96 research outputs found

    Discovery and Selection of Certified Web Services Through Registry-Based Testing and Verification

    Get PDF
    Reliability and trust are fundamental prerequisites for the establishment of functional relationships among peers in a Collaborative Networked Organisation (CNO), especially in the context of Virtual Enterprises where economic benefits can be directly at stake. This paper presents a novel approach towards effective service discovery and selection that is no longer based on informal, ambiguous and potentially unreliable service descriptions, but on formal specifications that can be used to verify and certify the actual Web service implementations. We propose the use of Stream X-machines (SXMs) as a powerful modelling formalism for constructing the behavioural specification of a Web service, for performing verification through the generation of exhaustive test cases, and for performing validation through animation or model checking during service selection

    Improving Software Quality by Synergizing Effective Code Inspection and Regression Testing

    Get PDF
    Software quality assurance is an essential practice in software development and maintenance. Evolving software systems consistently and safely is challenging. All changes to a system must be comprehensively tested and inspected to gain confidence that the modified system behaves as intended. To detect software defects, developers often conduct quality assurance activities, such as regression testing and code review, after implementing or changing required functionalities. They commonly evaluate a program based on two complementary techniques: dynamic program analysis and static program analysis. Using an automated testing framework, developers typically discover program faults by observing program execution with test cases that encode required program behavior as well as represent defects. Unlike dynamic analysis, developers make sure of the program correctness without executing a program by static analysis. They understand source code through manual inspection or identify potential program faults with an automated tool for statically analyzing a program. By removing the boundaries between static and dynamic analysis, complementary strengths and weaknesses of both techniques can create unified analyses. For example, dynamic analysis is efficient and precise but it requires selection of test cases without guarantee that the test cases cover all possible program executions, and static analysis is conservative and sound but it produces less precise results due to its approximation of all possible behaviors that may perform at run time. Many dynamic and static techniques have been proposed, but testing a program involves substantial cost and risks and inspecting code change is tedious and error-prone. Our research addresses two fundamental problems in dynamic and static techniques. (1) To evaluate a program, developers are typically required to implement test cases and reuse them. As they develop more test cases for verifying new implementations, the execution cost of test cases increases accordingly. After every modification, they periodically conduct regression test to see whether the program executes without introducing new faults in the presence of program evolution. To reduce the time required to perform regression testing, developers should select an appropriate subset of the test suite with a guarantee of revealing faults as running entire test cases. Such regression testing selection techniques are still challenging as these methods also have substantial costs and risks and discard test cases that could detect faults. (2) As a less formal and more lightweight method than running a test suite, developers often conduct code reviews based on tool support; however, understanding context and changes is the key challenge of code reviews. While reviewing code changes—addressing one single issue—might not be difficult, it is extremely difficult to understand complex changes—including multiple issues such as bug fixes, refactorings, and new feature additions. Developers need to understand intermingled changes addressing multiple development issues, finding which region of the code changes deals with a particular issue. Although such changes do not cause trouble in implementation, investigating these changes becomes time-consuming and error-prone since the intertwined changes are loosely related, leading to difficulty in code reviews. To address the limitations outlined above, our research makes the following contributions. First, we present a model-based approach to efficiently build a regression test suite that facilitates Extended Finite State Machines (EFSMs). Changes to the system are performed at transition level by adding, deleting or replacing transition. Tests are a sequence of input and expected output messages with concrete parameter values over the supported data types. Fully-observable tests are introduced whose descriptions contain all the information about the transitions executed by the tests. An invariant characterizing fully observable tests is formulated such that a test is fully-observable whenever the invariant is a satisfiable formula. Incremental procedures are developed to efficiently evaluate the invariant and to select tests from a test suite that are guaranteed to exercise a given change when the tests run on a modified EFSM. Tests rendered unusable due to a change are also identified. Overlaps among the test descriptions are exploited to extend the approach to simultaneously select and discard multiple tests to alleviate the test selection costs. Although test regression selection problem is NP-hard [78], the experimental results show the cost of our test selection procedure is still acceptable and economical. Second, to support code review and regression testing, we present a technique, called ChgCutter. It helps developers understand and validate composite changes as follows. It interactively decomposes these complex, composite changes into atomic changes, builds related change subsets using program dependence relationships without syntactic violation, and safely selects only related test cases from the test suite to reduce the time to conduct regression testing. When a code reviewer selects a change region from both original and changed versions of a program, ChgCutter automatically identifies similar change regions based on the dependence analysis and the tree-based code search technique. By automatically applying a change to the identified regions in an original program version, ChgCutter generates a program version which is a syntactically correct version of program. Given a generated program version, it leverages a testing selection technique to select and run a subset of the test suite affected by a change automatically separated from mixed changes. Based on the iterative change selection process, there can be each different program version that include its separated change. Therefore, ChgCutter helps code reviewers inspect large, complex changes by effectively focusing on decomposed change subsets. In addition to assisting understanding a substantial change, the regression testing selection technique effectively discovers defects by validating each program version that contains a separated change subset. In the evaluation, ChgCutter analyzes 28 composite changes in four open source projects. It identifies related change subsets with 95.7% accuracy, and it selects test cases affected by these changes with 89.0% accuracy. Our results show that ChgCutter should help developers effectively inspect changes and validate modified applications during development

    Towards a new framework for TPM compliance testing

    Get PDF
    Trusted Computing Group (TCG) has proposed the Trusted Computing (TC) concept. Subsequently, TC becomes a common base for many new computing platforms, called Trusted Platform (TP) architecture (hardware and software) that, practically, has a built-in trusted hardware component mounted at the hardware layer and a corresponding trusted software component installed at the operating system level. The trusted hardware component is called Trusted Platform Module (TPM) whose specification has been issued by TCG group and it is implemented by the industry as a tamper- resistant integrated circuit. In practice, the security of an IT TPM-enabled system relies on the correctness of its mounted TPM. Thus, TPM testing is urgently needed to assist in building confidence of the users on the security functionality provided by the TPM. This paper presents the state of the art of the modelling methods being used in the TPM compliance testing. Finally, the paper proposes new framework criteria for TPM Testing that aim at increasing the quality of TPM testing

    Amorphous slicing of extended finite state machines

    Get PDF
    Slicing is useful for many Software Engineering applications and has been widely studied for three decades, but there has been comparatively little work on slicing Extended Finite State Machines (EFSMs). This paper introduces a set of dependency based EFSM slicing algorithms and an accompanying tool. We demonstrate that our algorithms are suitable for dependence based slicing. We use our tool to conduct experiments on ten EFSMs, including benchmarks and industrial EFSMs. Ours is the first empirical study of dependence based program slicing for EFSMs. Compared to the only previously published dependence based algorithm, our average slice is smaller 40% of the time and larger only 10% of the time, with an average slice size of 35% for termination insensitive slicing

    Validation and Verification of Safety-Critical Systems in Avionics

    Get PDF
    This research addresses the issues of safety-critical systems verification and validation. Safety-critical systems such as avionics systems are complex embedded systems. They are composed of several hardware and software components whose integration requires verification and testing in compliance with the Radio Technical Commission for Aeronautics standards and their supplements (RTCA DO-178C). Avionics software requires certification before its deployment into an aircraft system, and testing is mandatory for certification. Until now, the avionics industry has relied on expensive manual testing. The industry is searching for better (quicker and less costly) solutions. This research investigates formal verification and automatic test case generation approaches to enhance the quality of avionics software systems, ensure their conformity to the standard, and to provide artifacts that support their certification. The contributions of this thesis are in model-based automatic test case generations approaches that satisfy MC/DC criterion, and bidirectional requirement traceability between low-level requirements (LLRs) and test cases. In the first contribution, we integrate model-based verification of properties and automatic test case generation in a single framework. The system is modeled as an extended finite state machine model (EFSM) that supports both the verification of properties and automatic test case generation. The EFSM models the control and dataflow aspects of the system. For verification, we model the system and some properties and ensure that properties are correctly propagated to the implementation via mandatory testing. For testing, we extended an existing test case generation approach with MC/DC criterion to satisfy RTCA DO-178C requirements. Both local test cases for each component and global test cases for their integration are generated. The second contribution is a model checking-based approach for automatic test case generation. In the third contribution, we developed an EFSM-based approach that uses constraints solving to handle test case feasibility and addresses bidirectional requirements traceability between LLRs and test cases. Traceability elements are determined at a low-level of granularity, and then identified, linked to their source artifact, created, stored, and retrieved for several purposes. Requirements’ traceability has been extensively studied but not at the proposed low-level of granularity

    Model checking: Correct Web page navigations with browser behavior.

    Get PDF
    While providing better performance, transparency and expressiveness, the main features of the web technologies such as web caching, session and cookies, dynamically generated web pages etc. may also affect the correct understanding of the web applications running on top of them. From the viewpoint of formal verification and specification-based testing, this suggests that the formal model of the web application we use for static analysis or test case generation should contain the abstract behavior of the underlying web application environment. Here we consider the automated generation of such a model in terms of extended finite state machines from a given abstract description of a web application by incorporating the abstract behavioral model of the web browsers in the presence of session/cookies and dynamically generated web pages. The derived model can serve as the formal basis for both model checking and specification-based testing on the web applications where we take into account the effect of the internal caching mechanism to the correct accessibility of the web pages, which can be quite sensitive to the security of the information they carry. In order to check the correctness of the derived model against required properties, we provide the automated translation of the model into Promela. By applying SPIN on Promela models, we present experimental results on the evaluation of the proposed modeling in terms of scalability.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .Z543. Source: Masters Abstracts International, Volume: 43-05, page: 1761. Adviser: Jessica Chen. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Test case verification by model checking

    Get PDF
    Verification of a test case for testing the conformance of protocol implementations against the formal description of the protocol involves verifying three aspects of the test case: expected input/output test behavior, test verdicts, and the test purpose. We model the safety and liveness properties of a test case using branching time temporal logic. There are four types of safety properties: transmission safety, reception safety, synchronization safety, and verdict safety. We model a test purpose as a liveness property and give a set of notations to formally specify a test purpose. All these properties expressed as temporal formulas are verified using model checking on an extended state machine graph representing the composed behavior of a test case and protocol specification. This methodology is shown to be effective in finding errors in manually developed conformance test suites. © 1993 Kluwer Academic Publishers
    corecore