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    Abstract- Three-phase grid-tied inverter with LCL filter is 

usually designed to operate under symmetric grid impedance. 

However, in actual operations, the equivalent three-phase grid 

impedance tends to be unbalanced, which turns the three-phase 

grid-tied inverter with LCL filter into a highly coupled multiple-

input-multiple-out (MIMO) system. Traditionally, the impact of 

the cross-coupling on the stability is directly overlooked, which 

may lead to imprecise stability analysis. To overcome this issue, 

this paper proposes an analysis and design method for three-

phase grid-tied inverter with LCL filter under the unbalanced 

grid impedance based on the individual channel analysis and 

design (ICAD). Firstly, the effect of unbalanced grid impedance 

on the structural robustness is comprehensively evaluated. Then, 

the control system is simplified with no loss of structural 

information. Thus, the stability can be precisely analyzed and, 

simultaneously, the controller parameters can be easily tuned by 

applying Bode/Nyquist plots. Simulation and experimental 

results are provided to demonstrate the validity and effectiveness 

of the proposed method1. 

 
   Index Terms- Individual channel analysis and design, LCL filter, 

stability analysis, unbalanced grid impedance. 

 
I.  INTRODUCTION 

 

With the dramatic development of the distributed power 

generation systems, the grid-tied inverters have been 

increasingly employed as efficient and flexible grid interfaces 

in the power system [1]. In order to attenuate the switching 

frequency harmonics, a passive power filter is usually inserted 

between the inverter and the grid [2]. Compared with an L filter, 

an LCL filter is extensively adopted in grid-tied inverters since 
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it can provide better harmonic attenuation with reduced 

inductance [3]-[5]. However, the resonance hazard of the LCL 

filter may result in stability issues. Aiming to address this 

challenge, a large number of innovative damping techniques 

have been proposed [6]-[12]. 

Besides the stable operation mentioned above, an additional 

difficulty is that, in an actual distributed power grid, the grid 

impedance might vary in a wide range [13], which results in a 

wide range variation of the resonance frequency and may 

challenge the stability and control performances [10]. Under 

these situations where the grid impedance varies widely, the 

uncertainty of the equivalent grid impedance is an important 

concern to be addressed. To keep high performance and obtain 

strong robustness against grid impedance variation, Pan et al. 

[14] proposed an optimized controller design for grid-tied 

inverters, and a specific gain for capacitor-current-feedback 

active damping is selected to achieve the goal. Liu et al. [15] 

put forward a single-loop current control with a hybrid damper 

for a single-phase grid-tied inverter, particularly when there are 

higher order background harmonic voltages at the point of 

common coupling (PCC) and when the equivalent grid 

impedance widely varies. In the applications of three-phase 

grid-tied inverters, Saïd-Romdhane et al. [16] proposed a 

systematic design procedure for the capacitor current feedback 

active damping of voltage-oriented PI control to ensure stable 

operation under severe grid inductance variations. In [17], 

Sadabadi et al. presented a robust control strategy to overcome 

the stability issues and decouple the d and q channels of the 

control system, which can guarantee stability and satisfactory 

transient performance against the variations of grid impedance. 

In [18], Adib et al. developed a reduced-order model for grid-

tied inverters using the balanced truncation technique, while 

preserving the overall system stability in the case of grid 

impedance variations. 

All aforementioned methods are proposed based on the 

model of single-phase grid-tied inverter or three-phase grid-tied 

inverter with balanced grid impedance. In these cases, the 

model can be simplified as single-input single-output (SISO) 

system, thus the classical concepts, such as the open-loop 

stability, gain and phase margins, can be utilized. However, 

these methods may be inapplicable for the three-phase grid-tied 

inverter under unbalanced grid impedance, since it possess 

highly cross-coupled multiple-input-multiple-out (MIMO) 

characteristic. This indicates that the traditional methods, in 

which the system is assumed symmetrical or the cross-coupling 

mailto:wmwu@shmtu.edu.cn
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is neglected when analyzing the stability and designing the 

controller, may result in imprecise stability analysis under 

unbalanced grid impedance. 

In fact, in a three-phase distributed power generation system, 

due to the unbalanced power line impedance, three-phase 

asymmetrical loads, single-phase loads, single-phase grid-tied 

inverters and multiple paralleled inverters connected to PCC, 

the equivalent three-phase grid impedance tends to be 

unbalanced. A previous research based on the impedance 

analysis has proved that the unbalanced grid impedance will 

reduce the stability of the three-phase grid-tied inverter system 

[19]. Therefore, it is vital to develop effective analysis and 

design method for the three-phase grid-tied inverter under 

unbalanced grid impedance.  

According to [19], the stability analysis of three-phase grid-

tied inverter with L filter under unbalanced grid impedance can 

be addressed by harmonic linearization technique. However, 

the model derivation is complicated, especially when it is 

extended to LCL-filtered grid-tied inverter. Liu et al. [20] 

proposed a modeling method for three-phase grid-tied inverter 

with L filter under unbalanced grid impedance, then the 

stability can be analyzed based on the eigenvalues of open-loop 

transfer function matrix by utilizing the Generalized Nyquist 

Criterion (GNC). Nevertheless, it is not easy to apply the 

proposed modeling method to LCL-filter-based grid-tied 

inverter. In [21], Jin et al. proved that the unbalanced loads 

would bring adverse effect on the stability of the system when 

the grid impedance was not negligible, and the active 

imbalance compensation was adopted to improve the stability. 

Nevertheless, the paper has not investigated the impact of the 

grid impedance variation on the robustness and stability. 

Motivated by the aforementioned limitations, this paper 

proposes an analysis and design method for three-phase grid-

tied inverter with LCL filter under the unbalanced grid 

impedance based on the individual channel analysis and design 

(ICAD). The effect of the cross-coupling, introduced by 

unbalanced grid impedance, is explicitly addressed. Firstly, the 

impact of unbalanced grid impedance on the structural 

robustness is comprehensively evaluated. To significantly 

enhance the robustness, the optimal passive damping is used. 

Then, by utilizing the ICAD approach, the highly cross-

coupled MIMO system is decomposed into two SISO 

subsystems, which significantly simplifies the control system. 

Meanwhile, the multivariable nature of the original plant is 

maintained in the equivalent subsystems with no loss of 

structural information. Thus, the stability can be precisely 

analyzed and, simultaneously, the controller parameters can be 

easily tuned by applying Bode/Nyquist plots. The new findings 

and major contributions of this paper are highlighted as below: 

1) The proposed method enables to design two separated 

SISO subsystems instead of applying multivariable 

control theory for analysis and design of MIMO systems. 

The stability analysis and controller parameters tuning 

for LCL-filtered grid-tied inverter under unbalanced grid 

impedance are remarkably simplified. 

2) This paper reveals that when analyzing the stability and 

tuning the controller parameters, directly neglecting the 
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Fig. 1. The topology of the three-phase grid-tied inverter with unbalanced 

loads connected to PCC. 
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Fig. 2. The topology of equivalent standard model with unbalanced grid 

impedance. 

 

cross-coupling leads to imprecise results. Compared 

with the traditional method which ignores the coupling, 

the proposed method can provide more precise stability 

analysis under unbalanced grid impedance by 

independently analyzing the individual channels. 

3) It is found that by independently tuning the current 

controller parameters, the gain and phase margins as 

well as the bandwidths of - and -axis are almost 

equal under unbalanced grid impedance, thus the better 

control performance can be achieved. 

4) The theoretical analysis reveals that the unbalanced 

grid impedance deteriorates the structure robustness of 

the LCL-filtered grid-tied inverter, especially under the 

severely unbalanced case. Simultaneously, this paper 

proves that the robustness can be improved by utilizing 

the passive damping. 

The rest of this paper is organized as follows. Section II 

summarizes the main reasons which significantly lead to the 

unbalanced grid impedance. In Section III, the issues caused by 

LCL filter-based grid-tied inverter under unbalanced grid 

impedance are presented. Then, the precise analysis and design 

method based on ICAD is proposed in Section IV. In Section V, 

the different design methods are compared to highlight the 

significant advantage of the proposed method. The 

effectiveness and accuracy of the proposed method are 

demonstrated by a series of simulation and experimental results 

in Section VI. Section VII gives a detailed discussion on some 

new findings. Finally, the conclusions are drawn in Section 

VIII. 

II. MAIN REASONS OF THE UNBALANCED GRID 

IMPEDANCE 
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Fig. 3. The topology of three-phase distributed power grid with M-
paralleled single-phase grid-tied inverters connected to Phase C. (a) The 

original model. (b) The equivalent model. 

A lot of previous researches are based on a fundamental 

assumption that the three-phase grid impedance is balanced. 

However, this may be impossible to be always satisfied in the 

actual distributed power generation systems, since the 

parameter variation, unbalanced loads and power line 

impedance are inevitable. This section summarizes the main 

reasons which significantly cause the imbalance of equivalent 

grid impedance. 
 

A. Unbalanced Loads [21] and Power Line Impedance 

Fig. 1 illustrates the topology of the three-phase grid-tied 

inverter with unbalanced loads connected to PCC. Za, Zb, Zc 

and ZL represent the three-phase unbalanced load and single-

phase load, respectively. ui, eg are inverter output voltage and 

grid voltage. Z1, Z2, Z3 are the impedances of inverter-side 

inductor, filter capacitor and grid-side inductor, respectively. 

iga, igb, igc are grid-injected currents. Zga, Zgb, Zgc denote the 

unbalanced power line impedance of per-phase. It is obvious 

that the equivalent grid impedance is unbalanced, and one can 

easily derive the equivalent standard model as shown in Fig. 2, 

where ZLga, ZLgb and ZLgc represent the unbalanced equivalent 

grid impedance. 
 
B. Unbalanced Equivalent Grid Impedance Caused by Single-

Phase Grid-Tied Inverters Connected to PCC 

A three-phase distributed power grid system may contain a 

number of single-phase grid-tied inverters. Fig. 3 presents the 

topology of three-phase distributed power grid with M-

paralleled single-phase grid-tied inverters connected to Phase 

C. In which, the M-paralleled single-phase grid-tied inverters 

are described with the Norton equivalent model. In Fig. 3, Ici 

(i=1…M), IcS denote the currents of each single-phase grid-

tied inverter and the sum of Ici, respectively; Yci (i=1…M), YcS 

denote the output admittances of each single-phase grid-tied  
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Fig. 4. The equivalent model of three-phase distributed power grid with M1-, 
M2- and M3-paralleled single-phase grid-tied inverters connected to Phases A, 

B and C, respectively. 

inverter and the sum of Yci, respectively. In order to 

conveniently reveal the relationship between the equivalent 

grid impedance and M-paralleled single-phase grid-tied 

inverters, the equivalent model in Fig. 3(b) is transformed into 

the standard model with unbalanced grid impedance in Fig. 2, 

where 

Lga

Lgb

2 ic 1 2 c gc c

Lgc

2 ic c 1 2 c ga c gb c

3 [3 ( ) ] ( )

3 (1 ) ( )(2 )

g

g

g

g

g g

Z Z

Z Z

Z u Z Z Z Z I e Y T
Z Z

Z u Y Z Z Z Z I e Y e Y T

 

   


 
      
  
      

 

(1) 
where 

1 2 1 3 2 3Z Z Z Z Z Z Z   , 
g gc 1 2( 3 )( )T e e Z Z   . 

It can be obtained from (1) that the M-paralleled single-

phase grid-tied inverters connected to Phase C will 

significantly change its grid impedance, while the equivalent 

grid impedances of Phases A and B remain unchanged, which 

forces the balanced grid impedance into unbalanced one. This 

fact indicates that the single-phase grid-tied inverters 

connected to PCC can result in the equivalent unbalanced grid 

impedance. Additionally, in practice, the number M of the 

single-phase grid-tied inverters connected to Phase C may 

vary, which results in IcSand YcSvarying, too. Consequently, 

according to (1), ZLgc varies widely, as well. 

Further, the more complicated case is considered. In Fig. 4, 

M1-, M2- and M3-paralleled single-phase grid-tied inverters 

are connected to Phases A, B and C, respectively. IaS IbSand 

IcS denote the currents generated by the single-phase grid-tied 

inverters connected to Phases A, B and C, respectively; YaS 

YbS and YcS represent the output admittances of single-phase 

grid-tied inverters connected to per-phase. Then, the 

equivalent grid impedance can be deduced as 

2 ia a ga a 1 2 g

Lga

2 ia a 1 2 a gb a gc a

2 ib b gb b 1 2 g

Lgb

2 ib b 1 2 b ga b

[3 3 ( ) ( ) ( ) ]

3 (1 ) ( )(3 )

[3 3 ( ) ( ) ( ) ]

3 (1 ) ( )(3

g a g

g g a

g b g

g g

Z u Z I e Y Z Z Z I e Y T Z
Z

Z u Y Z Z Z Z I I e Y e Y T

Z u Z I e Y Z Z Z I e Y T Z
Z

Z u Y Z Z Z Z I I e Y

   

    

   

   

       


      

       


      gc b

2 ic c gc c 1 2 g

Lgc

2 ic c 1 2 c ga c gb c

)

[3 3 ( ) ( ) ( ) ]

3 (1 ) ( )(3 )

b

g c g

g g c

e Y T

Z u Z I e Y Z Z Z I e Y T Z
Z

Z u Y Z Z Z Z I I e Y e Y T



   

    









        
 
       

(2) 

where a b cI I I I      , g Σ ga aΣ gb bΣ gc cΣe Y e Y e Y e Y   , 

ia ib ic 0u u u   , g gi 1 2( 3 )( ) , ,iT e e Z Z i a b c     and 

g ga gb gce e e e    . 
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Fig. 5. The topology of N-paralleled grid-tied inverters. 

In practical applications, the numbers M1, M2 and M3 of 

the single-phase grid-tied inverters connected to Phases A, B 

and C are generally different, thus the currents IaS IbSand IcS 

and output admittances YaS YbS and YcS are different as well. 

According to (2), the equivalent grid impedance is unbalanced. 

Similarly, the number M1, M2 and M3 may vary in practical 

applications, which leads to ZLga, ZLgb, and ZLgc wide variation, 

as well. Thus, the controller of three-phase grid-tied inverter 

applied in this case needs to be elaborately designed to adapt 

the varying and unbalanced grid impedance. 
 

C. Unbalanced Equivalent Grid Impedance Amplified by the 

N-Paralleled Grid-Tied Inverters 

  Next, a set of N-paralleled grid-tied inverters with an LCL 

filter is discussed. The dynamic of these inverters is coupled 

due to the unbalanced grid impedance. Fig. 5 presents the 

topology of N-paralleled grid-tied inverters. It is reasonable to 

assume that all the installed inverters are identical, not only 

their impedances, but also their hardware and software. In this 

scenario, the output voltages of all inverters may be 

considered equal, i.e., uiaj=uia1, uibj=uib1 and uicj=uic1 (j=2…N). 

And then, according to the superposition principle and 

Thévenin equivalent circuits [22], one can transfer the circuit 

in Fig. 5 into the equivalent circuit in Fig. 2, in which 

Lga ga

Lgb gb

Lgc gc

Z N Z

Z N Z

Z N Z

  


 


 

.                           (3) 

It is found that an equivalent single inverter whose 

equivalent grid impedance is N times bigger represents the N 

inverters. Thus, the unbalanced power line impedance will be 

significantly amplified by the N-paralleled grid-tied inverters. 

 

III. ISSUES CAUSED BY LCL FILTER-BASED GRID-TIED 

INVERTER UNDER UNBALANCED GRID IMPEDANCE 

 

A. System Description 

Fig. 6 depicts a three-phase voltage-source inverter 

connected into the grid under unbalanced grid impedance 

through an LCL filter. L1 is the inverter-side inductor, C is the  

C
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Fig. 6. Topology and control scheme of three-phase LCL-type grid-tied 

inverter under unbalanced grid impedance. 

 
TABLE I 

PARAMETERS OF THE SYSTEM 

Symbol Description Value

ge Grid voltage 220 V(RMS)

dcU DC-link voltage 700 V

1L Inverter-side inductor 2.4 mH

2L Grid-side inductor 2.4 mH

C Filter capacitor 2 F

gaL Impedance of Phase A 4 mH

gbL Impedance of Phase B

gcL Impedance of Phase C [4 mH, 8 mH]

0f Grid frequency 50 Hz

swf Switching frequency 10 kHz

sf Sampling frequency 10 kHz

dR Damping resistor 5 

4 mH

 
filter capacitor, L2 is the grid-side inductor and Rd is the 

damping resistor. iga, igb, igc are the grid-injected currents, Udc, 

uiabc and ugabc, are DC-link, inverter output and PCC voltages. 

The grid voltage eg behaves as a disturbance, which is 

considered to be zero when describing the modeling and 

control. Lga, Lgb and Lgc denote the per-phase equivalent grid 

impedance, respectively. Assuming that there is a 120-kW 

system, and 20 sets of 220 V/50 Hz/6 kW paralleled inverters 

are connected to a 120-kVA grid power transformer through 

200-m power line. Thus, the short-circuit impedance Zsc and 

the cable impedance the Zl can be determined by: 

1) For a 120-kVA grid power transformer, the short-

circuit impedance Zsc is 0.15 mH (4%). 

2) The cable impedance is 0.25 H/m [15]. The 200-m 

power line indicates that Zl is 0.05 mH. 

Therefore the grid impedance is calculated as 0.2 mH. Due 

to the parameter shift and unbalanced line impedance, we 

assume that the grid impedance of Phase C varies in [0.2 mH, 

0.4 mH]. According to (3), the unbalanced equivalent grid 

impedance can be determined. TABLE I presents the 

parameters of the system under study. Apparently, the greater 

value of Lgc, the more severe imbalance of the grid impedance. 
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Fig. 7. Block diagram of the three-phase grid-tied inverter under unbalanced 

grid impedance. 

Note that the three-phase grid-tied inverter is an MIMO 

system. The relationship between the grid-injected currents 

and inverter output voltages can be written as: 

ga 11 12 13 ia

g i gb 21 22 23 ib

31 32 33 icgc 

  

( ) ( ) ( )   

  

i Y Y Y u

I s G s U s i Y Y Y u

Y Y Y ui

     
     

         
     

    

      (4) 

where Ig(s)=[iga, igb, igc]T, Ui(s)=[uia, uib, uic]T. G(s) is a 3×3 

admittance matrix, depicting the influence of per-phase voltage 

on per-phase current. According to the superposition principle, 

Yij (i, j=1, 2, 3) can be derived, and non-diagonal elements Y12 

=Y21, Y13 = Y31, Y23 = Y32. The detailed expressions of Yij are 

given in Appendix A1.3. 

The control scheme presented in Fig. 6 is developed and 

analyzed in the stationary reference (αβ) frame. 

Correspondingly, substituting Clarke transformation matrix 

into (4), the grid-injected currents and inverter output voltages 

are transformed to αβ frame as follows: 

gα iααα αβ

gαβγ αβγ iαβγ gβ βα ββ iβ

gγ iγ

( ) g ( ) 0

( )= ( ) ( ) ( ) g ( ) 0

0 0 0

i ug s s

I s G s U s i g s s u

i u

    
    

      
    

    

 

   (5) 

where gαα(s), gββ(s), gαβ(s) and gβα(s) are presented in 

Appendix A1.4. 

Obviously, since the  components of the transfer matrix 

Gαβ(s) are equal to zero, which can be omitted, the admittance 

matrix G(s) in (4) is transformed from a 3×3 transfer matrix to 

a 2×2 transfer matrix Gαβ(s), i.e. 

gα iααα αβ

gαβ αβ iαβ

βα ββ iβgβ

( ) g ( )
( )= ( ) ( )

( ) g ( )

i ug s s
I s G s U s

g s s ui

    
       

   

. (6) 

 Hence, the three-phase grid-tied inverter system under 

unbalanced grid impedance can be seen as a standard 2-intput 

2-output multivariable system, whose closed-loop block 

diagram with a diagonal controller Gc(s) is shown in Fig. 7. 

Ginv(s) is the transfer function of the PWM inverter [23]. In 

this paper, the three-phase sine-triangle pulse-width 

modulation is adopted, thus Ginv(s) can be expressed as: 

dc

inv

tri

( )
2

U
G s

V
                                 (7) 

where Vtri is the amplitude of the triangle carrier. 

Gdel(s) is the digital time delay, including the computational 

delay and modulation delay [9], and it is commonly expressed 

as 

del ( ) sT s
G s e


                               (8) 

where Ts is the sampling period, and λ is the delay time 

normalized with Ts. The normal value of λ is selected as 1 or 

1.5 in a real operation [24]. 

In this paper, the proportional resonant regulator with a 

harmonic compensator (PR+HC regulator) is adopted as the 

current controller. Thus, the diagonal controller Gc(s) is 

defined as 

cα

cβ

iαh

pα 2 2
1,3,5,7,9 0

iβh

pβ 2 2
1,3,5,7,9 0

( )    
( )

        ( )

( )
        

                        
( )

c

h

h

G s
G s

G s

K s
K

s h

K s
K

s h









 
  
 

 
 

 
 

 
 





   (9) 

where 0 is the grid angular frequency; Kp and Kp are the 

proportional gains; Kih and Kih are the resonant gains for the 

h-order harmonic. 

It should be pointed out that the effect of PLL and coupling 

between the PCC voltage ugabc and grid-injected current igabc 

have been neglected in this paper. According to [25], the 

dynamics of the PLL and the coupling effect between ugabc and 

igabc significantly decrease as the grid stiffness (which is 

characterized by the short-circuit ratio, SCR) increases. Under 

the stiff grid condition (SCR>3), when analyzing the stability 

and tuning the control parameters, the impact of PLL and 

coupling between ugabc and igabc due to grid impedance can be 

ignored [26], [27]. In this paper, under the study with 

Lga=Lgb=4 mH, Lgc=8 mH, the SCR is equal to 13, which 

indicates that the grid can be considered as a stiff grid. Thus, 

based on the stiff grid condition, it is reasonable and 

acceptable to neglect the effect of PLL and coupling between 

ugabc and igabc. 

 

B. Significant Issues Raised by Unbalanced Grid Impedance 

Fig. 8 shows the Bode plots of the gαα(s), gββ(s), gαβ(s) and 

gβα(s) defined in (5) with Rd=0 and unbalanced grid impedance. 

It can be observed that there exist two resonant frequencies, 

which are expressed as 

2

1

1

1

2

1

2

1

3

3

res

res

A L B A B

B L C

A L B A B

B L C





   


 

   


 

                (10) 

where 23 ga gb gcA L L L L    , 

2 2 2 2 2 2( )( ) ( )( ) ( )( )ga gb ga gc gb gcB L L L L L L L L L L L L         . 

Distinctly, the multiple resonant behavior makes it much 

more complicated to precisely design high-performance 

current controller.  In addition, the resonances appear in the 

coupling terms at the same time, thus the stability may 

deteriorate with the loop interaction under the unbalanced grid 

impedance condition. These indicate that the stability of the s- 
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Fig. 8. Bode plots of each component of admittance matrix G(s) under 

unbalanced grid impedance. (a) Bode plots of gαα(s), gββ(s). (b) Bode plots of 

gαβ(s) and gβα(s). 

ystem will be subject to multiple resonant behavior and loop 

cross-coupling. Then, a series of issues arise: 

(a.1)  Precise design of the current controller. 

(a.2)  Stability evaluation of this highly coupled system. 

(a.3)  Quantification of the interaction effect superimposed on 

each controlled loop. 

Traditionally, the system is assumed symmetrical or the 

coupling terms gαβ(s) and gβα(s) are neglected when analyzing 

the stability and designing the controller. Therefore, the three-

phase grid-tied inverter can be directly simplified as two SISO 

subsystems and the Bode diagram or root locus method can be 

easily applied to analyze the stability and tune the controller 

[28], [29]. However, this may be infeasible under the 

unbalanced grid impedance since the simplification will 

directly ignore the impact of the cross-coupling terms on the 

grid-injected current dynamics, which may bring about 

imprecise assessment. It is, therefore, vital to develop a simple 

and effective analysis method on the stability, robustness and 

cross-coupling under the unbalanced grid impedance condition. 
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ui 

iref_gα 

Gcα(s) Gdel(s) Ginv(s) gαα(s)

gβα(s)
-Gcβ(s)Gdel(s)Ginv(s)

1+Gcβ(s)Gdel(s)Ginv(s)gββ(s)

iref_gβ Gcβ(s)Gdel(s)Ginv(s)

1+Gcβ(s)Gdel(s)Ginv(s)gββ(s)
gαβ(s)

disβ

Channel α

gαβ(s)

α_Plant

 
(a) 

gββ(s)
iref_gβ

ui

Gdel(s)

igβ

Gcβ(s) Ginv(s)

gαβ(s)

iref_gα

gβα(s)

-Gcα(s)Gdel(s)Ginv(s)

1+Gcα(s)Gdel(s)Ginv(s)gαα(s)

Gcα(s)Gdel(s)Ginv(s)

1+Gcα(s)Gdel(s)Ginv(s)gαα(s)

disα

Channel β

gβα(s)

β_plant

 
(b) 

Fig. 9. The equivalent individual channel representation. (a) Channel α in α-
axis. (b) Channel β in β-axis. 

IV. PROPOSED PRECISE ANALYSIS AND DESIGN METHOD 

BASED ON ICAD 

 

To address the aforementioned issues, this paper proposes a 

precise analysis and design method based on ICAD for three-

phase grid-tied inverter under the unbalanced grid impedance. 

The ICAD is a frequency domain-oriented framework [30], 

[31], which can be utilized to investigate the potential and 

limitations for feedback design of MIMO system, formulate a 

preferable analytical structure and provide a solution 

methodology for the stability evaluation [32]-[34]. More 

details could be found in [30]-[35], which fall beyond the 

scope of this paper. 

 

A. Analysis Based on ICAD 

According to the block diagram in Fig. 7, the forward signal 

transmission from iref_gα(s) to igα(s) follows two parallel paths: 

one directly via gαα(s); the other through gβα(s), the bottom 

feedback subsystem, and gαβ(s). In addition, it can be found 

that the forward cross-signal transmission from iref_gβ(s) to igα(s) 

is through the bottom feedback subsystem and gαβ(s). These 

signal transmissions from iref_gα(s) to igα(s) and iref_gβ(s) to igα(s) 

are restructured as depicted in Fig. 9(a), which is denoted the 

individual channel α, together with the additive signal disβ(s). 

Likewise, the individual channel β from iref_gβ(s) to igβ(s), 

together with the additive signal disα(s), is represented in Fig. 

9(b). 

Hence, the 2×2 MIMO system is then decomposed into two 

SISO subsystems. It enables to design two separated SISO 

subsystems instead of applying multivariable control theory 

for analysis and design of MIMO systems. The generalized 

plant of each SISO subsystem is expressed as 

βα αβ cβ del inv

αplant inv αα

cβ del inv ββ

αβ βα cα del inv

βplant inv ββ

cα del inv αα

( ) ( ) ( ) ( ) ( )
( )= ( )( ( ) )

1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )= ( )( ( ) )

1 ( ) ( ) ( ) ( )

g s g s G s G s G s
G s G s g s

G s G s G s g s

g s g s G s G s G s
G s G s g s
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It is worth noting that there is no assumption or loss of 

multivariable information when deriving the equivalent 

individual channel representation, which is a significant 

advantage over the traditional design methods, where the loop 

interactions are assumed very small and negligible. 

Further, the open-loop transfer functions of channels α and β 

can be represented as 

α cα del αplant

cα del inv αα β

( )= ( ) ( ) ( )

       ( ) ( ) ( ) ( )(1 γ( ) ( ))

T s G s G s G s

G s G s G s g s s h s 
      (12) 

   
β cα del βplant

cβ del inv ββ α

( )= ( ) ( ) ( )

       ( ) ( ) ( ) ( )(1 γ( ) ( ))

T s G s G s G s

G s G s G s g s s h s 
      (13) 

where 

αβ βα

αα ββ

( ) ( )
γ( )

( ) ( )

g s g s
s

g s g s
  ,                                (14) 

cα del inv αα

α

cα del inv αα

( ) ( ) ( ) ( )
( )

1 ( ) ( ) ( ) ( )

G s G s G s g s
h s

G s G s G s g s



,                 (15) 

cβ del inv ββ

β

cβ del inv ββ

( ) ( ) ( ) ( )
( )

1 ( ) ( ) ( ) ( )

G s G s G s g s
h s

G s G s G s g s



.                 (16) 

In (14), γ(s) is called the multivariable structure function 

(MSF) [32], whose magnitude quantifies the cross-coupling 

between channels α and β. γ(s) inherently reveals important 

natures on the structural robustness. The structural robustness 

can be guaranteed if γ(s) complies the following constrain 

conditions: 

(b.1) γ(s) has no right-hand plane poles. 

(b.2) The Nyquist plot of γ(s) does not encircle nor pass near 

the point (1, 0). 

If the Nyquist plot of γ(s) crosses near point (1, 0), the 

structural robustness is poor [33]. Thus, to achieve strong 

robustness, the γ(s) is required not to encircle nor pass near (1, 

0). 

 

B. Enhance the Structural Robustness by Utilizing the 

Passive Damper Rd 

As discussed earlier, the (b.1) and (b.2) can be utilized to 

assess the structural robustness. It is easy to prove that (b.1) is 

satisfied. Then, it is necessary to reckon the closeness of γ(s) to 

(1, 0) to evaluate the structural robustness, since the proximity 

of γ(s) to (1, 0) in the Nyquist plot demonstrates to what extent 

the plant structure is sensitive to uncertainty. To this end, 

consider γ(s) evaluated at s=jw as follows: 

n n

d d

Re Im
γ( )=

Re Im

j
jw

j




                               (17) 

where 
4 2 2

d 1 2 3 4Re ( )dk k R k k     , 

3

d 5 6Im d dk R k R    , 

4 2 2

n 7 8 9 10Re ( )dk k R k k     , 

3

n 11 12Im d dk R k R    , 

and k1 - k12 are real positive constants. Among them, k1 and k7 

will be used next, which are given as follows: 
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Fig. 10. Nyquist plots of γ(s) with different values of Lgc and a fixed Rd. 
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Then, the argument of γ(s) can be derived as 

1 1 dn

n d

ImIm
arg[γ( )] tan ( ) tan ( )

Re Re
jw    .              (19) 

Thus, 

n

n

d

d

Im
lim( ) 0

Re

Im
lim( ) 0

Re














 


 lim(arg[γ( )]) 0jw


  .             (20) 

Correspondingly, the magnitude of γ(s) yields 

7

21

2 2

lim γ( )

( )
=

4 (3 2 2 2 ) ( )(4 )

gb gc

ga gb gc gb gc ga gb gc

k
jw

k
L L

L L L L L L L L L L






      

. 

(21) 

Here, a structural robustness measure MSMF is defined as 

MSF lim γ( )M jw


 .                              (22) 

It can be easily observed from (20)-(22) that the Nyquist 

trajectory of γ(s) crosses the point (MMSF, 0). Thus, considering 

that the grid impedance of Phase C varies within a wide range 

as listed in TABLE I, when assessing the structural robustness, 

it is necessary to investigate the relationship between MMSF and 

Lgc. 

Obviously, according to (21), MSMF increases as the value of 

Lgc does. And MMSF has an upper limit, i.e. 

MSFlim 1
gcL

M


 .                                 (23) 

Hence, when Lgc tends to infinity, the Nyquist trajectory of 

γ(s) will cross the point (1, 0). However, this will never 

happen in an actual distributed power grid, which reveals that 

the trajectory will not encircle (1, 0). 

Based on the analysis above, a conclusion can be drawn that 

the greater value of Lgc, the closer the trajectory is to (1, 0), and 

the poorer structural robustness. In order to intuitively illustrate 

the observations, the Nyquist plots of γ(s) with different values 

of Lgc and a fixed Rd are presented in Fig. 10. 
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Fig. 11. Nyquist plots of γ(s) with different values of Rd and a fixed Lgc. 

It has been shown that the closeness to (1, 0) and gain 

margin of γ(s) decrease as the value of Lgc increases. The 

Nyquist trajectory passes near (1, 0), even crosses the non-

robust region under the great value of Lgc, which is consistent 

with the theoretical analysis. 

In order to improve the structural robustness, the passive 

damper Rd is adopted. Fig. 11 shows the Nyquist plots of γ(s) 

with different values of Rd and a fixed Lgc. It can be found that 

the greater value of Rd, the farther the trajectory is away from 

(1, 0) and non-robust region. Thus, the structural robustness 

enhances as the value of Rd increases. However, the increasing 

resistor Rd means more power losses and deterioration of high-

frequency harmonic attenuation ability. Here, an optimal Rd 

can be determined by the equivalent Q-factor method, which is 

given by 

1 E

E

E E

L
Q

R C
                                    (24) 

where QE is the equivalent Q-factor, RE , LE, and CE are the 

equivalent resistor, inductance, and capacitance of an 

equivalent series LCR circuit, respectively. 

As discussed earlier, there are two resonant frequencies 

under the unbalanced grid impedance. For convenience, it is 

simplified as two simple equivalent LCR series resonant 

circuits, whose equivalent inductances are 

1 2

1

2 2

2

1

1

E

res

E

res

L
w C

L
w C





.                                  (25) 

Further, the Rd can be optimized by calculating the Q-factor of 

the filter [36], [37], i.e. 

1

d1

1

2

d2

2

1

1

E

E

L
R

Q C

L
R

Q C





                                (26) 

where Q1, Q2 can be selected according to the well-established 

method in [36], [37]. Thus the Rd is finally obtained 

d1 d2

d
2

R R
R


  .                                 (27) 

 

TABLE II 

OPEN-LOOP CHANNEL ZEROES AND POLES 

 

Channel

α

Zeroes

cα β

        Zeroes of 

( )(1 γ( ) ( ))G s s h s

Poles

αα

αβ βα β cα

      Poles  of  ( ),

( ), ( ), ( ), ( )

g s

g s g s h s G s

β
cβ α

        Zeroes of

( )(1 γ( ) ( ))G s s h s
ββ

αβ βα α cβ

      Poles  of  ( ),

( ), ( ), ( ), ( )

g s

g s g s h s G s
 

For the strong robustness under the most severe imbalance 

of grid impedance, the Rd is recommended to be designed at 

Lgc=Lgcmax when taking the gain margin and the power losses 

into consideration. In this paper, Rd=5 is selected. 
 

C. Design the Proportional Gains Kp and Kp of the 

PR+HC Regulators 

Consider the open-loop transfer functions T(s) in (12), T(s) 

in (13) and determine the pole-zero structures of channels  

and , respectively. Assuming that there is no pole-zero 

cancellation within γ(s), it can be observed from (14) that the 

poles of γ(s) are the poles of gαβ(s) and gβα(s) and the zeroes of 

gαα(s) and gββ(s). In addition, the zeroes of hβ(s) in (16) include 

the zeroes of gββ(s). Hence, for channel α, the zeroes of T(s) 

are the zeroes of Gc(s)(1-γ(s)hβ(s)) since the zeroes of gαα(s) 

coincide with poles of γ(s), and the poles of T(s) are the poles 

of Gc(s), gαα(s), gαβ(s), gβα(s) and hβ(s). Channel β has a 

similar pole-zero structure. The open-loop zeroes and poles of 

both channels are summarized in TABLE II. 

According to Fig. 9(a), the closed-loop response of channel 

α is given by: 

gα α_cl ref_gα α ref_gβ( ) ( ) ( )+ ( ) ( )i s T s i s S s i s           (28) 

where 

 α

α_cl

α

( )
( )

1 ( )

T s
T s

T s



 ,                                      (29) 

αβ

α β

α ββ

( )1
( ) ( )

1 ( ) ( )

g s
S s h s

T s g s
  


.                  (30) 

It can be obtained from TABLE II that the poles of Tα_cl(s) 

and S(s) are the same and are the zeroes of (1+Tα(s)), since 

both the poles of Tα(s) and the poles of gαβ(s)h(s)/gββ(s) 

coincide with poles of (1+Tα(s)). If Gc(s) is a stable controller 

for channel , and the reference signals iref_gα(s) and iref_gβ(s) 

are stable, then both signals to ig(s), Tα_cl(s)iref_gα(s) and 

S(s)iref_gβ(s), respectively, are stable. Hence, S(s)iref_gβ(s) can 

be regarded as a normal disturbance acting on channel α. 

Similarly, according to Fig. 9(b), the closed-loop response 

of channel  is described as: 

gβ β_cl ref_gβ β ref_gα(s) ( ) ( )+ ( ) ( )i T s i s S s i s         (31) 

where 

β

β_cl

β

( )
( )

1 ( )

T s
T s

T s



,                                     (32) 
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Fig. 12. Bode plots of individual channels α and β. 
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The poles of T_cl(s) and S(s) are the same as the zeroes of 

(1+T(s)), and S(s)iref_g(s) can likewise be treated as a normal 

disturbance acting on channel β. 

Therefore, the global stability of control system depends 

only on the stability of the open-loop transfer functions Tα(s) 

and Tβ(s). Then, the classical concepts in SISO systems, such 

as Nyquist stability criterion, gain and phase margins, can be 

extended to the multivariable control system and be applied to 

analyze the stability and design the controller parameters, 

regardless of the loop interactions. 

Fig. 12 shows the Bode plots of individual channels α and β 

of the three-phase LCL-filter-based grid-tied inverter with 

Lga=Lgb ≠ Lgc and Gcα(s)=Gcβ(s). The bandwidths of the open-

loop transfer functions Tα(s), Tβ(s) are different and decrease 

as the value of Lgc increases. However, when designing the 

controller parameters, it should make the system meet with the 

requirements of gain margins GM and phase margins PM as 

well as the bandwidths of channels α and β. 

The current controller matrix Gc(s) is usually simplified as 

Kp(s) [15], since the resonance terms have a negligible 

influence on the stability of system, if the control bandwidth is 

well set. Then, the gain margins and phase margins of the 

channels α and β can be calculated as 
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    (35) 

where fc-fc-are the crossover frequencies of the channels α 

and β; fc180-fc180- are the frequencies when the phases of the 

channels α and β cross −180°. 

To achieve the desired control bandwidth, the minimum cr- 
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Fig. 13. Bode plot of the coupling from iref_gβ(s) to igα(s). 

ossover frequencies of the channels α and β should be set 

higher than the highest order harmonic compensator frequency 

under Lgc=Lgcmax. Then, the minimum control gains can be 

calculated as 

c_αmin

c_βmin

p iα_min αplant
2

pβ_ min βpla

nv

inv nt
2

( ) 1

( ) 1

f

f

K G j

K
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.         (36) 

Simultaneously, in order to guarantee the sufficient stability 

margins under Lgc=Lgcmin, the maximum control gains should 

be limited as 

pα_max pα_max1 pα_max2

pβ_max pβ_max1 pβ_max2

min( ,  )

min( ,  )

K K K

K K K




          (37) 

where Kp_max1, Kp_max2 are the controller gains that are 

determined by GM=3 dB, and PM=30 ° , respectively. 

Similarly, Kp_max1, Kp_max2 are the controller gains that are 

determined by GM=3 dB, and PM=30 ° , respectively. If 

Kp_max< Kp_min, Kp_max< Kp_min, it is necessary to cut down 

the desired control bandwidths until proper intervals are 

obtained. 

It should be pointed out that each channel has GM and PM, 

thus there are two GMs and PMs, denoted as GM, GM, PM 

and PMin the paper. As a whole system, the GM and PM are 

defined as the smaller of the two. 

 

D. Coupling Analysis 

For channel α, the cross-coupling between individual 

channels, according to (30),  can be fully evaluated by 

gα αβ

α β

ref_gβ α ββ

( ) ( )1
( ) ( )

( ) 1 ( ) ( )

i s g s
S s h s

i s T s g s
   


.      (38) 

Fig. 13 presents the Bode plots of the coupling from iref_gβ(s) 

to igα(s). It can be easily observed that the coupling magnitude 

increases as Lgc does, which means the more severe imbalance 

of grid impedance, the higher loop interaction, and the worst 

cross-coupling will occur at Lgc=Lgcmax. Additionally, it can 

also be seen that the coupling magnitude decreases as control 

gain Kp increases. If a controller Gc(s) is designed so that a 

high gain is achieved, this will guarantee the cross-coupling is 
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significantly low. Therefore, a conclusion can be drawn that a 

controller Gc(s) offering a high gain tends to reduce the 

coupling effect introduced by the unbalanced grid impedance. 

A proper Kpcan ensure the coupling magnitude is much less 

than -20 dB, especially at the low frequency range and the h-

order harmonic, meaning that the coupling is virtually 

nonexistent. The observations are similar when analyzing the 

coupling of the channel . 

 

V. DESIGN METHODS COMPARISON 

In this section, the two analysis and design methods are 

compared under the unbalanced grid impedance, which is  

assumed as Lga=Lgb=4 mH, Lgc=8 mH. Both methods are 

analyzed in the stationary αβ frame. Consider the following 

representations: 

 Method A: Directly neglecting the coupling terms gαβ(s) 

and gβα(s) defined in (5) when tuning current controller 

parameters. 

 Method B: The proposed method with no loss of the 

structural information. 

Here, T-i(s) (i=A and B) are defined to denote the -axis 

open-loop transfer functions of Methods i. Similarly, T-i(s) 

are defined to denote the -axis open-loop transfer functions 

of Methods i. Additionally, Kpα-i, Kpβ-i are proportional gains 

of - and -axis current controllers, respectively. 

To figure out the stable regions, the Nyquist diagrams of T- 

i(s) and T-i(s) are utilized. As well known, the Nyquist  

trajectory will cross point (-1, 0) when the critical gain is 

adopted. Thus, the stable regions of two methods can be 

summrized in TABLE III. 

It can be easily concluded from TABLE III that the 

different stability regions are figured out when the two 

analysis and design methods are adopted under unbalanced 

grid  impedance with Lga=Lgb=4 mH, Lgc=8 mH. Compared 

with the Method B (the proposed method), Method A has 

expanded the stable region. To verify the theoretical analysis 

above, two sets of proportional gains are selected as: 

( i ) Kpα=1.60, Kpβ=1.70, 

( ii ) Kpα=1.70, Kpβ=1.80. 

According to TABLE III, when ( i ) is adopted, Methods A 

and B predict that the system will be stable. And when ( ii ) is 

adopted, Method A infers the system will keep stable, contrary 

to what Method B deduces. The two cases will be validated by 

the simulation and experimental results, to demonstrate the 

effectiveness and accuracy of the Method B. 

 

VI. SIMULATION AND EXPERIMENTAL VERIFICATION  

 

A. Simulation Verification 

In order to verify the theoretical analysis, simulation tests 

on a 220 V/50 Hz/6 kW grid-tied inverter with LCL filter are 

carried out in MATLAB/Simulink, where the parameters are 

listed in TABLE I. The SPWM is adopted to generate the 

drive signals for the switches, and Ginv(s)=35. 

To highlight the significant advantage of the proposed 

method over the traditional design method, the stable regions 

summrized in TABLE III have been tested under Lga=Lgb=4  

TABLE III 

STABLE REGION ANALYSIS 
 

Method

A

B

Stable Region

Kp-A <1.78,  Kp-A <1.91

Kp-B <1.63,  Kp-B <1.74
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Fig. 14. The simulated waveform of the grid-injected current with Kp=1.60, 

Kp=1.70 and Lga=Lgb=4 mH, Lgc=8 mH. 
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Fig. 15. The simulated waveform of the grid-injected current with Kp=1.70, 

Kp=1.80 and Lga=Lgb=4 mH, Lgc=8 mH. 

mH, Lgc=8 mH. Firstly, the proportional gain ( i ): Kpα=1.60, 

Kpβ=1.70 is utilized. The simulated grid-injected current in Fig. 

14 shows the system operates stably, which agrees with the 

expectations of Methods A and B. Then, the proportional gain 

( ii ): Kpα=1.70, Kpβ=1.80 is adopted. The corresponding result 

of the grid-injected current is presented in Fig. 15. Evidently, 

the system oscillates seriously, which is consistent with the 

prediction of Method B, while contrary to what the Method A 

infers. Thus, the Method A cannot provide precise stability 

analysis when grid impedance is unbalanced. In addition, by 

comparing Method A with Method B, it can be obtained that 

when analyzing the stability and tuning the controller 

parameters, directly neglecting the coupling terms will lead to 

imprecise results. 

 

B. Experimental Verification 
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ig:[5A/div]

Time:[5ms/div]  
Fig. 16. The grid-injected current with Kpα=1.60, Kpβ=1.70 and Lga= Lgb=4 

mH, Lgc=8 mH. 

Phase A:[5A/div] Phase B:[5A/div]

Time:[5ms/div]  
(a) 

Phase C:[5A/div] Phase A:[5A/div]

Time:[5ms/div]  
(b) 

Fig. 17. The grid-injected current with Kpα=1.70, Kpβ=1.80 and Lga= Lgb=4 mH, 
Lgc=8 mH. (a) Phases A and B. (b) Phases A and C. 

In order to further confirm the effectiveness of proposed 

method, a 220 V/50 Hz/6 kW grid-tied inverter with LCL filter 

prototype is constructed based on the dSPACE DS 1202. The 

experimental parameters coincide with those utilized in 

simulations. To emulate the unbalanced grid impedance, the 

external inductors are utilized. 

To validate the accuracy of the proposed analysis method 

under unbalanced grid impedance (Lga=Lgb=4 mH, Lgc=8 mH), 

the different proportional gains ( i ): Kpα=1.60, Kpβ=1.70 and 

( ii ): Kpα=1.70, Kpβ=1.80 are adopted on the basis of previous 

analysis. Fig. 16 presents the waveform of the grid-

injected current when ( i ): Kpα=1.60, Kpβ=1.70 is utilized for 

current controllers. It is obvious that the system can remain 

stable, which matches what the Methods A and B have 

predicted. Further, Fig. 17(a) and Fig. 17(b) shows the 

waveforms of the grid-injected currents when ( ii ): Kpα=1.70, 

Kpβ=1.80 is used. It can be observed that the severe oscillation 

arises in the grid-injected current, which indicates instability 

and fully verifies the theoretical expectation of the Method B 

(the proposed method). Thus, a conclusion can be drawn that, 

compared with the conventional method (Method A), the 

proposed method can provide more precise stability analysis 

under the unbalanced grid impedance, since there is no 

assumption or loss of multivariable information when deriving 

the equivalent individual channel representation. 

 

VII. DISCUSSION 
 

From the simulation and experimental results, it can be 

observed that these are identical to the previous theoretical 

analysis. In addition, the following findings still need to be 

highlighted. 

 

A. Comparison with the Generalized Nyquist Criterion(GNC) 

As a contrast, the Generalized Nyquist Criterion (GNC) is 

applied for analyzing the stability under the unbalanced grid 

impedance with Lga=Lgb=4 mH, Lgc=8 mH. According to Fig. 7, 

the return-ratio matrix L(s) can be expressed as: 

α del invαα αβ

βα ββ β del inv

( ) ( ) ( )  ( ) g ( )
( )

( ) g ( )                                  ( ) ( ) ( )

c

c

G s G s G sg s s
L s

g s s G s G s G s

  
   
  

.

(39) 

Then, the eigenvalues of L(s) can be calculated as below: 

 1,2 2λ ( ) ( ) 0s I L s                          (40) 

where (s) are the eigenvalues of L(s). Obviously, there are 

two PMs and GMs, as well. Again, the PM and GM are 

defined as the smaller of the two when applying the GNC to 

eigenvalues of L(s). 

According to GNC, the eigenvalues (s)can be utilized to 

analyze the stability [20], [38]. If the Nyquist trajectories of 

(s)do not encircle the critical point (-1, 0), the system is 

stable. Therefore, the stable region deduced by GNC can be 

obtained as: Kpα-C<1.63, Kpβ-C<1.74, which is consistent with 

the proposed method. To verify the accuracy of the proposed 

method and GNC, the third set of the proportional gains is 

selected as: 

( iii ) Kp=1.63, Kp=1.74. 

Apparently, when ( iii ) Kp=1.63, Kp=1.74 is utilized, the 

proposed method and GNC predict that the system is critically 

stable. Fig. 18 shows the corresponding experimental 

waveform, which fully matches with the expectations of 

proposed method and GNC. Therefore, the proposed method 

is as accurate as the GNC, and both of them can precisely 

analyze the stability of the three-phase grid-tied inverter with 

LCL filter under unbalanced grid impedance. However, it is 

worth highlighting the superiority of the proposed method 

over the GNC in the stability analysis and controller 

parameters tuning: 
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ug:[150V/div]

ig:[10A/div]

Time:[5ms/div]  
Fig. 18. The experimental waveform when the system is critically stable with 

Kpα=1.63, Kpβ=1.74 and Lga= Lgb=4 mH, Lgc=8 mH. 
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Fig. 19. The Bode plots of T(s) and T(s) with Kp-=1.20, Kp-=1.32 under 

Lga=Lgb=4 mH, Lgc=8 mH. 

1) It is simpler to figure out the stability regions by 

adopting the proposed method. As proved in Section IV, 

Part C, the global stability of control system depends 

only on the stability of the open-loop transfer functions 

Tα(s) and Tβ(s). Thus, the stability regions of α- and β-

axis can be easily calculated out according to PMαβ=0 or 

GMαβ=0. However, The GNC needs to repeatedly utilize 

the trial-and-error method to adjust the controller gains 

Kp and Kpuntil the Nyquist trajectories of (s) cross 

the critical point (-1, 0). This process is time-consuming 

and brings high computational effort. 

2) It is easier to determine the optimal controller 

parameters by utilizing the proposed method. According 

to the Fig. 12, due to the unbalanced grid impedance, 

there exist significant differences between the 

characteristics of α- and β-axis. By independently tuning 

the controller parameters according to the proposed 

method, the gain and phase margins as well as the 

bandwidths of α- and β-axis are almost equal under 

unbalanced grid impedance, as depicted in Fig. 19. Thus 

the optimal parameters can be tuned and the effect of the 

differences between the characteristics of α- and β-axis 

on the control performance can be effectively attenuated.  

-1 -0.5 0 0.5 1
Real Axis

-1

-0.5

0

0.5

1

Im
ag

in
ar

y
 A

x
is

T(s)

T(s)

1/Kg



 
           (a) 

-1 -0.5 0 0.5 1
Real Axis

-1

-0.5

0

0.5

1 (s)

(s)

Im
ag

in
ar

y
 A

x
is

1/Kg



 
           (b) 

Fig. 20. The Nyquist plots of T(s), T(s) and (s) under Lga=Lgb=4 mH, 

Lgc=8 mH. (a) The Nyquist plots of T(s), T(s) with Kp-=1.20, Kp-=1.32 in 

Method B. (b) The Nyquist plots of  (s) with Kp-C=1.22, Kp-C=1.22 in 

Method C. 

TABLE IV 

PERFORMANCE COMPARISON 
 

Method

B

C

Phase A

THD

Phase B Phase C

1.42%1.35% 1.20%

1.69%1.54% 1.32%

 

While, the GNC cannot provide the open-loop transfer 

functions Tα(s) and Tβ(s), thus the gain and phase margins as 

well as the bandwidths of α- and β-axis are unknown. 

Although the gains Kp and Kpcan be determined according 

to the PM and GM of (s), it is complicated to judge 

whether Kp and Kp are optimal or not. For simplicity, in the 

existing method, for example in [20], the current controllers of 

the - and -axis are selected as the same, i.e. Gc(s)= Gc(s). 

However, this affects the control performance, which will be 

demonstrated in next part. 
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B. Comparison with the Existing Method Whose Controllers 

of - and -axis Are Designed as the Same 

In existing control strategy, the current controllers Gc(s) 

and Gc(s) are generally selected as the same, no matter the 

grid impedance is balanced or not. However, according to Fig. 

12, under the unbalanced grid impedance, when Gc(s)=Gc(s), 

the characteristics of the open-loop transfer functions Tα(s) 

and Tβ(s) are evidently different, which may bring adverse 

effect on the control performance. In this scenario, the 

comparison between the existing method with Gc(s)=Gc(s) 

(Method C) proposed in [20] and the proposed strategy has 

been carried out. 

As mentioned before, in this paper, there exist two GMs and 

PMs, denoted as GM, GM, PM and PMrespectively. It is 

worth noting that, by tuning independently current controllers 

of channels  and  according to the proposed strategy, GM 

can be equal approximately to GMand PM can be equal 

approximately to PMFig. 19 depicts the Bode plots of T(s) 

and T(s) with Kp-=1.20, Kp-=1.32 under Lga=Lgb=4 mH, 

Lgc=8 mH. It can be found that the gain margins and phase 

margins as well as the bandwidths of channels α and β are 

almost equal, while Method C cannot do the same. To 

evaluate the performance under the proposed strategy (Method 

B) and Method C, more tests have been conducted. 

Fig. 20(a) and Fig. 20(b) depict the Nyquist trajectories of 

T(s), T(s) with Kp-B=1.20, Kp-B=1.32 in Method B and 

Nyquist trajectories of (s) with Kp-C=1.22, Kp-C=1.22 in 

Method C. It can be observed that the gain margins GM, as 

well as the phase margins PM, are equal under both methods. 

Therefore, a fair performance comparison can be made. Table 

IV summarizes the total harmonic distortion (THD) of the 

each-phase grid-injected current. Apparently, the proposed 

method can achieve better control performance. That can be 

explained as follows: according to Fig. 12, when Gc(s)=Gc(s) 

in the Method C, the bandwidth and gain in the low frequency 

segment of T(s) are decayed compared with T(s), which 

finally reduces the ability to reject the low-frequency 

harmonics, while the Method B  has overcome this issue 

owing to the same bandwidths of T(s) and T(s). It should be 

pointed out that the more severe imbalance of the grid 

impedance, the more significant difference between the 

characteristics of T(s) and T(s). Thus, in the applications 

under severely unbalanced grid impedance, it is highly 

recommended to adopt the proposed method to analyze the 

stability and tune the controller parameters. 
 

C. Evaluation of the Structural Robustness under the 

Unbalanced Grid Impedance 

As depicted in Fig. 10, the greater value of Lgc, the closer 

the trajectory of (s) is to (1, 0). To assess the structural 

robustness when (s) crosses near (1, 0), the sensitivity to 

parameter uncertainty is evaluated under two cases: 

( I ) Lga=Lgb=4 mH, Lgc=8 mH, 

( II ) Lga=Lgb=4 mH, Lgc=20 mH. 

Obviously, the Nyquist trajectory of (s) under ( II ) is closer 

to (1, 0) than that under case ( I ), thus the case ( II ) is expect- 
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(a)                                      (b) 

Fig. 21. The simulated waveform of the grid-injected current with Lga=Lgb=4 

mH, Lgc=8 mH. (a) Under nominal condition. (b) Under parameter variation 
condition. 
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(a)                                      (b) 

Fig. 22. The simulated waveform of the grid-injected current with Lga=Lgb=4 

mH, Lgc=20 mH. (a) Under nominal condition. (b) Under parameter variation 
condition. 
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Fig. 23. The simulated waveform of the grid-injected current with Lga=Lgb=4 

mH, Lgc=20 mH under parameter variation condition when Rd=5 is adopted 
at t=0.1 s. 

ed to be more sensitive to parameter uncertainty. 

Fig. 21 presents the simulation results both under nominal 

condition and parameter variation of +30% in L1, +20% in C 

and +30% in L2 when the case ( I ) with Rd=0  is evaluated. 

It is easily observed that the robustness can be guaranteed. As 

a contrast, when the case ( II ) with Rd=0  is assessed, the 

simulation results both under nominal condition and parameter 

variation of +30% in L1, +20% in C and +30% in L2 are shown 

in Fig. 22. From Fig. 22(a) to Fig. 22(b), the system becomes 

unstable, indicating that it is sensitive to parameter uncertainty, 

which verifies the theoretical analysis. 

Further, according to Fig. 11, the passive damper Rd can 

improve the robustness. To confirm that, Rd=5  is inserted. 

Fig. 23 shows the simulated waveform of the grid-injected 

current with Lga=Lgb=4 mH, Lgc=20 mH under parameter 

variation condition when Rd=5 is adopted at t=0.1 s. It is 
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clear that the sensitivity issue has been relaxed owing to Rd, 

which completely matches with the theoretical analysis. 

 
 

VIII. CONCLUSION 

This paper proposes a precise stability analysis and 

controller design method based on ICAD for three-phase grid-

tied inverter with LCL filter under unbalanced grid impedance. 

The principle of the proposed method is deduced in detail. 

According to the theoretical analysis, the following 

conclusions can be drawn: 

1) When analyzing the stability and tuning the controller, 

directly neglecting the cross-coupling will lead to 

imprecise results. Compared with the traditional method 

which neglects the coupling, the proposed method can 

provide more precise stability analysis under unbalanced 

grid impedance, since there is no loss of structural 

information when deriving the equivalent individual 

channel representation. 

2) By using ICAD, the highly coupled MIMO system can 

be decomposed into SISO subsystems, where 

Bode/Nyquist techniques can be applied. Thus the 

stability analysis and controller design under unbalanced 

grid impedance have been simplified. 

3) By independently tuning the current controller 

parameters, the better control performance can be 

achieved, since the gain and phase margins as well as 

the bandwidths of - and -axis are almost equal under 

the unbalanced grid impedance. 

4) The unbalanced grid impedance deteriorates the 

structural robustness. And the more severe imbalance of 

grid impedance, the poorer structural robustness. The 

passive damping can significantly enhance the structural 

robustness. 

Simulations and experiments on a 220 V/50 Hz/6 kW LCL-

filter-based three-phase grid-tied inverter prototype have fully 

verified the effectiveness and accuracy of the proposed 

method. 

APPENDIX 
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