24 research outputs found

    Damping Methods for Resonances Caused by LCL-Filter-Based Current-Controlled Grid-Tied Power Inverters: An Overview

    Get PDF
    Grid-tied voltage source inverters using LCL filter have been widely adopted in distributed power generation systems (DPGSs). As high-order LCL filters contain multiple resonant frequencies, switching harmonics generated by the inverter and current harmonics generated by the active/passive loads would cause the system resonance, and thus the output current distortion and oscillation. Such phenomenon is particularly critical when the power grid is weak with the unknown grid impedance. In order to stabilize the operation of the DPGS and improve the waveform of the injected currents, many innovative damping methods have been proposed. A comprehensive overview on those contributions and their classification on the inverter- and grid-side damping measures are presented. Based on the concept of the impedance-based stability analysis, all damping methods can ensure the system stability by modifying the effective output impedance of the inverter or the effective grid impedance. Classical damping methods for industrial applications will be analyzed and compared. Finally, the future trends of the impedance-based stability analysis, as well as some promising damping methods, will be discussed

    Control Strategies for Trap Filter Interfaced Three-Phase Grid Connected Converters

    Get PDF

    Robust Control Parameters Design of PBC Controller for LCL-Filtered Grid-Tied Inverter

    Get PDF

    Design of PWM-SMC Controller Using Linearized Model for Grid-Connected Inverter With LCL Filter

    Get PDF

    Advanced Solutions for Renewable Energy Integration into the Grid Addressing Intermittencies, Harmonics and Inertial Response

    Get PDF
    Numerous countries are trying to reach almost 100\% renewable penetration. Variable renewable energy (VRE), for instance wind and PV, will be the main provider of the future grid. The efforts to decrease the greenhouse gasses are promising on the current remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides an overview of the presented techniques, standards and grid interface of the PV systems in distribution and transmission level. This thesis reviews the most-adopted grid codes which required by system operators on large-scale grid connected Photovoltaic systems. The adopted topologies of the converters, the control methodologies for active - reactive power, maximum power point tracking (MPPT), as well as their arrangement in solar farms are studied. The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This study will help researchers and industry users to establish their research based on connection requirements and compare between different existing technologies. Another, major aspect of the work is the development of Virtual Inertia Emulator (VIE) in the combination of hybrid energy storage system addressing major challenges with VRE implementations. Operation of a photovoltaic (PV) generating system under intermittent solar radiation is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy sources being integrated into the current electric power grid, the performance of the conventional synchronous generators is being changed and grid inertial response is deteriorating. From an engineering standpoint, additional technical measures by the grid operators will be done to confirm the increasingly strict supply criteria in the new inverter dominated grid conditions. This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method which is based on power devices (like inverters), which makes a compatible weak grid for integration of renewable generators of electricity. This method makes the power inverters behave more similar to synchronous machines. Consequently, the synchronous machine properties, which have described the attributes of the grid up to now, will remain active, although after integration of renewable energies. Examples of some of these properties are grid and generator interactions in the function of a remote power dispatch, transients reactions, and the electrical outcomes of a rotating bulk mass. The hybrid energy storage system (HESS) is implemented to smooth the short-term power fluctuations and main reserve that allows renewable electricity generators such as PV to be considered very closely like regular rotating power generators. The objective of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth out the high frequency fluctuations of the PV power, which may occur due to shadows of passing cloud on the PV panels. A control system designed and challenged by providing a solution to reduce short-term PV output variability, stabilizing the DC link voltage and avoiding short term shocks to the battery in terms of capacity and ramp rate capability. Not only could the suggested system overcome the slow response of battery system (including dynamics of battery, controller, and converter operation) by redirecting the power surges to the supercapacitor system, but also enhance the inertial response by emulating the kinetic inertia of synchronous generator

    Variable structure control in natural frame for three-phase grid-connected inverters with LCL filter

    Get PDF
    This paper presents a variable structure control in natural frame for a three-phase voltage source inverter. The proposed control method is based on modifying the converter model in natural reference frame, preserving the low frequency state space variables dynamics. Using this model in a Kalman filter, the system state-space variables are estimated allowing to design three robust current sliding-mode controllers in natural frame. The main closed-loop features of the proposed method are: 1) robustness against grid inductance variations because the proposed model is independent of the grid inductance, 2) the power losses are reduced since physical damping resistors are avoided, and 3) the control bandwidth can be increased due to the combination of a variable hysteresis controller with a Kalman filter. To complete the control scheme, a theoretical stability analysis is developed. Finally, selected experimental results validate the proposed control strategy and permit illustrating all its appealing features.Postprint (author's final draft

    A Coupled-Inductor-Based Buck–Boost AC–DC Converter With Balanced DC Output Voltages

    Get PDF
    corecore