-prey ecosystem. Values for the predation attempts and

predation success rate can be determined from Figure 6.2 depending on the appli-

cation’s need for diversity preservation or faster convergence. Values of predation

attempts on the left side of the threshold are good for diversity preservation25, while

the values on the right side are good for faster convergence. Higher values of pre-

dation success rates promote faster convergence, where as lower values provide the

prey an opportunity to explore the search space, resulting in a diverse set of optimal

values.

25As required in the case of multi-objective optimization, where more than one optimal solution
form the pareto-optimal set.
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7. BINARY TEXTURE SYNTHESIS

As a proof of concept of Artificial Ecosystems methodology discussed in Section

3, the problem of binary texture synthesis is attempted. The problem consists of

estimating optimal markov random field (MRF) parameter set capable of regenerating

a given random binary texture. An adapted version of the PPE model presented in

Section 6 is used for this purpose.

7.1. MRF TEXTURE MODELS

In this section the necessary mathematical representation for binary texture

synthesis is introduced.

Consider the image field S to be a N×N grid. Let X(i, j) be the intensity level

at point (i, j) on S. To simplify notation, X(i, j) is written as X(i), for i = 1, 2, ...,M

where M = N2. Let Λ be the colorspace from which the intensity of each location

on S is drawn. For a binary texture Λ has only two elements, i.e., Λ = {−1, 1}. Let

n(i) be the first-order neighborhood [83] of pixel i. S is considered to be a toroidal

grid, so that each pixel has exactly four first-order neighbors. Also, this assumption

eliminates any edge effects on the quality of the results. Unless an image/texture is

random noise, the pixel intensity at any location depends on the intensities at other

locations. Hence, a conditional joint probability distribution function can be defined

for each pixel i as

P (X(i)|X(1), X(2), ..., X(i− 1), X(i + 2), ..., X(M)) (8)

Consider, the case where the intensity of a pixel depends only on the intensities

of its neighboring pixels. i.e.,

P (X(i)|all points in S except i) = P (X(i)|neighbors of i) (9)

Any joint probability density which satisfies Equation (9)26 is referred to as a

Markov Random Field. Markov Random Fields have been previously used for texture

26This property is called Markovianity
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synthesis [84, 83, 85]. An anisotropic Ising MRF is used here, which is characterized

by the energy function

U(x) = −β1

∑
i j

xixj − β2

∑
i
k

xixk (10)

where β1 and β2 are the parameters that result in different textures.

Once the parameters are estimated, S is visited site-wise. The intensity of the

each site is set to -1 or 1 with probabilities given in Equations (11).

P (−1) ∝ exp

−β1

∑
i j

xj − β2

∑
i
k

xk

 (11a)

P (1) ∝ exp

β1

∑
i j

xj + β2

∑
i
k

xk

 (11b)

where i is the current site,
∑

i j xj denotes sum of intensities across all horizontal

neighbors of i, and
∑

ik
xk denotes sum of intensities across all vertical neighbors of

i. The resulting texture is an Ising MRF with parameters β1 and β2.

The proposed artificial ecosystems methodology is used to solve the inverse

problem. Given an input binary texture, the parameters β1 and β2 in Equation (10)

are estimated so that the binary texture can be synthesized. Visual inspection is used

to verify the output texture.

7.2. PPE MODEL FOR BINARY TEXTURE SYNTHESIS

The ecosystem model developed consists of three components predators, prey

and the environment. The texture whose parameters are to be estimated is mapped

to the environment as the land cover. The predator species is equipped with the

ability to differentiate prey from the background (visual acuity) and kill them. The

MRF parameters β1 and β2 are mapped as evolvable characteristics of the prey. Based

on these parameters, each prey is born with a textured coat, which camouflauges it

against the land cover (environment). A prey whose coat parameters are close to those

of the environment (original texture), get better camouflage, i.e., better protection
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from the predators. Such a prey is said to have adapted to the environment. Due

to the evolutionary force from predation, overtime only the prey with coat textures

closely resembling the landcover would survive, and hence their parameters can be

used to synthesis textures similar to the input texture.

The initial prey population parameters are initialized to random values. The

prey pass these parameters (comparable to “genes”) to offsprings with a small ran-

dom mutation at a fixed mutation rate. The predator’s seek and kill mechanism

(predation) can therefore be thought of as a fitness function, albeit, a local one.

Since the predator does not ave any parameters that need to be evolved, repro-

duction and death processes for predators do not contribute to the improvement of

the system in any way. Prey are given random movement so that probability of th

prey staying in a given neighborhood is equal to the probability of leaving the neigh-

borhood. The random movement ensures that only the prey which capture the global

characteristics of the input texture, survive. Also due to this random movement of

the prey, predator mobility is not necessary for ensuring complete monitoring of the

prey population. Therefore, the predators are modeled to be immobile, immortal and

impotent, and are placed at strategic locations.

7.3. MODEL FORMULATION

Purpose – The purpose of the model is to investigate the viability of the proposed

artificial ecosystems to solve design and optimization problems. A modification

of the PPE model developed in Section 6 is used to solve the problem of binary

texture synthesis.

State variables and scales – The model consists of two species, predators and

prey, and their environment. For each prey, age (in time steps), location in the

environment and interactions with other prey are tracked. Each prey is born

with certain texture endowing parameters β1 and β2 (genes) which determine

the texture on its coat. Predators have no state variables. The environment is

a 512 × 512 image of the texture whose parameters are to be estimated. The

binary texture is made of 3×3 color cells with each cell representing a potential

location for the predators or prey. Each cell is capable of housing more than one
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individual. The model operates in discrete time steps. At each step, prey are

selected in random order, and their individual processes executed, after which

predators are selected in a random order and their individual processes are

executed. The simulation state is updated after each individual has completed

their process, so that the next individual sees the updated simulation state.

Figure 7.1 shows the model setup and examples of prey coats.

Figure 7.1. Texture synthesis PPE model setup. Red dots indicate prey and green
dots indicate predators. Each prey is endowed by genes which project a
textured coat. Four such possible texture coat projections are depicted
in the image.
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Process overview and scheduling – The model proceeds in discrete time steps.

Within each time step, each prey is randomly selected and its processes – inter-

act, move, reproduce, and death are executed in the same order. Age of all the

prey alive at the beginning of a time step is incremented by one. Interact, move

and death behaviors of the prey are exactly the same as the ones described in

the SSPD and PPE models. In the reproduce behavior, the offsprings are pro-

duced as in the case of SSPD and PPE models. However, the coat parameters

of the offsprings are altered from the parent’s coat parameter, by adding a small

mutation value at a small mutation rate.

Predators have only one process, predation. Predators calculate certain statis-

tics about the local environment and the coats of prey within a distance of

predation radius from itself. The statistics calculated are given by equations

(12), (13), (14) as

dc =

∑Ls

i=1

∑Ls

j=1 xij

L2
s

(12)

fx =

∑Ls

i=1

∑Ls−1
j=1 bool(xij != xi(j+1))

L2
s

(13)

fy =

∑Ls−1
i=1

∑Ls

j=1 bool(xij != x(i+1)j)

L2
s

(14)

where Ls is the half of side of the texture image in question. Ls is equal to

predation radius for local environment, and is equal to the prey interaction

radius for a prey coat. xij is intensity value at location (i, j), and bool is an

boolean function which return 1 if the condition is satisfied, and 0 otherwise.

(|Edc − Pdc| > Tdc)||(|Efx − Pfx| > Tfx)||(|Efy − Pfy | > Tfy) (15)

where E∗ and P∗ represent environment and prey coat statistics, respectively.

Tdc, Tfx and Tfy are the thresholds for dc, fx and fy, respectively.
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Therefore, dc represents the difference in number of white pixels and black

pixels, fx represents the sum of number of changes from white to black and

vice versa in each row, and fy represents the sum of number of changes in each

column.

The statistics can be considered as channels of a three channel color space. Any

prey whose coat texture is different than the texture of the environment would

have different statistics that the environment. If this difference is greater than

a given threshold (selected empirically) the prey satisfies equation (15). Such a

prey is said to be unadapted to the environment. The predator then randomly

selects, one of the unadapted prey and kills it with a probability of predation

success rate.

Design concepts –

Emergence: Although the prey life cycle (movement, reproduction, and mor-

tality) and predator behaviors (predation) are described by empirical rules

and probabilities, the population dynamics, and adaptation of the prey

coat to the background texture, emerge from the behaviors and interac-

tions of the individuals.

Sensing: Both the predator and prey can be said to have visual perception.

Prey use this type of sensing for interactions with other prey. Predators

use visual information for predation. Also each prey is assumed to know

its own age and reproduction capabilities.

Interactions: Two types of interactions are explicitly modeled. Interactions

between two prey, is used to keep track of number of other prey in vicinity.

Predation is the second interaction modeled between a predator and a prey.

Stochasticity: Prey birth and death events, and predation success are mod-

eled via probabilities, which add stochasticity to the model. To obtain

more precise prediction values, each simulation is repeated 10 times, from

which respective mean values are taken as representatives.

Observation: Prey population size, and number of adapted and unadapted

prey (see equation (15)) are recorded at the end of each time step. The
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adaptable parameters β1 and β2 of the entire prey population is recorded

at the start of the simulation and at the end of the simulation.

Initialization – The environment is initialized to the given texture. Nprey prey are

randomly placed in the environment, and their texture parameters randomly

initialized. The age and interactions of the initial prey population are initial-

ized using equations (3), (4), and (5). Npred predators are placed in strategic

locations of the environment to maximize predator-prey interactions. See Table

7.1 for an overview and values of the parameters used in the model.

7.4. RESULTS AND DISCUSSION

Figure 7.2 shows the results of texture synthesis. In all the cases, the statistics

of the input texture were well captured by the model and there is little if any visual

difference between the original and synthesized images. Figures 7.3 and 7.4 are results

of experimental runs performed on texture shown in Figure 7.2(e). Figure 7.3 shows

the prey population dynamics (average of ten runs) observed during the simulation

runs and Figure 7.4 shows the values of prey parameters β1 and β2 at the start and

end of a simulation run. As an external observer of the ecosystem, it is not possible

to estimate the fitness of a prey’s coat since the fitness function is internal to the

ecosystem. It is however possible to track the number of prey alive. The fitness

of the prey population was tracked through the predators. At each time step, the

predators report the number of total prey, adapted prey, and unadapted prey in their

predation radius. As can be seen from Figure 7.3, the difference between the total prey

counted externally and prey count reported by the predators is small. This validates

the initial assumptions that a small immobile predator population is adequate to

monitor the prey population. From Figure 7.4 it can be seen that although the initial

prey population parameters β1 and β2 were initialized with a wide range of random

values, the final population parameter values clustered into a small parameter space,

which can be considered as the solution space of the problem. Interactions between

predators and prey are responsible fo adapting the prey parameter values towards the

solution space. A major part of the prey population is categorized as unadapted by

the predators (Figure 7.3). However, the clustering of parameter values (Figure 7.4)



61

Table 7.1. Overview and default values of the parameters for the PPE texture syn-
thesis model

Parameter Value

Environment Parameters

Habitat Width (cells) (W ) 128

Habitat Height (cells) (H) 128

Display width (cells) 512

Display height (cells) 512
Prey Parameters

Initial number of prey (Nprey) 1000

Initial prey location randomly placed

Interaction radius (cells) (Rprey) 5

Interaction area (cells). Number of cells in Rprey 81

Birth rate (%) (Pb) 20

Death rate (%) (Pd) 10

Genetic density (Gd)
Np

(W×H)

Mobility (cells) (Pm) 1

Mutation rate (%) (Pµr) 10

Mutation (Pµ) ±0.1

Maturity age (time steps) (Pma) (See eqn. (3)) 3

Coat width (cells) (Cw) 2×Rprey

Coat height (cells) (Cw) 2×Rprey

Offsprings produced (Nos)
{Gd×Iarea}n

Pi
Page

o
Initial prey population age (Pa) (See eqn. (4))

Initial prey interactions (Pi) (See eqn. (5))

Initial prey coat parameters

β1 U(−3, 3)

β2 U(−3, 3)
Predator Parameters

Initial predator population (Npred) 4

Initial predator location (W
4
, H

4
), (W

4
, 3H

4
)

(3W
4

, H
4
), (3W

4
, 3H

4
)

Predation radius (cells) Rpred 30

Predation success rate (%) (Pp) 50

Texture difference thresholds (Tdc, Tfx, Tfy)

For Texture 7.2a (0.03, 0.03, 0.03)

For Texture 7.2c (0.05, 0.05, 0.1)

For Texture 7.2e (0.05, 0.1, 0.05)
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suggests that the parameter values of the unadapted prey must differ from those of

the adapted prey by an insignificant amount. To test this hypothesis, we synthesized

the output textures in Figure 7.2 using the average parameter values of the final

prey population. The synthesized textures are indistinguishable from the original

samples, proving the hypothesis. The reported unadapted prey count, could be due

to the high mutation and low predation rates used in the simulation. Due to the

high mutation rate, there exists a significant probability that an adapted prey with

parameters values near the boundary of the solution space could give birth to an

unadapted prey. So potentially a cycle could form in which the interactions between

predators and prey result in adapted prey and mutation in adapted prey give rise to

unadapted prey. The study of this possible emergent phenomenon is however not of

interest to the current work and is left as an open problem for further investigation.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.2. Texture synthesis results: a, c, and e are original textures (input); b, d,
and f are synthesized textures (output) based on the parameters obtained
from adapted population.
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Figure 7.3. Prey population dynamics observed during one simulation run for texture
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65

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

β2

β1

(a)

-4

-2

 0

 2

 4

-4 -2  0  2  4

b2

b1

(b)

Figure 7.4. Prey adaptation: scatter plots of prey parameters for texture in Figure
7.2(e); (a) – initial population and (b) – final population. The green dot
indicates the mean of the current run and the radius of the blue circle is
the standard deviation of means over 10 runs.
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8. CONCLUSIONS AND FUTURE WORK

In this thesis, a novel individual based design and optimization framework, in-

spired by naturally occurring ecosystems is proposed. This work draws on the knowl-

edge of individual-based modeling, ecological modeling, evolutionary computing, and

multi-objective optimization. A comprehensive survey of the literature in these areas,

along with an extensive evaluation of available individual-based modeling softwares is

conducted. In the later sections, essential details of various population level biologi-

cal processes were discussed and their individual-based counterparts were developed.

Two individual-based template models were developed which could be built upon to

solve design and optimization problems.

As a proof of concept, the problem of binary texture synthesis was attempted.

The problem was mapped to an artificial predator-prey ecosystem. An IBM of this

ecosystem was developed and experimental runs were performed. The results demon-

strated the paradigm’s ability to solve design and optimization problems by synthe-

sizing visually indistinguishable copies of the input texture.

As a part of the future work, the proposed framework’s ability to solve complex

multi-objective optimization needs to be explored. There is also a need to identify

and model ecological processes and individual behaviors, which can then be adapted

to be used with the proposed framework.
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