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Robust Control Parameters Design of PBC Controller 

for LCL-Filtered Grid-Tied Inverter 
Jinping, Zhao, Weimin, Wu, Member, IEEE, Zhikang Shuai, Senior Member, IEEE, An Luo, Senior Member, 

IEEE, Henry Shu-hung Chung, Fellow, IEEE, and Frede Blaabjerg, Fellow, IEEE 

Abstract- Owing to the strong robustness against system 

parameter changes and external perturbations, the Passivity-

Based Control (PBC) has been widely adopted in Grid-Tied 

Inverter (GTI). However, for a PBC-based GTI with LCL-filter, 

there are three damping gains and two interactively-coupled-

feedforward terms in the control loop, resulting in the controller 

design challenge for engineers. In order to help electrical 

engineers to well design the PBC controller for LCL-filtered GTI, 

a new design of the damping gains is proposed, by limiting the 

inherent steady-state error of grid-injected current. Furthermore, 

the state observer is also adopted to reduce the number of sensors. 

The robustness against the parameters shift and wide grid 

impedance variation is also addressed. The effectiveness of the 

proposed control design strategy will be verified through 

experimental results on a 3 kW/3-phase/110V experimental lab 

setup. 1 

 

Index Terms—Passivity-based control, LCL filter, Grid-tied 

inverter, Damping gain, Steady-state error. 

 

I. INTRODUCTION 

  In recent years, the development of renewable energy has 

received significant attention. In renewable generation systems, 

voltage source Grid-Tied Inverter (GTI) is a key device for 

linking the power generation equipment to the power grid [1]. 

In order to satisfy the harmonic standards of grid-injected 

current, generally, the output filter of GTI has to be adopted, 

where the LCL filter is utilized in most situations, owing to its 

good performance in the harmonic attenuation and low cost of 
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metallic devices [2]. However, the LCL filter may cause 

possible resonance and great difficulty in the controller design 

of GTI, due to parameters shift as well as wide equivalent grid 

impedance variation [3].  

Many conventional linear control methods, such as 

proportional-integral (PI) and proportional-resonant (PR) with 

passive [4]-[6], active [7]-[11] or hybrid [12]-[14] damping 

techniques, had been widely studied to suppress the possible 

resonance. Although these mentioned control methods can 

achieve stability under the condition of wide grid impendence 

variation, many shortcomings still exist. For instance, the 

passive damping method will lead to extra damping power 

losses, while the active damping (AD) method like the 

capacitor current feedback (CCF) will increase the number of 

sensors and the extra measure should be taken [3],[7],[8]. 

What’s more, if the characteristic resonant frequency (fr) of the 

LCL based system using conventional CCF AD control method 

is equal to 1/6 of the sampling frequency (fs), the digitally 

controlled GTI with the total delay of 1.5/fs (1/fs for sampling 

delay and 0.5/fs for PWM delay) can be hardly stable [15]. 

Although this problem can be solved by capacitor current 

proportional-integral positive feedback, more sensors should be 

utilized [8]. In other words, the parameters shift of the LCL 

filter should be limited in a reasonable range for the CCF AD 

control based GTI, if no extra measure is taken. 

Due to the above shortcomings in conventional control 

method, a series of nonlinear control methods, which may 

provide a better solution for an essential nonlinear system such 

as GTI, have been also studied more and more frequently, 

including the adaptive control [16]-[19], the deadbeat control 

[20]-[22], the model predictive control [23]-[26], the slide 

model control [27],[28], and the Passivity-Based Control (PBC) 

[30]-[44], etc.  

As one of the attractive nonlinear control methods, the PBC 

is a model-based control method, which contains the energy-

shaping and damping-injection [45]. With the merits of clear 

physical significance, simple modeling process and strong 

robustness to system parameter changes, the PBC has become a 

powerful control strategy in power electronics [38], [42], [45]. 

It also can be seen as a hybrid control scheme, since it 

includes the instruction predicting feedforward control, the 

disturbance feedforward control, the decoupling control and 

the negative feedback control [39]. Currently, the PBC method 

had been successfully used in the switched reluctance based 

wind system [30], railway systems [31], [32], the energy 

storage systems [33],[34], the AC/DC converter [35], the 

islanded AC microgrid [36] and the GTI systems [37]-[43], etc. 

In the application of GTI systems, the PBC controllers have
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Fig. 1. Control diagram of LCL-filtered GTI using the PBC controller. 

different structures with different power filters, such as L filter 

based systems [37]-[39], LC filter based systems [40],[41],[42] 

and LCL filter based system [43],[44]. Whatever, it is no 

doubt that the control parameters, named as the damping gains 

in the PBC controller, are a very important factor during the 

design. 

In [39], the damping gain in the PBC controller was well 

designed through discrete root locus and unit step response, 

where the upper limit of damping gain was obtained through 

discrete root locus and then the suitable value was selected via 

unit step response. In [40], the damping gain was determined 

by the traditional analysis method, which is similar to the 

design of the proportional coefficient for a PI controller. In 

[41], [42] the damping gain was selected through attenuating 

the delay influence on the inverter to realize a passive system. 

Note that in [39]-[42], there is only one PBC control loop 

exists. Therefore, during designing this damping gain, the 

effect of feedforward term can be neglected since it has no 

effect on system stability.  

However, different from the objects in [39]-[42], the PBC 

based LCL-filtered GTI system need three state variables to 

participate in the calculation, thus there are three damping 

gains and two interactively-coupled-feedforward terms in the 

control loop, which are shown in Fig. 2 with different colors. 

In this case, the conventional design methods using opened-

loop design method as introduced in [39]-[42] are not 

available, since the feedforward terms cannot be directly 

neglected anymore, resulting in the controller design challenge 

for engineers. Although in [43], the PBC controller is designed 

for the LCL-filtered system, however, how to choose the 

damping gains had not been addressed. In [44], the damping 

gains design was introduced, nevertheless, the delay issue 
limiting the control bandwidth was ignored. 

In order to help electrical engineers to well design the PBC 

controller for LCL-filtered GTI, a new step-by-step control 

parameters design strategy, which is based on the constraint 

condition of limiting the inherent steady-state error of grid-

injected current, is proposed in this paper. Furthermore, in 

order to reduce the number of sensors as well as costs, the 

state observer [46], [47] is also adopted in the proposed PBC 

controller. At the same time, an additional integral regulator is 

finally adopted to achieve zero steady-state error of grid-

injected current.  
The rest of this paper is organized as follows. The 

mathematical model and the deduction of PBC control law of 

LCL-filtered GTI are first introduced in section II. Then, the 

design of three damping gains by limiting the inherent steady-

state error of grid-injected current is proposed in section III. A 

brief introduction for the state observer and method to achieve 

the zero steady-state error of grid-injected current are 

presented in section IV. Next, a 3 kW / 3-phase / 110 V 

experimental device is constructed with dSPACE DS1202 to 

verify the effectiveness of the proposed control parameters 

design strategy in section V. Finally, there is a conclusion in 

section VI. 

II. MATHEMATICAL MODEL AND PBC CONTROL LAW 

DEDUCTION OF LCL-FILTERED GRID-TIED INVERTER 

A. Mathematical Model  

The topological structure diagram of LCL-filtered GTI 

using the PBC controller is shown in Fig. 1. The LCL filter is 

represented by L1, C, and L2, where R1 and R2 represent the 

line resistances and parasitic resistances of L1 and L2, 

respectively. The grid-injected current is represented by i2k 

(k=a, b, c), which is sensed for the overcurrent protection and 

closed-loop feedback control. vpcck (k=a, b, c) represents the 

voltage of Point of Common Coupling (PCC), which is sensed 

for the synchronization and input of the PBC controller. uk, i1k 

and iCk (k=a, b, c) are the inverter side voltage and current and 

capacitor current respectively. vgk (k=a, b, c) and Zg denote the 

ideal grid voltage and the equivalent grid impedance, 

respectively. Zg is complex impedance with the inductance of 

Lg and the resistance of Rg. The DC bus voltage is denoted by 

Udc. The control structure is given in the dash frame as shown 

in Fig. 1, where the sampling, the transformation and the 
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control process are illustrated, and the Space Vector Pulse 

Width Modulation (SVPWM) technology is employed to 

obtain the driving signals. 

Similar as introduced in [43], the mathematical model of the 

LCL-filtered GTI can be deduced by applying the Kirchhoff 

voltage and current laws. And then we obtain, 
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In order to get a better control performance, the a-b-c to d-q 

transformation is applied to (1), and the new equations in d-q 

coordinates can be described as, 
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To simplify analysis and stability judgments, the Euler 

Lagrange (EL) model is adopted to describe the whole system. 

Define state variables as  1d 1q Cd Cq 2d 2q
T

x i i u u i i , 

then the equation (2) can be rewritten in the EL form as, 
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According to the passivity theory, the LCL-filtered system is 

strictly passive as introduced in [43]. Therefore, the PBC can 

be applied to design the controller [45]. 

 

B. PBC Control Law Deduction 

Define the reference state variables as, 

  * * * * * * *

1d 1q Cd Cq 2d 2q
T

x i i u u i i                    (4). 

If the error vector is defined as xe = x*   x, then an error EL 

equation can be obtained as, 

 
   * * *

e e e

* * *

e e e

( )M x x J x x R x x u

Mx Jx Rx Mx Jx Rx u

     

     
        (5). 

In order to accelerate the speed of the convergence, a 

damping matrix Rd can be added to the error system. Then, the 

injection damping matrix and new dissipation matrix are 

obtained as 

d 3 3 2 2 1 1

new d

{ },R diag r r r r r r

R R R



 
              (6), 

where r1, r2, r3>0. Substitution (6) into (5), the new error 

equation can be obtained as, 
* * *

e e new e d eMx Jx R x Mx Jx Rx R x u            (7). 

According to (7), if xe equals to zero, the left side of (7) also 

equals to zero. Then, expand (7), and the control law can be 

described in detail as, 

 

 

*

* * * *1d

1 1 1d 1 1d 3 1d 1d Cd d

*

1q * * * *

1 1 1q 1 1q 3 1q 1q Cq q

*

* * * *Cd

Cq 2 Cd Cd 2d 1d

*

Cq * * * *

Cd 2 Cq Cq 2q 1q

*

*2d

2 2 2d 2

( ) 0

( ) 0












     


      



     





     


 

di
L R i L i r i i u u

dt
di

L R i L i r i i u u
dt

du
C Cu r u u i i

dt

du
C Cu r u u i i

dt

di
L R i L

dt

* * *

2d 1 2d 2d Cd pccd

*

2q * * * *

2 2 2q 2 2d 1 2q 2q Cq pccq

( )

( )


    





      


i r i i u v

di
L R i L i r i i u v

dt

   (8). 

According to (8), the equivalent system diagram of LCL-

filtered GTI using the PBC controller in the Laplace domain is 

plotted in Fig. 2. 

As shown in Fig. 2, the parameters in the controller are 

marked with subscript “e” to distinguish control parameters 

and actual parameters. For example, sL1e and R1e are control 

parameters, while sL1 and R1 are actual parameters in the 

physical object. Due to the symmetrical structure, only the d-

axis is drawn here, where e-1.5sTs represents the calculation and 

pulse width modulation delay which almost selected as 1.5 Ts 

(Ts is the switching or sampling cycle). Note that in order to 

further analyze the effect caused by the equivalent grid-

impedance, the total inductance in the grid side is represented 

as Lt (L2+Lg), while the equivalent resistor of Lt is still 
converted into R2. 
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C. Design Challenge of Damping Gains 

From Fig. 2, it can be found that due to the using of three 

state variables (i1, UC, i2), there are two interactively-coupled-

feedforward terms marked in red, three model-based 

feedforward terms marked in blue, and three damping gains 

terms (r1, r2, r3) marked in brown. Therefore, the whole 

controller is a complex multi-loop controller. 

According to the traditional control theory, a double-loop 

controller can be well designed, based on the relationship of 

control bandwidth between the inner loop and the outer one 

[49]. The similar method is adopted for a three-loop controller 

[50]. It should be pointed out that the GTI with the classic 

three-loop controller has poor dynamic performance under the 

weak grid condition in theory, especially when the switching 

frequency is not so high. Further, as shown in Fig. 2, there are 

two interactively-coupled-feedforward terms between the 

three control loops, and every loop is coupled connected with 

the interactively-coupled-feedforward terms in red. Therefore, 

there is a strong coupling relationship between these control 

loops, resulting in more design difficulty with the traditional 

three-loop design theory as introduced in [50]. 

 Generally, the trial and error method is often adapted to 

design control parameters in a nonlinear system, but at the cost 

of computing resources, especially when there is no suitable 

guidance. Furthermore, it is also difficult to use the intelligent 

optimization algorithm to design these three damping gains, 

because the optimization cost function is difficult to be 

defined for this system, and there is not enough tangible 

constrains.  

Therefore, it is very valuable to introduce a practical 

parameters design strategy for LCL-filtered GTI using the 

PBC controller, which does help for the industrial applications. 

Note that in theory, more sensors should be adopted to obtain 

the state variables of the PBC controller, resulting in extra 

sensing costs. In this paper, a separated loop control 

parameters design strategy will be proposed, and the state 

observer technology will be also utilized to reduce the number 

of sensors. The detailed description will be given in the next 

two sections. 

 

III. PROPOSED DESIGN OF DAMPING GAINS BY LIMITING THE 

INHERENT STEADY-STATE ERROR OF GRID-INJECTED CURRENT 

As shown in Fig. 2, the control system can be divided into 

three control loops from the inner to the outer, which are 

named as loop3, loop2 and loop1, respectively. Firstly, 

through the analysis for the inherent steady-state error of grid-

injected current, the relationship of three damping gains can 

be roughly determined. Then, an efficient trial and error 

procedure can be obtained by using the stability criterion. 

Finally, due to the stable margin considered in the design 

procedure, robustness can be easily obtained. 

 

A. Analysis on the Inherent Steady-State Error of Grid-

Injected Current 

 From Fig. 2, it can be seen that the PBC based GTI is a 

Multi-Input Multi-Output (MIMO) system, when the coupling 

path between d- and q- axis is considered. In order to analyze 

the performance of the PBC controller, the closed-loop 

transfer function matrix of the whole system is deduced as, 
*
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From (10), it can be known that if and only if L1 = L1e, R1 = 

R1e, C = Ce, L2 = L2e, R2 = R2e, then ddc1G  equals to one and 

dqc1G  equals to zero, which indicates the system can track the 

reference value with the zero steady-state error. However, it is 

impracticable in a real physical system, since the parameter 

drifting always occurs and the line impedance is changing 

with the time. If neglecting the external disturbances, the 

inherent steady-state error of grid-injected current will only 

depend on r1, r2, r3, L1(e), R1(e), C(e), L2(e) and R2(e). Since r1, r2 

and r3 are the damping gains can be artificially tuned, the 

inherent steady-state error can be controlled within a certain 

range. Note that the order of magnitude of capacitor (10-6) and 

inductor (10-3) is very small, many terms related to them, such 

as the product of ω3L1eCeL2e, can be neglected. Further, the 

equivalent resistance of inductor is also very small, if a very 

small value of r2 is selected (suggest at least 100 times smaller 

than r1 and r3), many terms related to r2, such as the products 

of 1 2 1er r R , 2 3 2er r R , and 2 1e 2r R R  , can be also neglected. And 

then the percentage of inherent steady-state error of grid-

injected current can be simplified as 

1 1e 2 2e

1 2 3 1 3 1 2

+
% 100%

R R R R
e

r r r r r R R

 
 

   
                   (11). 

From (11), it can be gotten that the larger values of r1, r3, 

the smaller inherent steady-state error. Note that, the outer 

loop damping gain of r1, which determines the control 

bandwidth, had better be set as large as possible. 

 

B. Step-by-Step Design of Damping Gains 

 As described in (9), the transfer function matrix is very 

complex, which causes trouble to select the control parameters 

and analyze the system stability. If the coupling path between 

d- and q- axis is not addressed, the situation will become much 

simpler. Note that, as introduced in [50], the coupling terms 

between d- and q- axis only have little effect on system 

stability, and they can be neglected during the controller 

design. Further, in order to simplify the calculation, the 

resistances in the controller and physical device are neglected, 

due to their small values. Based on Fig. 2, the closed-loop 

transfer function (neglecting coupling terms between d- and q- 

axis) of the whole system can be obtained as, 
3 2
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(12). 

The PWM and sampling delay term of 
1.5 ssT

e


 is 

approximated as s1 (1.5sT 1) [38]. According to the Routh 

stability criterion, the system will be stable, if 

1 1, 2 3( , )f r r r and 2 1 2 3( , , )f r r r are greater than zero, which is 

described as, 
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(13b) 

Based on the analysis of the inherent steady-state error and 

the Routh stability criterion, the separated loop design strategy 

of the PBC controller for LCL-filtered GTI is proposed, where 

the detailed design procedure is illustrated in Fig. 3. 

START

Select the optimal value of  r3 

according to (15) and verify the 

overshoot and settling time of loop 3

Step 1

Step 2

Calculate the preliminary value of r2 

according to (17) 

Step 3

Whether r2 << r3?

(at least 100 times smaller)

Yes

NoWhether the overshoot and 

settling time of loop 2 satisfy 

the requirements (3),(4)?

Yes

No

2Adjust r

Whether r2 >= C/3Ts?

Yes

End

1Adjust r

No

Calculate the upper boundary of r1 

according to (13) and select the 

suitable r1

Calculate the 

preliminary value of 

r1 according to (13) 

assuming  r2 = C/3Ts

Whether the overshoot and 

settling time of loop 1 satisfy 

the requirements (3), (4)?

Yes

No

Set r2=r3/100

  
Fig.3. Proposed Design Strategy for PBC-based GTI with LCL-filter. 

Some constraints are defined beforehand as, 

1) The LCL filter is designed according to the current 

ripple, the rated power, and the IEEE harmonic 

standard [2]. 

2) The damping gain r2 should be 100 times smaller than 

r1 and r3 at least. 

3) The settling time of the nested inner loop should be at 

least 4 times faster than the related outer loop. 

4) The overshoot of every closed-loop should be no more 

than 30 percent during the unit step response. 

Before the control parameters design, the values of the LCL 

filter must be selected, where the filter design criteria can be 

found in [2], [48]. In our case, a 3 kW/3-phase/110V 

experimental setup with the sampling frequency of 10 kHz is 

constructed. According to the calculation formula in [2], [48], 

https://www.baidu.com/link?url=W1CjTcnv7V9nYflmu15RUABcKppQ-vRj177Ks7TV-hLb1vB6-KLZGxoOZg-AXHc-kLb0Zq541XJS2wgQNLgPo4Q5YzuRhDr6_qo_qK9r2raKs20k1c8euH4BFy7XN0WW&wd=&eqid=db2607c90000567b000000025b810cd4
https://www.baidu.com/link?url=W1CjTcnv7V9nYflmu15RUABcKppQ-vRj177Ks7TV-hLb1vB6-KLZGxoOZg-AXHc-kLb0Zq541XJS2wgQNLgPo4Q5YzuRhDr6_qo_qK9r2raKs20k1c8euH4BFy7XN0WW&wd=&eqid=db2607c90000567b000000025b810cd4
https://www.baidu.com/link?url=W1CjTcnv7V9nYflmu15RUABcKppQ-vRj177Ks7TV-hLb1vB6-KLZGxoOZg-AXHc-kLb0Zq541XJS2wgQNLgPo4Q5YzuRhDr6_qo_qK9r2raKs20k1c8euH4BFy7XN0WW&wd=&eqid=db2607c90000567b000000025b810cd4
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then L1, L2 and C are chosen as 1.2 mH, 1.2 mH, and 6 μF, 

respectively, where the resonant frequency is about 2654 Hz. 

Step 1 Select the Optimal Damping Gain of Loop3 (r3) 

For three damping gains, the damping gain of loop3 (r3) 

should be first determined, where the closed-loop transfer 

function of loop3 is, 

1e 3

1d 1e 3 s 1 s 1

c3 * 2
2 31d s 1 1 3

s s 1

( ) 1.5 1.5
( )

1( ) 1.5

1.5 1.5




  
 

 

L r
s

I s sL r T L T L
G s

rI s s T L sL r
s s

T T L

(14). 

From (14), it can be seen that the closed-loop transfer 

function of loop3 is similar to a second-order system when the 

total time delay is addressed. According to the control theory, 

when the damping ratio   is 2 2 , the system can achieve 

the optimal model. Thus, r3 can be calculated as, 

1

3 2

s6

L
r

T
                              (15). 

Taking L1=1.2 mH, 2 2  , Ts=1/10000 S into (15), r3  = 

4 can be obtained in our case. The unit step response of 

C3G with r3 = 4 is plotted in Fig. 4. Fig. 4 shows that the 

settling time is about 1.03 ms and the overshoot is about 20 

percent, which indicates that r3 = 4 is the optimal selection.  
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Fig.4 Unit step response of c3G  with r3 = 4. 

Step 2 Select the Suitable Damping Gain of Loop2 (r2) 

 As r3 is determined, r2 can be selected next. At the same 

time, a large sufficient r1 is expected to satisfy the bandwidth 

requirement. According to (13), the relationship curves 

between r2 and the stable range of r1 are plotted in Fig. 5, 

where the X-axis represents the value of r1 which ranges from 

0-30, and the Y-axis represents the calculated result of f1 and f2 

respectively. 
From Fig. 5, it can be seen that the stable range of r1 is 

increased as r2 decreases. Therefore, a larger r1 can be selected 

when a smaller r2 is adopted (suggest at least 100 times 

smaller than r1 and r3), which is consistent with the aim of 

reducing the inherent steady-state error of grid-injected current. 

However, if r2 closes to 0 infinitely, the stable range of r1 

tends to be gigantic. For example, taking r2 =0.01, the stable 

range of r1 is r1≥0. And the precise stable range of r1 can’t be 

exactly found, due to the approximated expression of the time 

delay in (13).  
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Fig. 5. Stable relationship between r2 and r1 according to (13): (a) f1, (b) f2. 

Therefore, the critical r2 is suggested to be defined as the 

preliminary value, which makes the slope of the line equal to 0 

in Fig. 5(a). And it can be obtained via calculating the partial 

derivation of f1 in (13a) as 

1

1

0
f

r





                           (16). 

If the parameters of L1 and C do not drift, the preliminary 

value of r2 can be calculated as, 

2
s3

Cr
T

                           (17). 

It can be found from (17) that the critical value of r2 is 

determined by C and Ts. In order to expend the calculable 

range of r1, the small C and large Ts are preferred. Taking C = 

6uF, Ts = 1/10000 S into (17), the preliminary value of r2 is 

calculated as 0.02 in our case. 

In order to analyze the performance of the middle loop and 

verify requirements of (3) and (4), the closed-loop transfer 

function of loop2 is deduced as, 
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Under the condition that L1e=L1, Ce = C, r2 = 0.02, r3 = 4, the 

unit step response of c2G is plotted in Fig. 6, where the 

overshoot is less than 20 percent and the setting time is about 

4.46 ms. The requirements of (3) and (4) are both satisfied. 
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      Fig.6. Unit step response of c2G with r3 = 4, r2 = 0.02. 

Step 3 Select the Suitable Damping Gain of Loop1(r1) 

If r2 and r3 have been determined, the stable range of r1 can 

be obtained from (13). For instance, when r2 = 0.02, r3 = 4, the 

stable range of r1 is greater than 0 according to f1, while r1 

should be set between 0 and 10.1 according to f2. If sufficient 

stable margins are addressed, r1 had better be smaller than the 

upper boundary of 10.1 in our case, and r1 = 8 is selected 

according to requirements of (3) and (4)，where the unit step 

response of loop1 is depicted in Fig. 7. 
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          Fig.7. Unit step response of c1G with r1 = 8, r2 = 0.02, r3 = 4. 

C. Robustness Analysis 

The robustness of a controller is mainly manifested as its 

ability to suppress the adverse effect caused by the parameters 

drift of object. Assume that L1 changes in the range of 0.8 mH 

~ 1.6 mH (±33%), the variation of the capacitor is in the range 

of 4 μF~8 μF (±33%), and the total grid side inductance Lt = 

L2 + Lg varies in the range of 0.8 mH ~ 6 mH (-33% ~ +400%). 

The closed-loop pole-zero maps in the discrete domain are 

drawn in Fig. 8 to investigate the robustness of the PBC 

controller under above situations. The control parameters used 

in the PBC controller are designed above, where r1 = 8, r2 = 

0.02, r3 = 4.  

From Fig. 8, it can be seen that all the closed-loop poles are 

located in the unit circle, which indicates that the system is 

always stable. Further, as pointed in [15], the LCL-filtered 

GTI system with the conventional CCF AD method can be 

hardly stable, if fr = 1/6 fs when the total time delay is 1.5/fs. 

Note that Fig. 8(c) proves that when fr = 1/6 fs, the proposed 

PBC controller can still stabilize the system well. Therefore, it 

can be concluded that compared with the conventional CCF 

AD method, the proposed PBC has higher robustness against 

the parameters drift. 
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Fig. 8. Closed-loop pole-zero maps of PBC under parameters drift, (a) L1 

drifts, (b) C drifts, (c) Lt drifts and fr ≈ fs/6. 

 

III. STATE OBSERVER TO SAVE SENSORS AND METHOD TO 

ACHIEVE THE ZERO STEADY-STATE ERROR 

A. State Observer 

In order to reduce the number of sensors, the state observer 

is adopted here, and a brief introduction of state observer is 

also given.  

From (1), the state equation of the system can be rewritten 

as a matrix form in d-q axis, 
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The state observer is designed with (19), and the needed 

state variables can be estimated using a full-order observer in 

practical applications, i.e., 

1d-q'
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Ax BU B V L i i x u
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i Cx

 (20), 

where 
'x̂ is the estimated variable, and L is the observer gain 

vector. Because the i2k and vpcck are sensed and the converter 

voltage uk is internally known, so i1k and uCk can be obtained 

according to (20). Based on (19) and (20), the estimation error 
' ' '

e
ˆx x x    is calculated as, 

'

'e

e( )
dx

A LC x
dt

                            (21). 

If the matrix of (A-LC) satisfies the Hurwitz condition, the 

estimated variables 
'x̂ can converge to 

'x gradually, where the 

detailed analysis process can be found in [46], [47]. Fig. 9 

shows the block diagram of the state observer, while its 

position in the whole system is depicted in Fig. 1. 
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Fig. 9. Block diagram of state observer. 

B. Method to Achieve Zero Steady-State Error 

From the above analysis, we know that the PBC method 

will lead to an inherent steady-state error. And the damping 

gains can only reduce the value of inherent steady-state error 

of grid-injected current, but cannot eliminate it. However, the 

real steady-state error can be easily eliminated by using an 

additional integral regulator. In recent years, many modified 

PBC methods to eliminate or reduce the steady-state error had 

been proposed [38], [40]. In our case, the inherent steady-state 

error of grid-injected current also can be eliminated by using 

an additional integral regulator, where the damping gain of r1 

can be replaced by a PI controller with the proportion 

coefficient of Kp = r1 = 8 and the integral coefficient of Ki = 

800 in our case. 

IV. EXPERIMENTAL VERIFICATIONS  

In this section, the effectiveness of the proposed control 

parameters design strategy is further studied. The 3 kW / 3-

phase / 110 V GTI experimental lab setup is also developed. 

The three-phase grid is emulated with a Chroma 61830 three-

phase grid simulator, the control algorithm is achieved via 

dSPACE DS1202 microlabbox, the DC voltage is given by a 

Chroma 62150H-600S DC power supply, a control desk 

project is developed to tune control parameters and reference 

value, and all the waveforms are captured from Yokogawa 

DL1640 digital oscilloscope. The experimental setup is 

shown in Fig. 10 and the parameters used for experiments are 

listed in Table I.  
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Fig.10. The experimental device of three-phase LCL-filtered GTI. 

Symbols Description Value

C

Grid ,Switching and sampling frequency

110V(RMS)

Filter capacitor

Grid inductance

DC bus voltage 350V

Reference current 12.86A(peak value)

1L Filter side inductor

2L Grid side inductor

1 1estimated value of  and  in controllerL R

2 2estimated value of  and  in controllerL R

Three damping gains1 2 3, ,r r r

Grid Voltage

TABLE I

SIMULATION AND EXPERIMENT PARAMETERS FOR GTI

50Hz,10kHz

6uF

1.2mH

0mH,4.8mH

1.2mH,0.1

1.2mH,0.1

*

2i

2e 2e,L R
1e 1e,L R

dcU

gL

s,f f

gV

Integral coefficient

Proportion coefficient 8

800

8,0.02,4

pK

iK

1.2mH,2mH

 

In order to verify the control performance of the PBC 

controller, many experiments are carried out next. Note that, 

the method to achieve zero steady-state error is not adopted at 

the beginning. The waveforms in Figs. 11 and 12 are the 

measured grid-injected currents and their dynamic responses 

under Lg = 0 and 4.8 mH, respectively. It can be seen that the 

grid-injected current is in perfect sinusoidal waveforms with 

the measured Total Harmonic Distortion (THD) of 1.62 % and 

2.42 %, respectively. Furthermore, in Figs. 11 and 12, the 

peak values of grid-injected currents are both around 12 A 

when the references are set as 12. 86 A.  Figs. 11 and 12 also 

show that the response time is less than a quarter of the cycle. 

From the data of Figs. 11 and 12, it can be deduced that the 

proposed PBC control has strong robustness against the wide 

variation of equivalent grid impedance. 

Fig. 13 shows the grid-injected current under the condition 

of 50V voltage drop when Lg = 4.8 mH, where a very smooth 

transient process occurs. The dynamic response of grid-

injected current under the condition of sharp phase variation 

when Lg = 4.8 mH is depicted in Fig. 14, which also indicates 

that the dynamic process is fast. All the dynamic results 

indicate that a satisfactory performance can be successfully 

achieved with the proposed PBC controller. 

Time(5ms/div)

2a (5A/div)i

2b (5A/div)i

g 0mHL 
*

2a(b,c) 12.86Ai 

*

2 ( , ) 6.43Aa b ci 

 

Fig.11. Measured grid-injected currents and their dynamic responses under Lg = 

0 mH. 
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Fig.12. Measured grid-injected currents and their dynamic responses under Lg = 

4.8 mH. 

50V

Time(5ms/div)

pccb (50V/div)V

2a (10A/div)i 2b (10A/div)i

g 4.8mHL 

 

Fig.13. Grid-injected current under 50V voltage reduction under Lg = 4.8 mH. 
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pccb (50V/div)V
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Fig.14. Measured grid-injected currents under the condition of sharp current 

phase variation when Lg = 4.8 mH. 

The grid voltage background harmonics will affect the 

quality of the grid-injected current. Fig. 15 shows the 

measured grid-injected current together with the distorted grid 

voltage under Lg = 4.8 mH. Note that the grid voltage is 

distorted by the 3rd, 5th, 7th and 9th harmonic voltages, whose 

magnitudes with respect to the grid fundamental voltage are 

all 3%, and the THD of grid-injected current is about 3.37%. It 

can be seen that the proposed PBC controller has a strong 

ability to resist the adverse effect caused by the harmonic grid 

voltage. 

Time(5ms/div)

pccb (50V/div)V

2a (10A/div)i

2b (10A/div)i

g 4.8mHL 

Fig. 15. Measured grid-injected currents under voltage distortion under Lg = 4.8 

mH. 

Fig. 16 shows the measured grid-injected current when the 

PI regulator is instead of r1, i.e. the method to achieve zero 

steady-state error of grid-injected current.  It can be seen that 

the RMS value is about 9.1 A (the reference RMS value is 

9.09A), which means the zero steady-state error can be also 

easily realized for the proposed PBC. 

Time(5ms/div)

2b (5A/div)i 2a (5A/div)i
g 0mHL *

2a(b,c) =12.86Ai

 

Fig.16. Grid-injected current with zero steady-state error with Lg = 0mH. 
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(b) 

Fig.17. Measured grid-injected current under fr ≈ fs/6, (a) conventional CCF 

control method, (b) proposed PBC control method. 
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As analyzed above, the PBC controller can keep stable even 

if the resonant frequency equals 1/6 of the sampling frequency, 

while the conventional PR with CCF control method cannot. 

With L1 = 2 mH, C = 6 μF and Lt = 6 mH, the characteristic 

resonant frequency of the system is calculated as 1678 Hz ≈ 

1667 Hz (1/6 fs), and the grid-injected current under this 

situation using the conventional CCF method and proposed 

PBC method is shown in Fig. 17. It can be seen from Fig. 17. 

(b) that the grid-injected current is stable without any 

oscillation when the proposed PBC controller is adopted, 

while the grid-injected current is serious oscillation with 

conventional CCF method as shown in Fig. 17(a). Therefore, 

compared with the conventional CCF method, the proposed 

PBC controller has the higher robustness against parameters 

drift.  

Fig.18 shows the grid-injected current with r1 = 11, r2 = 0.02, 

r3 = 4 when Lg = 0 mH. It can be seen that the grid-injected 

currents appear oscillation, when the value of r1 higher than 

the calculated upper boundary of 10.1. Note that, due to the 

actual resistance in the experimental device, the critical value 

of r1 to trigger off the oscillation is a little bigger than the 

theoretical calculation. 

Time(5ms/div)

2 (5 / )ai A div

2 (5 / )bi A div g 0mHL 

1 2 311, 0.02, 4  r r r
 

Fig.18. Grid-injected current with r1 =11, r2 = 0.02, r3 = 4 when Lg = 0 mH. 

V. CONCLUSION 

In this paper, we have analyzed why it is difficult to design 

the three damping gains in the PBC controller for the three-

phase LCL-filtered GTI, and then put forward a step-by-step 

control parameters design strategy. The overall conclusion can 

be summarized as follows: 

1) Based on the expectation of the minimized inherent 

steady-state error of grid-injected current, the three damping 

gains in the PBC controller for the LCL-filtered GTI can be 

effectively designed by using the proposed strategy, which 

provides a useful guideline for engineers. 

2) The designed PBC controller can maintain the system 

stable, even when parameters of LCL filter vary in the range 

from -33 % to +33 % and the grid impedance varies in the 

range from 0% to +400 % of L2. Compared with the 

conventional CCF AD control method for LCL-filtered GTI, 

the proposed PBC controller can achieve higher robustness 

against the parameter drifts of LCL filter and grid impedance. 

3) State observer technology can be successfully applied in 

the proposed PBC controller, resulting in the saved sensors as 

well as costs. 

The effectiveness of the proposed PBC controller has been 

fully verified via a 3 kW/3-phase/110V experimental lab setup 

based on dSPACE DS1202.  

APPENDIX 
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