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A Coupled-Inductor-Based Buck-Boost AC/DC 
Converter with Balanced DC Output Voltages

Houqing Wang, Weimin Wu, Yunwei Li, Senior Member, IEEE, Frede Blaabjerg, Fellow, IEEE 

Abstract—With the development of distributed power generation sources and the widely used DC characterized 
loads, the DC Nano-grid becomes more and more attractive and the converters with three terminal outputs are 
increasingly studied. Considering the costs, the efficiency and also the safety, the grounding configuration needs to be 
addressed when designing the AC/DC converter for a DC Nano-grid system. An AC/DC converter with three 
terminal outputs has been presented for the united grounding configuration based DC Nano-grid. Nevertheless, for 
this type of converters, the output voltages are unbalanced in case of unequal DC loads. This paper proposes a novel 
Buck-Boost AC/DC converter with the capacity of output voltages self-balancing by using a coupled inductor. The 
operation of this converter will be presented in details through analyzing its equivalent circuits. The small signal 
model of system in different working modes is given, and the whole system control diagram shows how to balance the 
DC output voltages. A 220 V/50 Hz/1.5 kW prototype has been developed. Experiments are carried out to verify the 
effectiveness of the coupled-inductor-based converter.  
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I. INTRODUCTION

Due to the energy crisis and the environmental pollution caused by the consumption of fossil fuel, the development of 

renewable energy generation has been an increasingly critical topic [1]-[4]. Since renewable energies have the intrinsic 

intermittence and fluctuation, in order to improve the reliability and the quality of power supply, Nano-grids [3], [5], [6] have 

been proposed to facilitate the connection of renewable power sources to the traditional AC power system. On the one hand, 

now most renewable power conversion systems are connected into AC Nano-grids [7]. On the other hand, more and more 

loads show DC characteristics [6], [8]-[11], for example, the variable frequency drives, the LED lighting applications, the 

computer power supplies and the data centers [10], [11], which constitute a significant portion of the energy consuming loads 

[8].  If the renewable energies can be directly utilized via the DC Nano-grids, the total energy efficiency will be obviously 

improved. Therefore, the researches on the DC Nano-grids are drawing more and more attention [8]-[20], especially for the 

control of AC/DC topologies [12], [15]-[19], which interface with the DC Nano-grid and the traditional AC power systems.  

In order to flexibly utilize the DC power generated by the renewable energy sources, a bi-directional AC/DC converter is 

generally applied to the connection between the DC Nano-grid and the AC power system. However, in some areas, due to the 

high population density, the renewable powers generally cannot meet the power demand of local loads, so the connection can 

be simplified into a power factor correction circuit. It should be pointed out, when designing the AC/DC converter for a DC 

Nano-grid, the grounding configuration needs to be addressed [20], since it determines the costs, the efficiency and also the 

safety of DC Nano-grid system. In [21]-[25], different AC/DC converters were reviewed and compared, but the suitable 

AC/DC converters for the united grounding-configuration-based DC Nano-grid application were not introduced. Thus, as 

shown in Fig. 1, a high efficiency and low cost dual Buck-Boost AC/DC converter with three terminal outputs for DC Nano-

grid was proposed in [26], which can use the same ground line to connect the AC system with the DC system, without any 

insulating transformer. Nevertheless, when the two output loads become unequal, the two output voltages of the conventional 

converter would be unbalanced. 

 Various voltage balancing methods have been proposed in [27]-[32]. However, these methods, such as the space vector 

PWM (SVPWM) [27], [28], the predictive control strategy [29], [30], and the auxiliary balancing circuits [31], [32], are 

applied to realize the DC link capacitor voltage balance in multilevel multiphase converters, and not suitable for the single 

phase topology as introduced in [26]. This paper proposes a novel Buck-Boost AC/DC converter with the capability of output 

voltage self-balancing by using a coupled inductor, where the smaller size and the lighter weight of magnetic material can be 

achieved [33], compared with the conventional dual Buck-Boost AC/DC converter in [26].  

The rest of this paper is organized as follows. The conventional dual Buck-Boost AC/DC converter in [26] and its operating 

principle are first briefly introduced in section II. In section III, the coupled-inductor-based converter is proposed and its 
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operating principle is illustrated via the equivalent circuits in the different working states. In section IV, the modeling is given 

using the small signal model method and the control diagram is derived. The experimental results are presented in section V to 

verify the theoretical analysis as well as the principle of operation. Finally, the conclusions are drawn in Section VI. 

II． CONVENTIONAL dual BUCK-BOOST AC/DC CONVERTER  

Fig. 1 shows the configuration of conventional dual Buck-Boost AC/DC converter for DC Nano-grid with three terminal 

outputs [26]. R1 and R2 are the load resistors. In order to achieve high efficiency, MOSFET devices are adopted and only one 

switch of this converter is chopping at high frequency at any time. Dependent on the amplitude relation between the output 

DC voltage (E1, E2) and the grid voltage (Vg), the working modes of the conventional dual Buck-Boost AC/DC converter can 

be divided into the pure boost mode and the buck-boost mode as shown in Fig. 2. During the positive period of the AC 

voltage, the devices in red work while the devices in blue are off. During the negative period of the AC voltage, the devices 

in blue work while the devices in red are off.  

Note that when the two output DC loads become unequal, for example, due to the connection of different household 

appliances, the two output voltages would be unbalanced, which limits the application area of this converter. Thus, in order 

to enable the output DC voltages to be balanced, some extra measures should be taken. 
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Fig. 1. Conventional dual Buck-Boost AC/DC converter with three terminal outputs proposed in [26]. 
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(a)                                                                        (b)       

Fig. 2. Operating modes of Conventional dual Buck-Boost AC/DC converter (a) when |E1| and |E2| > Vg_A.   (b) when |E1| and |E2| < Vg_A.  

 

III．PROPOSED BUCK-BOOST AC/DC CONVERTER WITH BALANCED DC OUTPUT VOLTAGES 

A. Proposed Topology 
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Fig. 3 shows two kinds of proposed AC/DC converters as the interface between the DC Nano-grid with three terminals 

and the low voltage AC power system. Just like the converter presented in [26], the proposed converter also has a vertical 

symmetrical structure without any insulating transformer, where the main difference involves the coupled DC inductor with 

two winds (LP and LN) and two additional switches (S5 and S6).  Compared with the converter shown in Fig. 3 (a), S5 and S6 

of Fig. 3 (b) do not locate in the main power loop, resulting in less power losses. So, in this paper, the topology in Fig. 3 (b) 

is chosen for the following analysis. 

Using the principle of a transformer, the coupled inductor shown in Fig. 3 can transfer the energy of AC source to the 

positive (or negative) DC output as required. The turns of primary and secondary side windings of coupled inductor are equal. 

In order to improve the efficiency of energy transfer, the windings must be tightly coupled to ensure a very small leakage 

inductance inherent in each winding. This can be done by following the winding style used in [34]. 

As shown in Fig. 3 (b), when R1 is larger than R2, in order to balance the output DC voltages, the AC source should supply 

partial power towards R2 during the positive period of the AC voltage. Similarly, if R1 is smaller than R2, the AC source 

should provide partial power towards R1 during the negative period of the AC voltage. In this paper, it is assumed that R1 is 

larger than R2. 

 

(a)                                                                                           (b) 

Fig. 3. Proposed AC/DC converter with the capacity of DC output voltages self-balancing. 

 (a)S5, S6 are in main power loop.    (b) S5, S6 are in freewheeling loop. 

 

B. Operating Modes and Principle of Proposed AC/DC Converter 

Similar to the conventional dual Buck-Boost AC/DC converter for DC Nano-grid with three terminal outputs, the 

working modes of proposed converter are also dependent on the amplitude relation between the output DC voltage (E1, E2) 

and the grid voltage (Vg) as shown in Fig. 2. When |E1| and |E2| ≥ Vg_A, there are only two working states in a line period of 

AC voltage, while when |E1| and |E2| < Vg_A, there are six working states in a line period. Note that for the proposed AC/DC 

converter, the voltage difference between the two output DC voltages also determines the exact working state. For the 

convenience of analysis, ε1 is defined as the maximum tolerant difference between two output DC voltages. ε2 is defined as 

the regulation threshold difference between two output DC voltages, where when |E1|-|E2|> ε2, the output DC voltages need 
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to be regulated.  Generally, ε1 is larger than ε2.Thus, the operating modes of proposed AC/DC converter can be decomposed 

as following:  

1) | E 1 | or | E 2| ≥ Vg_ A  

When |E1|-|E2|< ε2, the equivalent circuits are shown in Fig. 4, where the system works in the “Boost”state. When |E1|-

|E2|> ε2, the AC Source need provide partial power to R2 during the positive half period of AC voltage, and the equivalent 

circuits of the converter are depicted in Fig. 5. It can be seen that when S1 and S2 are on, the AC Source supplies the power to 

the coupled indictor; when S1 and S2 are off, the power stored in the coupled inductor will be released to R2, where the whole 

system works in the “Flyback” state.   

 4D

D1

CVg

Lg

N

S1

D1

V

L

PE

S3

S2

S4

D6

D3

D5

D2D

R2

R1

E

E1

E2

Cp

Cn

S5

S6 LNL

LP

  

(a)                                                                           (b) 

  

(c)                                                                           (d) 

Fig. 4. Equivalent circuits in the “Boost” state: (a) Energy storing in the positive half of line period, (b) Energy releasing Energy storing in the positive 
half of line period, (c) Energy storing in the negative half of line period, (d) Energy releasing in the negative half of line period. 
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(a)                                                                           (b) 

Fig. 5. Equivalent circuits in the “Flyback” state: (a) Energy storing, (b) Energy releasing. 

2) | E 1 | and | E 2| < Vg_ A  

When the output DC voltages (E1, and E2) are lower than the amplitude value of the grid voltage (Vg_A), the working 

sequence can be separated into six parts during a line period of AC voltage, which is similar to Fig. 2 (b). 
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When |E1|-|E2| < ε2, the output DC voltages need not to be regulated. During T1, T3, T4, and T6, the converter works like a 

pure Boost converter, the equivalent circuits are just as shown in Fig. 4. During T2 and T5, the output DC voltages (E1, and 

E2) are smaller than the amplitude value of grid voltage Vg_ A. During T2, S1 works with high frequency, S5 is on and the rest 

of the switches are off. During T5, S3 works with high frequency, S6 is on and the rest of the switches are off.  The converter 

works like a pure Buck converter, where the equivalent circuits can be depicted in Fig. 6. 

 When ε1 > |E1|-|E2| > ε2, during the positive half period of the AC voltage, a partial power from the AC source will be 

supply towards R2 to balance the output DC voltages. Here, a partial time of T2 as shown in Fig. 2 (b) is served as the period 

of output energy regulation. Fig. 7 shows the equivalent circuits during the output energy regulation, where S1 works at high 

frequency, S6 is on, and the rest of the switches are off. When S1 is on, the AC Source supplies the power to LP and R1. 

When S1 is off, the power stored in coupled inductor will be released to R2. In this scenario, the whole system works like in 

the “Flybuck” state.  

When |E1|-|E2| > ε1, the output DC voltages are in the serious unbalance. Then, during the output energy regulation, the 

system should work in the “Flyback” state as introduced in Fig. 5.  

             

                                                      (a)                                                                           (b) 
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(c)                                                                            (d) 

Fig. 6. Equivalent circuits in the “Buck” state: (a) Energy storing in the positive half of line period, (b) Energy releasing in the positive half of line 
period, (c) Energy storing in the negative half of line period, (d) Energy releasing in the negative half of line period. 
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(a)                                                                               (b) 

Fig. 7. Equivalent circuits in the “Flybuck” state: (a) Energy storing, (b) Energy releasing. 

IV. CONTROL ANALYSIS AND DESIGN 

According to the analysis in section III, all the working states of proposed AC/DC converter can be summarized in Table I, 

when R1>R2.  

Table I.  Working states of the proposed AC/DC converter when R1>R2. 

 Working 
conditions 

|E1| and |E2 |> Vg_A |E1| and |E2| < Vg_A 

Positive of Vg_A Negative of Vg_A T1,T3 T2 T4,T6 T5 

Δ <  ε2 Boost 

Boost 

Boost Buck 

Boost Buck ε1 < Δ <  ε2 
Flyback 

Boost Flybuck 

Δ >  ε1 Flyback 

where Δ= |E1|-|E2|. 

From Table I, it can be seen that the working stages of proposed AC/DC converter include “Boost”, “Flyback”, “Buck” 

and “Flybuck”. Using the quasi-average state small signal modeling method [35], [36] and assuming that no disturbance is 

coming from the DC source and the AC source, then the small signal modeling can be derived. Equation (1)-(4) are the 

control to grid current transfer functions of “Boost”, “Flyback”, “Buck” and “Flybuck” stages respectively.  
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where m P NL L L» = . 

From the equations (1)-(4), it can be seen that the system is a typical third order system, and many papers have analyzed 

the control design on similar systems, especially for LCL filter or LLCL filter based grid-tied converter [37]-错误!未找到引

用源。. Similar control design method is also adopted for the proposed converter. Due to the length limitation, more 

detailed design of the controller is not given in this paper. Fig. 8 depicts the whole control diagram of proposed AC/DC 

converter, where the input signals include the DC voltage of E1 and E2, the grid voltage of Vg (t), and the reference current iref 

can be obtained by using the DC voltage control loop. 

 
 Fig. 8.  Control diagram of the proposed converter.  

V．EXPERIMENTAL RESULTS 

In order to verify the performance of the proposed converter, a 220 V/ 50 Hz/ 1.5 kW prototype is developed in the 

laboratory. The control algorithm is implemented by a digital signal processor (DSP) TMS320F2812. The type of MOSFET 

is IPW60R045CP, the type of diode is IDW30G65C5. A programmable AC source (Chroma 6530) is used to generate the 

grid voltage. The photograph of the prototype is shown in Fig. 9. The parameters of converter are listed in Table II. 
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Table II.   Power converter parameters for experiments 

 

Converter
Driver

LP,N

Lg

Controller 

CP,N

 
Fig. 9. Photograph of the experimental setup. 

When the grid voltage is set to 110 V/50 Hz and the reference value of the DC output voltage E (|E1|+|E2|) is set to 400 V, 

the experimental results are shown in Figs. 10-14 respectively. 

Figs. 10-11 show the gate signals of MOSFETS which work in high frequency during operation, and it can be seen that 

the state of switch is consistent with the principle analyzed in section III.  
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  (a)                                                                        (b) 

 Fig. 10. Mearured Gate signals of MOSFETS, when E = 400 V, and Vgm = 155 V: (a) During the positive operation; (b) During the negative operation.  
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Type Value Type Value Core material Turns of coil Diameter of wire LX Lm RLX_DC RLX_AC 

EPCOS 
B43310-A5478-M 4700 µF IKC CBB22 2 µF PC40 26 1.6 (mm) 0.78 mH 0.7797 mH 0.1 Ω 0.2584 Ω 40 kHz 0.6 mH 
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(a)                                                                       (b)                                                                    (c) 

 Fig. 11. Measured Gate signals of MOSFETS in different states, when E = 400 V, and Vgm = 155 V: (a) Positive-Boost State; (b) Positive-Flyback State; 

(c) Negative-Boost State.                                                                                                                                      

Figs. 12 and 13 show the measured input AC voltage (Vg (t)), the output DC voltages (E1, E2), and the currents of 

inductors (iLN (t), iLP (t)) in the unregulated and regulated modes respectively. The grid voltage is set to 110 V / 50 Hz, and 

the reference value of the DC output voltage E (E1+|E2|) is set to 400 V. 

As shown in Fig. 12, when R1 ≠ R2 (R1=144 Ω, R2=94 Ω), it can be seen that the output DC voltage of E1 (E1 =223 V) is 

larger than the absolute value of negative output DC voltage E2 (E2 = -177 V), when the unregulated mode is adopted. From 

Fig. 13, it can be seen that for the proposed converter with coupled inductor, the output DC voltages (E1, E2) can be 

regulated to almost equal, although the loads are unbalanced. Figs. 14 shows the efficiency test results of the proposed 

converter in different working modes when Vg=110 V, E=400 V.  

Table III shows the experimental results of the proposed converter when Vg=110 V, E=400 V. Since the flyback 

operation, the efficiency of the converter (η) will be reduced to 92.77%. However, the power factor (λ) and the total 

harmonic distortion (THD) have a little change. 
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（a）                                                                       (b) 

 Fig. 12. Measured waveforms  in the unregulated mode, when E = 400 V, Vgm = 155 V, R1= 144 Ω, and R2 =94 Ω:  (a)  the input AC voltage (Vg (t)), 

and the output DC voltages (E1, E2); (b) the input grid current ig and the inductor currents (iLP(t), iLN(t)).  
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 Fig. 13. Measured waveforms in the regulated mode, when E = 400 V, Vgm = 155 V, R1= 144 Ω, and R2 =94 Ω: (a) input AC voltage (Vg (t)), and the 

output DC voltages (E1, E2); (b) the input grid current ig, and the inductor currents (iLP(t), iLN(t)). 

 

     

(a)                                                                          (b)                                                          (c) 

Fig. 14. The efficiency test results of the proposed converter when Vg=110 V, E=400 V. (a) In the balanced-load mode (R1=144Ω, R2=144Ω). (b) In 

the unbalanced-load mode without regulation (R1=144Ω, R2=94Ω). (c) In the unbalanced-load mode with regulation (R1=144Ω, R2=94Ω). 

Table III.   Experimental results of power converter when Vg=110 V, E=400 V. 

Modes 
 
Results         

Balanced-load Mode 
R1=144 Ω, R2= 144Ω 

Unbalanced-load Mode   
R1=144Ω, R2= 94Ω 

Unregulated Regulated 
E1 200.82 V 222.75 V 200.90 V 
E2 199.79 V 177.80 V 198.61 V 
η 96.70% 95.28% 92.77% 
λ 0.9997 0.9999 0.9999 

THD 2.58% 2.68% 3.23% 

 

When the grid voltage is set to 220 V/50 Hz, and the reference value of the DC output voltage E (|E1|+|E2|) is set to 400 V, 

the experimental results are shown in Figs. 15-19 respectively. 

As shown in Fig. 17, when R1 ≠ R2 (R1 = 73.5 Ω, R2 = 52 Ω), it can be seen that the output DC voltage of E1 (E1= 221 V) 

is larger than the absolute value of negative output DC voltage E2 (E2 = -179 V), when the unregulated mode is adopted. 

From Fig. 18, it can be seen that for the proposed converter with coupled inductor, the output DC voltages (E1, E2) can be 

kept almost balanced, when the loads are unbalanced.  
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Fig. 15. Mearured Gate signals of MOSFETS, when E = 400 V, and Vgm = 311 V: (a) During the positive operation; (b) During the negative operation.  

 

VG_S2

VG_S1

VG_S5

VG_S6

Time [ 20 μs / div ]

2 V / div Positive-Boost State

 

VG_S2

VG_S1

VG_S5

VG_S6

Time [ 20 μs / div ]

2 V / div Positive-Buck State

 

VG_S2

VG_S1

VG_S5

VG_S6

Time [ 20 μs / div ]

2 V / div Positive-Fly-buck State
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(d)                                                                            (e)

Fig. 16. Mearured Gate signals of MOSFETS in different states, when when E = 400 V, and Vgm = 311 V: (a) Positive-Boost State; (b) Positive-Buck 

State; (b) Positive-Flyback State; (c) Negative-Boost State; (c) Negative-Buck State.
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(a)                                                                            (b) 

Fig. 17. Measured waveforms in the unregulated mode, when E = 400 V, Vgm = 311 V, R1= 73.5 Ω, and R2 = 52 Ω: (a) the input AC 

voltage (Vg (t)), the and output DC voltages (E1, E2); (b) the input grid current ig, and the inductor currents (iLP(t), iLN(t)). 
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(a)                                                                            (b) 

Fig. 18. Measured waveforms in the regulated mode, when E = 400 V, Vgm = 311 V, R1= 73.5 Ω, and R2 = 52 Ω: (a) the input AC voltage (Vg (t)), the 

and output DC voltages (E1, E2); (b) the input grid current ig, and the inductor currents (iLP(t), iLN(t)). 

     

(a)                                                                           (b)                                                                           (c) 

Fig. 19. The efficiency test results of the proposed converter when Vg=220 V, E=400 V. (a) In the balanced-load mode (R1=73.5Ω, R2=74Ω). (b) In 

the unbalanced-load mode without regulation (R1=73.5Ω, R2=52Ω). (c) In the unbalanced-load mode with regulation (R1=73.5Ω, R2=52Ω). 

Table IV.   Experimental results of power converter when Vg=220 V, E=400 V. 

Modes 
 
Results         

Balanced Mode 
R1=73.5Ω, R2= 74Ω 

Unbalanced Mode   
R1=73.5Ω, R2=52Ω 

Unregulated Regulated 
E1 201.54 V 221.00 V 203.12 V 
E2 198.54 V 179.37 V 196.78 V 
η 97.52% 96.09% 96.07% 
λ 0.9994 0.9998 0.9995 

THD 4.35% 4.36% 3.39% 

 

Before calculate the power losses of devices, some assumptions are done: 

  a. Ignoring the leakage inductance in the circuit layout. 

  b. Ignoring the input voltage ripple and fluctuation. 

  c. The dead-time and the delays are not considered. 

  d. The characters of the same type of devices are assumed to be the same and the characters are in accordance with 

the data provided by the manufacturers. 

  e. Supposing the junction temperature of devices is 80°C. 

     f. Supposing the core temperature of devices is 80°C. 
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When the proposed converter works in balanced-load state, the average power losses during the 0-0.5π period are the 

same as those during 0-2π, the average power losses of devices are calculated during the 0-0.5π period only. And the devices 

include: S1, S2, S5, D1, D2, D3, LP, Lg. 

Fig. 20 shows the calculated power losses of the devices, while Pin is 1.111 kW and Vg is 220 V versus the different 

output DC voltages in balanced-load state during the positive period of the AC voltage. It can be seen that the power losses 

of S1 is larger than those of S2 or S5. Of all the devices, the power losses of LP is the largest, where the ac resistance of LP is 

0.2584Ω and dc resistance of LP is 0.1Ω. 
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Fig. 20. Power losses distribution of devices versus the different output DC voltages (E) in balanced-load state during the positive period of the AC 

voltage when Pin=1.111 kW and Vg=220 V. 

                 
(a)                                                                                                                     (b) 

Fig. 21. Calculated and measured efficiency curve of the proposed converter versus the different input power in balanced-load state (a) when E=400 V, and 

Vg=110 V (Pure Boost Mode), (b) when E=400 V, and Vg=220 V (Buck-Boost Mode). 

Fig. 21 (a) and Fig. 21 (b) show the calculated and the measured efficiencies of the converter versus the different input 

power in the balanced-load state, when the input AC voltages are 110 V and 220 V respectively (not including the power 

losses of control circuits). It can be seen that the calculated efficiencies have similar trends as the measured efficiencies, 

where the measured efficiencies are lower than the calculated efficiencies, maybe due to the extra stray power losses. More 
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optimization design of the proposed converter needs to be carried out, for example, the design of the coupled inductor and 

the selection of D3 and D6 with the less forward voltage drop. 

VI．CONCLUSIONS 

In this paper, a transformerless AC/DC converter is proposed for an interface between the DC Nano-grid and the AC low 

voltage grid. The characteristics of this converter can be summarized as following, 

1.  Similar to the conventional converter presented in [26], the same ground line can be used by the AC grid and DC 

Nano-grid without any transformer isolation, which ensures the earth-fault protection for a hybrid power system. Note that 

there is still only one power stage which operates in the high frequency at any time, resulting in the high efficiency of the 

proposed converter.  

2.  Different from the conventional converter presented in [26], the new converter adopts two additional switches (S5 and 

S6) and replaces two non-coupled inductors with a single coupled inductor, where the output DC voltages can be regulated to 

balance, whether the loads are unequal or not. 

3.  The positive and the negative windings of inductor are highly coupled, where the leakage inductor can be ignored.  

The principle of proposed converter has been demonstrated through the equivalent circuits. Experimental results obtained 

from a 220 V/ 50 Hz/ 1.5 kW prototype have verified the feasibility and effectiveness of the proposed AC/DC converter.   
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