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Abstract—This paper presents a variable structure con-
trol in natural frame for a three-phase gird-connected
voltage source inverter with LCL filter. The proposed
control method is based on modifying the converter
model in natural reference frame, preserving the low
frequency state space variables dynamics. Using this model
in a Kalman filter, the system state-space variables are
estimated allowing to design three independent current
sliding-mode controllers. The main closed-loop features
of the proposed method are: 1) robustness against grid
inductance variations because the proposed model is in-
dependent of the grid inductance, 2) the power losses
are reduced since physical damping resistors are avoided,
3) the control bandwidth can be increased due to the
combination of a variable hysteresis comparator with the
Kalman filter, and 4) the grid-side current is directly
controlled providing high robustness against harmonics in
the grid. To complete the control scheme, a theoretical sta-
bility analysis is developed. Finally, selected experimental
results validate the proposed control strategy and permit
illustrating all its appealing features.

Index Terms—Grid current control, LCL filter, Sliding
mode control, Kalman filter, Voltage sensorless.
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POWER converters are commonly used in many
power applications such as uninterruptible power

supplies, unity power factor rectifiers and voltage source
inverters (VSI’s). The controller design is a difficult
task when the converter is equipped with an LCL filter
due to its inherent resonance problem, specially in grid
connected inverters used in distributed generation where
a large set of grid impedance values may affect the
system stability [1].

Kalman filter (KF) based-control has been widely
used in power electronics [2], where accurate power
converter models are considered to estimate the state
variables. Unlike these control methods, the model-based
control presented in this paper uses a modified state-
space model which preserves the low frequency state-
space variables dynamics, and allows to design a robust
sliding mode control (SMC) in natural reference frame.
The use of the SMC technique improves the tracking
behaviour and dynamic performances, providing fast
dynamic response with high robustness against system
parameters variations [3], [4].

The SMC technique was also introduced in a single-
phase grid-connected LCL-filtered VSI with interesting
properties as fast dynamic response, robustness, and si-
nusoidal grid currents with low total harmonic distortion
[5], [6]. Besides, the use of SMC has been applied to
three-phase active power filters in stationary and rotating
reference frames [7]. Other relevant works regarding the
SMC technique can be found in [8]–[13].

Traditionally, VSIs with LCL filter have been con-
trolled by means of the inverter-side current. Recent
references can be found regarding to the control of
the grid-side current for single-phase systems [14], [15]
or for three-phase systems [16]–[18]. In most of these
proposals the use of digital filters is needed in other to
implement the control algorithm, and as a consequence
the robustness against system parameters variations may
be compromised.

Conversely, and as per authors knowledge, there are
no references in the literature about the use of the SMC



in abc frame applied to control the grid-side current.
Besides, with a direct control of the grid-side current
high robustness against a distorted grid is achieved, and
as a consequence, a reduction of the total harmonic
distortion (THD) of the currents injected to the grid.
Then, with this method, digital filters in the closed loop
system are not required.

This paper proposes a sliding-mode controller based
on a KF in order to perform a direct control of the current
injected to the grid by imposing a desired dynamics.
The proposed controller scheme estimates the state-space
variables including the voltages at the point of common
coupling (PCC). The SMC parameters are obtained by
analyzing the system stability taking into account the
influence of the KF. The estimated PCC voltages are
used in a hysteresis current control (HCC) reducing the
switching noise and improving the switching spectrum.
The main advantage of this method is that it is not
necessary to compensate the grid harmonics in order
to achieve sinusoidal grid currents with a low THD
[19]. Besides, since the control method is based on
controlling the grid-side current instead of the inverter-
side current some problems are avoided such as: 1) the
sensitivity to parameter uncertainties specifically with
the grid inductance variations, and 2) the phase-shift
between the current injected to the grid and its reference,
which is more important for low values of active power.

Another interesting property is that the averaged neu-
tral point voltage can be changed by modifying the
space-state model of the converter used in the KF
algorithm. As an example a third harmonic voltage can
be injected in the neutral point in order to increase the
control dynamic range. This property is useful in PV
applications.

A methodology to analyze and design a robust con-
troller of the grid current in natural reference frame is
presented. This method is based on following steps:

1) A modified state-space model of the VSI is pro-
posed to design three independent current con-
trollers in natural reference frame.

2) The switching surfaces are designed in order to
obtain a closed loop dynamics independent of
the system parameters, using estimated variables
obtained from a KF.

3) A complete stability analysis is performed taking
into account the effect of the KF, the system dis-
cretization and the deviation in the system param-
eters. This analysis proves the system robustness.

4) Finally, experimental results are reported to prove
the aforementioned properties, including the con-
troller response against a distorted grid and voltage
sags.

The paper is organized as follows. In Section II a
linear model of the VSI with LCL filter is presented.
Section III introduces the conventional SMC using the
inverter-side current. Section IV presents the proposed
control system. A stability analysis is presented in sec-
tion VI. Experimental results are reported in section VI.
Finally, section VII concludes the paper.

II. M ODELING OF VSI WITH LCL FILTER

A circuit scheme of a grid-connected inverter with
LCL filter is depicted in Fig.1. The three-phase system
equations can be written as follows:

L1

di1
dt

=
Vdc

2
u− vc − vnI1 (1)

C
dvc

dt
= i1 − i2 (2)

L2

di2
dt

= vc − v + (vn − v′n)I1 (3)

where i1 = [i1a i1b i1c]
T are the inverter-side cur-

rents, i2 = [i2a i2b i2c]
T are the grid-side currents,

vc = [vca vcb vcc]
T are the capacitor voltages,

v = [va vb vc]
T are the voltages at the PCC,

u = [ua ub uc]
T are the control variables,vn and v

′

n

are the voltages at the neutral points andI1 is a column
vector defined as[1 1 1]T .

Assuming that the grid voltages are balanced (i.e.,
vga + vgb + vgc = 0 and vca + vcb + vcc = 0), the
expressions for the neutral point voltages can be reduced
as follows:

vn = v′n =
Vdc

6
(ua + ub + uc). (4)

The equations for the VSI model can be rewritten as
a discrete space-state model. The discrete equations will
be used in the stability analysis section in order to find
the control parameters. The process and measurement
discrete equations for each phase-legi are expressed as
follows:

xi(k+1) = Axi(k)+Bui(k)+Dvi(k)−
Ts

L1

vn(k) (5)

yi(k) = Cxi(k) (6)

where

xi(k) = [i1i(k) vci(k) i2i(k)]
T (7)

is the state space vector. The remaining matrices are
defined as:

A =




1 − Ts

L1

0
Ts

C
1 −Ts

C

0 Ts

L2

1


 (8)
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Fig. 1. Circuit diagram of three-phase grid-connedcted inverter with LCL-filter

B = [
VdcTs

2L1

0 0]T (9)

C = [0 0 1] (10)

D = [0 0 − Ts

L2

]T (11)

beingTs the sampling time.

III. C ONVENTIONAL SMC USING THE

INVERTER-SIDE CURRENT

As a first approach, a sliding surface vector used
to control the inverter-side currents can be defined as
follows:

S = i
∗ − i1 (12)

where the reference current vectori
∗ = [i∗a i∗b i∗c ]

T is
given in [20], and defined as follows:

i∗a =
P ∗

|v|2 va +
Q∗

√
3|v|2

(vb − vc) (13)

i∗b =
P ∗

|v|2 vb +
Q∗

√
3|v|2

(vc − va) (14)

i∗c = −(i∗a + i∗b) (15)

being |v|2 = v2a + v2b + v2c =
3V 2

p

2
with Vp the peak

voltage value, andP ∗ and Q∗ the active and reactive
power references, respectively.

When the system is in sliding regime, the converter
dynamics is forced to evolve over the sliding surface,
and the new dynamics can be derived according to the
invariance conditions,S = 0 and Ṡ = 0 [21]. By
applying these conditions to (1)-(3), the following grid-
side current differential equation can be found:

L2C
d2i2
dt2

+ i2 = i
∗ − C

dv

dt
. (16)

The output current dynamics exhibits an oscillatory
behavior, as it can be deduced from (16) where the reso-
nance frequency is given by1/2π

√
L2C. The straightfor-

ward solution is to apply passive damping by connecting

a resistor in series with the capacitor filterC. Then, the
ideal sliding-mode dynamics results in:

i1 = i
∗ (17)

C
dvc

dt
= i

∗ − i2 (18)

L2

di2
dt

= vc − v+Rd(i
∗ − i2) (19)

whereRd is the damping resistor. From the last equa-
tions, the closed-loop grid-side current differential equa-
tion can be derived as follows:

L2C
d2i2
dt2

+RdC
di2
dt

+ i2 = i
∗ +RdC

di∗

dt
− C

dv

dt
.

(20)

Assuming a grid-connected application, where only ac-
tive power is delivered to the grid, the reactive power
is not considered (i.e.Q∗=0). Then, by applying the
Laplace transform to 20, and using (13)-(15) withQ∗=0,
the transfer function between the grid-side current and
its reference is found:

i2(s) =
1 + (Rd − 3V 2

p

2P ∗
)Cs

L2Cs2 +RdCs+ 1
i
∗(s) = H(s)i∗(s). (21)

As it can be deduced from (21), a phase shift between
i2 andi∗ is produced. Note that this phase shift depends
of the reference active power value,P ∗.

IV. PROPOSEDCONTROL SYSTEM

The control scheme for phase-legi is depicted in
Fig.2. The control block diagram consists of a KF,
a reference neutral point voltage calculator, and the
switching surface used together with a variable hysteresis
band combined with a switching decision algorithm [20].
This combination allows to obtain an improved switch-
ing spectrum concentrated around the desired switching
frequency.

Besides, in this section, a KF algorithm based on a
modified space-state model is presented. Finally, in order
to obtain the control parameters a complete stability
analysis is performed including the KF effect.
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Fig. 2. Proposed control system for phase-legi of the VSI

A. Kalman Filter

1) Proposed Space-State model of the VSI: The pro-
posed state-space model is defined by the following
differential equations:

L1

di1
dt

=
Vdc

2
u− vc − v∗nI1 (22)

C
dvc

dt
= i1 − i2 (23)

L2

di2
dt

= vc − v (24)

dv

dt
= ωovq (25)

dvq

dt
= −ωov (26)

wherev∗n is the reference neutral point voltage,ωo is the
angular grid frequency andv and vq are the voltages
vector at the PCC and its quadrature, respectively. Note
that, usingv∗n in (22) instead ofvn as in (1), a perfect
decoupling between phases is obtained in the proposed
model. This simple change allows the dynamics of the
inverter-side current of each phase relying only on its
corresponding control input. This fact can be clearly
observed by considering the expression ofvn written in
(4).

By using this model, the KF is also applied to extract
the fundamental component and its quadrature of the
PCC voltages. This fact allows to generate sinusoidal
reference currents even in case of a highly distorted grid
[22].

In order to use the aforementioned model in a KF,
a discrete model is necessary. The augmented discrete
space-state model including the PCC voltages is written
as follows:

x̂augi(k + 1) = Âaugx̂augi(k) +Baugui(k)

− Ts

L1

v∗n(k) + ηi(k)
(27)

yi(k) = Caugxaugi(k) +wi(k) (28)

wherewi(k) andηi(k) are the process and the measure-
ment noise vectors respectively, and

x̂augi = [̂i1i(k) v̂ci(k) î2i(k) v̂i(k) v̂iq(k)]
T (29)

Aaug =




1 − Ts

L1

0 0 0
Ts

C
1 −Ts

C
0 0

0 Ts

L2

1 − Ts

L2

0

0 0 0 1 Tsωo

0 0 0 −Tsωo 1




(30)

Baug = [
VdcTs

2L1

0 0 0 0]T (31)

Caug = [0 0 1 0 0]T . (32)

Note that the circumflex symbol denotes estimated vari-
ables.

We can take advantage of the reference neutral point
voltage,v∗n, shown in 22 to impose a desired voltage. For
instance, a third harmonic can be imposed at the neutral
point, which can be obtained following the steps in [20],
and it is expressed as:

v∗n =
Vp

6
[(L1 + L2)

P ∗ωo

|v̂|2 cos(3ωot)

+ (1 + (L1 + L2)
Q∗ωo

|v̂|2 ) sin(3ωot)].

(33)

where |v̂| = [v̂a v̂b v̂c] is the vector of estimated
voltages at the PCC.

The last expression does not have any dependence
with the control signalsua,b,c. For this reason, this solu-
tion not only increases the controllers dynamic range, but
also achieves a perfect decoupling between controllers.

On the other hand, the system is controlled using only
one sensor in the grid-side current, as it is shown in
Fig.2. Then, the system observability and controllability
should be ensured. The observability matrix can be
obtained from(30) and (32) which yields to

O = [Caug CaugAaug CaugA
2
aug CaugA

3
aug

CaugA
4
aug]

T
(34)

and using(30) and (31) the controllability matrixΓ is
given by

Γ = [Baug AaugBaug A
2
augBaug A

3
augBaug

A
4
augBaug]

(35)

Matrix O is of full-rank, (i.e. rank{O} = 5), and
as a consequence the system is observable using only
the measured currenti2i. However, the controllability
matrix is of rank 3 and only a controllable subspace
can be considered. Note that in this particular case
the controllable subspace is given by matrix(8) which
contains the control variablei2i. Besides, the statesvi
and viq are stable states with bounded limits, therefore
the controllability is ensured.



2) KF Algorithm: The KF algorithm is widely ex-
plained in the literature [23] so only a brief summary of
its equations will be given in this section. The recursive
Kalman algorithm computation is divided in two parts:
1) time updating and 2) measurement updating. From the
well-known equations of the KF [24], the equation for
the estate estimation can be expressed as follows:

x̂augi(k + 1) = x̂augi(k) + Li(k)(i2i(k)− î2i(k))
(36)

where the Kalman gain is computed as:

Li(k) = Pi(k)C
T (CPi(k)H

T +Ri(k))
−1 (37)

being Pi the error covariance matrix for phase-legi
and Ri the measurement noise covariance matrix. The
algorithm and some interesting steps to reduce the com-
putational time are explained in [24].

B. Derivation of the SMC by dynamic imposition

In this paper, the sliding surfaces are designed by
imposing a desired dynamics behaviour with active
damping capability. The sliding surfaces will be used as
grid-current controllers in order to achieve high current
tracking accuracy with stable dynamics. In the switching
surfaces implementation only estimated variables are
used.

The first step in a switching surface design is to
calculate the relative degree associated with the output
variable. The desired closed-loop output-current dynam-
ics can be then specified according to the relative degree
of î2. The relative degree of a state variable is the
smallest number of differentiations with regards to time,
so that the control inputu appears explicity [21]. From
(22)-(24) it can be easily found that

∂

∂u

(
dj î2
dtj

)
= 0 j = 1, 2 (38)

∂

∂u

(
dj î2
dtj

)
6= 0 j = 3 (39)

then, the relative degree ofî2 is three. From (1)-(3) the
open-loop output-current dynamics can be expressed as
follows:

L2C
d3̂i2
dt3

+
d̂i2
dt

− d̂i1
dt

+ C
d2v̂

dt2
= 0. (40)

Note that in the previous expression, the control action
u is in the time derivative term of̂i1.

The choice of the sliding surface vectorS constitutes
the second step. Here, we introduce the use of invari-
ance conditions to synthesize proper sliding surfaces to
guarantee perfect tracking dynamics,i2 = i

∗.

The desired closed-loop linear dynamics which guar-
antees a perfect tracking performance until the third
derivative term of the output-current error is

3∑

n=0

λn

dn(̂i2 − i
∗)

dtn
= 0. (41)

It is worth to mention that, this ideal dynamics does
not rely on the system parameters, and only depends
of the controller parameters,λ. This fact provides a
hight robustness against system parameters deviations.
However, since a KF is used, the effect of the KF and the
system discretization should be analyzed. For this reason,
in section V, a complete analysis of system stability and
robustness against system parameters deviation will be
performed.

Here, it is important to remark that the order of the
specified dynamics coincides with the relative degree
of the output-current; otherwise, the desired dynamics
cannot be ensured by the control actionu [25], [26].

In sliding regime, the converter dynamics are forced
to evolve over the sliding surfaceS, according to the
invariance conditionS = Ṡ = 0 [25]. Such property
can be used to design a controller that guarantees the
desired dynamics (41). In fact, a similar approach was
previously employed in [27] in a different application,
with good static and dynamic properties.

Now, by subtracting (40) from (41) and equalizing the
result to the invariance conditioṅS = 0 [25] yields

dS

dt
=

d̂i1
dt

− d̂i2
dt

− C
d2v̂

dt2
− L2C

d3̂i2
dt3

+
3∑

n=0

λn

dn(̂i2 − i
∗)

dtn

(42)

and consequently

S = î1 − î2 − C
dv̂

dt
− L2C

d2̂i2
dt2

+
3∑

n=1

λn

dn−1(̂i2 − i
∗)

dtn−1

+ λ0

∫
(̂i2 − i

∗)dt.

(43)

The aforementioned expression can be simplified by
taking λ3 = L2C and considering thatλ3

d2i∗

dt2
<< λ1i

∗,
as:

S = î1 − î2 − C
dv̂

dt
+ λ2

d(̂i2 − i
∗)

dt
+ λ1(̂i2 − i

∗)

+ λ0

∫
(̂i2 − i

∗)dt.

(44)

The last requirement in the design of SMC is to satisfy
the reaching conditions. The most often-used reaching
conditions for each phase-legi are given by

SiṠi < 0 (45)



which allows us to determine the control law

ui =

{
1 if Si < 0
−1 if Si > 0

(46)

In section V, an analysis of the closed-loop system
stability is performed in order to obtain the control
parameters.

V. STABILITY ANALYSIS

In this section the stability of the proposed control
system is analyzed. This analysis takes into account
the effect of the KF because it modifies the system
dynamics behaviour. According to section IV-A, the
controllers are decoupled, and each phase-leg can be
treated independently in order to perform the stability
analysis.

A. Discrete equivalent control deduction

For this analysis, only the state variablesi1i, vci and
i2i are used, and the voltages at the PCC are considered
as disturbances. In this case the state-space system
equations for each phase-legi can be defined as follows:

xi(k + 1) = Axi(k) +Bu(k) + f(k) (47)

yi(k) = Cxi(k) (48)

where matrixA, and vectorsB and C are defined in
(8) , (9) and (10) respectively, andf(k) is a disturbance
vector.

The discrete sliding surface equation can be obtained
from (43) yielding:

Si(k) = î1i(k)− î2i(k) + λ2

î2i(k)− î2i(k − 1)

Ts

+ λ1 î2i(k) + λ0ξi(k) + g(v̂, i∗i ).

(49)

where the integral term is defined as

ξi(k) = ξi(k − 1) + TsCxi(k) (50)

andg(v̂, i∗i ) is a function with bounded limits depending
of the disturbances. The last expression can be rewritten
as follows:

Si(k) = ax̂i(k) + bx̂i(k − 1) + λ0ξi(k) + g(v̂, i∗i ).
(51)

where

a = [H+C(
λ2

Ts

+ λ1 − 1)] (52)

b = −λ2

Ts

C (53)

H = [1 0 0]. (54)

and

x̂i = [̂i1i v̂ci î2i]
T . (55)

Vector x̂i(k+1) is the estimated state vector which can
be obtained using the KF estimation as

x̂i(k + 1) = Âx̂i(k) +Bûieq + LiCe(k) (56)

where Â is the system matrix obtained from the pro-
posed model which contains theLCL nominal values,
A is the real system matrix defined in (8),ei(k) =
xi(k) − x̂i(k) is the estimation error anduieq(k) is the
equivalent control of phase-legi, which is the solution
of ∆Si = Si(k + 1)− Si(k)=0, [28].

Taking into account the aforementioned expression,
the discrete equivalent control can be found by using
(56) in (51) evaluated at timek + 1, yielding

ûieq(k) = −(GB)−1(Si(k) + a(GÂ+ b)x̂i(k)

+GLiCe(k) + λoξi(k) + g(v̂, i∗i ))
(57)

where the gain matrixG is expressed as:

G = a+ λ0TsC. (58)

B. Closed-loop equations

In the ideal sliding regime, one hasSi(k + 1) =
Si(k)=0. Then, (57) can be reduced to:

ûieq(k) = K1x̂i(k) +K2e(k) +K3ξi(k) (59)

where the gainsK1, K2 andK3 are defined as follows:

K1 = −(GB)−1(GÂ+ b) (60)

K2 = −(GB)−1
GLiC (61)

K3 = −(GB)−1λ0. (62)

Note that the disturbances functiong(v̂, i∗i ) has been
removed for simplicity, since it has no effect in the
stability analysis.

In order to find the closed-loop equations,(59) is
replaced in(47) and in (56). Assumingf(k) in (47)
has bounded limits, these function can also be removed
for the stability analysis procedure, leading to

xi(k + 1) = (A+BK1)xi(k) +B(K2 −K1)ei(k)

+BK3ξi(k)
(63)

x̂i(k + 1) = (Â+BK1)xi(k) + (B(K2 −K1) + LiC

− Â)ei(k) +BK3ξi(k).
(64)



Now, by subtracting(64) from (63), the equation for the
estimation error at timek + 1 is obtained

e(k + 1) = (A− Â)xi(k) + (Â− LiC)e(k) (65)

The closed-loop equations are defined by(63) and
(65). Then by taking into account that

ξi(k + 1) = ξi(k) + TsCx̂i(k + 1) (66)

and using (56) in (66), the closed-loop equations in
matrix form can be found:




xi(k + 1)
ei(k + 1)
ξi(k + 1)


 = G




xi(k)
ei(k)
ξi(k)


 (67)

where matrixG can defined as follows

G =




A+BK1 B(K2 −K1) BK3

(A− Â) Â− LiC 0

TsC(A+BK1) J TsBK3 + 1




(68)

being

J = TsCB((K2 −K1)− Â+ LiC) (69)

C. Closed-loop poles

The closed-loop dynamic behaviour will be given by
the eigenvalues of matrixG, which are the solution
of det(zI − G) = 0. In order to ensure the system
stability, the eigenvalues should lie inside the unity circle
in the z-plane. In a first stage, we assume that the
system parameters deviations are zero. In this case it
is accomplished thatA = Â in the matrixG.

The converter open-loop poles in each phase-legi are
three (5), but the observer introduces three more poles
(56). When the system is in closed-loop operation, one
more pole is added due to the presence of the integrator
in the sliding surface, being seven the total number of
poles.

However, it is found that while the system is in sliding-
regime, one pole is fixed at the origin (z=0) due to the
sliding equation, which forces the grid-side current to
track its reference (i.e.i2 = i

∗), and as a consequence,
the system order is reduced in one unit. The position of
the remaining poles can be adjusted by tuning the control
parameters.

The pole maps for two different cases are presented
in Fig.3. As it can be seen, the three poles provided by
the KF lie in the same position in both figures since the
Kalman gain is fixed. The position of the other three
poles can be adjusted by changingλ parameters. In
Fig.3(a) the control parameters are selected for an os-
cillating behaviour and these poles are outside the unity

0.8 0.85 0.9 0.95 1
-0.5

0

0.5

0.40.50.60.70.80.9

0.1 /T

0.1 /T

0.10.20.3

Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

(a)

0.8 0.85 0.9 0.95 1
-0.5

0

0.5

0.40.50.60.70.80.9

0.1 /T

0.1 /T

0.10.20.3

Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

(b)

Fig. 3. System poles (a) in an oscillation case (λ3 = 34 · 10
−9,

λ2=λ0=0 andλ1=1), (b) used in the proposed controller (λ3 = 34 ·

10
−9, λ2 = 136 · 10

−6, λ1=1.136 andλ0=1000.

circle in the complexz plane. In Fig.3(b) the control
parameters are changed, and the poles are attracted inside
the unity circle providing stable dynamics.

D. System parameters robustness analysis

In the previous section the stability of the system has
been analyzed. However, the deviations of the LCL filter
parameters should be studied. Here, we assume thatA 6=
Â, which means that the reactive components do not
coincide with their nominal values. Note that according
to the matrixG, the overall system stability does not rely
on the grid inductance variations. This is an important
feature of the proposed control algorithm that will be
shown in the experimental results section.

Figs.4(b)-4(c) show the roots locus of the closed
loop system in the case of parameter deviations in the
LCL filter. According to [29], deviations of±30% on
the rated values have been taken to verify the system



TABLE I
SYSTEM PARAMETERS

Symbol Description Value
L1 Filter input inductance 7 mH
C Filter Capacitor 6.8 uF
L2 Filter output inductance 5 mH
Lg Grid inductance 0.8 mH-5 mH
Vdc DC-link Voltage 450 V
fs Sampling frequency 40 kHz

fgrid Grid frequency 60 Hz
fsw Switching frequency 6 kHz
Vgrid Grid Voltage 110 V
P ∗ Active Power 1.5 kW
Q∗ Reactive Power 0 VAr

robustness. In each case, variations of only one parameter
in the system matrixA are applied, while the rest of
the parameters remains unchanged. It must be noticed
that, for this analysis the matrix̂A should contain the
LCL nominal values. From the figures, it can be seen
that the eigenvalues have small variation for a large
variations of the LCL parameters. This fact verifies the
high robustness of the proposed control method against
deviations in the system parameters. In order to conclude
the robustness analysis, different tests with harmonics
in the grid and voltage sags will be shown in the
experimental results section.

VI. EXPERIMENTAL VALIDATION

An experimental three-phase three-wire inverter proto-
type was built using a 4.5-kVA SEMIKRON full-bridge
as the power converter and a TMS320F28M35 floating-
point digital signal processor (DSP) as the control plat-
form with a sampling frequency of 40 kHz. The grid
and the DC-Link voltages have been generated using a
PACIFIC 360-AMX and an AMREL SPS1000-10-K0E3
sources respectively. A photograph of the experimental
setup is shown in Fig.5. Table I lists the system param-
eters used in the experimental prototype. Some results
are imported to Matlab by means of a script which
communicates the computer with the DSP.

Fig.6 shows the equivalent control for phase-lega,
obtained by low-pass filtering the control signalua. The
equivalent control is affected by the reference neutral
point voltage which injects a third harmonic in the
control signal as desired. As a consequence, the dynamic
control range is extended by simply including the suit-
able reference neutral point voltage in the KF algorithm.

Fig.7 compares the tracking performances of the pro-
posed control method with the conventional SMC when
only active power is injected to the grid. In Fig7(a)
and Fig.7(b) conventional SMC expressed in (12) with a
physical damping resistor of 68Ω is used. The damping
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Fig. 4. Root locus diagrams when the filter parameters vary. a) L1

varies±30%, b) L2 varies±30%, and c) C varies±30%.



Fig. 5. Photograph of the experimental setup
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Fig. 6. Equivalent control with a common-mode third harmonic
injected.

resistor is selected in accordance with guidelines re-
ported [30]. Fig.7(a) shows a phase-shift around7◦ when
the reference active power is 750 W. This phase-shift is
reduced when the reference active power is increased
up to 1500 W as shows Fig.7(b). It can be seen from
both figures that using the conventional SMC the phase
shift has a dependence on the power injected to the grid
according to (21).

If the proposed controller (43) is used the grid-side
current tracks its reference without error regardless of
P ∗, as it is shown in Fig.7(c) and Fig.7(d).

A. Test of the VSI against sudden changes in the active
power reference

Fig.8(a) and Fig.8(b) show the grid-side currents and
the active and reactive power, respectively. Three cases
are considered: oscillation behavior, stable behaviour and
a power step change, as described as follows:

1) In the oscillation case, the control parameters
λ0=λ2=0 and λ1=1 are chosen and the system is os-
cillating, as predicted in Fig.3(a). In this case the SMC

is used to control the inverter-side current as in section
III (see eq.(12)).

2) In the stable case, the control parametersλ0 and
λ2 are selected 1000 and 136·10−6 respectively. In this
case, grid currents and powers track their respective
references.

3) Finally, in the case of an active power step change,
from 750 W to 1500 W, a stable operation with fast
transient response is achieved due to the use of the SMC,
as shown in Fig.8(b).

B. Test of robustness against grid inductance variations

Fig.9(a) shows the grid-side current of phase-lega for
three different values of the grid inductance,0.8mH,
2mH and 5mH, when the conventional SMC is used.
An oscillatory behaviour in the grid-side currents appears
when the grid inductance is more than3mH. When the
proposed control is used this oscillation disappears, as it
can be seen in Fig.9(b), which makes the system robust
against grid inductance variations.

C. Test of VSI under a distorted grid

Fig.10 compares the three-phase grid currents using
the conventional SMC (12) and using the proposed
control method in the case of a distorted grid. This
figure shows the distorted PCC voltages, which THD is
around 16%, and the grid-side currents. From the figure,
when the conventional SMC is used, a distortion in the
grid currents appears. The reason is that the method
for generating the reference currents uses distorted PCC
voltages. In contrast, when the proposed control method
is used, the grid currents are sinusoidal since the refer-
ence current is generated by using only the fundamental
component of the PCC voltage, which is obtained from
the KF. Note that with this proposal, the use of extra
filters for the grid voltages is not necessary.

D. Test of the VSI under voltage SAGS

The proposed controller can also operate in case of
voltage sags. Fig.11 shows the VSI performance under
grid voltage sags. For this test, a voltage sag character-
ized by a positive and negative sequence ofV + = 0.7 p.u.
andV − = 0.3 p.u. respectively, and with a phase angle
between sequences ofφ = −π/6 has been provoked.
The reference currents are obtained using the positive
sequence of the PCC voltage, usingî∗a,b,c = P ∗

|v̂|2 v̂
+

a,b,c.
The positive sequence is computed from the estimated
PCC voltages and their quadratures obtained from the
KF, following similar steps as shown in [31]. Note that
the use of a specific PLL algorithm for extracting the
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Fig. 7. Grid-side current (red line) tracking its reference(blue line) in phase-lega (2A/div) using: a) conventional SMC withP ∗=750 W,
b) conventional SMC withP ∗=1500 W, c) proposed controller withP ∗=750 W, and d) proposed controller withP ∗=1500 W.
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Fig. 8. a) Grid-side currents (2 A/div) and b) active and reactive
power, in an oscillation case, stable case and with a sudden step
change in the active power reference.

positive and negative sequence grid voltage components
is not necessary in this case. Note that the currents
amplitude is increased in order to maintain the desired
active power due to the sag.
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Fig. 9. Grid-side current of phase-lega for different grid inductance
values (a) using conventional SMC, and (b) using the proposed
controller.

Fig. 10. Distorted PCC voltages (25V/div) with THD = 16%, and
grid-side currents (5 A/div)



Fig. 11. PCC voltages (50 V/div) and grid-side currents (2A/div)
under voltage sag.
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Fig. 12. Switching signal spectrum

E. Switching spectrum

In Fig.12 the control signal spectrum is shown. Note
that the spectrum is concentrated around 6 kHz, as de-
sired by using the switching decision algorithm presented
in [24].

VII. C ONCLUSIONS

In this paper a sliding-mode observer-based control
for grid-connected LCL-filtered three-phase inverter is
proposed. The control algorithm is based on SMC in
combination with a KF. This proposal allows to obtain
three decoupled controllers which, provides a desired
dynamics to the grid-side current. The proposed control
technique also improves the tracking performance of the
reference and also increases the robustness against grid
inductance variation. Theoretical and experimental re-
sults show that with this controller no physical damping
resistors are needed reducing the control losses. In addi-
tion a sinusoidal third harmonic voltage can be injected
at the neutral point increasing the control dynamic range.
The system stability analysis has been also performed
allowing to find the main control parameters.
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