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Abstract

We study the collective behaviour of animal aggregations, swarming, using theoreti-

cal models of collective motion. Focusing on bird flocking, we aim to reproduce two

main aspects of real world aggregations: cohesion and coalignment. Following the

observation that interactions between birds in the flock does not have a characteristic

length-scale, we concentrate on topological, metric-free models of collective motion.

We propose and analyse three novel models of swarming: two based on topological

interactions between particles, which define interacting neighbours based on Voronoi

tessellation of the group of particles, and one which uses the visual field of the agent.

We explore the problem of cohesion, bounding of topological flocks in free space, by

introducing the mechanism of neighbour anticipation. This relies on going towards

the inferred future position of an individuals neighbours and results in providing

the bounding forces for the group. We also address the issue of unrealistic density

distributions in existing metric-free models by introducing a homogeneous, tunable

motional bias throughout the swarm. The proposed model produces swarms with

density distributions corresponding to empirical data from flocks of Starlings. Fur-

thermore, we show that for a group with a visual information input and individuals

moving so as to seek marginal opacity that alignment and group cohesion can be

induced without the need for explicit aligning interaction rules between group mem-

bers. For each of the proposed models a comprehensive analysis of characteristics

and behaviour under different parameter sets is performed.
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Chapter 1

Introduction

1.1 Collective animal behaviour

1.1.1 Swarming in nature

The collective behaviour of animal aggregations, known as swarming, can be ob-

served throughout nature across many length scales and taxa. It is an ubiquitous

natural phenomena that continues to fascinate and inspire both the scientific com-

munity and the general public. Many will have looked to the skies and witnessed

the dynamic aerial displays of a large flock of birds1 observing the group move in

unison, fragment and coalesce with remarkable apparent ease and aptitude. Re-

markably this complex and highly coordinated behaviour is not thought to arise

from centralised control. Rather the system is believed to exhibit self-organisation

as the behaviour of each individual combines to produce diverse emergent properties

of the whole group that could only arise from the interactions of its many interacting

components.

There are many forms of collective behaviour, from the synchronisation of

firefly luminescence [10], to the wall of death observed in many heavy metal concerts

[86]. The work in this thesis concerns primarily socially-motivated swarming such as

the flocking of birds [28, 30, 49], fish shoaling [71, 79, 80], mammal herding [25, 37],

to insect swarming [11, 69]. As mentioned, human crowds can display this sort

of collective trait [29, 41, 42] and loud-music is not always required. A frequently

observed example is the formation of lanes in stations and shopping centres [40].

Various systems of collective animal behaviour are presented in figure 1.1. The

emergence of global orientational order in groups of moving animals is arguably the

most striking consequence of this type of social behaviour [69, 95]. In these systems

1This is certainly the case near the University of Warwick and the Midlands in general.
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Figure 1.1: Examples of collective animal behaviour. (A) Large murmuration of
migrational Starlings near roost at dusk in Denmark. (B) Swarming krill near the
Gulf of Farallones in the Pacific Ocean. (C) Shoaling of surgeonfish near Maldives.
(D) Herding of wildebeest at the Ngorongoro Crater in Tanzania. Images from
Wikimedia Commons [23].

coherent motion is generated by local rules manifesting global order [12, 65].

1.1.2 Motivations for group formation

Often the first question which comes to mind when one observes a large group of

animals, particularly if their morphology or dynamics is especially curious, is why

it has formed. From a purely myopic perspective, being near others is often a

hindrance, as there is increased competition for food and an energetic cost involved

with seeking and moving towards an already established group and indeed with

orienting oneself with respect to its often dynamic structure. However considering

that this behaviour has not only evolved, but has done so in so many natural systems,

there must be significant evolutionary advantages associated with being part of a

group. It must encourage either propagation of the aggregating species or increased

chances of its survival.
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Mating

Regarding propagation, from a purely probabilistic perspective it should easier for

an individual to find a mate if part of a group. This could certainly encourage

aggregating behaviour to evolve as individuals who choose to form groups will benefit

from increased numbers over those who do not [94]. Indeed a number of studies

identify increased mating activity associated with swarming [26, 107].

Anti-predation

Regarding survival, one could in fact argue that, collecting many individuals to-

gether in the same location is counterproductive to the groups chances of survival,

as they present a very noticeable target to any nearby predators [71]. Considering

that many of the species that swarm the most frequently are prey species, one must

conclude that there are benefits to aggregation that outweigh this risk, as well as the

aforementioned energetic costs. There are a number of hypothesised anti-predation

strategies which could account for this, the ones we cover below are most frequently

considered in the literature.

Selfish herd hypothesis This assumes that individuals take action to

improve their safety non-altruistically. The safest location for them is therefore in

the centre of a group, essentially placing a wall of other group members between

themselves and any threats [38]. This could certainly account for the geometry of

many two-dimensional groups, with group formation via clustering.

Confusion effect This suggests that individuals can “overload” the capa-

bility of a predator to succeed by making it prohibitively difficult to track individuals

within the group, and hence reduce the success of any attack [50]. For species in

which individuals are small and visually similar, the formation of a dense group with

a dynamic outer layer, such as in fish schools and bird flocks, could make this effect

very strong [53]. Indeed it has been shown recently via simulation that this effect is

sufficient to evolve swarming behaviour [70].

Increased vigilance This identifies an increased response to threat by

being in a large group, as information about the environment can be monitored

by many group members simultaneously. This is also known as the “many eyes”

hypothesis and describes an increased vigilance associated with being part of a

group [57, 85]. Considering bird flocks in particular, for which it has been shown

3



that information transfer across the group could be especially fast for highly aligned

groups [1, 20].

Encounter dilution Finally, from simple probability considerations, in a

larger group the chance of being a target diminishes [85, 100]. This is especially so,

for example in a very large flock of Starlings, which individually look very similar

to one another (low prey oddity [53]), so an specific individuals risk is distributed

across all individuals in the group and therefore becomes very low2. This may also

reduce the predation by parasites [63].

Energetic

Previously mentioned was the energetic cost of being part of an animal aggregation.

This is associated with orienting oneself “correctly” within the group: that is, re-

acting to a dynamic environment of neighbours and preventing collisions. There are

however cases where there is an energetic benefit of being part of a moving group,

specifically when in a fluid. A common example includes the “V” shape observed

in flocks of geese that is thought to result from individuals orienting themselves

behind the tip of the wing of the bird in front in order to catch the up-draft created

in the fluid and decrease the energy needed to fly, allowing them to migrate over

longer distances [58]. This utilisation of frontal neighbour vortices has recently been

shown to also be possible in fish schools [45, 101]. The key factor here is the use

of energy dissipating in the medium the group is moving though. Another example

is the peloton observed in competitive cycling. Riders can reduce their drag by

“slip-streaming” other competitors, even to as little as 5% of the individual drag

[9, 81].

Other

Other benefits from aggregation can be increased heat retention [35], such as in pen-

guin huddles [105], and better foraging as a group through, for example, collective

hunting [39, 73]. Some species however are just naturally gregarious and become

distressed when separated from a group [72].

1.2 Mechanisms of swarming

Having addressed what swarms are and why animals might like to exhibit this sort

of behaviour, the next natural question is how? This is a difficult question and re-

2Of course this assumes one hasn’t done anything specific to annoy any vengeful predators!
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searchers have tried to solve it through two main avenues of investigation: empirical

observation and theoretical modelling. In the following work we are concerned with

the latter, however both are important to tackle this research question. Theorists

bring techniques from a wide variety of disciplines and recent advances in capabili-

ties of numerical modelling, while experimentalists bring the sobering elixir of direct

physical observation as well as new techniques to track and reconstruct large groups

accurately. We present an overview of these two areas of work relevant to this thesis

in the following section.

1.2.1 Biological observations

Many different species have been the attention of empirical study of collective be-

haviour. Insects can be good choices of model organism as they are easy to manage

in a laboratory setting. Locusts in particular have been well-studied, in terms of

transition to order [11] and their general swarm behaviour [98, 99]. Interestingly,

experiments focussed on confined marching show band formation in the local density

profile of a circularly bound swarm, with alignment strongly coupled to this density

[5]. Swarms of midges have also been a system of interest. Observations have shown

that there are elements of collective motion present in the system, despite midge

swarms not having group alignment [2].

Similarly, fish are also extensively studied as they display a wide variety of

behaviours. They are also larger than insects and in contrast can form very highly

ordered, dense groups. Confining their three free dimensions into an approximately

two-dimensional tank can allow for detailed tracking of individual trajectories. This

allows, not only for study of group morphology [44], but also investigation of the

inter-individual interactions present in such a group [47]. Also aspects such as lead-

ership [51] and consensus formation [104] have also been investigated. Interestingly,

the behaviour of predatory fish, with respect to virtual prey, found that collective

motion can be produced as a direct effect of the predation [46].

Much of the work in this thesis has however been motivated by a different

organism. Starlings are small, gregarious birds with a tendency to flock in scales

on the order of a hundred to a hundred thousand individuals. This occurs near

their roosting site at dusk and is thought to signal its location to other birds, but

also to be a predominantly social behaviour. For very large flocks, the group can

become spatially extended vertically above the roost, producing a large columnar

structure. They are of particular interest due to recent field study which tracked

and reconstructed the three-dimensional trajectories for flocks of up to 2700 birds

[4]. This scale of observation had previously never been undertaken and the result

5



allows for sufficient statistics to make good measurements of group properties such

as shape, density and overall group dynamics. Flocks of this number of members

tended to be planar: spatially extended in two dimensions, parallel to the ground,

and thin in the direction of gravity.

A key finding of their study was that individuals only tended to interact with,

on average, their 7 nearest neighbours [3]. This finding was particularly surprising

as most descriptions of collective behaviour assumed two individuals interact when

they are close, say within some fixed radius. This result, determined by inferring

the interaction strength via a maximum entropy method [6, 19], suggests that the

distance to an individuals neighbours is not important, only that its neighbours

are relatively close compared to other flock members. The specific number 7 for

nearest neighbours has been suggested to be optimal for robustness of consensus

decision making in a noisy environment [106]. In addition, the correlation between

fluctuations in velocity was shown to grow with the size of the flock (scale-free)

suggesting that there is no characteristic length scale for the interaction between

individuals, at least in terms of metric-distance. Therefore, it was established that

topological distance provides the relevant scale for the interaction [3].

This observation forms the basis for this approach taken for the work in this

thesis. Topological interactions are important and provide an interesting theoretical

challenge due to their inherent lack of a length scale.

1.2.2 Modelling collective motion

While the field of collective motion may be relatively limited in terms of large-scale

of groups in vivo, it is blessed with a plethora of interesting forms of model for

group behaviour. The first model to simulate collective behaviour with a specified

reduced ruleset is known as the Boids model [84]. This is based on three individual

behaviours: cohesion, co-alignment and collision avoidance. These are realised in

that model by effective attraction, alignment with nearby neighbour headings, and

repulsion respectively. Even such a simple rule set is able to produce remarkably

realistic swarms3. As the strength and description of these rules are dependent on

the distance between particles, this is termed a metric-based model.

Later, Vicsek et al. [103] introduce the study of this type of system from

the perspective of statistical mechanics. The model they introduce takes an XY

model and allows the particle spins to move off-lattice at fixed speed in the presence

of rotational noise, with neighbours identified as all particles within a fixed radius

R around each particle (hence also metric-based). They found an order-disorder

3Remarkable enough to win an Oscar!
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Figure 1.2: Description of interaction based on metric-range, such as in [84]. Red
individual interacts with all neighbours (blue) in red concentric zones, via repulsion
with innermost region, alignment for the middle, and attraction for the outer region.
It would not interact with individuals if they are not in any of these regions, as either
they are too far away, or may have passed into the blind region behind it (if such a
concept is included in the specific model considered).
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transition related to the strength of the noise in the system and analysed it from

the perspective of a physicist with a ferromagnetic analogy. This sparked much

attention to this field, essentially inviting other physics-based approaches to these

types of system. The removal of lattice constraints on the particles makes this

system explicitly out-of-equilibrium. We term these self-propelled particles (SPPs)

and they are a form of active matter. This is characterised by their fixed speed

which acts to continually provide energy to the system on the microscopic scale of

the interacting particles. Galilean invariance is broken in the system and momentum

is not conserved. Therefore, due to the nature of the effective interaction between

particle and substrate, and the aligning nature of the inter-particle interaction, we

term this dry, aligning active matter.

In the context of the empirical observations discussed in the previous section,

it would appear that metric-based models would not accurately described collective

motion in Starlings. Ginelli and Chaté [34] introduce the topological Vicsek model

(TVM) as an extension to the above, where the assignment of neighbours is no

longer based on a radius around the particle, but via the Voronoi tessellation [68].

Particles in adjacent Voronoi cells are identified as neighbours and in this way are

always connected for aligning interaction. This suppresses fragmentation of the flock

and alters the way in which density is coupled to alignment in the system.

Many biological systems have interacting elements which sense their environ-

ment through vision. One can also assign interacting neighbours via line of sight:

visual interactions [93]. In addition, Pearce et al. [76] introduce a different sort of use

for this visual input. They describe a rule that has each individual focus on features

in the scene it can observe, comprised of the projected positions of other members in

the group. Specifically, other group members occlude regions of an individuals field

of view, so one set of features is the edges of those occluded regions. They found that

by requiring each individual to head toward the average direction of those edges a

swarm can regulate its global density and that the resulting swarms are marginally

opaque. That is, the projection of the rest of the flock (the occluded regions) covers

about half of the visual domain of each individual. They compare this to real flocks

and find that they are also in a state of marginal opacity. It is however not known

whether this is explicitly sought or obtained by other interactions.

For comparison, figure 1.3 presents a schematic diagram comparing the types

of interactions reviewed here.
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Figure 1.3: Different methods of neighbour identification for red individual. Neigh-
bours in each scheme are blue. (A) Metric-based: interaction with all individuals
within radius R. (B) Topological: interaction with nearest n (say 7) neighbours. (C)
Visual: interaction with all neighbours that are in line-of-sight; solid lines denoting
visible and dotted as occluded (D) Topological: interaction with nearest neighbours
as determined via Voronoi tessellation (solid lines denote Voronoi cells; dashed lines
denote its dual graph, the Delaunay triangulation).
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1.3 Thesis outline

This thesis comprises work on the central theme of describing collective behaviour

when the interaction rules between individuals are not local. Chapter 2 introduces a

model which considers the well-studied, but physically infeasible, topological Vicsek

model introduced above and introduces the concept of neighbour anticipation to

naturally bound the group at any density without the need for periodic boundaries.

This highlights the benefit of incorporating temporal information into the interaction

scheme. Chapter 3 presents a way of controlling the distribution of density across

an aggregation in a metric-free fashion. We present a specific way of doing this

which reproduces the empirical observation that Starling flocks are more dense on

the border than the centre. This goes beyond the question of how to bound a metric-

free model in free-space to control its density to investigate global density gradients.

We also introduce vision as a method of determining ones depth within a flock.

Temporal information and visual input are then combined in Chapter 4 produce

alignment and cohesion as emergent properties of the desire of an individual be in

a marginally opaque flock. We show how it is possible to generate local correlations

between individuals in a group despite there being no explicit local interactions.
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Chapter 2

Bound topological swarming in

free-space via neighbour

anticipation

2.1 Introduction

Two of the most striking aspects of many biological groups are their ability to

choose a common direction and remain together during motion despite potentially

consisting of thousands of individuals. The former pertains to the groups ability

to obtain consensus in velocity (alignment) and the latter in position (cohesion).

From a modelling perspective, this identifies two distinct challenges when aiming to

reproduce collective behaviour. Group alignment is typically generated through local

co-aligning interactions between individuals, whereas group cohesion is commonly

attained by specifying periodic boundary conditions to constrain the system.

Recent empirical studies have shown that interactions between group mem-

bers do not have a characteristic length scale [3, 18]. This has driven interest towards

topological models of collective behaviour where the interaction radius is replaced

by, for example, a fixed number of nearest neighbours or a geometric construction

on instantaneous positions. It has been shown that high group alignment can still be

achieved in a topological model where each individual aligns with its nearest neigh-

bours as determined by a Voronoi tessellation [34]. However within this metric-free

paradigm it is not immediately clear if cohesion is supported. The aforementioned

study specifically highlights the difficulty in bounding such a model in free space.

They describe the dissipation of the group driven by diffusion in the orientation

of the swarms constituents, due to the presence of noise (imperfect alignment with
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neighbours) in the interaction rules. This leads to an inevitable zero density steady-

state for the system in the infinite time limit [34].

There are a number of ways to tackle the problem of cohesion in an un-

bounded topological model. A notable study [75] identifies individuals on the ex-

terior of the group as exclusively aware of their position in the flock and applies a

bias to their motion in a metric-free fashion analogously to surface tension. This

approach uses the instantaneous state of the system to generate the group bound-

ing. However this is not the only information that is available to the members of

the group. Real world flocks are not only moving through space, but obviously

also evolve over time. A flock is not just a collection of positions, but a bundle of

trajectories (and can be analysed as such [15]).

In this chapter we introduce temporal information into the interaction be-

tween individuals in the form of neighbour anticipation. The nature of the co-

aligning interaction in most models of collective motion is usually explicit via the

aggregation of headings of an individuals neighbours [32]. This is sufficient from a

modelling perspective to generate global order of the group. However from a biolog-

ical perspective, the inter-animal interaction may not be to copy the orientation of

their neighbours, but rather to anticipate their trajectory: i.e. not to “point where

they are pointing”, but to “go where they are going”.

The model is defined in § 2.2. The effect of anticipation on group align-

ment is studied in § 2.3 and the limiting case of a well-studied model of established

universality class is also explored. § 2.4 investigates the how the anticipation pa-

rameter can be used to control the density of the group and different regions of the

model phase space are identified. § 2.5 explores how cohesion is generated as a con-

sequence of varied neighbour distribution and also considers neighbour trajectory

determination, before § 2.6 concludes.

2.2 Model outline

We begin by introducing the salient features of the topological Vicsek model [34],

then introduce the anticipation interaction as the focus of our model. We then

present the final rules which define the motion of particles in our model.

2.2.1 The topological Vicsek model

Classic metric-based models of self propelled particles, such as the Vicsek model

[103], determine two particles to be neighbours if they are within some specified

distance of one another. The topological Vicsek model [34] instead uses a geometric

12



construction known as the Voronoi tessellation [68] to determine interacting neigh-

bours. At any point in time, particle positions provide a set of points for which to

compute this tessellation and particles in neighbouring cells are denoted neighbours.

The dual of the Voronoi tessellation, the Delaunay triangulation [54], defines a graph

with particles as nodes and neighbours sharing an edge.

This is an attractive choice for topological neighbour assignment as every

particle will always be connected, ensuring every individual has others to interact

with at all times and suppressing fragmentation of the group structure. Consider,

for example, another topological neighbour assignment based on interaction with

n nearest neighbours [3], where n is much smaller than the number of members in

the group N . It is possible for a model like this to fragment into smaller groups of

size n + 1, in contrast with the Voronoi tessellation-based method which ensures a

single group. This idea can be seen clearly for the simple case of n = 1, whereby a

pair could leave the group and still suit the neighbour assignment criteria, causing

fragmentation of the group as a whole. This idea can be extended to n = 2 and

fragmenting triads, and so on.

In the topological Vicsek model, particles interact via co-alignment with their

Voronoi neighbours in the presence of (vectorial [22]) noise. This has been studied

extensively in periodic boundary conditions and was found to exhibit long-range

order, supporting a highly ordered phase at low noise strengths, with a continuous

transition to disorder as the strength of the noise is increased and the density is kept

constant. This is in contrast to an observed discontinuous transition in metric-based

models and is directly due to the nature of the interaction. Assigning neighbours

topologically decouples alignment from density: particles continually have neigh-

bours to interact with, even if in a region of low density, therefore sparse regions

do not induce local disorder. When the periodic boundaries are removed and the

swarm initialised in free-space, the swarm diffusively expands indefinitely toward a

zero density state. The group centre of mass performs a persistent random walk

driven by fluctuations in the group velocity which can be large due to the aforemen-

tioned consequences of the topological neighbour assignment. This forms the basis

for the neighbour anticipation model presented here.

2.2.2 Neighbour anticipation interaction

We will now derive the interaction rules for this model. A schematic of the proposed

anticipation interaction is provided in figure 2.1. Consider a particle i with neighbour

j at time t. The position of j moving at velocity vj(t) after time τ has elapsed will
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ri(t) rj(t)

rj(t+τ )

µ
ij

(t)

µ̂
ij

(t)v i(t)
vj(t)

rij(t)

Figure 2.1: Schematic of anticipation interaction between particles i (red) and j
(blue) with position r(t), velocity v(t) and separation rij(t) at time t. To anticipate
the motion of particle j to first order, translate position rj(t) by τ time steps in
forward time with velocity vj(t) to obtain rj(t+ τ). From the perspective of i, this
position lies in the direction µ̂

ij
(t): the contribution of j to the change in direction

of particle i.
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be rj(t+ τ):

rj(t+ τ) = rj(t) + τvj(t). (2.1)

From the perspective of i at ri(t) this is in the direction µ̂
ij

(t), where ·̂ denotes a

unit vector. The vector µ
ij

(t) can be written as:

µ
ij

(t) = rj(t+ τ)− ri(t). (2.2)

To fulfil equations 2.1 and 2.2, particle i requires the values of ri(t), rj(t), τ and

vj(t). We can safely assume it knows its own position and that of its neighbour. τ

is a control parameter which denotes the time scale of the anticipation. In the spirit

of using temporal information, rather than using vj(t) directly, we infer it from the

trajectory of j. To first order, this is simply:

vj(t) 7→ v′j(t− δt) =
rj(t)− rj(t− δt)

δt
, (2.3)

where δt is the size of the time step. We use a prime (′) to distinguish the inferred

velocity v′ from the real (perfectly known) velocity v. The current and previous time

step position of j is used to obtain the simplest estimate of its previous velocity

v′j(t − δt) which is used in equation 2.1 to determine the position that particle i

anticipates j to be at time τ later:

µ
ij

(t) = rij(t) + τv′j(t− δt), (2.4)

where the position of j relative to i at time t is rij(t) = rj(t)− ri(t). Denote Bi as

the set of neighbours of particle i at time t. These are the interaction rules which

govern the motion of the N identical particles which comprise our system:

vi(t+ δt) = v0ϑ
{∑
j∈Bi

µ̂
ij

(t) + ηNi(t)ξ̂i(t)
}
, (2.5)

ri(t+ δt) = ri(t) + δtvi(t), (2.6)

where δt is the size of the discrete time step and v0 is the fixed speed of the particle.

The operator ϑ( ) performs normalisation via ϑ(w) = w/|w|. The velocity of particle

i is updated as a combination of the sum of this deterministic contribution from

each neighbour j ∈ Bi and a stochastic contribution, as shown in equation 2.5. This

stochastic term is comprised of a parameter η that denotes the strength of the noise

applied to each particle – an important control parameter in the following, along

with the time scale of anticipation τ . This is multiplied by a random unit vector
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obeying 〈ξ̂
i
(t)〉 = 0 and 〈ξ̂

i
(t) · ξ̂

j
(t′)〉 = δi,jδt,t′ where 〈 . . . 〉 represents ensemble

average and Ni(t) the number of neighbours of i at time t (i.e. the size of Bi).

Position is updated according to equation 2.6.

It is worth noting that the choice of the factor Ni(t) in the noise term of

equation 2.5 is chosen for historical reasons: the topological Vicsek model (discussed

in § 2.2.1) uses this form. Ginelli [33] mentions that perhaps it would be more

suitable to use a factor of
√
Ni(t) due to the central limit theorem, however we do

not use this in what follows, as we hope to keep a useful similarity to the literature

(which we discuss further in § 2.3.2).

Furthermore, this choice does not appear to impact on the nature of the

order-disorder transition. This is to be expected as Ni(t) does not vary across

individuals or time by a large amount, typically staying close to 6 [61], due to the

nature of the Delaunay triangulation. Therefore the difference between the factors

Ni(t) and
√
Ni(t) is absorbed into the value of η, as it is also a factor of the noise

term. The critical value of η shifts to a higher value for
√
Ni(t)) than for Ni(t), as

the square-root strictly reduces the magnitude of the noise term, thus a larger value

of η is required to disrupt the ordered state. The outcome is that the critical point

is different, but the nature of the phase transition is unaffected by this choice.

2.2.3 Experimental setup

The model with interaction rules in equations 2.5 and 2.6 is numerically simulated

in two dimensions with an implementation in C++. Delaunay triangulation to

assign topological neighbours uses the Computational Geometry Algorithms Library

(CGAL) [108]. A system of N particles is initialised uniform randomly across a

circle centred on (0, 0) with initial density ρinit and uniformly distributed random

orientation. Individuals move in continuous space at a fixed speed v0 and their

state is updated in discrete time steps of δt, which are both set equal to unity in the

following. This defines the simulation length scale as v0/δt = 1 which is important

to note as a reference for measurements of spatial extent. Control parameters are

the strength of noise η and the time scale of the anticipation interaction τ . The

system evolves for T time steps in total. The first Teq of these are discarded to allow

the system to equilibrate and lose the features of its initial condition. To compute

swarm statistics the relevant values are averaged over the window [Teq, T ] which we

denote by 〈 . . . 〉 in the following.
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2.3 Impact of anticipation on group order

2.3.1 Phase transition

The ability of this collective behaviour model to generate aligned groups is of primary

interest. Alignment is quantified in this setting using an analogue with equilibrium

models: the order parameter. In this case, the relevant measure of group order is the

normalised group velocity, termed the polarisation P =
∣∣ 1
v0N

∑N
i=1 vi(t)

∣∣. It has been

established in § 2.2.1 that the topological Vicsek model supports a high polarisation

state at low noise strength with a transition to a disordered low polarisation state

as noise is increased.

In this model with neighbour anticipation we observe a familiar transition

from order to disorder with increased noise strength. Figure 2.2 shows the group

statistics near this transition for a range of anticipation time scales. For moderate

to high values of anticipation τ the group is able to achieve a high polarisation,

however when this is decreased far enough the ordered state vanishes.

For a specific anticipation timescale, we are particularly interested in quan-

tifying the value of noise strength that is sufficient to inhibit the formation of an

ordered state. This is known as the critical point η∗ of the system in analogy with

equilibrium thermodynamic models [17]. The analogy extends by considering the

noise akin to temperature in a ferromagnetic system, as the source of fluctuations

to the order. In this analogous system, a quantity known as susceptibility χ, which

measures the change of magnetisation with temperature T , diverges as we approach

the critical temperature Tc [21]. Specifically as χ ∝ |T − Tc|−γ , where γ is termed

the critical exponent that quantifies the rate of this divergent behaviour close to the

transition point. For a constant temperature the susceptibility is proportional to

the variance in the order parameter of the system, defined as χP = 〈P 2〉 − 〈P 〉2. In

our simulated system, this will not diverge due to finite-size effects, however we do

expect it to grow as we approach the transition point. Figure 2.2 does indeed appear

to show maximal values of the variance in order parameter χP in our model for large

enough values of τ that the ordered phase is present (left and middle columns). At

low values of τ this is roughly constant.

Also presented in figure 2.2 is the fourth-order cumulant G = 1 − 〈P 4〉
3〈P 2〉2

[7] which is suggested to be less sensitive to finite size effects [8]. This can be

seen to have values 1/3 and 2/3 in the disordered and ordered phases respectively,

as expected [34]. Of particular interest is the value of this across the transition

region. At high values of τ it can be seen to vary monotonically from 2/3 to 1/3

with increased noise. This can also be seen in figure 2.3 (left). This suggests a
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Figure 2.2: Swarm statistics near the order-disorder transition observed in this
model using neighbour anticipation. Polarisation 〈P 〉 (top), Binder’s cumulant 〈G〉
(middle) and variance of polarisation χP (bottom) for different values of the an-
ticipation parameter τ from high (left, τ = 106), medium (middle, τ = 101/3) to
low (right, τ = 10−2/3), for various numbers of particles N = 32, 64, 128 (red, blue,
black) respectively. Parameter sweep over η performed with resolution 0.01. Statis-
tics are presented as time-averaged values over the window [Teq, T ]. Simulations
performed for T = 105 time steps total with the first Teq = 25 · 103 time steps dis-
carded for measurement and are initialised with uniform random orientations and
positions in a circle of density 0.1 centred at (0, 0).
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continuous phase transition as expected in topological models, as discussed in § 2.2.1.

However it is notable that this does not appear to be the case for lower values of τ

(middle column). At smaller values of N this does indeed look monotonic, but as

N is increased the value of G near the transition becomes negative and dips more

sharply as N gets larger. Figure 2.3 (right) also shows how the presence of negative

values of G manifests at lower τ values specifically, dipping further as τ is reduced.

A non-monotonic, negative Binder cumulant is the hallmark of a discontin-

uous transition [34]. However at this point, caution is urged. We will see in § 2.4

that the system is in a fairly dense state at lower values of τ . This may prevent us

from easily separating the observation from finite-size effects. Previous studies on

similar models of collective motion have seen contention over the nature of the ob-

served transition due to particularly strong finite-size effects present in the system

[22, 36]. Discontinuous transitions in these type of systems typically result from

a coupling of alignment to local density and we have already established that the

topological nature of the interaction precludes a suppression of alignment resulting

from sparsity. However in a very dense state, the Delaunay triangulation can change

structure very quickly from one time step to the next as it is easy for individuals

to change relative positions, especially in a noisy environment. This highly change-

able network structure could inhibit the relative local order and affect the nature

of the phase transition. In addition, the specific form of the anticipation interac-

tion in equation 2.4 could be the source of this apparent discontinuous transition,

as it introduces a term involving the relative distance between individuals. In the

low τ dense state the inter-particle distance is small, so the contribution of this

term is small too. However as the system transitions to disorder, the high density

state becomes significantly sparser. This increases the contribution of the aforemen-

tioned term. This interplay between density and interaction could well manifest the

discontinuity observed in the phase transition at low values of anticipation time.

2.3.2 Limit of large τ

Consider the equation 2.4 describing the anticipated position of an individuals neigh-

bour after time τ . The direction of this provides the contribution of the neighbour

to that individuals new orientation. In the limit where τ →∞ this reduces to:

lim
τ→∞

µ̂
ij

(t) = v̂′j(t− δt), (2.7)

as the first term in equation 2.4 vanishes in this limit, this is simply the direction of

the second term: the estimate of the neighbours previous velocity. This arises from
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Figure 2.3: Left: Crossing of Binder cumulant curves for different system sizes,
N = 32 (red), 64 (green) and 128 (black). Time-averaged Binder cumulant 〈G〉
is transformed as ln(2

3 − 〈G〉) to see crossing of curves more closely [34]. High τ
(= 316.2) regime. Right: Binder cumulant curves for a range of τ values. The
apparent monotonic behaviour of 〈G〉 across the transition point, as 〈G〉 goes from
2/3 (ordered) to 1/3 (disordered), at higher values of τ suggests the transition is
continuous in this region. However it deepens and even goes negative for lower
values of τ suggesting either discontinuity or increasingly strong finite size effects in
this region. Simulation parameters as for figure 2.2 for both plots.
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our intention to use temporal information to determine the motion of an individuals

neighbours from their recent trajectories (and this is the simplest, first order form

of that). Let us assume that we can infer the “true” neighbour velocity to good

accuracy, i.e. v′j(t− δt) ≈ vj(t− δt). Let us also assume that trajectories are quite

smooth, such that a particles velocity does not vary a large amount between single

time steps, i.e. vj(t− δt) ≈ vj(t). One would expect this assumption to hold when

the strength of the noise is low and the group is in the ordered regime. This is

equivalent to replacing µ̂
ij

(t) with v̂j(t) in equation 2.5, i.e. the topological Vicsek

model. We therefore expect that under these conditions we can retrieve its features.

Observations from numerical simulation

Figure 2.4 shows the evolution of long time (T = 107) simulation for a large antic-

ipation time scale (τ = 1012) and a noise strength (η = 0.61) close to the critical

value for the topological Vicsek model (η∗TV = 0.61661(3) [34]). The group reaches

an ordered state and expands diffusively in time with a mean distance to topological

neighbours (computed as an average over finite edges in the Delaunay triangulation)

that grows as 〈r〉 ∼
√
t.

It is worth noting that the fluctuations in order do not grow with time, as

it may appear at first glance of figure 2.4(a). This is merely an artefact of the

logarithmic axis in time t. Polarisation P is measured uniformly in linear time from

t = 10 to T = 107, but when plotting on the logarithmic axis most of these samples

will lie on the right of the graph (at high t). The more samples, the more chance

to observe values far from the mean. So while more extreme fluctuations can be

found to the right of the graph, this is purely due to the logarithmic transform that

places most of the samples in that region. The simulation presented in the figure

takes O(103) time steps to equilibrate, then appears stationary until the end of the

simulation, T = 107.

In addition, figure 2.5 shows the trajectory of the centre of mass position for

the same simulated swarm. The swarm centre of mass performs a persistent random

walk with fluctuations in the group polarisation driving curves in its trajectory.

These are fluctuations in the centre of mass velocity and are not coupled with a

rotation acting about the centre of mass position, rather this is a translation of a

group structure that is relatively fixed with respect to the time scale of the motion.

This is further suggested by the linear relationship observed between the mean-

squared displacement of centre of mass over time shown in figure 2.5 (inset).

These observations are consistent with the expectation that we should re-

trieve the topological Vicsek model in the large τ limit. Note that this is not
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Figure 2.4: Evolution of (a) group polarisation P and (b) mean distance to topo-
logical neighbours 〈r〉 with time t for a system of N = 210 particles interacting
with very large anticipation time scale τ = 1012 simulated for T = 107 time steps.
Density initialised at ρinit = 0.1. The strength of the noise η = 0.61 ≈ η∗TV the
critical point of the topological Vicsek model. At large τ , model should reduce to
topological Vicsek. The observed mean polarisation for t ∈ [106, 107] of 0.698 (3
s.f.) is consistent with this statement. The slope of (b) for t ∈ [105, 107] is close to
1/2 (green dotted line), therefore 〈r〉 ∼

√
t, displaying a diffusive expansion of the

swarm over time while still in an ordered phase.
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Figure 2.5: Evolution of centre of mass position of swarm near expected critical
point in large τ limit. Trajectory structure is driven by fluctuations in the group
velocity. Simulated swarm is the same as for figure 2.4: parameters N = 210,
T = 107, η = 0.61, τ = 1012, ρinit = 0.1. Colour denotes age of trajectory:
starting yellow at (0, 0) and moving toward purple after 107 time steps. Inset:
mean-squared displacement (m.s.d.) over time, averaged over 60 simulations with
parameters N = 64, T = 105, η = 0.61, τ = 108, ρinit = 0.1. Red line is linear fit
with R2 = 0.991 (3 s.f.).
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necessarily the case as we are not using current neighbour velocities by using their

value as inferred from their recent trajectory. This suggests that the aforementioned

assumptions hold well. It appears that velocity can be obtained from trajectory even

when noise is quite high, as above. This will be explored more directly in § 2.5.2.

The confirmation that the topological Vicsek model is retrieved in a limit of

our model is beneficial as the previous study [34] looked very closely at its properties,

albeit largely whilst confined by periodic boundaries. In particular they perform

a finite-size-scaling analysis to obtain its critical exponents and thereby describe

the system by its universality class [67]. Interestingly they find that it does not

correspond to any of the known universality classes. Additionally, later work by

Peshkov et al. [77] has developed this class of model as a continuous theory via a

kinetic Boltzmann-Ginzburg-Landau approach [78]. Choosing a model formulation

with a well-studied limit such as this could potentially allow us to expand our

analysis with a continuous approach in the future.

Dependence of critical point on τ

In § 2.3.1 it is established that there is a relationship between the anticipation

parameter and the strength of noise required to disrupt the ordered state. In this

section we quantify the dependence of this critical point η∗ on the anticipation time

scale τ . As discussed, figure 2.2 shows that the variance of order parameter χP will

peak in the transition region.

For a given value of τ we perform simulations near the transition region, if

it is present, in order to map out the location of the expected peak. A Gaussian

is then fitted to this region to estimate the peak location, determined as its mean

with uncertainty estimated as its standard deviation. A selection of examples of

this process are shown in figure 2.6, where the peak locations have been rescaled

according to ε = 1− η
η∗(τ) with critical value η∗(τ). The choice of a Gaussian may

appear somewhat arbitrary, however produces a good fit (R2 close to 1). For the

task of determining a peak in the data it certainly appears sufficient, aided by the

apparently close to symmetric form of the peaks.

Figure 2.7 shows the impact of varying τ on the location of η∗(τ). As ex-

pected, at large values of τ it converges, specifically to η∗(τ = 108) = 0.618± 0.002.

This is close to η∗TV = 0.61661(3) reported by Ginelli and Chaté [34]. This agrees

within the uncertainty of our measurement, which we obtain as the standard de-

viation of the Gaussian fit shown in figure 2.6 for τ = 108 (blue left-arrow). A

difference is expected as the simulation uses a finite N (= 210) whereas η∗TV is com-

puted considering asymptotic scaling [34]. The approach to this value from above
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Figure 2.6: Critical points identified via peak in variance of group polarisation
χP for various values of anticipation time scale τ in terms of rescaled noise
strength ε = 1− η

η∗(τ) where η∗(t) is the critical value of noise for a given τ .

Simulations performed for N = 210 particles for T = 2.5 · 105 time steps with
Teq = 0.5 · 105 discarded and initial density ρinit = 0.1. Anticipation time scale
τ = {101, 104/3, 105/3, 102, 108} (black circle, magenta up-arrow, green right-arrow,
red down-arrow and blue left-arrow respectively). Associated lines are Gaussian fits
used to determine η∗(τ) with R2 = {0.963, 0.979, 0.983, 0.990, 0.992} respectively.
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Figure 2.7: Dependence of the critical noise value η∗(τ) with anticipation time scale
τ presented as log10(τ). Each point here corresponds to a peak determined from a
Gaussian fit with associated standard deviation as uncertainty estimate as shown in
figure 2.6. Simulations also performed as described in that figure caption.

in our simulations can be seen in figure 2.2: as N gets larger the transition point

appears to approach this value. Testing at larger system sizes would help to see this

with more precision.

At lower values of τ the transition point get smaller. In fact, as τ gets close

to O(δt) = 1 here, this value becomes very small, before it cannot be computed

at around τ = 0.5 as the system is disordered even in the limit of zero noise. In

practice one should be careful performing measurement in this region. The density

gets very high, therefore the time scale of the group (i.e. how long it would take

to traverse the swarms longest linear distance at speed v0) becomes close to the

time scale of simulation δt. This causes the discrete nature of the interaction rules

to dominate the dynamics, so reliable numerical simulation of the model can break

down. However, as this is associated with the high density state, it is obvious when

it occurs as the swarm has essentially collapsed.

Overall, the form of this relationship suggests that decreasing the time scale
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of anticipation makes the system less robust to noise, as less noise strength is required

to break up the ordered phase. However, consulting figure 2.7 is encouraging as a

huge part of the domain of τ , from O(1) and above, is robust to noise and widely

supports an ordered phase.

2.4 Neighbour anticipation controls aggregation den-

sity

The discussion so far has primarily concerned the velocity degrees of freedom of the

system; in this section we will focus on the position, specifically we will investigate

how the neighbour interaction encourages group cohesion. We begin by describing

how this is quantified in simulated swarms, then map out how the group density

behaves with respect to the control parameters: noise η and anticipation time scale

τ . This is used to identify different modes of behaviour observed in this model.

2.4.1 Quantifying cohesion

Consider the infinite τ limit of the model. It has been established in § 2.3.2 that

swarms in this regime are not spatially stable and experience a diffusive expansion

over time. For any finite value of τ there should be some, potentially very large,

swarm size where expansion ceases. From a simulation perspective, this stable state

is increasingly harder to reach for larger τ as longer simulation time scales are

required. It is therefore important to define a spatially stable swarm with respect

to this time scale. Specifically, we denote a spatially stable swarm as one which has

been able to obtain a stable spatial extent over the simulation time T . But how do

we measure spatial extent?

For a swarm at a specific instant in time there are a number of measures

of spatial extent, both local and global, that could be used, each with their own

associated strengths/drawbacks. For example, the mean distance of individuals from

the centre of mass position, the largest distance between any pair of individuals in

the swarm, or the ensemble-averaged mean distance to topological neighbours (as

shown in figure 2.4). Another sensible choice could be the area of the group A. This

would allow a number density to be assigned to the state via ρ(t) = N/A(t). Due to

the geometric construction used to assign neighbours in our simulation, we already

have access to the area of the group as measured by the union of all simplicies

in the Delaunay triangulation. This is known as the convex hull [68] and in two

dimensions this is a representation of the point set {ri(t)|i ∈ N0, i < N} as a convex
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Figure 2.8: Swarm density converges to zero with time, specifically at the rate
ρ ∼ t−0.973, with exponent close to the expected value of 1 for diffusive expansion.
This example shows how we can identify a steady spatial state which would have an
exponent of zero (and non-vanishing density). Simulation performed with N = 210,
τ = 1012, η = 0.61 and ρinit = 0.1. Linear fit on domain t ∈ [105, 107]. System is not
in steady spatial state here therefore fit is to a transient of time scale > T = 107.

polygon. Simply, area is computed by summing up the areas of all the triangles in

the triangulation. This allows us to work with densities ρ(t) in the following.

Figure 2.8 shows the evolution of swarm density with time for a swarm in the

large τ limit. Density decreases over time with a slope close to −1 on logarithmic

axis. This suggests ρ ∼ 1/t. This can be understood as a diffusive expansion (as

previously discussed) as ρ ∼ A−1 and A ∼ 〈r〉2, and for diffusion 〈r〉 ∼
√
t, so we

do indeed expect ρ ∼ t−1. By allowing the simulation to equilibrate for a specified

time Teq and then fitting to the densities observed after, it is possible to understand

the growth of the swarm over the time scale of the simulation. This allows us to

quantify the cohesion in a simulated swarm.
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2.4.2 η – τ phase diagram

Figure 2.9 shows the density of simulated swarms ofN = 64 particles across the η − τ
plane. For each instance, the swarm evolved for T = 105 time steps and a linear fit of

log10(ρ) against log10(t) was performed in the region from t = Teq(= 2.5 · 104) to T .

The density values presented correspond to the t = T value of this fit. The location

of the phase transition is overlaid in order to identify regions of order/disorder.

At high τ the density is low, as expected. At low τ , it increases and density

can get remarkably high when τ is close to the simulation time step δt = 1. In-

terestingly the ordered region has an extremely wide range of supported densities

which suggests that the time scale of anticipation τ can control the density of the

swarm very well.

Of additional note is the shape of the green dotted line in figure 2.9. This

corresponds to unit density. It does not vary smoothly as it crosses the transition

line. This is partly due to the discretisation of the parameter sweep, the resolution

of which prevents a detailed estimate of this contour in this region. This may also

suggest that order and density are not completely decoupled and could provide

insight to the nature of the phase transition, as discussed in 2.3.1. It could also

be quite an attractive feature in a biological setting. At roughly unit density, by

varying the level of anticipation the system could move from order to disorder (or

vice-versa) without affecting the overall level of cohesion in the group. This would

allow such a system to respond to external perturbation quite robustly.

2.4.3 The cohesive steady-state

We have established how the density changes across a wide range of the η − τ

parameter space. The densities presented relate to the final state of a system evolved

over a specified simulation time. Up to this time scale, we would like to identify

for what region of parameter space the swarms have found a cohesive steady-state.

That is to say, for the parameters investigated, which values generate swarms that

have been prevented from dissipating due to the neighbour anticipation interaction

and can be termed a cohesive group with respect to the time scale of the simulation.

To do this we perform a linear fit to the logarithm of density with respect to

the logarithm of time, as shown in figure 2.8, with the form log10 ρ = α log10 t+ β,

where α is the slope of the fit and β is the intercept of the log10 ρ axis. This describes

the change in density as ρ ∼ tα, where the constant of proportionality is 10β which

indicates the initial density for expanding systems and the steady-state density for

spatially stable systems. The value of α is shown on the η – τ plane in figure 2.10
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Figure 2.9: Phase diagram for neighbour anticipation model for N = 64 particles.
Red/blue circles correspond to high/low density log10 ρ sampled at each (η, τ). Black
circles correspond to the critical points η∗(τ) of the order-disorder phase transition
discussed in 2.3 as determined by peak variance: order/disorder to the left/right of
the black dotted line. Green dotted line corresponds to ρ = 1. Simulations initialised
at ρinit = 0.1 and run for T = 105 timesteps in total. Linear fit determined over
domain t ∈ [2.5 · 104, 105]. Density values presented correspond to the fit value at
T = 105, the end of the simulation.
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Figure 2.10: Identification of a region of η – τ space with spatially stabilised swarms.
Linear fit to density of form log10 ρ = α log10 t + β performed as in figure 2.8 to
obtain rate of expansion exponent α. Green dotted line corresponds to crossings of
α = −0.25. An expanding region (α close to 1) is present at high τ , but at lower
values simulated systems can reach a cohesive steady-state (α close to 0).

for the same simulation procedure as for figure 2.9.

For large values of τ , α is close to 1, indicating that the group is still expand-

ing over the course of the simulation. Below the green dotted line corresponding to

α = −0.25, α becomes much smaller, indicating that the group density is more or

less stationary on the time scale t ∈ [Teq, T ]. These groups are cohesive.

The location of this separation line is determined by looking at the value of

α for fixed η (vertical sections of figure 2.10) and determining the crossing point of

this function with a threshold value of α = −0.25. This procedure is shown in figure

2.11. This α threshold is determined broadly by the typical value of uncertainty

in the estimation of α and provides a fairly unambiguous crossing value of τ for

the α(log10τ) curves. As the values for this exponent have been determined for
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Figure 2.11: Determination of threshold τ for cohesive/expanding groups in figure
2.10 for a selection of noise strengths η = {0.20, 0.45, 0.70, 0.95} (red, blue, green,
yellow lines respectively). Crossing points of α(log10 τ) lines with α = −0.25 (corre-
sponding circles) provides an estimate of the region of τ for which swarm can reach
a spatial steady-state within the time scale of the simulation.

time scale of the simulation, increasing this will move the separation line up toward

higher τ values, as the simulated systems have more time to stabilise spatially.

2.4.4 Characterisation of swarm behaviour

We have now established regions of the parameter landscape which result in or-

der/disordered and cohesive/dissipating swarms and have determined how the spe-

cific density depends on (η, τ). The resulting behaviour of simulated swarms in

different regions of this parameter space is therefore quite varied. We present a

broad overview of this in figure 2.12.

We identify regions depending on three criteria: order, cohesion and density.

Sample configurations from each of these regions are provided in figure 2.13. For

each, polarisation P and linear swarm size L = maxi,j |rj(t) − ri(t)| as the largest

distance between any pair of group members.

The shaded area in figure 2.12 highlights a region of high polarisation. At
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Figure 2.12: η – τ phase plane with regions of characteristic swarm behaviour iden-
tified: (A) ordered dissipating, (B) ordered cohesive, (C) highly dense ordered, (D)
disordered dissipating, (E) disordered but at steady density and (F) highly dense
disordered. Configurations for each presented in figure 2.13. Grey region (A, B,
C) is high order, white region (D, E, F) is low order; black line denotes transition
between these. Green line denotes ρ = 1. Magenta line is a fit to points along green
dotted line in figure 2.10: above this groups do not reach a spatial steady-state in
the time scale of the simulation T = 105, below they do with density as shown in
figure 2.9.
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Figure 2.13: Swarm configurations for different types of group identified in neighbour
anticipation model. N = 210. Labels correspond to regions in figure 2.12.
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high τ , the group does not cohere, but does develop strong order (A: η = 0.35, τ =

105). Initialised as a maximally disordered state the group expands until it develops

high order via its topological interactions between individuals. This suppresses the

dominant mode of the expansion as the group translates together at high P . Ex-

pansion continues driven by diffusive fluctuations in velocity. The spatial structure

is now “frozen in” since there is very little relative motion within the group and

the large distances cause the Delaunay triangulation to be very stable over time,

with only rare changes in its connectivity. This causes the large region of sparsity

observed in 2.12 (A).

Both (B: η = 0.35, τ = 102) and (C: η = 0.25, τ = 101) are a cohesive, highly

ordered state. The long-ranged order is obvious in the configuration plots. The

key difference is the length scale. (C) is very dense (ρ ≈ 3) however (B) is much

less so (ρ ≈ 0.05). We have previously discussed the importance of the simulation

length scale in § 2.2.3, which is v0/δt = 1 here. This suggests that densities greater

than 1 (green dotted line) are undesirable. From a biological perspective, consider a

classic example of swarming: a murmuration of Starlings. The observed densities in

real-world flocks are typically 0.05− 0.5 [3], i.e. relatively sparse. This helps avoid

collisions, but can also help individuals navigate and avoid predators as vision is a

key information stream for individual birds, and if density is too large this would

be inhibited [76]. In this sense, the region (B) corresponds to “real-world” swarms,

that is a highly ordered and cohesive group.

In the disordered region at high η, (D: η = 0.75, τ = 105) and (E: η =

0.75, τ = 102), there are still some obvious differences in global structure, as can be

seen in the configuration plots. (D) has a very large spatial extent and the density

is not homogenous, since the edges appear to be relatively sparse. This is due to the

τ term in equation 2.4 dominating, as previously discussed, which does not generate

sufficient inward drift for spatial stability. Contrast with (E) which appears to have

a homogeneous distribution of individuals in the group, as well as a stable moderate

density (ρ ≈ 0.005). We can make an analogy with thermodynamic systems again,

by relating noise with temperature (as the source of fluctuations) which can be

thought of as an outward pressure. This drives particle mass away from the group

centre. Bounding the system using the neighbour anticipation interaction generates

an effective force which appears to be stronger further from the centre, i.e. radially

symmetric. The system then appears to be in an effective-force-balanced state. This

is discussed further in § 2.5.1. Therefore the group edge is more sharply defined,

and density more homogenous, in region (E) than (D).

Finally if τ is reduced to a small enough value group order is impossible (D:
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η = 0.5, τ = 10−1). This generates very dense disordered states for most values

of noise, until around η = 0.8 where the group members are almost completely

non-interacting as noise overwhelmingly dominates.

2.5 Additional considerations

2.5.1 Mechanism of cohesion

We would like to understand the specific reason why the interaction described in

§ 2.2.2 can generate cohesion of the group as a whole. The neighbour anticipation

interaction that we have proposed in this model, when considered on two particles

in isolation, acts in the direction from the particle in question i toward its neighbour

j. If one considers a generic cohesion promoting two-particle interaction, that is one

that acts to reduce the separation of these two particles, it is not clear that the

global effect would be to bind the group as a whole, instead of generating increased

local densities.

In our model however, neighbours are assigned topologically, which precludes

group fragmentation. This suggests the source of the whole group cohesion is in the

structure of the Delaunay triangulation that defines these topological neighbours.

For a Delaunay triangulation on a Poission point process, it is known that the

expected number of neighbours for any individual is a constant value [96]: asymp-

totically 6 in two dimensions [61] and 48π2

35 + 2 = 15.54 (4 s.f.) in three dimensions

[60]. Due to the nature of this process, these neighbours would be on average dis-

tributed isotropically. However for a distribution on a disk in R2, near the edges

this would certainly not hold and neighbours would all be distributed on one side,

specifically toward the centre of the disk.

This observation suggests a measurement we can make on our simulated

swarms which will quantify the isotropy in the distribution of topological neighbours

for a particle i at time t:

∆i(t) =

∑
j∈Bi

r̂ij(t)

Ni(t)
, (2.8)

where rij(t) = rj(t) − ri(t), so r̂ij(t) points in the direction of neighbour j from

particle i, Bi is the set of topological neighbours of particle i at time t and Ni(t) is

the number of neighbours of i (i.e. the size of Bi). Therefore, ∆i(t) will point in the

dominant direction of the neighbour distribution for i. As it is normalised, |∆i(t)| =
∆i(t) ∈ [0, 1), with exclusive upper-bound due to the nature of the triangulation. If

neighbours are isotropically distributed then this will be on average close to 0, but
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if there is a preferred direction it will increase towards 1. We also define Ri(t) =

ri(t)− rcm(t) which points from the position of i to the centre of mass of the group

rcm(t). This can also be normalised in magnitude in order to aid comparison between

states, as shown in equation 2.9.

R′i(t) =
|Ri(t)|

max
i∈S
|Ri(t)|

, (2.9)

where S denotes the set of all N particles in the swarm. Also define C as the subset

of S which lie on its convex hull [68]. Therefore particles in S \ C lie in the bulk of

the group.

Figure 2.14 shows the relationship between the magnitude of the anisotropy

in the distribution of topological neighbours and the relative distance sampled for

simulations in the disordered cohesive phase (E: η = 0.75, τ = 102). This phase was

chosen as it is cohesive in our typical simulation time scale O(105) and has stable

morphology allowing many configurations to be sampled and aggregated reliably.

Additionally this state appears to be approximately homogeneous (c.f. the Poisson

process motivation discussed above). It is also not in the ordered state, therefore

there is no weak cohesion from group alignment present. All of the bounding should

therefore be due to this geometric effect. As expected, the anisotropy in topological

neighbour distribution is maximal furthest from the centre of mass position. By

separating out the contribution from particles on the convex hull (red line) it be-

comes clear that they are the main cause of this effect. This is as expected since

the convexity condition excludes at least half of the directional domain. However

it is interesting to observe that some particles not on this hull still experience this

neighbour anisotropy, as evidenced by the green line increasing at high R′i.

We next consider specifically where this anisotropic direction is pointing

when it is of high magnitude. We project the neighbour anisotropy ∆i onto R̂i

as it always points towards the centre of the group by construction, and define this

as ∆cm
i = ∆i · R̂i. Figure 2.15 shows this compared to the distance from the group

centre R′i (= 0 at the centre, 1 furthest away from it). Near the centre ∆cm
i ≈ 0

suggesting an approximately isotropic neighbour distribution for individuals near

there. However towards the edge ∆cm
i ≈ 1, which indicates that not only is the

neighbour isotropy high there (as we have determined in figure 2.14) but also that

the direction of this anisotropy is in the direction of the centre of mass. Recalling the

radial symmetry in the construction of R̂i and that R′i is normalised distance from

centre of mass, we conclude that the neighbour anisotropy should always increase

toward the group edge and point to the group centre. Furthermore this suggests
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Figure 2.14: Magnitude of anisotropy in the distribution of topological neighbours
for particle i at normalised distance from centre of mass R′i, shown for all particles in
the swarm S (black), the convex hull C (red) and the bulk S \C (green). Simulation
was performed with control parameters η = 0.75 and τ = 102 (region E) with
N = 210 starting at ρinit for T = 5 · 104. Teq = 4 · 104 are discarded and samples
taken for each i at a given time step. 1000 configurations are sampled at every 10
time steps after equilibration, and aggregate R′i discretised into 100 bins. There is a
sharp increase at R′i close to 1 corresponding to an increased anisotropy in neighbour
distribution toward the edge of the group.
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Figure 2.15: Anisotropy in the distribution of topological neighbours for particle i
projected onto the direction pointing from i toward the centre of mass at normalised
distance from centre of mass R′i, shown for all particles in the swarm S (black), the
convex hull C (red) and the bulk S \ C (green). Simulation procedure same as for
figure 2.14. As this anisotropy grows toward the edge of the group, it does not do
so arbitrarily, rather it points toward the group centre (∆cm

i = ∆i · R̂i approaches
1).

that the observed neighbour anisotropy does not originate from local differences in

structure of the triangulation, say due to the presence of large internal concavities.

Interpreting this bounding effect as a force acting on a particle by its topo-

logical neighbours, the net force on the particle is close to zero in the bulk. However

it gains a preferred direction as the neighbour distribution deviates from isotropic.

This suggests that the mechanism of whole group cohesion observed in our model is

the anisotropy in the distribution of topological neighbours that increases towards

the edge of the group.
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Figure 2.16: Evolution of the mean difference between inferred and explicit velocity
∆v = 〈〈v′j(t− 1) · vj(t− 1)〉j∈Bi〉i∈S over time t for a simulated system of N = 64

particles with τ = 106 and η = 0.05 near initialisation, with ρinit = 0.1, T = 105

and Teq = 0.5 ·105. Dotted line highlights value in polarisation steady-state of 0.950
(3 s.f.).

2.5.2 Determination of neighbour trajectories

The model we have introduced uses an interaction based on neighbour anticipa-

tion in which a particle i moves toward the expected future position of each of its

neighbours. This position is computed by using information from the near past to

determine neighbour trajectory, assuming uninterrupted motion along this path. To

first order, as we have presented in this work, this is ballistic motion at an inferred

previous velocity v′j(t− δt).
We are interested to confirm whether this process is performed well at each

simulation time step. Figure 2.16 shows the difference between the inferred previous

velocity v′j(t − 1) and its actual value vj(t − 1) computed as its cosine distance

∆vi = 〈v′j(t− 1) · vj(t− 1)〉j∈Bi . This has value 1 when these velocities coincide and

−1 when they point in opposite directions, as the magnitude of the fixed speed here

is 1. The figure specifically shows how this difference, ensemble averaged over N

particles in the simulated swarm (∆v = 〈∆vi〉i∈S), evolves over time, for a swarm in
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the ordered regime. At the initialised disordered state, this is done poorly (∆v close

to 0), however as the group achieves order this improves dramatically, approaching

an time-averaged value of 〈∆v〉t∈[Teq ,T ] = 0.950.

It is encouraging that the system can obtain this ordered state when ap-

proaching from a disordered one, where the determination of neighbour trajectories

is done relatively poorly. In fact, we observe a robustness of this process due to

the central limiting effect of averaging over neighbours: deviations of v′j(t− 1) from

vj(t− 1) are smoothed out when determining the new orientation due to the sum-

mation in the interaction rule shown in equation 2.5. This robustness is precisely

why an ordered state can develop from disorder despite a non-perfect computation

of neighbour trajectories. Overall, this analysis suggests that the determination

of neighbour trajectories in this way does not inhibit the model from generating

alignment, which we have seen throughout this work and particularly in § 2.3.

2.6 Conclusions

We have introduced a topological model of swarming that is bound in open bound-

ary conditions, producing cohesive and aligned swarms. The form of interaction we

proposed to generate this cohesion is that an individual moves to where it antici-

pates its topologically assigned neighbour to be at some time in the future: aligning

with its presumed goal in space rather that its specific orientation, as is typical in

traditional models of collective motion [32]. This allows us to use a single rule to

generate both alignment and cohesion, rather than two rules which attempt to man-

ifest these behaviours independently. This rule set is completely homogeneous with

no special treatment of individuals in the flock required to produce this bounding,

and we have shown that its mechanism takes advantage of the underlying geometric

construction defining interacting neighbours to establish the strength and direction

of the effective bounding forces. We have shown that neighbour anticipation can

drive cohesion in (topologically) co-aligning groups.

We have identified a number of characteristic behaviours displayed by this

model by mapping out its phase diagram, identifying how the anticipation interac-

tion affects the robustness of the ordered phase, and compared this with the resulting

density of the swarms across this region. We have then analysed the spatial stabil-

ity of these states, with respect to a specific time scale of simulation, in order to

identify steady states of particular densities and other dissipating states. We have

also analysed the presented model in the limit of high anticipation, retrieving the

topological Vicsek model which has been well-studied in terms of universality class
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and in the continuous limit. It remains to be seen whether this feature may allow

us to describe our model more easily in terms of a continuous theory.

If we draw an analogy with particle diffusion in a potential well, for which

the root-mean-squared (r.m.s.) distance from the centre of the well can be derived

for many symmetric cases of potential, it may be that we could relate this r.m.s.

distance with the distance to the boundary for our swarming particle ensemble in

order to describe the bounding as an effective potential which could be used in a

continuous description of the system. There may also be a similar argument via

force balance of outward diffusive pressure and inward bounding which could help

derive the observed form of the density surface on the phase diagram. Any such

description would be subject to the effect of considering these particles as active

and so the traditional fluctuation-dissipation relation being violated. Recent work

[66, 87, 88] has however considered many of the effects of bounding active particles

and it was found that an effective fluctuation-dissipation theorem still holds [31].

This is currently a very active area of research.
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Chapter 3

Density distributions and depth

in flocks

Work in this chapter has previously appeared in the article “Density distributions in

flocks” by Lewis and Turner [56].

It has been demonstrated in chapter 2 that it is possible to bound a topological model

of swarming in open space by introducing a specific model that can successfully do

so and by studying its behaviour. This establishes the ability of models with this

type of neighbour interaction to obtain a steady group density that is greater than

zero; i.e. we can take a topological swarm out of periodic boundary conditions

and still keep it together. In the following chapter we will show that, despite the

challenges the biologically-motivated topological constraint provides, we can go one

step further and prescribe the distribution of density of the group. Specifically, we

will focus on reproducing density distributions that are seen in naturally occurring

flocks of birds.

3.1 Introduction

In recent years, a large number of theoretical models have been developed in which

local interaction rules give rise to global ordering in animal systems [13, 14, 32]

however empirical studies have been more rare [47, 59]. Testing models against

data is essential if we are to determine which sorts of model give rise to specific

characteristics: many models can generate some form of swarming, but which of

these models give rise to swarms that resemble those seen in nature? Specifically, in

terms of comparable observable quantities of the group (such as density, structure
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and shape) and its dynamic behaviour in different situations (say, under the external

pressure of a predator attack). It has been suggested that the specific interaction

mechanism may vary with species and for some systems an interaction based on

neighbour distance appears to be a good fit [102]. In contrast, recent field studies

have reconstructed the internal dynamics of large flocks of Starlings and have deter-

mined that their nearest-neighbour interactions do not depend on interaction range

[3, 4, 18].

Developing models with this metric-free characteristic is technically challeng-

ing as they typically support a zero density steady-state, such as described in the

work of Ginelli and Chaté [34] in which diffusive expansion continues indefinitely.

Pearce and Turner [75] describe a model that regulates swarm density using a mo-

tional bias on surface individuals and topological interaction rules, preserving the

metric-free nature of the model and also generating a steady-state with finite spa-

tial extent. This Strictly Metric-Free (SMF) model is therefore useful to compare

with observations of bird flocks as it can produce bounded swarms in open bound-

ary conditions. However we will show that, in its simplest form, it yields density

distributions that are rather different to those observed in nature.

In this chapter we propose a fully topological (metric-free) 3-dimensional

model which includes a motional bias that is tunable throughout the swarm and

not just on its surface. This bias has a topological character, preserving the fully

topological nature of the model. Our aim is to explore the regulation of density

across flocks of birds. We are motivated by findings from a field study [4] that

reports a nonhomogeneous density variation across flocks of Starlings, specifically

a higher density at the border of the flock than in the centre. This observation

is counter to what has been observed in some other models of collective behaviour

[52]. It is also counter-intuitive in relation to some theories of animal behaviour,

such as the selfish herd hypothesis [38] in which the centre of the group would be

the safest location and all individuals might therefore be expected to seek to occupy

it. We show that our metric-free distributed motional bias model is able to support

behaviour consistent with these empirical observations.

The model is introduced in § 3.2. The methods used to measure aggregate

densities and fit the model to data are described in § 3.3. The resultant model and

swarm density profiles are presented in § 3.4. Additionally, a biologically motivated

basis for an individual determining their depth from within the flock is presented

and discussed in § 3.5. Concluding remarks are in § 3.6.
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3.2 Description of the model

The model we propose1 begins with the surface bounding effect introduced in the

SMF model [75] and extends it to act on all individuals in the aggregate with

strength prescribed by a function of the topological depth of the individual within

the swarm. In contrast to classic models of self-propelled particles, such as those by

Vicsek et al. [103], we identify two particles to be neighbours if they are directly

connected to each other under a Voronoi tessellation [54, 68]. This is constructed

for the particle positions at each time step, thus defining interacting neighbours

as those in neighbouring Voronoi cells (i.e. particles which share an edge in the

Delaunay triangulation of all particle locations).

3.2.1 Topological depth

We use a Voronoi tessellation to determine topological depth for each of the particles

in the dynamic aggregate (flock). We first identify a shell, or set, of particles as

being those that occupy an infinite Voronoi cell (that is, a cell of the tessellation

that is not fully bounded). These are denoted as occupying shell 0 and correspond to

particles that are on the convex hull of the system [68]. Particles that are connected

to these shell 0 particles via Delaunay edges, but that are not themselves members

of shell 0, are defined to lie in shell 1. This process is repeated iteratively until

all particles are assigned a shell number, and is clarified explicitly in algorithm 1.

Figure 3.1 provides a step-by-step example of shell labelling in 2D. The 3D version,

as used in this study, is defined analogously.

This labelling encodes topological depth as it relates to the shortest path

length from the border through the graph defined via the Delaunay triangulation,

which gives us a broad idea as to how many particles are between each particle and

the edge of the swarm. A driving term can then be included in the equation of

motion that provides a motional bias on each particle. The direction of this bias

(loosely “inwards” or “outwards”), is derived using the locations of its neighbours

on the same shell.

3.2.2 Direction of motional bias

Figure 3.2 shows the way in which the direction of motional bias is determined for

a typical particle (shown for shell 0: a border particle, and analogously for others).

We average over the unit vectors pointing from this particle i to its shell neighbours

1The concept of this model was conceived in a Master’s dissertation by Lewis and Turner [55].
Ideas presented in this work have been developed substantially since then.
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Figure 3.1: Schematic of system topology (shown as a 2D sketch for clarity): picture
series illustrating successive labelling of shells from the border (shell 0) inward. (a)
Black circles are particle positions at time t. (b) Black dashed lines denote edges
of Delaunay graph that is dual to Voronoi tessellation of particle positions. (c)
Particles on the convex hull of this point set (those which occupy infinite Voronoi
cells) are defined as shell 0 (red), that is the border of the flock. (d) Moving inward,
we label all particles that are connected to shell 0 particles via an edge (which
are not yet labelled) as shell 1 (blue). (e) This is done iteratively, defining shell 2
particles (green) as those connected to shell 1 particles. (f) This is terminated when
all particles have been labelled.

46



Algorithm 1: Iterative determination of topological depth for each
individual.

Input : Particle positions ri for i ∈ [1 . . . N ].
Output: Associated topological depth κi for each particle i.

// First, compute triangulation of particle positions:

1 DT ← DelaunayTriangulation(r1, . . . , rN);

// and initialise κ as length N array of −1’s:
2 foreach i← 1 to N do κ[i] ← −1;

// and initialise empty list of particle indicies at the

current Voronoi layer (depth):

3 depthList ← ∅;
// Next, identify particles on convex hull:

4 neighbours ← ∅;
5 for edges e ∈ DT do
6 q1, q2 ← indices of vertices of e;
7 if isInfinite(e) then // e connects to infinite vertex

8 q ← index of non-infinite vertex of e (i.e. q1 or q2);
9 κ[q]← 0;

// as q must lie on convex hull

10 depthList = depthList ∪ q;

11 else
12 neighbours [q1] ← q2;
13 neighbours [q2] ← q1;

// which builds a look-up for later use

// Then, search inward to find each new Voronoi layer,

labelling particles with topological depth as found:

14 depth ← 1;
15 while | depthList | > 0 do // still finding unlabelled

16 newDepthList ← ∅;
17 for q ∈ depthList do
18 for m ∈ neighbours [q] do // using look-up

19 if κ[m] == −1 then
20 κ[m]← depth;

// i.e. if unlabelled particles found

connected to the previously labelled

layer, label new particles with depth
21 newDepthList ← newDepthList ∪ m;

22 depthList ← newDepthList;
23 depth ← depth + 1;

// Leveraging the fact that no particles are disconnected

from the triangulation to fill κ and conclude process.
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Figure 3.2: Illustrative construction of bounding term for particle i at ri(t) with
shell neighbours p and q. Other neighbours (in Bi only) connected via grey lines.
Effect direction (red arrow) is average of unit vectors pointing from particle i to
each of the shell neighbours Si = {p, q}, i.e. 〈r̂ij(t)〉j∈Si .

Si, so this will be pointed inwards, on average. For shell 0, this becomes more strict:

it will always point inwards, due to the convex nature of the hull that defines this

outermost shell. Note, that as this construction relies purely on the directions of

topological (specifically same shell) neighbours, not their distance, the metric-free

nature of the interaction is fully preserved by this effect.

3.2.3 Interaction rules

The interaction rules governing all N identical particles in the system are:

ri(t+ 1) = ri(t) + v0v̂i(t), (3.1)

vi(t+ 1) = (1− η)µ̂
i
(t) + ηξ̂

i
(t), (3.2)

µ
i
(t) = fi〈r̂ij(t)〉j∈Si + (1− fi)ϑ

(
〈v̂j(t)〉j∈Bi

)
. (3.3)

They involve the position ri(t) of particle i at discrete time t, having direction

of motion v̂i(t) and constant speed v0, which is set equal to unity in what follows.

The “hat” symbol ˆ denotes a normalised (unit) vector and angled brackets 〈· · · 〉
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indicate an average over the indicated particle subset. The operator ϑ( ) performs

normalisation via ϑ(w) = w/|w| and r̂ij(t) denotes the unit vector pointing from

particle i to particle j at discrete time step t. The parameter η encodes the strength

of the (vectorial [22]) noise applied to each particle, multiplied by a random unit

vector obeying 〈ξ̂
i
(t)〉 = 0 and 〈ξ̂

i
(t) · ξ̂

j
(t′)〉 = δi,jδt,t′ . The neighbours of particle

i are denoted Bi and particles which share the same shell number κ(i) as particle

i form the set Cκ(i). Therefore we denote the set of shell neighbours of i as the

intersection Si = Bi∩Cκ(i). We average over the unit vectors pointing from particle

i to members of this set, as described in § 3.2.2. In addition, figure 3.1 shows how

shell 0 is defined as the members on the convex hull of the system, and also the

procedure for identifying all other shells.

Equation 3.1 represents a simple vectorial particle translation along the cur-

rent velocity. Equation 3.2 encodes an update rule for the velocity that includes

both some deterministic driving terms, weight (1 − η), and some stochastic noise,

weight η. Thus η, the degree of noise, is an important control parameter in what

follows. Equation 3.3 defines the deterministic driving terms. It is comprised of

two terms, the first, with weight fi, encodes the motional bias constructed from the

shell geometry, as described and the second term, with weight (1 − fi), provides

co-alignment of each particle with its neighbours.

We denote fi as the “bounding function”, which encodes the relative strength

of the bounding effect on each Voronoi shell. Changing this allows us to tune the

bounding of the model across the aggregation as we wish. If we choose fi to have the

form of equation 3.4, where λ is a parameter controlling the strength of the border

shell effect, then we can recover the Strictly Metric-Free (SMF) model of Pearce

and Turner [75] in its entirety. If instead we choose fi = 0 ∀i then we recover the

unbounded metric-free model of Ginelli and Chaté [34].

fi =

 λ ri(t) ∈ C0

0 otherwise
. (3.4)

In our model, which uses topological shell depth, the value of fi is the same

for all particles in the same shell and can therefore be mapped to a lower dimensional

parameter set fκ(i). We believe that this generalisation of the SMF model is natural,

allowing us to describe the motional bias, not as a specific characteristic for a subset

of birds, but as a rule for all birds that has a strength that depends on the relative

depth of an individual in the swarm.
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3.3 Methodology

We are interested in measuring the density variation across our simulated swarms.

As we wish to compare directly to the empirical study of Starling murmurations [4]

we seek to compute this in a similar fashion. The type of flocks which were studied

in [4] were non-columnar and compact, with sharp borders, containing on the order

of hundreds to thousands of birds, and which moved nearly linearly for sufficiently

long times so as to treat their behaviour as near steady-state. The type of density

variation we are interested in here is the density profile across flocks in this steady

state, which is observed to be higher near the edge and to decrease toward the centre:

It is not the propagating density waves observed in response to specific events, such

as turning or shock.

3.3.1 Determination of spatial extent

We determine the spatial extent of simulated swarms using the α-shape method

[4, 27], which allows for the presence of concavities within the swarm to the scale

of α. A comparison between α-shape and convex hull border is provided in figure

3.3 as a general example. The α-shape of a set of points is as an extension of the

convex hull. In two dimensions, its construction can be thought of intuitively with

the following analogy. Take a coin and roll it along the edge of the point set, all the

way around. If we draw a line between all of the points that we could touch with

the coin, in the order they were visited, then we would have a curve which denotes

the α-shape of the point set. The parameter α is related to the size of the coin used:

a small coin would allow us to reach more points and a large coin would prevent

our access to them. In the limit where the coin is infinitely large, we retrieve the

convex hull [27]. As it approaches a point, the α-shape would effectively become

the same as the point set. Therefore, it is clear that the α-shape can be more than

one region, especially if there are large concavities in the group.

To measure density, individuals with distance less than δ from the border

were removed and a new border of the reduced flock was computed. The reduced

density was computed using this reduced volume and the number of internal birds.

This process was repeated until the flock was empty (i.e. less than four members

remaining such that no tetrahedra, and hence no volume, can be determined).

Simulated swarms typically have a non-negligible degree of concavity (as is

also observed in the empirical study), therefore allowing for presence of a non-convex

border is natural. Fixing the convexity scale α is non-trivial as we are not dealing

with a few observations, but thousands of configurational snapshots per simulation,
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Figure 3.3: Two constructions of the border for an arbitrary set of points in two
dimensions, convex hull (left) and α-shape (right). The region on the right has a
smaller total area, but a higher number density, as the α-shape method allows the
presence of some concavities, specifically up to the scale of α. Image adapted from
Wikimedia Commons [23].

therefore we cannot do this manually (as is described in [16]). Instead we obtain

a sensible estimate for α by selecting the smallest value possible that leaves the

particle aggregation as a single connected component. This fixes the convexity scale

throughout. We must also make a choice of the flock reduction parameter δ as this

impacts on our measurement and ability to compare with the data. We select a

value which on average provides a similar number of flock reduction iterations as

the field study (which is 7).

3.3.2 Model fitting considerations

In order to prevent the choice of measurement variables from 3.3.1 from impacting

our measurements we scale the reduction so that shell number is mapped to the

domain [0, 1] with 0 corresponding to the first reduction and 1 the final reduced flock.

This also allows for a much easier comparison with the observational data; we can

map that data to the same domain and perform cubic splines interpolation to allow

query of comparison points between simulated and empirical data. Additionally

we normalise the density data such that the first flock density measurement is 1,

which makes our measurements and comparisons dimensionless, and allows us to

look primarily at the density gradient across the aggregation. These transformations

allow us to compare our simulation data more easily with the empirical data and to

minimise the impact of possible differences in choice of parameters.
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Our primary goal is to identify a bounding function fκ that can produce

simulations with density profiles that provide a good fit to the empirical data. There

is some freedom in how one might parametrise fκ. We choose fκ to be linear in shell

depth (parametrised via gradient a and intercept b). We allow the bounding strength

on shell 0 individuals to be a separate parameter λ in order to include models in

which individuals on the edge behave differently from the bulk.

We then use the Simultaneous Perturbation Stochastic Approximation (SPSA)

algorithm [89, 91] for recursive optimisation of bounding function parameters (λ, a, b)

using gain sequences with suggested practical values from [90]. We used the mean-

squared difference between simulated and empirical data, averaged over a specified

number of density evaluations, as the cost function estimate. Using this method al-

lows for a principled stochastic search of the parameter space and can be performed

in parallel. Fresh simulations were performed at each parameter update, due to the

presence of hysteresis in these types of systems [22, 36].

SPSA is an optimisation algorithm that is able to perform gradient-descent

though a parameter space, even when direct measurement of the gradient is not

possible. It does this by estimating the local gradient by evaluating the cost func-

tion at a point close to the current point in parameter space (a small perturbation

away) and at the point perturbed in the opposite direction too. All parameters are

randomly perturbed simultaneously, thus instead of evaluating two points in each

dimension of the space each iteration, only two points are needed each iteration

independent of the dimensionality of the parameter space, making this approach

potentially quicker than other methods of stochastic optimisation [91]. In our case,

we do not have direct access to the gradient of the loss function (as chosen above),

however we can measure it by running a simulation at specified parameters, and

this estimate will be subject to noise. This situation is the design focus of the SPSA

algorithm [91], so it is a suitable choice of approach to search for a model which will

closely match the empirical data, especially as it is too computationally costly to

grid search the full parameter space.

It is worth noting however, that it is not straightforward to estimate uncer-

tainty of the resultant parameters as their values are the outcome of an optimisation

process based on gradient descent. To do so would require a full understanding of

the landscape of the parameter space, which we most certainly do not have here. If

we did, we could ask questions about the uniqueness of the model found by the op-

timisation, and whether there is a large region of similarly close-to-optimal models

near the one that was found. This is a drawback of the approach and can limit the

understanding of the resultant parameters. However, if all we are interested in is
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Figure 3.4: Distribution of motional bias via bounding function fκ shown for pa-
rameters fit via stochastic optimisation: λ = 0.883, a = −0.944, b = 0.056. Example
is shown for 11 shells: 0 to 10. Blue denotes the surface members, shell 0, whose
motional bias is determined by λ, and red denotes members in the swarm bulk, with
scaled shell number 0 < κ ≤ 1 and motional bias linearly parameterised by aκ+ b.

finding a single model (set of parameters) which fits our data as closely as possible

under the limits of the optimisation scheme chosen, then we can do so.

3.4 Realistic flock density distributions are observed

3.4.1 Model fitting outcome

In order to understand how the density across aggregation varies for swarms which

interact in a metric-free fashion we generated simulations of our Distributed Mo-

tional Bias Strictly Metric-Free (DMBSMF) model, as described in § 3.3.2. As

we are interested in simulating real-world behaviour we choose the parameters for

the model via stochastic optimisation using the previously described method, di-

rectly fitting to empirical data, obtaining fit parameters of λ = 0.883, a = −0.944,

b = 0.056. These parameters result in a bounding function fκ as displayed in figure

3.4. This translates to a strong surface effect generally pointing toward the centre of

the flock, however the bulk of the flock has an outward motional bias of increasing

strength as one approaches the centre.

In order to simulate a flock that is comparable to that observed in the field
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study, we note from the motivating empirical study [4] that the flock in question

contains 1, 360 reconstructed birds. We also note details from a later study [18](S.I.)

for the flock in question: 1, 571 reconstructed birds with a measured polarisation of

0.96±0.03 (i.e. observed flocks in high order regime). We therefore chose to simulate

1, 500 birds with noise parameter η = 0.22, yielding a polarisation of 0.931± 0.003,

which is of similar magnitude to the observed flock. In each instance, we performed

a simulation for 20, 000 time steps with the first 10, 000 steps discarded for equilibra-

tion of the system. The initial condition is a random (isotropic) orientation and a

random location, uniformly distributed within a unit cube, for each individual. We

measured the density variation across the flock (as described in § 3.3) every 10 time

steps after equilibration, resulting in 1, 000 measurements per simulation instance,

which are then time-averaged. We combine the results from five independent sim-

ulation instances, with final values presented as the mean of these quantities and

uncertainties corresponding to standard errors.

3.4.2 Density variation across aggregation

The simulated model matches closely to empirical data of Starling flocks, as can

be seen in figure 3.5, and produces the observed effect that aggregation density is

greater at the border and reduces in what appears to be a linear fashion. The rate of

this decrease is also closely matched. This counter-intuitive observation appears to

require a model with a surprising motional bias: whilst surface birds move toward the

flock centre, ensuring global cohesion, the rest of the flock move toward the border

with increasing strength the further from it they are, as determined by topological

depth. Naturally then, the number of birds closer to the border of the flock increases

and drops off toward the centre due to the strong gradient of the bulk bounding

function.

Our model shares some similarity with another recently proposed flocking

model, the “hybrid projection” model [76], that drives individuals to move towards

features in their visual field, specifically the boundaries between light and dark

regions, where light/dark encodes the absence/presence of a neighbour in each di-

rection. This model effectively encourages the movement inwards of individuals near

the flock border. This is because individuals at the border will experience featureless

outward-directed visual fields, resulting in an inward bias. It will also generate a

bias outwards from the bulk of the flock as there will typically be more features in

the outward-pointing directions than toward the often opaque centre of the flock. It

is notable then that the motional bias that fits data from real-world flocks is similar

to the effective motional bias present in visual models of this type.
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Figure 3.5: Density variation across aggregation: comparison of empirical data
(black squares) reproduced from [4] with simulation data from DMBSMF model (red
crosses) with parameters λ = 0.883, a = −0.944, b = 0.056 obtained via stochastic
optimisation. Simulation data is an average of five time-averaged independent ini-
tialisations. Measurements are normalised such that the first flock reduction (= 0)
has unit density, and a value of 1 corresponds to the final measurement before a
fully reduced (empty) flock. Linear fits show good agreement with the model: flock
density is largest on the border and decreases toward the centre at a similar rate.
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Figure 3.6: Density variation across aggregation: comparison of empirical data
(black squares) reproduced from [4] with simulation data from SMF model (red
crosses) with parameters λ = 0.5, a = b = 0.0, as in [75]. Simulation data is an
average of five time-averaged independent initialisations. Measurements are nor-
malised such that the first flock reduction (= 0) has unit density, and a value of
1 corresponds to the final measurement before a fully reduced (empty) flock. The
large disparity between the SMF model and observations highlights the strength of
our new DMBSMF model.

3.4.3 Comparison with SMF model

Recall the form of the interaction rules presented in § 3.2.3 with the bounding

function as specified in equation 3.4. This recovers the SMF model [75]. This

model can produce bounded swarms in free-space, however figure 3.6 reveals the

density distribution to be quite different from empirical observations, and from our

model too. The density is largest further from the border in this control case. The

significant difference between the values obtained in our model and this control

model provides strong evidence that the form of the bounding function is driving

factor in determining a specified density distribution.

At this point it would be useful to gain some intuition on the typical mor-
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phology of these simulated swarms. Figure 3.7 shows specific instances of simulated

swarms arising from the SMF model [75] and DMBSMF model (with SPSA fit pa-

rameters, present study). The local density profile for typical swarms generated

by these models differs. In the figure, the DMBSMF swarm individuals look more

uniformly distributed then for the SMF swarm, where a relative sparsity can be

observed towards the edge. This qualitative difference between the structure of the

two groups is reinforced by the quantitative measurement of group density, as shown

in figure 3.6, which shows an order of magnitude variation across the group for the

SMF swarm.

Real flocks of Starlings have a quasi-two-dimensional morphology, despite

freedom in three-dimensions [4]. The plane of the flock also tends to be perpendicular

to gravity, with group polarisation also tending to be perpendicular to gravity, i.e.

flocks are extended in the plane of the ground and move parallel to it. Ballerini

et al. [4] also found that there was no correlation between any dominant spatial axis

of the flock and its direction of motion. Therefore, we can hypothesise that this

morphology is driven by two factors: an energetic cost associated with motion in

the direction anti-parallel to gravity and an absorbing boundary in the direction of

the ground.

The simulated flocks which we consider have no such constraints. They are

bounded by a motional-bias acting from the vertices of a convex polyhedron which

surrounds the group. This defines the system as spherically symmetric, as without

the aforementioned physical constraints, there is no broken symmetry in position,

except that which is associated with the choice of polarisation direction [97]. In a

simulated SMF flock bounded by an inward motional bias on its convex hull, we can

also observe a spatial extension along the direction of motion, particularly in very

highly ordered flocks. An example of this can be seen in figure 3.7 (top). This is

associated with the fixed movement speed of the individuals as the strength of the

motional bias is largest perpendicular to the polarisation of the group. This pro-

motes an extension of the group over time in its direction of motion. Interestingly,

an increase in noise arrests this elongation: an example of fluctuations in the sys-

tem preventing it from exploring an undesirable state. The outward motional-bias

present in our DMBSMF model also suppresses this elongation effect.

3.4.4 Flock characteristics

In this section we briefly present a few features of simulated DMBSMF swarms

with SPSA fit parameters. Simulation parameters are N = 1500 and η = 0.22, ini-

tialised with uniformly random positions in a cube of specified density and randomly

57



time = 990

time = 958

Figure 3.7: Configurational snapshots of simulated swarms: (top) SMF and (bot-
tom) SPSA fit for our DMBDSMF model. We observe specific regions of high
density in the SMF model, however in our model tuned with fit parameters these
cannot persist and density variation across aggregation is regulated similarly to that
observed in the empirical study [4].
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distributed three-dimensional orientation.

Evolution of flock velocity

Figure 3.8 shows the fluctuation of the flock velocity which we define as V (t) =
1
NΣN

i=1vi(t) (green). The system moves from a maximally disordered initial state

(P = 0) to a highly ordered steady-state (〈P 〉 = 0.92±0.06). The flock does not just

settle on a heading an translate along it indefinitely; its orientation changes over

time (spherical polar heading φ, θ in blue and red respectively). These fluctuations

in group velocity are driven by the stochastic contribution of noise to the orientation

of each individual in the flock.

Finite size steady-state

Figure 3.9 presents the evolution of the spatial extent of simulated for initial states

with varying system size, from a cube of length 1 to 1000. Regardless of the initial

state all of these swarms eventually result in a cohesive steady-state of consistent

size. This is an important consistency check regarding the stability of the model

fitted to empirical data.

3.5 Determining topological depth

3.5.1 Defining visual anisotropy

A key aspect of our model is the notion of topological depth within the flock. Indi-

viduals are assigned a shell number based on this quantity, encoding a non-metric

measure of depth as the shortest path length from the individual to a member of the

convex hull (shell 0). The motional bias experienced by this individual is a function

of shell number, as shown in figure 3.4. It is therefore important to consider the

accessibility of this quantity to the individual, from a biological/sensory perspec-

tive - how might flock members determine their shell number? In this section we

present a model for how this could be achieved using the degree of anisotropy in an

individuals visual field as an indicator of their depth within the flock.

We analyse a simplified model of the system in which the density is homoge-

neous, for simplicity. Consider the three-dimensional flock as a sphere S of radius

R centred on the origin with particle mass distributed uniformly within this sphere.

For a point P on or inside the sphere we can define an axis z along the vector

from P to the sphere centre at the origin, as seen in figure 3.10. In spherical polar

coordinates (r, θ, ϕ) this necessarily has ϕ-rotational symmetry about the z axis.
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Figure 3.8: Change in flock velocity over time. Simulation with SPSA fit parameters,
η = 0.22 and N = 1500, initialised with random positions, distributed uniformly,
in a unit cube centred on the origin with random initial orientation, isotropically
distributed. Flock velocity V (t) = 1

NΣN
i=1vi(t) grows in magnitude (green line, right

axis) from close to zero, a disordered state, to close to 1 (〈V (t)〉 = 0.92 ± 0.06),
an ordered state. The angular components of V (t), described in spherical polar θ
and φ, as Vφ(t) and Vθ(t) (blue and red lines, left axis) respectively, are shown to
fluctuate in both ordered and disordered states, driven by noise of strength η.
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Figure 3.9: Convergence to steady-state. Simulation with SPSA fit parameters,
η = 0.22 and N = 1500, initialised with random positions, distributed uniformly, in
a cube of length l centred on origin with randomly distributed 3D orientation. Blue,
green, yellow and red lines correspond to l = 1, 10, 100, 1000 respectively, increasing
the spatial extent of the initial state. The spatial extent R = 〈|ri − rcm|〉i∈C0

converges to R̄ after equilibration time teq. A steady-state is reached asymptotically.
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Figure 3.10: Schematic of simplified description of system: a cross-section of a
sphere of radius R with homogeneous mass density ρ(r) = ρ for |r| ≤ R and 0
otherwise. We consider the visual information available to an individual at point
P at a distance rp from the centre in different directions encoded by θ. L(θ) is
the distance from P to the edge of the sphere in the θ direction. The system is
symmetric under rotation about the axis z defined in the direction from P through
the centre of the sphere. Areas A and B, shaded in blue, denote an example field
of view between ±20 deg in the negative and positive z direction respectively. In
the sub-figures A/B we plot the position of 1500 flock members relative to P , at
rp = R/2 from the centre, as Lambert azimuthal equal-area projections centred
on the direction of negative/positive z respectively, with the red region denoting
bounds of ±20 deg along each axis. Looking along z through the flock, as in B, one
can see a high density of other flock members, however this is drastically reduced
when looking in the opposite direction out of the flock, as in A. We use this visual
anisotropy as the basis for an individual inferring its depth from deep within the
flock. 62



The number of particles N =
∫
S ρ(r) dV constrains the density, here assumed

homogeneous ρ(r) = ρ. If we transform to the frame in which P as the origin, we

can write:

N = ρ

∫
S
r̃2 dr̃ dΩ, (3.5)

where r̃ is the radial component of a point in this frame and dΩ is the solid angle.

Therefore,
dN

dΩ
=
ρL(θ)3

3
:= I(θ), (3.6)

which is the particle mass per solid angle, where L(θ) is the distance from P to

the sphere surface. This quantity I(θ) is biologically accessible (i.e. can be sensed)

via the visual field of an individual within the flock and is closely related (via a

threshold function) to the fraction of sky occluded by individuals in the θ direction

as observed from P .

For an individual at P there are intuitively directions which have higher and

lower particle mass per solid angle. The imprint of the flock on an individuals visual

field is greater when looking through its centre than in the opposite direction, as

can be seen in figure 3.10, panels A & B.

We are interested in the extrema of I(θ) and make use of the observation

that L(θ) is the radial distance to the flock edge, see figure 3.10, with P as the

origin. This has the form L(θ) = rp cos θ +
√
R2 − r2

p sin2 θ. To obtain the extrema

of I(θ) we differentiate equation 3.6 which yields:

dI

dθ
= −ρL2rp sin θ

(
1 +

rp cos θ√
R2 − r2

p sin2 θ

)
= 0 . (3.7)

For non-zero density ρ, there are a number of stationary points. First when

rp = 0, from the perspective of an individual at the centre of the spherical flock, there

is no variation in mass density in any direction, and I(θ) = ρR3

3 is independent of θ.

More significantly, there is a maximum and minimum at θ = 0 and π respectively.

These correspond to L(0) = R+ rp, looking along a line from P through the centre

of the sphere (along +z), and L(π) = R − rp, away from it (along −z). This

also provides two features identifiable in the visual field of the individual at P :

Imax =
ρ(R+rp)3

3 and Imin =
ρ(R−rp)3

3 .

To obtain a quantity which captures the asymmetry of any individual’s visual

field we take the ratio of the values of these two features to define the “visual

anisotropy” ∆I as:

∆I =
Imin

Imax
=

(1−D)3

(1 +D)3
, (3.8)
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Figure 3.11: Analytic relationship between visual anisotropy ∆I and relative depth
D as shown in equation 3.8. Data points from figure 3.12 are transformed by this
function to obtain the relationship seen in figure 3.13.

where D = rp/R is the relative depth within the flock for an individual at P . The

form of this is illustrated in figure 3.11

Note how equation 3.8 does not explicitly feature ρ and is “scale-free” by

nature, being only a function of the dimensionless depth D, and is also monotonic

on the interval D ∈ [0, 1].

3.5.2 Connecting relative and topological depth

This formulation is useful if it can be linked to topological depth. To make this

connection we now seek a relationship between relative depth D and topological

depth κ. For each time-step for our simulated, non-spherical flocks (an example

configuration can be seen in figure 3.7 (bottom)), we determine the spatial extent

of the flock as R = 〈|ri − rcm|〉i∈C0 the mean distance to centre of mass rcm over

all particles on the convex hull of the point set. Relative depth per individual is

then determined as Di = |ri− rcm|/R which, on average, is one for individuals with

zero topological depth. Figure 3.12 shows relative depth averaged over a thousand

configurations from five simulations with parameters determined from the fit to

empirical data, as shown in figure 3.4, compared with the corresponding topological

depth. We observe a linear relationship with relative depth decreasing with increased

topological depth: when an individual is closer to the centre (|ri − rcm| is smaller)

it has a higher topological depth and vice versa.
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Figure 3.12: Relative depth D of an individual within a simulated flock compared to
its topological depth κ averaged over five runs of 1000 time-steps after equilibration
with N = 1500, η = 0.22 and bounding function as fit to empirical data (figure
3.4) shown as red crosses. Inverse squared-error weighted least squares fit shown as
dotted black line: D = −0.162κ+ 1.015. The D-intercept is close to 1, as expected
since convex hull members have κ = 0, and are also the furthest from the centre of
mass, thus |ri−rcm| ≈ R and so D ≈ 1. If it is also true that the highest topological
depth individuals are near the centre of mass, then the gradient of the fit must go
as 1/κmax. Since κmax is 5 here, we would expect the gradient to be 0.2, which is
close to our fit value.
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3.5.3 Establishing the relationship between visual anisotropy and

topological depth

We can finally relate our biologically accessible quantity, the visual anisotropy ∆I

from equation 3.8, to topological depth κ and we show this for our model in figure

3.13, providing a one-to-one map. An individual can therefore compare two features

(the minimum and maximum projected density) from their visual field in order to

determine their topological depth within the flock, and hence understand how they

should adjust their motion. One could imagine such a relationship might be de-

termined heuristically: an intuitive understanding of depth within the aggregation

from visual observations. When ∆I is small, the ratio between minimum and max-

imum of particle mass per solid angle I(θ) is large, so there is a large distinction

between the two directions these represent (away from and toward the bulk of the

flock respectively). When ∆I is larger the curve in figure 3.13 has less extreme slope

and presents distinct values for different topological depths suggesting an individual

deep in the flock still has capacity to determine its depth.

The relationship in figure 3.13 suggests that, for an individual in a group,

they would need to have some estimate of the maximum topological depth κ possible

for their group in order to calibrate their visual anisotropy curve with respect to it.

Figure 3.14 shows how the maximum topological depth in an aggregation grows with

the number of individuals N for the homogeneous spherical test case. Specifically

it scales as κmax ∼ N1/3. Considering that density ρ = N/V for a spherical volume

V implies R3 = 3N
4πρ , then at a fixed density R ∼ N1/3, therefore κmax ∼ R. The

maximum value of topological depth scales with the size of the flock. Therefore,

an individual in such an aggregation would only need estimate the length scale of

the group in order to use its visual field to determine its depth within the group.

This length scale could be fairly easily estimated by, for example, relating it to the

smallest projected size of other individuals it can see in the group, i.e. also using

its visual information.

3.6 Conclusions

We have introduced a generalised topological model of collective behaviour with

a tunable bounding function to distribute a metric-free motional bias across the

swarm. This model was fitted to empirical data of Starling murmurations using

stochastic optimisation to determine a suitable form of bounding function. Sim-

ulation data from this model was shown to match field study data and produce

swarms which are more dense at the border than at the centre, which is a sur-
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Figure 3.13: Relationship between visual anisotropy ∆I and topological depth κ.
Simulation data (red crosses) is as for figure 3.12 and unweighted fit (black dashed
line) of form κ = aeb∆I + c is provided as a guide-line (a = 0.002, b = 1.005,
c = −0.006). The functional form is not itself important but is designed to show
that a simple heuristic relationship could be accessible to animals.
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Figure 3.14: Scaling of maximum topological depth κmax with the number of flock
members N for the test case of a homogeneous sphere of unit density (blue triangles).
Fit function (black dashed line) has the form ln(κmax) = 0.336 ln(N)− 0.933 which
suggests κmax ∼ N1/3 ∼ R, as one might expect at fixed density. The dashed green
line has gradient 1/3, for reference. Thus maximum topological depth grows with
the size of the flock.
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prising characteristic of real-world Starling flocks. We compared this fitted model

to a benchmark topological model with no motional bias on the bulk of the flock

(only on the surface). This allowed us to understand the role of the specific form of

distributed motional bias that we have identified, which is to produce the desired

level of inter-individual exclusion across the swarm, and allow individuals to keep

the necessary relative distance apart without directly enforcing what this should be.

We also proposed how an individual might use the observed anisotropy of

its visual field to determine its depth within the flock. The analysis presented here

is restricted to the simple case of a homogeneous sphere therefore there does exists

scope to potentially extend to this approach to explore the role of heterogeneity

in both density and flock morphology. From a biological perspective, there many

situations where there is individual benefit from being able to sense depth within an

aggregation, beyond that which might inform individual dynamics within a moving

flock. Safety is of the individual by screening risk of predation using its neighbours

(the selfish herd hypothesis ) would require some idea of where the group centre is,

relative to their current position, in order to occupy it. Moving away from birds and

toward insects, it has been observed that the trajectory of individual midges within

stationary (i.e. without high group order) swarms are as effectively free particles

[48]. They do not stay in one part of the swarm but explore its space [83] and it

has been suggested this behaviour could be motivated by the search for a mate.

This sort of motion appears to require some understanding of depth. Their primary

information stream is acoustic in nature, rather than visual as we have considered

here, however it is still a long-range stimulus [82] so a similar argument may be

possible for this system too.

Models of swarming generally aim to obtain group cohesion and co-alignment

[43, 84]. Typically, these are explicitly included as rules imposed on the interact-

ing agents in the system. Our model differs from current models in the literature.

While it explicitly imposes co-alignment in a familiar way, swarm cohesion (and

density regulation) are controlled using a motional bias distributed across the flock,

which is prescribed via metric-free interaction rules, consistent with experimental

observations. We show that specific field observations of density variation in ag-

gregations of Starlings can be reproduced using our model so that density is higher

on the border of the flock than at the centre. This density profile may relate to

the predator-evasion mechanisms of three-dimensional swarms and the evolutionary

development of such behaviour.
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Chapter 4

Seeking marginal opacity is

sufficient to induce alignment in

swarms

In the preceding chapters we have seen how swarming rules, specifically co-alignment

between topologically assigned neighbours, can generate highly ordered artificial

swarms. The aligning interaction between nearby individuals propagates informa-

tion of the specific group heading, individual by individual, allowing distantly sep-

arated group members to go in the same direction, in spite of the distance between

them and even the presence of noise. We have shown how to obtain a specific group

density, or density distribution across the group, in the presence of the topological

constraint and this sort of aligning interaction.

In chapter 2 we found how temporal information can be used to help achieve

a cohesive, aligned group. In chapter 3 we establish the importance of visual infor-

mation for certain types of animal group and explore how it can be used by group

members to move within the group. We build on these themes in the following

chapter, combining both temporal and visual information to generate a cohesive,

ordered group with strongly correlated behaviour without the need for traditional,

explicit aligning rules to produce swarming.

4.1 Introduction

A striking observation of real-world flocks of Starlings is that they appear to be in

a state of marginal opacity [74, 76]. This means that, for a bird within the group,

they will see about half of their view occupied by other members of the group and
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the rest will be the environment (i.e. the sky and surrounding landscape). From

an evolutionary perspective this can be particularly beneficial as individuals inside

the group are still able to look out and contribute to threat detection (recalling the

“many eyes” hypothesis introduced in § 1.1.2). This sets the global density naturally,

as if two birds are very close to one another they will contribute dramatically to

occluding one side of each others view, but if the average spacing between birds is

too low then the apparent size of each other flock member will be vanishingly small.

It has not however been established if the state of marginal opacity observed is a

consequence of interactions between elements of the flock or whether it is established

at the individual level that this state is desirable (through say, evolutionary instinct)

and hence sought out. Pearce et al. [76] show how this state can be produced by a

model in which individuals focus on the features in the scene that they can observe,

comprised of the projected positions of other members in the group. The approach

we consider will be the converse hypothesis: marginal opacity to generate swarming,

rather than swarming rules to generate marginal opacity.

In this chapter, we introduce a model of collective behaviour in which individ-

uals determine the expected local opacity they will observe after time τ has elapsed

conditional on where they might turn. They compare this with a specified desired

opacity in order to update their motion. Broadly, the rule imposed on all individuals

homogeneously is “seek desired opacity”. There are no explicit two-particle align-

ment or cohesion interaction rules, only the opacity target. There are also no fixed

boundaries. Despite these challenges, we will show that this behaviour can induce

alignment in the swarm and even keep it cohesive. We will show how individual

behaviour is locally correlated, even though this model is specifically non-local, and

also discuss how this effect is generated.

4.2 Model outline

We begin by defining the projection of the swarm onto the individuals field of view

which we term the “visual field” of that individual. We will then present the rules

describing the model dynamics and the procedure of numerical simulation used to

study the model.

4.2.1 Defining the visual field

Figure 4.1 shows a schematic representation of the visual projection of surround-

ing group members onto the field of view for a specific individual i. We use this

projection to define the “visual field” for an individual as follows.
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Figure 4.1: Schematic construction of the visual field of i (black circle) Vi(θ) in
two-dimensions. Where there is dark, there is a particle in the group blocking view
in that direction. Otherwise, i can look out of the flock, corresponding to a light
region. Vi(θ) is therefore a discontinuous binary function (dark:1, light:0).
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In two-dimensions, the visual projection corresponds to identifying intervals

of polar angle subtended for each other individual j in the group at time t. The

width of this interval is the angular radius of j with respect to i, that is αij(t):

αij(t) = sin−1

(
b

|rij(t)|

)
, (4.1)

where αij(t) depends on the actual particle size, which are two-dimensional disks of

radius b, and the distance between the two particles via rij(t) = rj(t) − ri(t), and

where |w| obtains the magnitude of vector w. If |rij(t)| ≤ b we set αij(t) = π/2, as

particles are not explicitly prevented from overlapping.

Note that, in three-dimensions this would correspond to projected spherical

caps as the contribution for each visible particle. This extra degree of freedom

makes interval merging much more difficult practically, as has been discussed by

Miller [62]. In what follows, we work in two-dimensions, for simplicity, though a

three-dimensional extension can be naturally defined too.

The angular radius of particle j is used to define an interval of θ which is

occluded by j, for each of the other particles in the group. For j this is [θ−ij , θ
+
ij ],

where θ±ij = θij ± αij(t) and θij is the polar angular component of rij(t).

These are merged to obtain a binary description of projected neighbour po-

sitions for i. We call this construction the visual field Vi(θ, t) of particle i at time t,

which is a discontinuous binary function on the polar domain θ ∈ [−π, π):

Vi(θ, t) =

 1 if occluded along û(θ)

0 otherwise
, (4.2)

where û(θ) is a unit vector of polar angle θ originating at ri(t).

Algorithmically, for particle i, this construction is performed starting with

the nearest neighbour j as it is certainly not occluded, and its projection would

have the largest individual contribution to Vi(θ, t). At this point, Vi(θ, t) is a single

interval [θ−j , θ
+
j ], taking care to split at the polar discontinuity at ±π where nec-

essary. We then work outward from i, going to the next nearest neighbour. We

check if each is occluded, and if so whether that occlusion is full or partial. Full

occlusion means no contribution to the visual field. Partial occlusion means that

the new interval must be merged with the previous intervals that comprise Vi(θ, t).
If no occlusion at all, then a new interval is created and appended to Vi(θ, t). This

process is repeated for all other j 6= i in the group, resulting in the full visual field

of particle i at time t.
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The speed of this process can vary widely between best and worst case. The

pairwise distance from each point to all other points is needed which has complexity

O(N2). For a specific particle i, other group members j need to be sorted in distance

from i, thus O(N logN) for this process. Interval merging is generally similar as

O(k log k) where k is the number of intervals being merged: for a sorted list of

intervals, merging is linear time. The worst case then corresponds to a sparse

group, such that every other group member requires an interval to be added to

the Vi(θ, t) and no intervals are merged, though for each neighbour each preceding

interval needs to be checked, which would be O(N2). The best case corresponds to

a very dense group: two equidistant individuals at opposite sides of i such that the

three are on a line, overlapping, at distance b (the particle radius) away. All other

N − 3 individuals are necessarily occluded and a minimum number of intervals are

present to check over, which would be O(N). Generally, if km is the median number

of intervals, then for each particle i there would be typically km checks through

intervals for each neighbour j. As we build the interval list we can keep it sorted to

avoid a sorting step, thus typical complexity for each particle i is O(Nkm).

4.2.2 Defining the local opacity

Given Vi(θ, t) there is much scope in which information we can use. In general, we

can describe the structure of the visual field, a discontinuous binary function, by

decomposing it into Fourier basis of sines and cosines. This would allow us to pick

out specific structures on this domain and dominant regions of projected neighbours.

In this work, we concern ourselves with only the lowest order information in Vi(t),
namely the proportion of the total visual field which is covered. We call this the

local opacity Ωi(t):

Ωi(t) =
1

2π

∫ π

−π
Vi(t). (4.3)

Algorithmically, this corresponds to summation over merged interval widths that

define Vi(t). The contribution of each will be its arc length on the unit circle. This

is normalised by the full circle perimeter 2π, thus Ωi(t) ∈ [0, 1].

4.2.3 Model outline

The rule set for the motion of particle i is:

vi(t+ δt) = v0ϑ
{

(1− η)µ
i
(t) + ηξ̂

i
(t)
}
, (4.4)

ri(t+ δt) = ri(t) + δtvi(t), (4.5)

74



where δt is the size of the discrete time step and v0 is the fixed speed of the particle.

The operator ϑ( ) performs normalisation via ϑ(w) = w/|w|. The stochastic term in

equation 4.4 is comprised of a parameter η that denotes the strength of the noise

applied to each particle. The term ξ̂
i
(t) is a random unit vector obeying 〈ξ̂

i
(t)〉 = 0

and 〈ξ̂
i
(t) · ξ̂

j
(t′)〉 = δi,jδt,t′ . The schematic in figure 4.2 illustrates this process.

The specific contribution of opacity in our proposed model is controlled by

the form of µ
i
(t):

µ
i
(t) = w(ΩL

i (t+ τ))v̂Li (t) + w(ΩR
i (t+ τ))v̂Ri (t), (4.6)

which is a linear combination of two orientations, v̂
L/R
i (t), each weighted by a func-

tion of local opacity, w(Ω) ∈ [0, 1]:

w(Ω) = 1− 2|Ω− Ωdes|. (4.7)

The form of this acts to penalise deviations of local opacity from its de-

sired value Ωdes. This function is maximal when Ω = Ωdes and the requirement

of marginal opacity sets Ωdes = 1/2. Also the L/R orientations, corresponding to a

left/right turn by +γ/−γ respectively are given by rotation of the current orientation

v̂i(t) by those angles:

v̂
L/R
i (t) = R(±γ)v̂i(t), (4.8)

where R is the two-dimensional unitary rotation operator. Then, Ω
L/R
i (t+ τ) is the

local opacity computed after all particle positions have evolved ballistically based on

the current state for τ time ahead. However for particle i its orientation is replaced

by v̂
L/R
i (t) as such local opacity is computed at a proposed left/right position in the

future.

In short, µ
i
(t) in equations 4.4 and 4.6 is a combination of turning to the left

and right, each weighted by a factor that specifies how close to the desired opacity

the local opacity is, in those directions, at time τ in the future. In the schematic

in figure 4.2 that shows this process, the right state is closer to 1/2 opacity than the

left state, which results in the new velocity (in blue) to be more in the right-hand

direction. In this way, particles can move to seek this desired marginal opacity at

time horizon τ .

4.2.4 Experimental setup

The model with interaction rules in equations 4.4 and 4.5 is numerically simulated

in two dimensions with an implementation in C++. A system of N particles is
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Figure 4.2: (a) Schematic showing how particle i (red) “looks forward” to the time
horizon τ , and moves towards states which are closer to the desired marginally
opaque state. This is shown here for the case of no noise, i.e. the case of η = 0 in
equation 4.4, thus reduced to vi(t + δt) = v0µ̂i(t) shown here. Lower panels show
the visual field observed after the left (b) and right (c) turn choices (rotations of

vi(t) by −γ and +γ respectively) after τ timesteps r
L/R
i (t+τ), constructed as shown

in figure 4.1. The visual field in (c) is closer to the desired opacity, thus particle i
updates its velocity to vi(t+ δt), which is rotated more toward the right (blue).
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initialised uniform randomly across a circle centred on (0, 0) with initial density

ρinit and no overlap, and uniformly distributed random orientation. Individuals

move in continuous space at a fixed speed v0 and their state is updated in discrete

time steps of δt, which are both set equal to unity in the following. This defines the

simulation length scale as v0/δt = 1. Control parameters are the strength of noise

η and the time horizon τ . The system evolves for T time steps in total. The first

Teq of these are discarded to allow the system to equilibrate and lose the features of

its initial condition. To compute swarm statistics the relevant values are averaged

over the window [Teq, T ] denoted 〈 . . . 〉 in the following.

There are natural choices for the remaining parameters introduced here. We

set b to 1, defining the particle radius as the same as the simulation length scale.

We also set turning angle γ to 45o, which makes the left and right turns orthogonal

to one another, providing maximal span for the resultant linear combination that

makes up the new heading, as defined in equation 4.6.

It is worth considering the complexity of the algorithm. We have discussed

the complexity of constructing the visual field for each particle i in § 4.2.1. This is

done for each of theN particles twice at each time step: once for each of the proposed

future states. This is complexity O(N2km) for a median number of intervals of km,

which has worst case of O(N3).

4.3 Requiring marginal opacity implicitly generates group

alignment

4.3.1 Group polarisation

As has been established, this model does not have any explicit inter-particle align-

ment terms in its interaction rules, shown in equations 4.4 and 4.5. In traditional

models of collective behaviour [32, 102], macroscopic alignment is a direct result of

microscopic aligning interactions. Therefore, we first investigate the ability of our

model to generate a globally aligned state.

In figure 4.3, at a low/moderate value of noise (η = 0.15), we show how

increasing the time horizon over which the future marginally opaque state is aimed

for increases the level of order in the flock. Low values of τ do not produce aligned

flocks as the left and right future paths do not have sufficient discrimination between

their visual state. Increasing τ rectifies this is an apparent continuous fashion. At

around τ = 11.0 the system is able to achieve a mean polarisation of around 0.8

which is an ordered state, and levels off at a mean polarisation close to 0.9.
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Figure 4.3: Variation of time-averaged order parameter 〈P 〉 with time scale τ for a
system of N = 100 particles at η = 0.15 and ρinit = 0.005. Group order increases
from disorder (low 〈P 〉) to an ordered state (〈P 〉 close to 1). Arrow indicates point
of maximal variance, as determined in figure 4.4.
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The overall change in polarisation, the order parameter of the system, re-

minds of a continuous phase transition of the type observed in ferromagnetic sys-

tems, and discussed in § 2.3.1. We observe this sort of behaviour in models presented

in Chapters 2 and 3, as these are based on the topological Vicsek model [34] discussed

therein. This is a surprising similarity as, in those models we prescribe alignment

directly between topological neighbours, but here we do not.

In order to scrutinise the behaviour across transition from the disordered,

low τ state to the strongly ordered, high τ state, in figure 4.4 we present the change

in variance across the same domain. This is proportional to the susceptibility in the

ferromagnetic analogue mentioned, which characterises the systems linear response

to external perturbation, which relates proportionally to the fluctuations in order

of the system. This can be seen to grow sharply toward a peak at τ = 8, as

designated by the black arrow, before rapidly decreasing after this point. This

qualitatively agrees with the expected behaviour across the transition region from

the ferromagnetic analogue.

Notably, the variance grows once more as τ is increased to large values. This

is quite surprising as the system is in a highly ordered state in this region, as can be

seen in figure 4.3. The source of these fluctuations is not yet clear though could be

related to an instability in coherence between the current and future visual states,

as discussed in § 4.3.2 below.

4.3.2 Cohesion and local opacity

In addition to group polarisation it is important that the group be cohesive as we are

simulating swarming in open boundary conditions. As the basis for the interaction

is based on opacities we would expect this to be the case, as discussed in [76] and

4.1; flock spatial extent and opacity are coupled by the size of the individuals in the

group b and since we are seeking a specific value of opacity (Ωdes = 0.5), cohesion

should be assured if group members are achieving this goal.

Figure 4.5 shows the convergence of the local opacity, averaged over the

ensemble of swarm members, to the desired marginally opaque state over time. The

flock begins in a more dense, higher opacity state (green in figure) before decreasing

in opacity towards the Ωdes = 1/2 marginally opaque region. The inferred future

mean local opacity to the left/right (blue/red in figure) also follow this trend and

actually settle closer the desired opacity. This is because the future visual state is

the one that is being optimised for, not the current one. The current opacity settling

in a similar region, although slightly higher, is a only a consequence of the future

state convergence. It can be seen in the figure that the left and right states, which
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Figure 4.4: Relationship of variance of polarisation χP with time scale τ for a system
of N = 100 particles at η = 0.15 and ρinit = 0.005. Arrow indicates point of maximal
variance at τ = 8.0.
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provides the information of a specified direction to turn, deviate in opacity from one

another during convergence before settling to a similar value, although fluctuations

around this mean value are still persistent. We should therefore observe a cohesive

flock.

Figure 4.6 shows the variation of the final distance to first nearest neighbour,

averaged over the ensemble of swarm members, with respect the time horizon τ .

At low τ the value is large, indicating a low density flock. As τ increases the flock

becomes more cohesive, until after τ = 6 it gets larger again. This is quite surprising

as it indicates a local maximum density in the region near the phase transition. The

arrow indicates the point of maximal variance, as determined in figure 4.4. This

lies close to this maximum density region. At very high τ the spatial extent of the

group appears to collapse, which is also quite surprising. At this density, individuals

would be overlapping as there is no explicit repulsion term in the model.

Now, if we look at figure 4.7 we can see the variation of the local opacities

averaged over the ensemble of swarm members, both current and prospective, with

respect the time horizon τ . At low τ , all are at low opacity, corresponding to flocks

which have dissipated and failed to achieve their goal, as expected. Increasing τ

produces local opacities that are close to the desired value of 1/2, for both the current

and prospective states. Interestingly, increasing τ further disrupts this initially for

the current state, causing it to become more opaque, and further for the future

states too. This divergence of visual states corresponds to the region of very high

density observed above. It also corresponds to an ordered flock and to the area of

high susceptibility in the ordered region. This presents a collapsed flock, trying to

get back to the uncollapsed state, but failing as all individuals are in the same area

and are heading to the same region of space, as they all compute it to be the least

opaque (and thus the least dense).

This is somewhat analogous to the situation where, on a very busy road

drivers will decide to look for an alternate route, only for that route to become

more congested than the original as many drivers all think of the same strategy. In

this model, it is a consequence of the homogeneity of the rule set, and interestingly

this effect is therefore more present at low noise, and increasing the noise a little

actually helps remedy the situation, although at the cost of a little order too.

Also of interest is a intermediate region of half opacity, where the system

has succeeded in its goal, between τ of around 5 to 12. This region covers the

whole phase transition region and some part of the ordered phase region too. This

is remarkable, as this region of maximal response to external perturbation (say, a

predator) corresponds to the region of consistency in visual input, where current
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Figure 4.5: Convergence of ensemble-averaged current (black) and future L/R
(red/green) local opacities with time horizon τ = 10 over time for a system of
N = 100 particles without noise η = 0 and ρinit = 0.001. ΩL/R(t + τ) achieve de-
sired opacity of 1/2. Present local opacity converges, but settles on a slightly higher
opacity (≈ 0.55).
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Figure 4.6: Variation of final nearest neighbour distance R1 with time scale τ for a
system of N = 100 particles at η = 0.15 and ρinit = 0.005. Simulation performed
over T = 2.4 ·104 time steps. Group is unbounded at low τ before reaching a bound
state near τ = 5.5. Size then increases dramatically before becoming very dense at
high τ . Arrow indicates point of maximal variance, as determined in figure 4.4.
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(red/green) local opacities with time horizon τ for a system of N = 100 parti-
cles at η = 0.15 and ρinit = 0.005. If τ is too low, they system cannot reach the
desired opacity (Ωdes = 0.5). Near and just above the transition inflection point
opacities do attain Ωdes. Increasing τ past this is eventually detrimental to the
convergence of opacity.
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states are similar to future states (to zeroth order, i.e. opacity). This could be

beneficial from a biological perspective as it could poise a flock to respond optimally

to changes in its environment, but also be close to highly polarised and strongly

cohesive states.

Finally, in order to gain some intuition about the simulated flocks we are

producing, a snapshot of a typical system configuration is shown in figure 4.8, where

an arrow corresponds to the heading of an individual and colour to the local opacity

Ωi(t) it observes at that snapshot in time t.

4.3.3 Robustness of the flock to noise

We have mentioned how in certain states, increasing the noise can actually help the

system achieve its goal. This is fairly surprising as in many systems noise can be

an inhibiting factor and is typically aimed to be minimised. It can however help a

non-ergodic system cover more of its configuration space. It has also be shown that

in certain artificial neural systems performance is improved by the effect of noise too

[64, 92]. This is interesting as an analogy between systems with collective behaviour

and cognitive science and decision making [24]. Therefore we need to consider the

impact of noise on order for this system to understand how disruptive it is on the

flocks ability to obtain global polarisation.

We begin with a flock which supports an ordered state and has consistency

between its current and future visual states (corresponding to τ = 10 for theN = 100

size system considered above). Figure 4.9 shows the impact of noise on the ability of

the flock to form an ordered state. This puts to mind a continuous transition similar

to the sort we have considered throughout this thesis. The monotone nature of the

Binder’s cumulant [8] across this region suggests this is indeed the case, however

to say this definitively one would need to perform a finite size scaling analysis near

the transition point. Therefore, it appears we can indeed give a small amount of

noise to help the system achieve its goal for opacity and cohesion without sacrificing

order.

4.3.4 Short-range correlations from long-range interactions

We have discussed how this model does not have any explicit inter-particle interac-

tion that encourages alignment, however we have shown that alignment can indeed

by generated by the requirement of marginal opacity. Therefore, it is of interest to

see at what range this order is developed.

We begin by defining the velocity correlation function, similarly as to in
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Figure 4.8: Snapshot of a system of N = 100 particles at η = 0.15 and ρinit = 0.005
with time horizon τ = 10. Ordered phase with P (t) = 0.777 (3 s.f.). Colour scheme
denotes local opacity Ω(t) observed by each individual at this timestep t, which is
close to marginal opacity (= 0.5) for most group members. Grid is of size 10 in each
dimension.
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Binder’s cumulant G with respect to noise strength η. Simulation for N = 100 at
τ = 20 with ρinit = 0.005 for T = 2.5 · 104 and Teq = T/2.
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Cavagna et al. [18], as:

Cv(r) =
1

c0

∑
ij vi · vjδ(r − rij)∑

ij δ(r − rij)
(4.9)

where c0 normalises the magnitude of Cv(r) so that it has a value of 1 at r = 0 and

c0 makes Cv(r) dimensionless, and the δ-function serves to pick out pairs of particles

i and j at a specific separation of r = rij . The dot product between their velocities

provides the magnitude of the term, which will be large when the pair is heading

in a similar direction. We can use this measurement to determine the range of the

order in the system.

Figure 4.10 highlights strong correlation in velocity between individuals. This

is to be expected considering what we have covered so far, that global alignment is

present in this system. We can also define the fluctuations in velocity as ui = vi−V ,

where V = 〈vi〉i∈S is the group velocity. Note that here V is the same as polarisation

due to the fixed movement speed of v0 = 1 for each individual. The magnitude of

these fluctuations is much smaller than the magnitude of the velocity (i.e. 1).

We can define a correlation function for velocity fluctuations Cu(r) by re-

placing v with u in equation 4.9. The figure 4.10 also shows correlations in this

quantity, whose crossing of the Cu(r = rc) = 0 axis determines a correlation length

rc for the system. Defining correlation length in this way allows us to estimate the

size of strongly correlated domains within the group [18]. Recalling that this model

has no explicit aligning interaction rule placed on nearby individuals, it is notable

that rc = 41.3 (3 s.f.) is much larger than the particle size (particle radius b = 1

provides an appropriate length scale for the system), indeed it is on the order of half

the linear size of the group (configuration shown in figure 4.8).

The structure of the velocity fluctuation correlation function looks very sim-

ilar to those measured in wild flocks of Starlings [18]. Later theoretical work [6]

derives a short-range topological interaction from those observations. However it

appears that the explicitly non-short range, and potentially more biologically mo-

tivated, model can also produce similar correlations. However, a key finding of the

empirical study, that this correlation length scales with the size of the flock, has not

yet been produced with this model. This is due to technical limitations of increasing

the system size N to an order of magnitude or more higher, in order to confirm their

scale-free nature. However, work in this direction is underway and is a key avenue

for future investigation.
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Figure 4.10: Velocity (down-triangles) and velocity fluctuation (circles) correlation
functions normalised to the C(r = 0) values. Simulation parameters: N = 100,
η = 0.15, ρinit = 0.005, τ = 10. Distribution discretised into 15 bins. Cv(r) decays
very slowly: long range order present. Crossing point of Cu(r) and C(r) = 0 (dotted
line) indicates correlation length in system and is 41.3 (3 s.f.).
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4.4 Conclusions

We have shown how the requirement of marginal opacity on the individual level

can induce alignment and cohesion in flocks. To emphasise, these properties are

emerging “for free” based on how an individual navigates its surroundings: there

is explicitly no direct interaction between nearby particles, yet they can align and

indeed the system correlates in velocity at short ranges. This is surprising and may

give pause to question a common assumption that the strong short range correlations

observed in real flocks [18] must arise due to a short range interaction. We have

shown a counterexample to this, and one which is purely motivated by empirical

observed phenomena, specifically the marginal opaque state of Starling swarms [76].

There are similar correlations observed in the model we have presented and this

is purely generated by a cognitive alignment : two nearby particles undergo similar

motion because they observe a similar visual input.

In terms of future direction, the existence of a “sweet-spot” near the transi-

tion to order with increased τ suggests a self-consistency condition with respect to

the value of opacity (i.e. a condition which prevents the opacity observed in the cur-

rent state from deviating too much from the anticipated future opacity) could help

set its value independent of choice of N . This is particularly attractive as it could

cause the correlation length, as determined via the velocity fluctuation correlation

function, to scale with the size of the flock as observed in real flocks [18].

Additionally, we have discussed the complexity of the numerical implemen-

tation of the model presented. Dependent on the state of the group this can be

O(N3). We wish to make long simulations to improve our estimate of time-averaged

quantities, but we also wish to simulate systems of many particles (large N). Not

only is this because real-world bird flocks can have thousands of members, but as

we have mentioned throughout this work, many of the observations around phase

transitions only become visible for large N , going toward the thermodynamic limit

(N →∞). The current state of our implementation can make statistically suitably

long simulations for hundreds of individuals. Therefore, a prominent avenue for

future investigation would be to improve the implementation. The most direct way

to do this would be to parallelise the step of constructing the visual field, since this

could be safely done for all individuals at the same time. This should reduce the

complexity by a factor of N and should allow systems on the order of thousands of

individuals to be investigated.
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Chapter 5

Conclusions

In this thesis we have studied the concept of swarming – the collective behaviour

of animal aggregations – to gain understanding of its features and mechanisms by

simulating swarms using multi-particle models that specify a rule of interaction

between the particles in the group, and comparing the resulting models to real-

world observations and physical abilities of species to follow the defined rules. We

have also introduced a model in which explicit inter-particle interactions are not

required to produce collective motion. Such simulations aim to reproduce the main

qualities of collective motion: cohesion and co-alignment, while using minimal rule

sets, under the biologically motivated constraint of topological interactions.

Swarming behaviour is observed in many different species: birds, fishes and

insects, here we focus mainly on bird (Starling) flocks, however our models can be

adjusted and applied to other types of swarming. As it has been observed in recent

empirical studies that interactions between members within flocks of birds do not

have any specific length-scale (interaction radius), we chose to focus on metric-free,

topological models of swarming. Topological interactions are important and provide

an interesting theoretical challenge due to their inherent lack of a length scale.

We have proposed two topological models of swarming that use topological

interactions between particles, which are based on Voronoi tessellation of the group

of particles, and the last one on the visual field of the individual.

While the metric-free paradigm grants the absence of group fragmentation

as interactions occur at all length scales, cohesion is not guaranteed and dissipation

will typically occur. Previous works have shown that bounding metric free models

in free-space is challenging. We have proposed a way of achieving aligned and

cohesive flocks with topological interactions by introducing temporal information

into the interaction between individuals in the form of neighbour anticipation. An
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individual moves to where it expects its neighbour to be at some point in the future:

aligning with its presumed target in space rather that its specific orientation. This

homogenous interaction scheme for all particles in the flock takes advantage of the

underlying geometric construction defining interacting neighbours to establish the

strength and direction of the effective bounding forces.

Another aspect of real world flocks that is challenging to reproduce in sim-

ulations of topological models is the density distribution of birds in the flock. For

example, for flocks of Starlings a non-homogeneous density variation across the

group with a higher density at the border were reported. Existing works either

support a zero density steady-state, or produce density distributions that are rather

different to the ones observed in nature. We have studied density regulation across

flocks of birds via a a fully topological three-dimensional model with a tunable mo-

tional bias throughout the swarm and not just on its surface. We have shown that

it is able to support behaviour consistent with the empirical observations. We have

also described a way that could be used by a member of a flock to determine its

depth within the flock via the observed anisotropy of its visual field and discussed

its significance.

Having explored group density and density distributions, we considered em-

pirical observations of real-world starling flocks, which appear to avoid states of

too high or too low density, termed a “marginally opaque” state. We related the

notion of opacity to the visual field of the individual, the portion of field of view

that is occupied by other members of the group. We studied the hypothesis that

individuals in the flock are trying to reach the state of marginal opacity, i.e. seeing

about half of their visual field occupied by other agents. Our results showed that

seeking marginal opacity is sufficient to produce alignment in simulated swarms,

as when nearby particles have a similar visual field they make similar decisions.

This manifests alignment in neighbour headings as a consequence of a “cognitive

alignment”. We also studied the correlations in velocity and velocity perturbations

between pairs of particles and found a qualitatively similar form to those reported

in literature for flocks of Starlings.

This suggests that a future direction for investigation is a more quantitative

comparison with real flocks in order to query whether the interaction between birds

can be attributed solely to explicit short-range co-aligning interactions, or whether

this longer-range implicitly locally aligning effect could be involved. Furthermore,

it would be of interest to consider whether the implicit alignment effect can occur

for biological systems with other types of information input; many systems such as

birds and humans use vision as we have studied here, however there are a diverse
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choice of other biological information streams: many insects use sound to evaluate

and respond to their environment, and smell can contain a great deal of information

for animals with specialised sensory equipment. If so, it would be interesting to see

if these systems could exhibit similar behaviours, such as strong linear response and

greater than expected correlation lengths.
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