30 research outputs found

    Power management for energy harvesting over LEACH protocol

    Get PDF
    Wireless Sensor Network devices are characterized byresource constraints such as computational power, memory andenergy. Since these devices are powered by batteries, it may not be possible to replace batteries for recharging and therefore, energy harvesting techniques such as Piezoelectric and Thermoelectric can be used if necessary so that the lifetime of these devices canbe extended. This paper presents power management for energy harvesting over LEACH protocol. Experimental results based on the NS-3 simulation platform has shown that Low Energy Adaptive Clustering Hierarchy (LEACH) routing protocol improves the energy efficiency for Piezoelectric energy harvesting in aircraft compared to that of direct simulatio

    Ultra Low Power Circuits for Internet of Things and Deep Learning Accelerator Design with In-Memory Computing

    Full text link
    Collecting data from environment and converting gathered data into information is the key idea of Internet of Things (IoT). Miniaturized sensing devices enable the idea for many applications including health monitoring, industrial sensing, and so on. Sensing devices typically have small form factor and thus, low battery capacity, but at the same time, require long life time for continuous monitoring and least frequent battery replacement. This thesis introduces three analog circuit design techniques featuring ultra-low power consumption for such requirements: (1) An ultra-low power resistor-less current reference circuit, (2) A 110nW resistive frequency locked on-chip oscillator as a timing reference, (3) A resonant current-mode wireless power receiver and battery charger for implantable systems. Raw data can be efficiently transformed into useful information using deep learning. However deep learning requires tremendous amount of computation by its nature, and thus, an energy efficient deep learning hardware is highly demanded to fully utilize this algorithm in various applications. This thesis also presents a pulse-width based computation concept which utilizes in-memory computing of SRAM.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144173/1/myungjun_1.pd

    Towards self-powered wireless sensor networks

    Get PDF
    Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appliances and industrial machines) are interconnected to realize a network of distributed agents that continuously collect, process, share and transport information. The impact of such technologies in our everyday life is expected to be massive, as it will enable innovative applications that will profoundly change the world around us. Remotely monitoring the conditions of patients and elderly people inside hospitals and at home, preventing catastrophic failures of buildings and critical structures, realizing smart cities with sustainable management of traffic and automatic monitoring of pollution levels, early detecting earthquake and forest fires, monitoring water quality and detecting water leakages, preventing landslides and avalanches are just some examples of life-enhancing applications made possible by smart ubiquitous computing systems. To turn this vision into a reality, however, new raising challenges have to be addressed, overcoming the limits that currently prevent the pervasive deployment of smart devices that are long lasting, trusted, and fully autonomous. In particular, the most critical factor currently limiting the realization of ubiquitous computing is energy provisioning. In fact, embedded devices are typically powered by short-lived batteries that severely affect their lifespan and reliability, often requiring expensive and invasive maintenance. In this PhD thesis, we investigate the use of energy-harvesting techniques to overcome the energy bottleneck problem suffered by embedded devices, particularly focusing on Wireless Sensor Networks (WSNs), which are one of the key enablers of pervasive computing systems. Energy harvesting allows to use energy readily available from the environment (e.g., from solar light, wind, body movements, etc.) to significantly extend the typical lifetime of low-power devices, enabling ubiquitous computing systems that can last virtually forever. However, the design challenges posed both at the hardware and at the software levels by the design of energy-autonomous devices are many. This thesis addresses some of the most challenging problems of this emerging research area, such as devising mechanisms for energy prediction and management, improving the efficiency of the energy scavenging process, developing protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support. %, including the design of mechanisms for energy prediction and management, improving the efficiency of the energy harvesting process, the develop of protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support

    Power management for energy harvesting

    Get PDF
    The use of wireless sensor networks in aircraft health management grew exponentially over the past few decades. Wireless sensor networks provide technology that reduces the amount of wiring for aircraft, thereby reducing the weight and cost of aircraft. One of the most significant limitations in the use of wireless sensor networks in aircraft health management systems is the availability of power sources. Developing Wireless Sensor Network nodes that can generate and harvest their autonomous power supply continuously is a bottleneck that has been the preoccupation of engineers for many years. The amount of energy a network of Wireless Sensors can harvest fluctuates and is difficult to predict. As a result, existing predictors of energy harvesting are prone to errors. Models-free schemes such as expert systems are thus preferred for energy management strategies. The main aim of this thesis is to propose expert-based systems for energy harvesting in aircraft to enhance wireless sensor nodes life span by improving energy harvesting, energy storage and packet loss probability. In this context, a novel integrated approach based on the Markov chain was proposed for energy harvesting in aircraft. Simulation results and quantitative analysis showed that the integration of Piezoelectric and Thermoelectric harvesters with stochastic scheduling had a better performance in terms of energy storage, energy harvesting and packet loss probability. There was also an increase in energy storage with five Markov states compared to that of two Markov states. The packet loss probability of the integrated approach with five Markov states was better than that of two Markov states. The results also showed that the integrated approach with five Markov states harvested more energy than two Markov states. The novel integration of LTspice and NS-3 simulators was proposed. The LTspice and NS-3 integration was validated by deploying the Fuzzy logic control approach in energy harvesting. Simulation results and quantitative analysis based on Fuzzy control logic expert system indicated that the integration of LTspice and NS-3 was found to be better in energy harvesting compared to non-fuzzy control systems. The downtime ratio and energy utilization efficiency of the wireless sensor nodes were also found to be better than non-fuzzy control. The power management based LEACH routing protocol was also proposed. The simulation results and quantitative analysis showed that the average harvested energy based on the LEACH routing protocol deployed with fuzzy logic and Markov chain was better compared to those with direct communication based on Markov chain and fuzzy logic systems.Aerospac

    Energy autonomous systems : future trends in devices, technology, and systems

    Get PDF
    The rapid evolution of electronic devices since the beginning of the nanoelectronics era has brought about exceptional computational power in an ever shrinking system footprint. This has enabled among others the wealth of nomadic battery powered wireless systems (smart phones, mp3 players, GPS, …) that society currently enjoys. Emerging integration technologies enabling even smaller volumes and the associated increased functional density may bring about a new revolution in systems targeting wearable healthcare, wellness, lifestyle and industrial monitoring applications

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Transformador de corrente com núcleo toroidal para recuperação de energia eletromagnética.

    Get PDF
    Neste trabalho são apresentados estudos analíticos e simulações computacionais sobre transformadores de corrente (TC) com núcleo toroidal de material magneticamente mole como recuperadores de energia eletromagnética. A fundamentação teórica parte das leis fundamentais do eletromagnetismo derivadas das equações de Maxwell. Na obtenção dos circuitos magnéticos equivalentes foram levados em conta as forças magnetomotrizes, relutâncias e os fluxos magnéticos. Como estudo de caso, foi utilizada uma simulação computacional baseada no método dos elementos finitos para a obtenção da distribuição de indução magnética dentro do núcleo toroidal. Tal como previsto pelas expressões analíticas, verificou-se que a indução magnética distribui-se de maneira não uniforme na direção radial do núcleo. Partindo dos circuitos magnéticos, circuitos elétricos equivalentes foram deduzidos, nos quais foram representadas as resistências e as reatâncias. Simulou-se o comportamento do TC como recuperador de energia e verificou-se que o rendimento do sistema de recuperação depende do material do núcleo, da carga acoplada ao secundário do TC, do coeficiente de acoplamento entre primário e secundário e da existência ou não de entreferro no núcleo magnético.In this work an analytic and computational analysis of current transformers (CT) with soft magnetic material toroidal core used as energy harvester is presented. The theoretical approach is based on the fundamental laws of electromagnetism presented in Maxwell's equations. Magnetomotive forces, reluctance and magnetic flux were taken into account in order to obtain equivalent magnetic circuits. Using a 2D simulation tool based on finite element method, computational simulations were performed in order obtain the distribution of magnetic induction in radial direction of the toroidal core. As predicted by the analytical expressions, the magnetic induction is distributed nonuniformly in the radial direction of the core. Based on the magnetic circuits, equivalent electrical circuits were deducted, in which the resistance and reactance were represented. Based on computational simulations, it was possible to conclude that the efficiency of the TC as energy harvester varies according to the core material, to the load at its secondary terminal, to the coupling coefficient between primary and secondary and to the existence of air gap in the magnetic core.Cape

    Transceiver architectures and sub-mW fast frequency-hopping synthesizers for ultra-low power WSNs

    Get PDF
    Wireless sensor networks (WSN) have the potential to become the third wireless revolution after wireless voice networks in the 80s and wireless data networks in the late 90s. This revolution will finally connect together the physical world of the human and the virtual world of the electronic devices. Though in the recent years large progress in power consumption reduction has been made in the wireless arena in order to increase the battery life, this is still not enough to achieve a wide adoption of this technology. Indeed, while nowadays consumers are used to charge batteries in laptops, mobile phones and other high-tech products, this operation becomes infeasible when scaled up to large industrial, enterprise or home networks composed of thousands of wireless nodes. Wireless sensor networks come as a new way to connect electronic equipments reducing, in this way, the costs associated with the installation and maintenance of large wired networks. To accomplish this task, it is necessary to reduce the energy consumption of the wireless node to a point where energy harvesting becomes feasible and the node energy autonomy exceeds the life time of the wireless node itself. This thesis focuses on the radio design, which is the backbone of any wireless node. A common approach to radio design for WSNs is to start from a very simple radio (like an RFID) adding more functionalities up to the point in which the power budget is reached. In this way, the robustness of the wireless link is traded off for power reducing the range of applications that can draw benefit form a WSN. In this thesis, we propose a novel approach to the radio design for WSNs. We started from a proven architecture like Bluetooth, and progressively we removed all the functionalities that are not required for WSNs. The robustness of the wireless link is guaranteed by using a fast frequency hopping spread spectrum technique while the power budget is achieved by optimizing the radio architecture and the frequency hopping synthesizer Two different radio architectures and a novel fast frequency hopping synthesizer are proposed that cover the large space of applications for WSNs. The two architectures make use of the peculiarities of each scenario and, together with a novel fast frequency hopping synthesizer, proved that spread spectrum techniques can be used also in severely power constrained scenarios like WSNs. This solution opens a new window toward a radio design, which ultimately trades off flexibility, rather than robustness, for power consumption. In this way, we broadened the range of applications for WSNs to areas in which security and reliability of the communication link are mandatory

    Wake-up radio systems : design, development, performance evaluation and comparison to conventional medium access control protocols for wireless sensor networks

    Get PDF
    During the recent years, the research related to Wake-up Radio (WuR) systems has gained noticeable interest. In WuR systems, a node initiating a communication first sends a Wake-up Call (WuC) by means of its Wake-up Transmitter (WuTx), to the Wake-up Receiver (WuRx) of a remote node to activate it in an on-demand manner. Until the reception of the WuC, the node's MCU and main data transceiver are in sleep mode. Hence, WuR drastically reduce the power required by wireless nodes. This thesis provides a complete analysis of several WuR designs vs. conventional MAC protocols for Wireless Sensor Networks (WSN). The research is performed in an incremental fashion and includes hardware, softwar and simulation topics. WuR systems enable energy savings in plenty of different applications, e.g., retrieving information from environmental pollution sensors placed in a city by a mobile collector node, or activating a sleeping wireless AP. They are easy to program in and provide implicit synchronization. However, achieving a good WuRx design may become a challenge because power amplifiers cannot be used for the sake of energy. The system proposed in chapter 2 is a successful WuR system prototype. The so-called SµA-WuRx is less complex than commercial WuR systems, it is cheaper from the monetary point of view, requires several times less energy and allows for up to 15 meters of communication, an adequate value for WuR systems. However, the system can be improved by including several desirable features, such as longer operational ranges and/or addressing mechanisms. The so-called Time-Knocking (TicK) addressing strategy, analyzed in chapter 3, enables energy efficient node addressing by varying the time between WuCs received by a MCU. TicK allows for variable length addresses and multicast. A WuR system may not fit any possible application. Thus, while the SµA-WuRx and TicK efficiently solved many of the requirements of single-hop and data-collector applications, they lack of flexibility. Instead, SCM-WuR systems in chapter 4 feature an outstanding trade-off between hardware complexity, current consumption and operational range, and even enable multi-hop wake-up for long remote sensor measure collection. To contextualize the WuR systems developed, chapter 5 provides an overview of the most important WuR systems as of 2014. Developing a MAC protocol which performs acceptably in a wide range of diverse applications is a very difficult task. Comparatively, SCM-WuR systems perform properly in all the use cases (single and multi-hop) presented in chapter 6. Bluetooth Low Energy, or BLE, appears as a duty-cycled MAC protocol mainly targeting single-hop applications. Because of its clearly defined use cases and its integration with its upper application layers, BLE appears as an extremely energy-efficient protocol that cannot be easily replaced by WuR. Because of all these aspects, the performance of BLE is analyzed in chapter 7. Finally, chapter 8 tries to solve one of the issues affecting WuR systems, that is, the need for extra hardware. While this issue seems difficult to solve for WuRx, the chapter provides ideas to use IEEE 802.11-enabled devices as WuTx.Durant els últims anys, la investigació relativa als sistemes de Ràdios de Wake-up (de l'anglès Wake-up Radio, WuR) ha experimentat un interès notable. En aquests sistemes, un node inicia la comunicació inal.làmbrica transmetent una Wake-up Call (WuC), per mitjà del seu transmissor de Wake-up (WuTx), dirigida al receptor de Wake-up (WuRx) del node remot. Aquesta WuC activa el node remot, el microcontrolador (MCU) i la ràdio principals del qual han pogut romandre en mode "sleep" fins el moment. Així doncs, els sistemes WuR permeten un estalvi dràstic de l'energia requerida pels nodes sense fils. Aquesta tesi proposa diferents sistemes WuR i els compara amb protocols MAC existents per a xarxes de sensors sense fils (Wireless Sensor Networks, WSN). La investigació es realitza de forma progressiva i inclou hardware, software i simulació. Els sistemes WuR permeten un estalvi energètic notable en moltes aplicacions: recol¿lecció d'informació ambiental, activació remota de punts d'accés wi-fi, etc. Són fàcils de programar en software i comporten una sincronització implícita entre nodes. Malauradament, un consum energètic mínim impossibilita l'ús d'amplificadors de potència, i dissenyar-los esdevé un repte. El sistema presentat en el capítol 2 és un prototip exitós de sistema WuR. De nom SµA-WuR, és més senzill que alternatives comercials, és més econòmic, requereix menys energia i permet distàncies de comunicació WuR majors, de fins a 15 metres. L'estratègia d'adreçament Time-KnocKing, presentada en el capítol 3, permet dotar l'anterior SµA-WuR d'una forma d'especificar el node adreçat, permetent estalvi energètic a nivell de xarxa. TicK opera codificant el temps entre diferents WuC. Depenent del temps entre intervals, es desperten el/s node/s desitjats d'una forma extremadament eficient. Tot i els seus beneficis, hi ha aplicacions no implementables amb el sistema SµA-WuR. Per a aquest motiu, en el capítol 4 es presenta el sistema SCM-WuR, que ofereix un rang d'operació de 40 a 100 metres a canvi d'una mínima complexitat hardware afegida. SCM-WuR cobreix el ventall d'aplicacions del sistema SµA-WuRx, i també les que requereixen multi-hop a nivell WuR. El capítol 5 de la tesi compara els dos sistemes WuR anteriors vers les propostes més importants fins el 2014. El capítol 6 inclou un framework de simulació complet amb les bases per a substituir els sistemes basats en duty-cycling a WuR. Degut a que desenvolupar un protocol MAC que operi acceptablement bé en multitud d'aplicacions esdevé una tasca pràcticament impossible, els sistemes WuR presentats amb anterioritat i modelats en aquest capítol representen una solució versàtil, interessant i molt més eficient des del punt de vista energètic. Bluetooth Low Energy, o Smart, o BLE, representa un cas d'aplicació específica on, degut a la gran integració a nivell d'aplicació, la substitució per sistemes de WuR esdevé difícil Per a aquesta raó, i degut a que es tracta d'un protocol MAC extremadament eficient energèticament, aquesta tesi conté una caracterització completa de BLE en el capítol 7. Finalment, el capítol 8 soluciona un dels inconvenients del sistemes WuR, el disseny de WuTx específics, presentant una estratègia per a transformar qualsevol dispositiu IEEE 802.11 en WuTx

    Low-Power Wake-Up Receivers

    Get PDF
    The Internet of Things (IoT) is leading the world to the Internet of Everything (IoE), where things, people, intelligent machines, data and processes will be connected together. The key to enter the era of the IoE lies in enormous sensor nodes being deployed in the massively expanding wireless sensor networks (WSNs). By the year of 2025, more than 42 billion IoT devices will be connected to the Internet. While the future IoE will bring priceless advantages for the life of mankind, one challenge limiting the nowadays IoT from further development is the ongoing power demand with the dramatically growing number of the wireless sensor nodes. To address the power consumption issue, this dissertation is motivated to investigate low-power wake-up receivers (WuRXs) which will significantly enhance the sustainability of the WSNs and the environmental awareness of the IoT. Two proof-of-concept low-power WuRXs with focuses on two different application scenarios have been proposed. The first WuRX, implemented in a cost-effective 180-nm CMOS semiconductor technology, operates at 401−406-MHz band. It is a good candidate for application scenarios, where both a high sensitivity and an ultra-low power consumption are in demand. Concrete use cases are, for instance, medical implantable applications or long-range communications in rural areas. This WuRX does not rely on a further assisting semiconductor technology, such as MEMS which is widely used in state-of-the-art WuRXs operating at similar frequencies. Thus, this WuRX is a promising solution to low-power low-cost IoT. The second WuRX, implemented in a 45-nm RFSOI CMOS technology, was researched for short-range communication applications, where high-density conventional IoT devices should be installed. By investigation of the WuRX for operation at higher frequency band from 5.5 GHz to 7.5 GHz, the nowadays ever more over-traffic issues that arise at low frequency bands such as 2.4 GHz can be substantially addressed. A systematic, analytical research route has been carried out in realization of the proposed WuRXs. The thesis begins with a thorough study of state-of-the-art WuRX architectures. By examining pros and cons of these architectures, two novel architectures are proposed for the WuRXs in accordance with their specific use cases. Thereon, key WuRX parameters are systematically analyzed and optimized; the performance of relevant circuits is modeled and simulated extensively. The knowledge gained through these investigations builds up a solid theoretical basis for the ongoing WuRX designs. Thereafter, the two WuRXs have been analytically researched, developed and optimized to achieve their highest performance. Proof-of-concept circuits for both the WuRXs have been fabricated and comprehensively characterized under laboratory conditions. Finally, measurement results have verified the feasibility of the design concept and the feasibility of both the WuRXs
    corecore