
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

Model checking: Correct Web page navigations with browser Model checking: Correct Web page navigations with browser

behavior. behavior.

Xiaoshan Zhao
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Zhao, Xiaoshan, "Model checking: Correct Web page navigations with browser behavior." (2004).
Electronic Theses and Dissertations. 2748.
https://scholar.uwindsor.ca/etd/2748

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2748?utm_source=scholar.uwindsor.ca%2Fetd%2F2748&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Model Checking

Correct Web Page Navigations with Browser Behavior

by

Xiaoshan Zhao

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2004

@ 2004 Xiaoshan Zhao

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-00166-6
Our file Notre reference
ISBN: 0-494-00166-6

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

) o (8 3 i ^

Model Checking
Correct Web Page Navigations with Browser Behavior

by

Xiaoshan Zhao
*

APPROVED BY:

^ H. Wu
Department of Electrical and Computer Engineering

L. Li '
School of Computer Science

J. Chen, Advisor
School of Computer Science

A.K. Aggarwal, Chair of Defense
School of Computer Science

Sep. 10, 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

While providing better performance, transparency and expressiveness, the main features

of the web technologies such as web caching, session and cookies, dynamically generated

web pages etc. may also affect the correct understanding of the web applications running

on top of them. From the viewpoint of formal verification and specification-based testing,

this suggests that the formal model of the web application we use for static analysis or

test case generation should contain the abstract behavior of the underlying web

application environment. Here we consider the automated generation of such a model in

terms of extended finite state machines from a given abstract description of a web

application by incorporating the abstract behavioral model of the web browsers in the

presence of session/cookies and dynamically generated web pages. The derived model

can serve as the formal basis for both model checking and specification-based testing on

the web applications where we take into account the effect of the internal caching

mechanism to the correct accessibility of the web pages, which can be quite sensitive to

the security of the information they carry. In order to check the correctness of the derived

model against required properties, we provide the automated translation of the model into

Promela. By applying SPIN on Promela models, we present experimental results on the

evaluation of the proposed modeling in terms of scalability.

Keywords: Hypertext, Hypermedia, Web Navigation, Model Checking, Web caching,

Verification, Extended Finite State Machine

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

First of all, I would like to thank my supervisor, Dr. Jessica Chen, for her invaluable

guidance and advices, for her enthusiastic encouragement and her great patience to me.

Without her help, the work presented here would not have been possible.

Next, I would like to thank my committee members, Dr Li, Dr. Aggarwal and Dr. Wu, for

spending their precious time to read this thesis and putting on their comments,

suggestions on the thesis work.

My special thanks go to Mr. Songtao Chen, Mrs. Hanmei Cui, Mr. Haitao Zheng and

other members of our research group, for their help.

Finally, I also would like to thank my wife Chong Weng for her understanding, patience

and support, and my daughter, Patricia, for giving me endless happiness.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract...iii
Acknowledgement..iv
List of Tables...vii
List of Figures...viii
1 Introduction and Problem Description.. 1

2 Related W orks..7
2.1 Web Application Design Models.. 7
2.2 Web Application Verification Models.. 8
2.3 Testing Models on Web Applications.. 8
2.4 Summary..10

3 Overview of Web Application... 11
3.1 Architecture of Web Applications.. 11
3.2 WebBrowser.. 12

3.2.1 Architecture...13
3.2.2 History Stack...14
3.2.3 Web Cache... 16
3.2.4 Cache Control...18
3.2.5 Session and Cookie... 19

3.3 URL.. 20
3.4 Web Form...20
3.5 Web Server and Dynamic Web Page.. 21

4 Modeling Web Page Navigations with Browser Behavior.................................. 24
4.1 Overview... 24
4.2 Web Page Navigation Design... 25

4.2.1 Assumptions... 25
4.2.2 Web Pages.. 25
4.2.3 Hyper Links..27
4.2.4 Session and Access Control..28
4.2.5 Navigation Design Model: An Example...29

4.3 Modeling Web Page Navigations with EFSM.. 29
4.3.1 Extended Finite State Machine (EFSM)...29
4.3.2 EFSM and Web Page Navigation...30
4.3.3 Adding Browser Behavior into the EFSM Model..............................31
4.3.4 Modeling History Stack..33
4.3.5 Modeling Browser Cache Repository Management...........................34
4.3.6 Constructing EFSM from Web Navigation Design...........................35
4.3.7 EFSM Conversion Rules...36

4.4 Summary... 40
5 Implementation of Extended Finite State Machine.. 41

5.1 Navigation Design of Web Applications.. 41

v

with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.1 Describing Navigation Design of Web Applications with XML 41
5.1.2 Object Model of Web Application Navigation Design...................... 43
5.1.3 Constructing Web Application Design Obj ect Model....................... 44

5.2 Constructing EFSM Navigation Model from Web Navigation Design 44
5.2.1 Overview..44
5.2.2 EFSM Object Model..45
5.2.3 Algorithm...46
5.2.4 Rules..47

6 Spin and Promela... 48
6.1 Overview... 48
6.2 Spin... 48
6.3 Promela Basics.. 50

6.3.1 Procsses, Channels and Variables.. 50
6.3.2 Executablility of Statements.. 52
6.3.3 Flow Control Statements.. 52
6.3.4 Atomic Sequences.. 54

6.4 Correctness Requirements.. 54
6.4.1 Assertions... 54
6.4.2 State Labels.. 55
6.4.3 Never Claims...56
6.4.4 Linear Temporal Logic... 57

7 Translating EFSM into Promela... 59
7.1 Expressing EFSM with Promela..59

7.1.1 Data Type Defintion and Variable Declaration................................ 59
7.1.2 Implementing EFSM with Promela... 60
7.1.3 Conditions.. 62
7.1.4 Post Actions... 63

7.2 Translation Algorithm.. 64
7.3 Expressing Correctness Requirements... 65

7.3.1 Assertion.. 65
7.3.2 EFSM Output and LTL Expression........................... 66
7.3.3 Error Tracing.. 67

8 Experiments and Evaluation... 68
8.1 Stack Size...68
8.2 Number of States.. 70
8.3 Number of Transitions.. 71

9 Conclusion and Future Work.. 73
9.1 Conclusion...73
9.2 Future Work.. 74

Bibliography.. 75
Appendix A A Sample Web Design... 78
Appendix B Translated Promela EFSM Model... 79
Vita Auctoris.. 94

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 4.1 Page attributes...27

Table 4.2 Attributes of the example of navigation design....................................... 29

Table 4.3 History stack operations.. 34

Table 4.4 Browser cache operations.. 35

Table 4.5 Transition rules 1... 37

Table 4.6 Transition rules II...38

Table 4.7 Transition rules III..39

Table 8.1 Stack size and verified states 1... 69

Table 8.2 Stack size and verified states II.. 70

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1.1 Illustration of the resubmit phenomenon... 2

Figure 1.2 Re-login phenomenon..3

Figure 3.1 Architecture of web application... 11

Figure 3.2 A Browser’s conceptual architecture.. 14

Figure 3.3 History stack operation.. 15

Figure 3.4 Internet Explorer 6.0 cache setting... 17

Figure 3.5 Workflow of web page request in a browser... 18

Figure 3.6 Conceptual architecture of web server... 22

Figure 4.1 Pages of a web application... 26

Figure 4.2 An example of a navigation design.. 29

Figure 4.3 An example of EFSM..30

Figure 4.4 Transitions for a hyperlink... 32

Figure 4.5 Add Back/Forward transitions for a hyperlink...................................... 32

Figure 5.1 XML Schema for web navigation design.. 42

Figure 5.2 An example of navigation design described in XML............................ 43

Figure 5.3 Object model of navigation design.. 43

Figure 5.4 EFSM based navigation model construction... 44

Figure 5.5 EFSM object model...45

Figure 6.1 The structure of Spin..49

Figure 7.1 EFSM with Promela.. 61

Figure 7.2 A state with multiple incoming transitions.. 63

Figure 8.1 History stack size experiment schemes .. 69

Figure 8.2 Stack size and verified states relation diagram 1.................................... 69

Figure 8.3 Stack size and verified states relation diagram II 70

Figure 8.4 Number of states and verified states.. 71

Figure 8.5 Number of transitions and verified states.. 71

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction and Problem Description

With the advance of networking and web technology, more and more information is

being posted into and retrieved from the web. We have web systems for all major areas

such as education systems, finance systems, heath systems, and transportation systems. In

fact, nowadays, it is hard to find an area where web technology has not been applied: it

has become the primary device for information sharing and retrieval.

A web system can be as simple as a set of static web pages for a course. It can also be as

complicated as a world wide banking system that handles all sorts of transaction requests

from different machines in different countries in multiple languages. The diversity and

the intensive use of the web systems are enabled by the advance of the emerging

technologies, such as web caching and dynamic web pages.

Web caching is a technique that stores cacheable web pages and sends back these pages

by intercepting the web browsers’ requested URLs. It can reduce the workload of the web

servers. When the web caches are placed close to the web browsers, the use of web

caching can significantly reduce the network traffic. From the user's viewpoint, the use of

a caching mechanism greatly reduces the response time.

Dynamic web pages are generated on-the-fly by web servers according to the requested

URLs. With the introduction of dynamic web pages, the use of web technology has

moved from simple sets of hyperlinked web pages to complex web applications. A

dynamic web page is the combination of a predefined page template and dynamic

contents that are obtained after a web server receives a specific web page request. The

interactions of a web application between its users and the application itself highly rely

on the dynamic content generated with different request parameters.

Dynamic web pages are often used together with cookie/session techniques. A cookie is a

small piece of data that is sent from a web server and stored in the local storage of a web

browser. When a web browser sends out a web page request, a cookie may be included in

the request message and the web server can retrieve the cookie from the message. The

use of cookies gives a web server the ability to trace the status of its client browsers and

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maintain the communication sessions with them. A web server could identify each

browser’s identity by issuing different cookies on the browsers that visit it.

While providing better performance, transparency and expressiveness, the above features

of the web technology have also raised some important issues and posed additional

difficulties on the validation of the correctness of the web applications built upon it. In

the presence of browser cache, for example, the users can interact not only with the web

pages but also with the web browser via the use of special buttons or menu-items such as

the back, forward, refresh buttons. The use of these buttons or menu-items may affect the

accessibility of the web pages, which can be quite sensitive to the security of the

information they carry. We give a couple of examples to show this point.

Let us assume that the web browser can manage the cached pages and provide the users

with the previously visited pages whenever enabled by the cookie.

The first example demonstrates the so-called resubmit phenomenon. Suppose in an on

line banking system, the user clicked the submit button on page A to confirm a

transaction and reached page B.

The system does not provide the acknowledgement on page B, so the user is not sure

whether the transaction is successful. As the back button is available, the user clicks on it

to get back to page A. Since page A is a cached one, it is identical to the previous one and

thus the user cannot notice any change of the information on it. Then the user may click

on the submit button again. While the user needs only one transaction, the banking

system will treat the two submit actions as different ones and process both of them.

oacK

1

1

ILxj

. I D (T) Submit

Submit |
Page A

(T) Submit
W

Page BW

Figure 1.1 Illustration of the resubmit phenomenon

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This phenomenon may not exhibit itself if there is no caching system involved: if the

pages are not cached, the user will have to go through a sequence of given links to reach

page A again, just like the first time. Along with the navigated pages, the user will

normally be able to observe the updated information, e.g. the updated account balance,

because the requests for the pages are always sent to the server side and re-generated. In

the presence of caching, on the other hand, when a user requests a previously visited

page, the information on the page will not be updated, and thus may cause confusion to

the user. The resubmit phenomenon is quite common especially in web applications that

involve on-line transactions, such as on-line shopping, on-line banking.

The second example demonstrates the so-called re-login phenomenon. Suppose the user

is required to login to view certain secured pages.

User Name
C” 1
Passworrd
1 1

^ 4^ Back

Submit

(T) Back

Submit

Page C
LSHflOJn 1

Page A
------------------------- ► t-aon Out 1

Page B

Figure 1.2 Re-login phenomenon

In page A, the user enters the user name and password, and clicks on the sign-in button.

Upon this click, the user name and password are sent to the web server for authentication.

When the authentication is passed, page B, a secure page, is loaded into the browser.

Suppose in page B, the user clicks on the sign-out button and page C is shown. Page C is

an insecure page and it also indicates that the user has signed out from the secured part of

the system successfully.

With the caching mechanism, the back button may be enabled, and thus the user can

actually click on it and can possibly view page B again, without re-entering the user name
and password. If this happens in an area where the machines can be publicly accessed,

e.g. public library, airport Internet zone, this will raise the issue that the information (such

as credit card number) contained in a secured page B may be viewed by the wrong users.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Problem description: The above examples show that a web application providing all

correct functionality by itself may however malfunction when it is put into its supporting

environment: the behavior of the web browsers may have an impact on the correctness of

the web applications.

Note that the behavior of the web browsers depends on how the web browser is

implemented and configured, whether the cookie is enabled, etc., and the web developers

have access to the configuration of the web browsers and cookies.

1. From the viewpoint of software design, this suggests that a web application

should be carefully designed with correct configuration of the web browsers as

well as some important properties of the web pages such as secured page,

cacheable page, etc. In the first example, the synchronization phenomenon can be

avoided if page A is defined as un-cacheable. In the second example, the re-login

phenomenon can be avoided if page B is defined as un-cacheable. In fact, this re

login phenomenon appears only in some applications. For example, it appears in

the current University of Windsor Web Mail System, but it does not exist in

Microsoft’s Hotmail.

2. From the viewpoint of validation, verification and specification-based testing, we

need to obtain a design specification that contains the full details of the correct

interactions between the users and the web system as a whole. This means, the

user’s possible interactions with the web browser should also be modeled and

reflected in the design specification.

There exists a gap between a design specification in item 1 and the one in item 2: While it

is reasonable to ask the web developers to provide the design specifications that contain

the correct configuration and page properties, it is too demanding to ask them for the

specification of the abstract behavior of the web application that subsumes the behavior

of the web browser.

Proposed solution: we consider the automated generation of the latter from the former. In

doing so, we provide a formal model of the behavior of web browsers in the presence of

cookies and dynamic web pages, with the focus on browser caching.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our model is abstracted from the implementations of existing commercial web browsers

such as Microsoft’s Internet Explorer, Netscape’s Navigator. Such a model is

incorporated into the design specification given by the web developers, so that it can be

used for the verification and specification-based testing of the web application.

We assume the availability of the design specification of the web application in terms of

page navigation diagrams. Such a page navigation diagram shows all the desired

possible navigations among the web pages and web page templates.

We also assume that each page is associated with some properties to define whether it is a

secured page, whether it is cacheable, whether it is an entry page, and whether its access

requires an open session.

Based on the information on such a diagram, we provide automated construction of an

extended finite state machine (EFSM)[17] that incorporates the behavior of the internal

caching mechanism of web browser into the description of the web applications.

EFSM is extended from FSM (Finite State Machine) [17] by adding trigger condition

onto each transition. It is a basic mechanism in modeling reactive system. An FSM

consists of states, inputs, outputs, transitions, and initial state. The behavior of a system

can be described with transitions of an FSM. A transition consists of start state, end state,

input and output. At the beginning of each transition, the machine is in the start state. An

input triggers the system from start state to end state and a value is output. An FSM can

be described as a directive graph including nodes, and edges. Each node stands for a state

of the FSM and a transition can be considered as a directive edge that connects two

nodes.

The derived model can serve as the formal basis for both model checking and

specification-based testing on the web applications where we take into account the affect

of the internal caching mechanism to the correct accessibility of the web pages. To

model-checking the correctness of the derived model against required properties, we

provide the automated translation of the model into Promela[14]. Thus, the conflicts to

the requirements in the design specification can be detected automatically by

SPIN[13][29] and a report can be generated. By applying SPIN, we present experimental

results on the evaluation of the proposed modeling in terms of scalability.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis consists of 9 chapters. Chapter 2 introduces previous works on modeling web

applications. Chapter 3 gives an outline of a web application including browser, web

server, and communication protocol. Chapter 4 presents our work on constructing the

verification model of web applications. Chapter 5 introduces the conversion from web

application navigation design to EFSM based on a set of rules. Chapter 6 gives a brief

introduction to model checking tool SPIN and modeling language Promela. Chapter 7

introduces the translation from EFSM to Promela. Chapter 8 presents our evaluation on

the methodology we propose. Chapter 9 gives the conclusion and future work.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Related Works

Our work is divided into three steps: constructing the verification model of a web

application, translating the verification model into PROMELA, and applying SPIN to

perform model checking. Obviously, establishing the model for a web application forms

the basis of our work. There are several approaches on modeling web applications,

concentrating on design, testing and verification. As UML is largely involved in the

design of web applications, several approaches adopted extended UML to model web

application design. Automata, graph, labeled transition systems are used in establishing

testing and verification models for web applications. We investigate the related modeling

works in three aspects, web application design, web application verification and web

application testing.

2.1 Web Application Design Models
The researches on the modeling methodologies for web application design are

concentrated on developing the notations to describe the navigation relations. Since UML

is widely adopted as modeling language during the development of an application,

several approaches try to extend UML to model the web navigation behaviors. Conallen

[8] proposed new stereotypes, «c lien t page» , «server page» , to model dynamic web

page generations. Gomez et al.[9] use NAD (Navigation Access Diagram) to model web

applications. Each NAD modeling element is an extended UML stereostype. Hennicker

and Koch [4] [12] [15] developed UWE (UML-based Web Engineering), a framework

for web application development with UML. UWE includes navigational classes and

these classes are inter-related with connection components, such as index, query, menu,

etc. Ceri [6] proposed a modeling language WebML, an XML based modeling language

for web application design. All WebML elements are notations described with XML. A

tool is developed to support WebML and a design could be converted WebML format

automatically. Besides the modeling methodologies above, statechart is used to model the

navigation behaviors for web applications, especially for frame-based web pages. Zheng

and Pong first introduced statechart to model hypertext user manual in [30]. Lieung et al.

[18] used statechart to model dynamic server page and frame-based web pages.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Web Application Verification Models
Sciascio et al. [27] [28] presents how to verify a web application with NuSMV and CTL.

The model of a web application is a web graph, which consists of nodes and arcs. In a

web graph, nodes include pages, links, and windows, and the arcs only connect all nodes.

The browsing from one page to another following a hyperlink includes at least three

nodes and two arcs. The first arc connects the start page to one of its hyperlinks, and the

second connects the hyperlink to the destination page. All the requirement properties are

written in CTL formulas. A symbolic model verifier, NuSMV, is applied after the web

application model and requirement properties are ready. The final results and counter

examples are reported. In order to make it easy to use model checking tool, a series

patters are developed.

Alfaro proposed a technique on model checking static web pages with p-calculus in [1].

The main purpose of model checking in [1] is to verify the properties of a web site with

pages that contain frames. A web site is considered as a web graph which consists of

webnodes and edges. The edges of the webgraph are page links. Each webnode is a tree

that contains URL pages as nodes and the edges of the tree are labeled by frame names.

The requirements are described in constructive p-calculus. A model checking tool,

MCWeb was developed. After model checking, the tool can report errors automatically,

such as broken links, duplicated frame names, non-hierarchical frame content, etc.

2.3 Testing Models on Web Applications
Ricca and Tonella [22] [23] proposed testing strategy on web site analysis through web

browser. A tool called ReWeb is developed to gather all web pages and their relations

within one web site, and a UML-based model for the web site is constructed by this

ReWeb. A testing tool, TestWeb, is responsible for testing the UML web application

model. Ricca and Tonella considered white-box testing on a web application. The testing

is mainly concentrated on web forms of a web application. A test case generation engine

inside TestWeb is used to generate test cases, and the generation is based on a reduced

graph by removing static web pages without forms in a navigation paths.

Kung, Liu and Hsia [16] use an ORD (Object Relation Diagram) based web application

testing model (WTM) for testing web applications. A WTM model of a web application

is created by reverse engineering on the source documents of it. The testing work is

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

divided into three parts: object perspective, behavior perspective and structure

perspective. Each part is tested separately. The object perspective of the WTM describes

the class structures of a web application including request, response, navigation and

redirection. The behavior perspective of the WTM focuses on page navigation, and page

navigation diagram (PND) derived from ORD is employed. Finally a navigation tree

started from the home page is constructed and the testing of the navigation behavior is

based on this PND. The structure perspective of the WTM is related to control flow and

data flow information of a web application. Thus block branch diagram (BBD) and

function cluster diagrams (FCD) are used respectively for describing control flow and

data flow.

Lucca and Penta [19] proposed a base-line testing strategy that creates a testing model by

adding browser statechart to a series of pages with inter-related hyperlinks. Lucca and

Penta considered the influence of web browser’s behaviors on a web application. Each

web browser contains buttons like back, forward and reload. A user’s click on one of

these buttons can force the browser to display the previously visited page or refresh the

current web page with the same URL. In order to test a web application with browser’s

behavior, a statechart of back and forward buttons is constructed with four states, BDFD

(Back Disable, Forward Disable), BEFD (Back Enable, Forward Disable), BEFE (Back

Enable, Forward Enable) and BDFE (Back Disable, Forward Enable). For each

navigation path, e.g. a base line, the testing model is a navigation tree generated by

adding the statechart of browser’s behavior. The root of the tree is the home page of the

web application, and each path of the tree is tested separately.

Graunke et al. adopted L-Calculus to model web form related web applications in [10].

Each web application in this model is divided into a single server and a single client. The

server contains a table that maps the requested URL to a process program. A client

consists of a current form web page, and all previously visited web pages. Each form

contains variables and the URL that the form data will be sent to. A set of rules is defined

that regulate the transitions from one page to another. This model is used to solve

communication problem and observer problem.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Beek and Mauw [5] used labelled transitions systems to model web applications and the

conformance testing is applied to this model. An MRRTS (Multi Request-Response

Transition Systems) in which request is considered as input and response is output, is

used. With this model, the navigation behaviors of a web application are modeled as URL

label series.

2.4 Summary
Most of modeling methodologies for web application design only consider navigations

among server pages. Although in [8] Connella models server page and client page, the

client page does not reflect the attributes of browser cache and history stack. In [10],

Graunke et al. introduce the formal model that integrates server page and client page, and

the previously visited web pages are modeled. These previously visited web pages are

URL series, and the browser behavior on controlling history stack and web cache is not

modeled. Lucca and Penta [19] considered that the browser behavior has influences on

the navigation behavior of a web application. According to our analysis on web browser,

although Lucca and Penta proposed a testing method considering browser behavior, the

browser model they used is not sufficient to describe the real browsers we use. It is

necessary to consider the browser cache and history stack on testing a web application.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Overview of Web Application

In this chapter we introduce the architecture of web applications, web communication

standards, web browser, and server side scripts for dynamic web generation.

3.1 Architecture of Web Applications

A web application is an interactive system that involves browsers, web servers, and

possibly other servers that provide services for data processing. Figure 3.1 shows the

architecture of a 3-tier web application

HTTP
Messages

Browser

Browser

Database

Web
Server

Application
Server

Figure 3.1 Architecture of web application

A web browser is a standard window application that displays web pages. Web browsers

provide a graphical interface that lets users navigate web pages by clicking hyperlinks,

toolbar buttons, or typing URLs (Universal Resource Locator)[25] in address text box. A

web page is uniquely identified by a URL in the Internet and a browser obtains web

pages by sending requests including URLs to web servers. After sending out a web page

request to a web server, a browser waits for the response message from the web server.

When the web browser receives a response message, it retrieves the HTML web page

embedded in the message and presents it. At the same time, the browser also saves the

URL and web page in its local directory.

A web server is responsible for monitoring the incoming request messages and replying

response messages with web pages according to the requests. When a request reaches a

web server, the web server retrieves the URL from the request message. This URL is

used to identify a unique web page in a web server. If the requested web page is a static

HTML web page stored in a directory of the web server, the server reads this HTML file,

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

encapsulates it in a response message and sends the message back to the requested web

browser. If the web server cannot locate a static web page in its local directory with the

URL, it passes the request URL to a dynamic web page generating module. Typically a

dynamic web page generating module consists of a dispatcher and page generating

procedures. The dispatcher receives the request URL and calls the corresponding

procedure to generate a web page. This newly created web page is sent to the web server,

and a response message that contains this new page is returned to the requested web

browser.

The web server’s ability on generating dynamic web pages forms the basis of modem

web applications. The interactions between web browsers and web servers highly rely on

dynamic web pages. The structure of a dynamic web page is the same as a static web

page. A static web page is written and stored in a web server’s local directory before it is

requested. A dynamic web page is generated after it is requested. In order to generate

dynamic web pages, a web server contains predefined procedures in a specific

programming language, such as ASP (Active Server Page), JSP (Java Server Page), etc.

Each procedure contains a page template that defines a web page’s layout, format, and

other static contents. While a procedure is called, a web page is assembled by adding

dynamic content into the predefined page template.

The dynamic content used for dynamic web page generation may depend on database

servers or distributed objects that encapsulate business logics. In Figure 3.1, the dynamic

content is provided by an application server, and this server is responsible for data

management and database operation.

3.2 Web Browser

A web browser is a client side application that works as user interface for a web

application. Actually a browser is a standard window application including title bar,

menu bar, tool bar, address bar and an area that presents web pages. A browser presents

HTML web pages and allows a user to navigate web pages in a web site. Besides

presenting web pages, a web browser maintains a local cache and a history stack. The use

of cache can significantly reduce response time and network traffic. History stack stores

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the recently visited URLs of the web pages, and when a user clicks “refresh”, “back”, or

“forward” button, a corresponding page is requested and displayed.

3.2.1 Architecture '
Figure 3.2 shows the conceptual architecture of a web browser. Conceptually, a web

browser consists of a browser module, a network interface module, an HTML parser, a

history stack and a local cache. The browser module is mainly responsible for presenting

a web page, and processing user navigation events. It also maintains a history stack for

reloading previously visited web pages. The reloading of a web page is activated by a

user clicking “refresh”, “back” or “forward” buttons in the browser’s toolbar area. The

HTML parser parses HTML web pages, and constructs an object model for each web

page. The presentation of a web page and the user's operations on it all rely on this object

model. The network interface module maintains communications between the browser

and all web servers. It generates HTTP[24] request messages and sends them to the

designated web servers. When response messages are received, the network interface

module retrieves the web pages embedded in response messages and performs operations

on its local cache according to the parameters associated with HTTP response messages.

A web browser uses HTTP to communicate with web servers through Internet. HTTP is a

stateless communication protocol that consists of two kinds of messages, request message

and response message. A request message is sent from the browser to a web server, and a

response message is transmitted from a web server to the browser who sends out the

request.

While a user clicks hyperlinks in a web page, “back”, or “forward” buttons in the

browser’s tool bar, the browser module obtains a URL from current web page or history

stack. This URL is passed onto the network interface module. The network interface

module tries to search the web page related to this URL from the browser’s local cache.

If the page is stored in the local cache as fresh page, the page is returned to HTML parser.

Otherwise, the network interface creates an HTTP request message including the URL,

and sends this request message to the designated web server. After receiving the response

message from the web server, the network interface retrieves the web page contained in it

and returns the web page to HTML parser. At the same time, it stores the web page into

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the browser’s local cache with expire-time stamp. The expire-time is stored in the head

part of the response message.

Request Response Internet

Browser CacheCache
Management

User Interface Object Model

HTTP
Management

Web Server 2Web Server 1 Web Server N

HTML Parser

History stack

Network Interface

Browser Module

Figure 3.2 A Browser’s conceptual architecture

3.2.2 History Stack
A browser’s history stack[ll] stores the previously visited URLs, and the stack is

maintained by the browser module. Generally speaking, the history stack is a kind of

stack with similar operations as normal stacks. A history stack maintains a stack pointer,

top position and bottom position. The values of these variables determine whether a back

or forward button can be enabled. Compared with normal stack, the stack pointer of

browser’s history stack can be moved back and forth if more than one item is stored in it.

When a browser starts up, its history stack is empty. The stack pointer points to nothing

and the top position and bottom position are set to a null value. At this time, the back and

forward button are disabled. After a URL is requested and a web page is received, the

URL is pushed into the stack and the stack pointer points to the newly inserted URL. The

top position and bottom position are set to their corresponding values.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The browser’s back and forward buttons are enabled or disabled according to how many

items are stored and the position of stack pointer. If the stack has more than 2 items and

the stack pointer does not point to the first URL stored in the history stack, the back

button is enabled. This means that there exists an item before the current item that the

stack pointer points to. At this time, a user can click the back button, and the stack pointer

will move from current position to its previous one. The URL stored in the position that

the stack pointer points to is retrieved and sent to network interface for requesting its

corresponding HTML web page. The page might be returned from local cache or the web

server that sent the page before. The use of local cache depends on the cache policy set in

the browser or HTTP cache controls that came with the received web page.

Similarly, the forward button is enabled when the stack has more than 2 items and the

stack pointer does not point to the top item in the history stack. The clicks on the forward

button can force the stack pointer moving from current position to its next one. The URL

that the stack pointer points to is used to request its corresponding web page.

When a user clicks on a “back” or “forward” button, the stack pointer moves back or

forth from current position. If a user clicks on a hyperlink or types a URL in the

browser’s address textbox, the URL of newly requested web page is pushed into the

history stack after the browser receives the web page successfully. Before the push

operation, all URLs above stack pointer’s current position are popped up, and after the

push operation, the stack pointer points to the top position of the stack.

-----► C C

B B -----► D

A A -----► A A

(a) (b) (c) (d)

Figure 3.3 History stack operation

Figure 3.3 gives an example of operations on history stack. Figure 3.3(a) shows that page

A’s URL A is pushed into the stack after receiving page A. The stack pointer points to A.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Figure 3.4(b), page B and C have been received and their URLs B and C are pushed

into the stack. In Figure 3.4(c), the user clicks back button twice, and the stack pointer

points to the first URL A. Because page A contains hyperlinks, after a user clicks a link

to page D in page A, page D’s URL is pushed into the stack on the position above A.

Before D is pushed into the stack, previous URLs B and C are popped up.

3.2.3 Web Cache
Web cache[20] is a manageable storage place that stores previously visited pages. If one

of these visited pages is requested again, the page can be retrieved from the web cache

instead of the web server. Since web cache is physically close to a client, the use of web

cache can reduce response time and network traffic for web page request.

There are two kinds of web caches: browser cache and proxy cache. A proxy cache is

located between a web server and a web browser. It provides web pages for a large

number of clients in its local network. All web page requests from these clients are

intercepted by a proxy which looks up the request pages in the proxy cache. If a

requested web page is stored in the cache and the page is considered as fresh according to

its expire-time, the page is returned to the requested web browser. Otherwise the request

is sent to the designated web server. After the proxy receives the cacheable web pages, it

stores these pages into its proxy cache and sends them to the requested browsers at the

same time. A browser cache has the same functions as a proxy cache and is maintained

by a web browser in its local directory. A browser cache only stores cacheable web pages

for a web browser.

A user can select a cache policy for the browser’s cache setting. Figure 3.4 shows a

browser cache setting in Microsoft’s Internet Explorer 6.0.

There are 4 options for checking cacheable pages for each Internet Explorer 6.0 web

browser. The first setting, “Every visit to the page”, forces the browser to check if a

previously visited web page has changed since last visit. If the page has changed, the

browser displays the new page and stores it in its local cache. “Every time you start

Internet Explorer” means in current session, all cacheable web pages are valid. Only the

pages requested in other sessions need to be checked from the web server when it is

requested. “Automatically” is the same as “Every time you start Internet Explorer”, but it

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is not limited to current session. If a previously visited page is stored in the local cache

and is fresh, there is no need to check any change if the page is fresh. The last one,

“Never”, means the browser does not need to check the web server for new contents of

the cacheable web pages.

Ched- fot newer ve»wons of stored pages'

I Every visit to the page

Every time you start Internet Explorer

Automatically;

- Temporary Internet files folder

Current location: C:\Documents and
5ettings\Administrator\Local j
5ettings\Temporary Internet Files\ j

Amount of clisk space to use : 1

'J--------------- I ™ I
I f i t i < i i « f « e i i i i i i i i f I

Move Folder... | View Files... j View Objects... j

O K | Cancel j

Figure 3.4 Internet Explorer 6.0 cache setting

The workflow of a page request within a browser is shown on Figure 3.5. At the

beginning, a browser receives a user’s requested URL for a web page. The requested

URL comes from hyperlinks on current web page, address text box by typing in, or from

history stack while a user clicks “back” or “forward” button.

If the requested page is already stored in the browser’s cache, the cacheable page is fresh,

and there is no need to check any change from the web server according to the browser’s

cache policy, the page is returned to the browser’s HTML parser directly.

If the current browser’s cache policy is set to check changes for this previously visited

web page, a request is sent to the web server. After the web server returns a new web

page for the requested URL, this page is stored in the browser’s cache and the previous

page with the same URL is deleted. At the same time, the new web page is transmitted to

the HTML parser.

17

S e ttin g s

with permission of the copyright owner. Further reproduction prohibited without permission.

If the requested web page does not exist in the browser’s cache or the page is not fresh in

the cache, a request is sent to the web server directly. The received web page is

transferred to both the local cache and the HTML parser.

URL Source

Hyperlink URL Typing | History Stack
HTML

Check
Change?

HTTP Communication

HTTP
Request

HTTP
Response

Internet

Figure 3.5 Workflow of web page request in a browser

3.2.4 Cache Control

A web browser maintains a local browser cache for previously visited web pages. The

cacheable web pages should be the reflections of their original pages in the web servers.

A cacheable web page is considered fresh if the original page does not change in a certain

time period and this time period is used to control the freshness of a web page. When a

browser receives a web page from a web server, it must determine if it is cacheable and

valid period before saving the page into the browser cache. A web page’s freshness is

decided by expire time of the page. Expire time defines the validity time period of a web

page.

Expire time of a web page can be set in the HTTP response message header part or in the
web page itself with META tag.
<META http-equiv="Expires" content-'Tue, 20 Aug 2003 14:25:27 GMT">

The example above shows the expire time setting in an HTML META tag. The setting is

a name/value pair. The expire time is based on GMT (Greenwich Mean Time) and it

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indicates the page is fresh before that time. A page can also be set uncacheable by

defining its expire time as the same time it is created.

Except for expire time, HTTP 1.1 introduces new cache control elements, including

“max-age”, “s-maxage”, “public”, “no-cache”, “must-revalidate”, and “proxy-revalidate”.

These elements provide more options in the control of cacheable web pages, “max-age”

defines the maximum amount of time that a web page can be considered fresh, “s-

maxage” is similar to “max-age”, except that it is only used for proxy cache, “public”

indicates the response page is cacheable. “no-cache” means the web page received by a

browser is not cacheable; if a browser requests the same page again, it must send the

request to the web server directly, “must-revalidate” forces the cache to send validation

request to the original server before returning a cacheable web page, “proxy-revalidate”

is similar to “must-revalidate”, except that it is used only by proxy caches.

3.2.5 Session and Cookie
HTTP is a stateless protocol and the communication between web browser and web

server is based on the request/response model. After a response has been sent to a

requested browser, the connection is closed. The web server does not maintain any

information about the client. When the same browser sends another request to the same

web server, the web server cannot recognize that the request is sent from the same client.

In order to maintain a logical session between a web browser and a web server, the

identification information of a web client should be included in each request/response

communication cycle. This identification information stored in a web browser is called

“cookie”.

A cookie is a piece of information that is sent by a web server to a web browser. A cookie

may contain any information a web server wants to store in a web browser. After a web

browser receives a cookie, it saves the cookie in its local storage place. Whenever the

browser sends requests to the web server, it retrieves the cookie and puts it into the

request message. Thus the server can trace a client’s communication by the unique cookie

it issues.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 URL
URL stands for Universal Resource Locator, and it is used to identify a unique resource

in the Internet. The format of URL was defined in RFC 1738[25]. A URL consists of

three parts, URL scheme, host address, and url-path. Each scheme is a category of

resources, such as http, ftp, telnet, etc. A host’s address consists of the host’s IP address

and the port number. A url-path is a relative path used inside a computer in the Internet.

The communications between a web browser and a web server rely on the HTTP. Each

HTTP request contains an HTTP URL for a specified web page in the web server. The

format of an HTTP URL is: http://<host>:<port>/<path>?<searchpart>. Here “http:// ”

indicates the resource type is http, and the communication protocol that is used to send

this request should be HTTP. The <host> and <port> identify a unique web server in the

Internet. <host> is the web server’s IP address and <port> is the port number that the web

server uses for HTTP communication. The default port number for a web server is 80. If

the port number is not included in an HTTP URL, it means 80 is used as destination port

number. Because an IP address is related to a domain name that is stored in DNS

(Domain Name Server), a client can obtain the IP address of a web server by requesting

domain name service. <path> specifies the relative storage position of the request

resource. <searchpart> consists of search parameters a client passes to the web server.

These parameters could be used to generate a web page, or they are transaction data that

is need to be processed by an application server.

http://www.google.ca/search?hl=en&lr=&ie=UTF-8&oe=UTF-8&q=related:www.rfc-editor.org/rfc.html

The example above shows the basic elements that consist of a URL. “http://” indicates

the resource type is HTTP and the browser will use HTTP protocol to send this URL

request, “www.google.ca" is a domain name and the corresponding IP address can be

resolved by querying a DNS (Domain Name Service) server. The port number is implicit

and it is the default 80. “search” is a relative directory and “hl=en&lr=&ie=UTF-8&oe=UTF-

8&q=related:www.rfc-editor.org/rfc.html” is a search part.

3.4 Web Form
A form is an area in an HTML weg page containing normal content, markup tags, and

controls including labels, checkboxes, radio buttons, combo boxes, etc. After a user fills

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://%3chost%3e:%3cport%3e/%3cpath%3e?%3csearchpart
http://www.google.ca/search?hl=en&lr=&ie=UTF-8&oe=UTF-8&q=related:www.rfc-editor.org/rfc.html
http://%e2%80%9d
http://www.google.ca
http://www.rfc-editor.org/rfc.html%e2%80%9d

in the form and clicks a submit button in the form, all form data will be sent to the

designated web server.
<FORM action="http://awebsite.com/process.jsp" method="post">

<P> '
<LABEL for="User Name">First Name: </LABEL>

<INPUT type="text" id="usemame">

<LABEL for="Password">Password: </LABEL>

<INPUT type=”text" id="password">

<INPUT type="submit" value="Sign ln"> <INPUT type="reset">
</P>

</FORM>

The code above shows an example of a web form that sends user name and password to a

web server. A form is defined in a web page with the form tag, “FORM” and “/FORM”,

“username” and “password” are text controls that allow a user inputs a user name and

related password. When the submit button “Sign In” is clicked after filling in the data in

user name and password textboxes, the data is sent to the place included in the form

action attribute. A form data processing procedure will be called to process the data in the

server side when the web server receives the form data. In the example above, a page

named “process.jsp” in the server “awebsite.com”, will process the data.

3.5 Web Server and Dynamic Web Page
A web server monitors the incoming requests on its HTTP port, and sends back a

corresponding HTML web page according to the request. HTML pages are divided into

two categories, static pages and dynamic pages. Static web pages are predefined web

pages that are stored in a local directory of the web server. The web server can access

these static web pages with their file name and file path. For a static web page request,

the web server reads that HTML file, packs the file into the response message and sends

the message back to the requested web browser. Dynamic web pages do not exist before a

request comes and they are created dynamically according to the requested URL. The

URL contains parameters that the web server uses to generate a HTML web page. After a

dynamic web page has been generated, it is packed in a response message like a static
web page and sent back to the requesting web browser.

Figure 3.6 shows a conceptual architecture of a web server. A typical web server consists

of two parts: an HTTP communication module (HTTP Server) and a dynamic web page

generation module. The architecture may be different according to different

implementations of dynamic web page generation. The HTTP communication module

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://awebsite.com/process.jsp

and dynamic web page generation module can be either implemented into one

application, or executed in two different applications possibly on different machines.

Web Server

Web
Browser

HTTP
Request

HTTP
Response

HTTP

Server

Static Web
Pages

Dispatcher

Scripts

Figure 3.6 Conceptual architecture of web server

The HTTP server is a kind of communication module that is mainly responsible for data

communications with web browsers. HTTP server retrieves the URL from an incoming

HTTP message, analyzes the URL and passes the URL to different processing

procedures. For a static web page request, the HTTP server searches the corresponding

directory to read the HTML file, creates an HTTP response message encapsulating the

file, and sends back to the requesting web browser. If a request is for a dynamic web

page, the HTTP server passes the parameters to the dispatcher and the dispatcher calls a

compiled procedure to generate a new web page. This newly generated web page is

passed to HTTP server and the HTTP server sends it back to the requesting web browser.

The dynamic web page generation module in a web server consists of a dispatcher and a

set of procedures written in some script languages. After these procedures are compiled,

the dispatcher can call them to generate web pages. Each dynamic web page consists of

predefined layout, text format, navigation links, and dynamic contents. These predefined

layout, text format, and navigation links of a dynamic web page form a page template.

Actually a dynamic web page is assembled by adding dynamic contents into a page

template. The dynamic contents could be obtained by accessing databases, distributed

objects, or other data services.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The procedures that generate dynamic web pages can be written in any programming

langue. However, the programming languages, such as Basic, C or Java, are designed for

programmers, and they are not straightforward to web designers. In order to make it

easier in writing dynamic web page generating procedures, a series of HTML style scripts

are designed. For example, JSP is a Java-based server side script language for design

dynamic web page generating procedures. A JSP page is a text-based document that

contains HTML tags, static contents and Java codes. These HTML tags and static

contents consist of the static template and some Java codes to generate the dynamic

content. A complete web page is assembled by adding this dynamic content into the static

page template. For a designer, the format of a JSP page is straightforward, but actually

after compiling, each JSP page is compiled as a Java method. The method is called by a

dispatcher and the method generates output web pages according to the incoming

parameters.

A dynamic page written in a script language for dynamic web page generation consists of

static page template and codes for providing dynamic data. From the standpoint of a

designer, this page can be considered as a server page in the design navigation model of a

web application. We use server page in the following chapters of this proposal to stand

for the dynamic web page written in a script language.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Modeling Web Page Navigations with Browser Behavior
4.1 Overview
A web application is an interactive system that involves web browsers, web servers and

other data services. The interactions between the user and application itself are

determined by the web pages of an application and hyperlinks of each page. When a user

clicks a hyperlink of a web page in a web browser, a request message is created and sent

to the web server of the application. After receiving the request, the web server processes

the hyperlink, determines if the request page is a static page or dynamic page, and returns

a corresponding page by searching a static page in its local directory or generating a

dynamic web page according to the parameters of the hyperlink.

The static web pages, dynamic web pages and the hyperlinks are designed during the

navigation design phase in the development of a web application. Since a dynamic web

page is generated by adding dynamic contents into a predefined page template, a web

application’s navigation design consists of static web pages, page templates and

hyperlinks that interconnect these static web pages and page templates.

As mentioned in Chapter 1, the navigation among the web pages in a web application is

not only determined by the navigation design itself, the browser also has influence on it.

Some inconsistencies are caused while a user clicks the “Back” or “Forward” button

inside a web browser. A correct navigation design should also consider the influences of

the browser's behavior.

In order to check the inconsistencies described in Chapter 1 for a web application, one

possible solution is model checking. Model checking is a kind of formal verification that

checks if a model satisfies the correctness requirements. In order to perform model

checking for a web application navigation design, we need to establish a navigation

model with browser behavior.

In the following sections, we present our methodology on establishing a navigation

model with browser behavior. We use extended finite state machine (EFSM)[17] to

model the navigation behavior of a web application. The EFSM-based navigation model

is created by adding browser behavior into the navigation design of a web application.

We assume the navigation design is provided by the designer with the format we define.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since we are interested in the correct navigation of web applications, we only consider

the attributes related to web page navigations, such as hyperlinks, authentication, etc.

4.2 Web Page Navigation Design
The navigation design defines presentations and interaction behavior of a web

application. The presentation design focuses on the layout, text formats, static and

dynamic contents, etc., and the design of the interaction behavior concentrates on

hyperlinks, form data processing, and dynamic web page generation. Since we are

concerned about the page accessibility of a navigation model, we only consider the

interaction behavior of a web application. In other words, we are interested in the

hyperlinks and dynamic web page generation.

4.2.1 Assumptions

As mentioned in Chapter 2, a web browser has a cache setting for the management of its

browser cache. We assume the setting is always done “automatically”. According to this

setting, a web page is considered as a cacheable page if the cacheable setting is included

in the header part of the HTTP message containing the web page. For simplicity, we

assume that if a page is cacheable, the page is always fresh and there is no expire time for

this cacheable page. In other words, if a web page is cacheable, it is always cacheable.

A dynamic web page is generated from a server page and each server page contains a

page template that consists of static and dynamic contents. Such static or dynamic content

may contain hyperlinks to other web pages within the same web application or other web

sites outside the web server where the current web application is hosted. For the

hyperlinks that connect to other web pages within the same web application, we assume

the links are predefined and these links cannot be generated dynamically. According to

this assumption, all hyperlinks contained in static HTML web pages or server pages are

defined at design time. There is no new hyperlink generated during runtime of the

application.

4.2.2 Web Pages
All web pages in a web application are divided into two categories: secure pages and

insecure pages. Figure 4.1 illustrates the relations among these secure pages and insecure

pages. Insecure pages are pages without protection, and every user can access an insecure

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

page anytime. Secure pages are protected pages and a user is required to pass

authentication before accessing a secure page. After a user passes the authentication

within a session, the user has the right to access all secure pages reachable from the

authentication page.

Hyperlinks

Sign In

Sign Off

Secure Pages
Insecure Pages Hyperlinks

Entry
Page

Figure 4.1 Pages of a web application

Typically, a user starts a web application by typing the home page’s URL of the

application in a browser’s address bar. The user follows the hyperlinks defined in each

page to load the subsequent pages. The address bar in a web browser gives a user the

ability to visit any unprotected page by typing the page’s URL. No matter whether the

URL of a web page is defined in the current page or not, a user can type a page URL and

corresponding parameters in the address bar to load it. Most of the URLs of a web

application contain parameters that are not very easy to remember and type in the address

bar of a web browser. In order to model the behavior of typed hyperlinks in the address

bar of a browser, we assume there exists a special kind of insecure pages: entry pages.

Each entry page is a normal insecure page, and a user can access an entry page without

authentication. The main difference between an entry page and a normal insecure page is

that the URL of an entry page does not contain parameters and it is easy to be

remembered. Since a user can type the URL of any entry page in the address bar of a

browser, each page of a web application actually contains hyperlinks to every entry page.

In the navigation design of a web application, we do not distinguish static pages and

dynamic server pages. We use the term “page” to stand for both of them. Each page has a

unique page ID, to identify a page in the web application. Actually a page is identified by

its URL including web server address, relative directory and page name. For simplicity,

we use a numeric page ID instead of the URL of the web page.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Chapter 2, we introduced the mechanism of browser caching. If the browser cache is

set to “automatically”, the cache control in each page determines if a page is cacheable.

According to our assumption, a web page is either a cacheable page or not, independent

of the time. We use a Boolean variable to denote the cacheable property of a web page.

Table 4.1 lists all page attributes we use in the navigation design model of a web

application.

Table 4.1 Page attributes
Name Type Note

Page ID integer The identity of a page or page

template. A page ID is an integer

and pagelD>=1

EntryPage boolean Specifies if this page can be

accessed by typing URL without

parameters in the address bar of

a web browser. “EntryPage” lets

the web application designer

designates the pages that can be

accessed directly in a web

application. An entryPage is an

insecure page.

SecurePage boolean Specify whether the page should

be secured. For each session, a

user must pass authentication

before visiting secure pages.

EnableCache boolean Specify whether this page can be

stored in the cache of a browser

as cacheable page.

4.2.3 Hyper Links
All web pages of a web application are interconnected by hyperlinks. These links forms

the navigation behavior of the web application. A hyperlink or URL identifies a unique

web page that will be requested by a web browser. The format of a hyperlink includes

web server address, relative directory that stores the page, page name, and request

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parameters. We use a unique page ID to replace the whole URL except for the

parameters.

A link in a web consists of a link name, a link-to page, and the link type. The link name is

unique in a page and it is used to identify each link within the same page. Link-to page is

the page that will be requested following the link. Since we use page ID to identify a web

page or page template in a web application, this page ID can also be used to indicate the

link-to page. Actually all hyperlinks in a web application have the same format and they

are processed in the server side with the same technology. In order to simplify the

navigation design, we separate authentication related links from normal hyperlinks. These

link types include signlnOK, signlnFail and signOut. We name other normal hyperlinks

as the type of “hyperlink”.

Each authentication-related link type has specific meaning. If a user browses a secure

page through “signlnOK”, the authentication is passed and an access control variable that

indicates the user’s right to visit secure pages is set to “true”. When a user passes a

“signlnFail” link while browsing, the secure page access control variable is set to “false”.

“signOut” always set the access control variable to “false”.

4.2.4 Session and Access Control
When a user starts a web browser and accesses a web application, a session is established

between the user and the web application. The access control is related to the current

session between the web browser and the web server. Because HTTP is a stateless

communication protocol, a web browser and a web server cannot maintain a session

actually: The logical session is established by using cookie. The cookie technology

enables a web server to store unique identification information in a web browser’s local

directory, and when a browser sends requests to this specific web server, the

identification information is included in the request message. So the web server can make

use of this information to maintain a logical session with the browser.

For each session, we maintain a Boolean variable “session” for access control. The truth-

value indicates that the current user has right to access all reachable secure pages, and if

the value of the “session” is set to “false”, the user who opens the session has no right to

access secure pages. Note that “session=false” does not mean that the session is closed.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.5 Navigation Design Model: An Example
Figure 4.2 shows an example of the navigation design of a web application. The example

consists of 6 pages, the page ID are 1 to 6. Page 1 is an entry page, and a user can use

page 1 to access the web application. Page 2, 3 and 6 are secure pages and others are

insecure pages. The links in Figure 4.2 connect source pages to their destination pages.

S1:SignlnOK S1:SignOut

S2:SignlnFail

S1:SignOut

(secure)(secure)

(secure)

Figure 4.2 An example of a navigation design

Table 4.2 lists the attributes of each page.

Table 4.2 Attributes of the example of navigation design
Page ID Attributes Links

1 EntryPage=true
SecurePage=false
EnableCache=true

S1: signlnOK,2

S2: signlnFail,6

2 EntryPage=false
SecurePage=true
EnableCache=true

L1: hyperlink,3

3 EntryPage=false
SecurePage=true
EnableCache=false

L2: hyperlink,5
S1: signOut, 4

4 EntryPage=false
SecurePage=false
EnableCache=false

5 EntryPage=false
SecurePage=true
EnableCache=false

S1: signOut, 4

6 EntryPage=false
SecurePage=false
EnableCache=true

L3: hyperlink, 1

4.3 Modeling Web Page Navigations with EFSM
4.3.1 Extended Finite State Machine (EFSM)
We follow the definition of EFSM in [17]. An extended finite state machine is a 5-tuple

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M =(P, L, O, T, u)
Where P, L, T, n are finite sets of states, input labels, outputs, transitions and variables

respectively. A transition t of T is a 5-tuple

t=(st, et, lt, Pt, At)

Where st, et, lt are the start state, end state, and input label respectively. Pt(u) is a

predicate on the variable values and At(n) are consequent post actions on the variables in

the variable set u. If the machine is in the state st, the input label is lt, Pt(n)=True,

following the transition t, the current state is changed to et, and the variables are

changed by actions At(u).

Figure 4.3 shows an example of EFSM. There are 3 states in the example: so, si, and S2.

Each state stands for a web page of a web application. At the beginning, the current state

of the EFSM is in so. Each transition has three parts, and they are separated by and

“/”. The first part is the input label. The conditions are quoted within a bracket. If the

condition part is empty, it means the condition is always true. The last part contains all

actions on the variables. A transition is activated if and only if the current input label is

the same as the transition’s input label and all conditions are true.

hyperlink:
(session=true)/

SignlnOK:
()/session=true

Figure 4.3 An example of EFSM

An input label “SignlnOK” fires the transition from so to si. Because there is no condition

required in this transition, the transition is simply activated by “SignlnOK” label. At the

end of this transition, the variable session is set to true. The next transition is triggered

when an input label “hyperlink” comes. The value of the session is already set to true, so

the condition is true and the transition is triggered. There are no post-actions on the

second transition.

4.3.2 EFSM and Web Page Navigation
The mapping from the web page navigation design of a web application to its

corresponding EFSM model is straightforward. In an EFSM model, we define a state for

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each web page in the navigation design of a web application, and each state’s ID is the

same as its corresponding page ID. A hyperlink that connects two pages in the navigation

design is mapped as a transition in the EFSM model. As introduced above, a transition

consists of a start state, an end state, an input label, a finite set of outputs, some

conditions and some post actions. The start state and end state of the mapped transition

correspond to the start page and the link-to page of the hyperlink respectively. The

transition is triggered by a set of input labels, including hyperlink, signlnOK, signlnFail

and signOut. The conditions and outputs of the transition are based on the attributes of

the link-to page and the status of the variables in the start state. We define a set of rules

for the transition conversion in Section 4.3.7. In addition, a variable session is declared to

store the current user’s session status in an EFSM model.

We assume the start state of an EFSM model is the state that is mapped from the home

page of a web application navigation design. In our EFSM model, the reactions on a

user’s clicks on hyperlinks, back, or forward buttons are modeled as a transition triggered

by an input label. An input label triggers a transition, and the end state of a transition

becomes the current state of the system. Finally the post actions defined in this transition

are performed.

4.3.3 Adding Browser Behavior into the EFSM Model
According to the introduction in Chapter 3, a browser has history stack and browser

cache. While a user accesses a web application with a browser, the navigation behavior of

the application is not only determined by the web page navigation design, but also

determined by the browser’s behavior.

Browser cache stores cacheable web pages for the future use. If a requested web page has

been already stored in a browser cache, the page is loaded from the cache instead of

getting from the web server of the application. In order to model the requested web page

loaded from a browser’s local cache or the web server, we add two transitions in the

EFSM model for each hyperlink that links to a cacheable page (See Figure 4.3). These

two transitions are triggered by the same input label. Because there is only one transition

that will be selected during the system running, we add conditions for each of them. The

condition indicates whether the page that the end state stands for has been already stored

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the browser cache. If the condition is true, the first transition is permitted to be

triggered and the corresponding post-actions are applied. Otherwise, the second transition

is enabled.

Page A L Page B
W

(a) A Link in Navigation Design (Page B is a cacheable page.)
L1

(b) Transitions in EFSM model

Figure 4.4 Transitions for a hyperlink

Other than the hyperlinks, signlnOK, signlnFail, and SignOut in the navigation of a web

application, we should also consider the back and forward actions when a user clicks a

web browser’s “Back” or “Forward” button. Figure 4.4 shows the adding hyperlink, back

and forward transitions for a hyperlink in the EFSM navigation model.

Page A L Page B
W

(a) A Link in Navigation Design

Back

Forward

(b) Transitions in EFSM model

Figure 4.5 Add Back/Forward transitions for a hyperlink

For each hyperlink in the navigation design of a web application, a hyperlink transition is

added into the EFSM model. At the same time, a back and a forward transition are added.

These two transitions are used to model the actions while a user clicks the back or

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

forward button within a browser. As mentioned in Chapter 2, the user’s operations on

back and forward buttons are related to the operations on the history stack. The URL

stored in the history stack will be used to retrieve the previously or subsequently visited

web page.

A back or forward transition is triggered by an input label and a predicate condition

which is determined by the status of the history stack. A back transition is enabled when

the history stack has an item before the current item that the stack pointer points to. If the

ID of a previous state stored in the history stack is the same as the end state ID of a back

transition, the back transition is allowed to be triggered. A forward transition is enabled

when the history stack has an item after the current one, and the ID stored after current

item is the same as the end state ID of the forward transition.

4.3.4 Modeling History Stack
We define a variable history_stack as a stack that stores the previously visited state IDs

(URLs). The operations on the historystack include “push”, “move_previous”,

“move next”, “get_previous” and “get next”. We use three pointers to indicate the status

of the “history stack”. They are stack_pointer, bottom, and top. The stack pointer always

points to an item that is operated on. “bottom” points to the first item that is pushed into

the “history stack”, and “top” points to the last one. The definition of stack operations

and conditions are listed in Table 4.3.

For push operation, history stack stands for the history stack before push operation, and

the status of the history stack depends on the items stored in the history stack, stack

pointer, top, and bottom. After the push operation, the status of history stack has been

changed, and history stack’ denotes the new status of the history stack.

The “push” operation on the history stack is different from the normal stack operation.

The detailed operation is divided into two steps. At first, all items stored above the stack

pointer are deleted, and actually the item that the stack pointer points to becomes the last

item in the history stack. Secondly, a new item, a state ID, is pushed into the

history_stack, and the stack pointer points to the new item. At the same time, the top

pointer is assigned the same value of the stack pointer.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3 History stack operations
Operation Name Operation Description

Push history_stack-push(history_stack, ID) Push the state ID into
history stack

move_previous history_stack’=move_previous(history_stack) stack_pointer*bottom and
top-bottom>1

move_next history_stack’=m ove_next(h istory_stack) stack_pointer*top and
top-bottom>1

get_previous get_previous(history_stack) Return the state ID that is
stored below the current
item that the stack pointer
points to.

get_next get_next(history_stack) Return the state ID that is
stored above the current
item that the stack pointer
points to.

The “move_previous” and “move next” operations move the stack pointer back and

forth according to the current status of the history stack. If the history stack has more than

two items and the stack pointer does not point to the bottom or top item respectively, the

operations can be done.

“get_previous” and “get next” are functions that return the value, e.g. the state ID, that is

stored before or after the item the stack pointer points to. If the stack is empty, the return

value is null. These two operations do not change the status of history stack, but return

the corresponding values.

4.3.5 Modeling Browser Cache Repository Management
A browser cache stores previously visited web page in the browser’s local storage place.

Actually all previously visited pages are stored in a browser cache, but only the pages

that do not exceed their expiretime are returned for their corresponding requests. A

cached page is considered as fresh if the access time is no later than its expire time. The

synchronization between the pages stored in a browser cache and the web servers that

provide the web pages is determined by the cache policy setting of a browser.

We define a variable “cache” to model a browser cache storage place. A new page could

be added into the “cache” and a cached page could also be retrieved from the “cache” if it

is in the cache. We assume all web pages stored in the “cache” are fresh, and they do not

have expire time. There is no limitation on the size of the “cache” storage. The operations

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the “cache” are listed in Table 4.4. The operations are straightforward, “addcache”

adds a new state ID into the cache, and in cache is a Boolean function that indicates if a

state ID has been already stored in the cache.

Table 4.4 Browser cache operations
Operation Name Operation Condition

add_cache cache’=add_cache(cache,ID) add the page into local cache
repository

in_cache in_cache(ID) returns true if a state ID is stored in
local cache, and false otherwise

4.3.6 Constructing EFSM from Web Navigation Design
The construction of the EFSM model of a web application is based on the navigation

design that the designer provides. As described above, the pages in a navigation design

can be mapped into the states of its corresponding EFSM model. The transitions are

added according to the hyperlinks of the navigation design. In order to describe the web

navigation design of a web application and perform the construction of EFSM based

navigation model, we define a set of XML tags in 4.2. These tags allow a designer to

describe a navigation design with an XML file. Because XML has been supported by a

wide range of programming languages, it is easy to process a navigation design with a

specific programming language. Once a web navigation design is obtained, the

constructing of EFSM model is based on the conversion rules.

The procedure of constructing EFSM based navigation model includes the following

steps:

1. Create states for all pages defined in the navigation model, and each state ID

is the same as the page ID in the navigation model.

2. Add transitions according to the hyperlinks and authentication-related links

in the navigation model. Each link type is considered as an input label for a

transition. The transitions are enabled by conditions based on the status of

“history stack” and “cache” of the model. The actions are operations on the

EFSM variables, including “history_stack”, “cache” and “session”.

3. Add back/forward transitions for each transition generated following a link in

the web page navigation design.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The adding of each transition in the EFSM model must follow one of transition

construction rules listed in section 4.3.7.

4 .3 .7 E F S M Conversion Rules
As described in section 4.3.6, the conversion from a web navigation design to its EFSM

model is divided into 2 steps, mapping states, and adding transitions. Obviously each

page in a navigation design could be mapped into its corresponding state in the EFSM

model. The adding of transitions is determined by the page attributes and EFSM variable

status. For each hyperlink in a navigation design, there might exist more than one

transitions. In order to cover all scenarios while, we define the conversion rules that

regulate the conversion from a navigation design into its EFSM model.

We define two types of rules listed in Table 4.5-4.7. Rule 1.1-Rule 4.9 map the links of a

navigation design into their corresponding EFSM transitions. Rule 5.1 -Rule 6.5 regulate

the additional back/forward transitions. Each rule consists of two parts: one is related to

the page attributes of a navigation design and another defines a corresponding transition

of the converted EFSM model.

For example, in a navigation design, page A contains a hyperlink to page B. Page B is an

insecure page and it could be stored in a web browser’s cache as cacheable page.

According to the attributes of page B and link type from A to B, two rules, rule 4.1 and

rule 4.2, could be applied when transferring the navigation design into EFSM navigation

model. For rule 4.1, a transition with condition “in_cache(B)=True” is added. The post

action is “p u sh (h is to ry _ s ta ck , B)”, which pushes the state B’s state ID into the history stack.

This rule defines a transition when a user visits a cacheable page at first time. Rule 4.2

defines a transition that simulates a user’s access to a page when the page has already

been stored in a browser’s local cache.

In addition to the states related to web pages in the navigation design of a web

application, we also define an error state and this state is mapped to an error page that

indicates some errors occurred during web page generating. The transitions to this error

state indicate internal error while the application is executed. A typical error occurs when

a user tries to access a secure page after a signOut is performed. Since all transitions of

the error state contain conditions and each condition determines if an error transition

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could be triggered. If a design does not contain any error, all transitions to the error state

will be disabled. The actions on a transition with an error state include clearing current

history stack, and pushing the error state into the history stack. These two post actions are

abstractions of the observation of web mail systems, such as hotmail, yahoo mail, and the

web mail system of University of Windsor.

Since the rules cover all the scenarios of the web page navigation design, when applying

these rules, the EFSM based navigation model will be constructed completely from the

navigation design of a web application.

Table 4.5 Transition rules I

No.
Navigation Design EFSM Transitions

Navigation
Link Page Attribute State &

Input Output Condition Post Actions

1.1
sign lnO K

A-------------- >B

B.enableCache=True Start state:
A
end state:
B
input label:
sianlnOK

StatelD=B
Secure=True

Source=Server

history_stack’=
push(history_stack, B)

c a c h e -
add_cache(cache, B)

session=true

1.2 B.enableCache=False
StatelD=B

Secure=True
Source=Server

history_stack’=
push(history_stack, B)

session=true

2.1
s ign lnF ail

A-------------- > B

B.enableCache=True Start state:
A
end state:
B
input label:
sianlnFail

StatelD=B
Secure=False
Source=Server

history_stack’=
push(history_stack, B)

c a c h e -
add_cache(cache,B)

session=false

2.2 B.enableCache=False
StatelD=B

Secure=False
Source=Cache

history_stack’=
push(history_stack, B)

session=false

3.1
s ig n O u t

A-------------- > B

B.enableCache=True
start state:
A
end state:
B
input label:

sianOut

StatelD=B
Secure=False
Source=Server

history_stack’=
push(history_stack, B)

c a c h e -
add_cache(cache, B)

session=false

3.2 B.enableCache=False
StatelD=B

Secure=False
Source=Cache

history_stack’=
push(history_stack, B)

session=false

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.6 Transition rules II

No.
Navigation Design EFSM Transitions

Navigation
Link Page Attribute State &

Input Output Condition Post Actions

4.1
hyperlink

A :>B B.enableCache=T rue
B.securePage=False

start state:
A
end state:
B
input label:

hvDerlink

StatelD=B
Secure=False
Source=Cache

in_cache(B)=True history_stack'=
push(history_stack, B)

4.2
StatelD=B

Secure=False
Source=Server

in_cache(B)=False

history_stack’=
push(history_stack, B)

c a c h e -
add_cache(cache, B)

4.3

B.enableCache=T rue
B.securePage=T rue

start state:
A
end state:
B
input label:
hvDerlink

StatelD=B
Secure=True

Source=Server

in_cache(B)=False
A session=on

history_stack’=
push(history_stack, B)

c a c h e -
add_cache(cache, B)

4.4

start state:
A
end state:
B
input label:

hvDerlink

StatelD=B
Secure=True

Source=Cache

in_cache(B)=True A
session=on

history_stack’=
push(history_stack, B)

4.5

start state:
A
end state:
Err
input label:

hvDerlink

StatelD=Err
Secure=True

Source=Server

in_cache(B)=FalseA
session=off

history_stack’=
clear(history_stack)

history_stack’=
push (err)

4.6

start state:
A
end state:
B
input label:
hvDerlink

StatelD=B
Secure=True

Source=Cache

in_cache(B)=TrueA
session=off

history_stack’=
push(history_stack, B)

4.7 B.enableCache=False
B.securePage=False

start state:
A
end state:
B
input label:

hvDerlink

StatelD=B
Secure=False

Source=Server

history_stack’=
push(history_stack, B)

4.8 B.enableCache=False
B.securePage=T rue

start state:
A
end state:
B
input label:
hvDerlink

StatelD=B
Secure=True

Source=Server
session=on history_stack’=

push(history_stack, B)

4.9

start state:
A
end state:
Err
input label:
hvDerlink

StatelD=Err
Secure=True

Source=Server
session=Off

history_stack’=
clear(history_stack)

history_stack’=
push (err)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.7 Transition rules III

No.
Navigation Design EFSM Transitions

Navigation
Link Page Attribute State &

Input Output Condition Post Actions

5.1
b a c k

A-------------- > B

B.enableCache=T ru
e

B.securePage=False

start state:A
end state: B
input label:

back

StatelD=B
Secure=False
Source=Cache

get_previous
(history_stack)==B

history_stack’=
move_previous
(history_stack)

5.2
B.enableCache=Tru

e
B.securePage=T rue

start state:A
end state: B
input label:

back

StatelD=B
Secure=True

Source=Cache

get_previous
(history_stack)==B

history_stack’=
move_previous
(history_stack)

5.3
B.enableCache=Fals

e
B.securePage=False

start state:
A
end state: B
input label:

back

StatelD=B
Secure=False
Source=Server

get_previous
(history_stack)==B

history_stack’=
move_previous

(history_stack)

5.4

B.enableCache=Fals

start state:
A
end state: B
input label:

back

StatelD=B
Secure=True

Source=Server

session=onA
get_previous

(history_stack)=B

history_stack’=
move_previous
(history_stack)

5.5

e
B.securePage=T rue

start state:
A
end state:
Err
input label:

back

StatelD=Err
Secure=False
Source=Server

session=offA
get_previous

(history_stack)==B

history_stack’=
clear(history_stack)
history_stack’=push

(err)

6.1
B.enableCache=T ru

e
B.securePage=False

start state:
A
end state: B
input label:

back

StatelD=B
Secure=False
Source=Cache

get_next
(history_stack)==B

history_stack’=
move_next
(history_stack)

6.2
fo rw ard

A-------------- > B
B.enableCache=T ru

e
B.securePage=T rue

start state:
A
end state: B
input label:

back

StatelD=B
Secure=True

Source=Cache

get_next
(history_stack)==B

history_stack'=
move_next
(history_stack)

6.3
B.enableCache=Fals

e
B.securePage=False

start state:
A
end state: B
input label:

back

StatelD=B
Secure=False
Source=Server

get_next_url(history
_stack)==B

history_stack’=
move_next

(history_stack)

6.4

B.enableCache=Fals

start state:
A
end state: B
input label:
back

StatelD=B
Secure=True

Source=Server

session=onA
get_next

(history_stack)==B

history_stack’=
move_next
(history_stack)

6.5

e
B.securePage=T rue

start state:
A
end state:
Err
input label:
back

StatelD=Err
Secure=False
Source=Server

session=offA
get_next

(history_stack)==B

history_stack’=
clear(history_stack)

history_stack’=
push (err)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Summary
This chapter introduces an EFSM based modeling method for web page navigations

considering browser behavior on the history stack and browser cache of a web browser.

With EFSM we model each page in a web page navigation design as states and the

navigations among these pages are modeled as transitions. For each hyperlink in a web

page navigation design, we add its corresponding back and forward transitions in the

derived EFSM model. The behaviors of history stack, browser cache, and authentication

are modeled as actions of these transitions.

Compared with other web navigation models that focus on the navigation design itself,

the navigation model created in this chapter combines browser behavior into the

navigation design. Because this model is created from the view of web browser, it

models the running of a web page navigation design under a real browser environment.

The browser behavior used in this chapter is obtained from more than one resource and

there is no publication that introduced them together. The history stack and browser

cache are introduced in [11] and [20] respectively. We combine them and the experiences

of using Internet Explorer and Netscape Navigator together and construct the conceptual

model of a web browser. We also refer HTTP request, response and the setting of cache

controls defined in HTTP 1.1 [24].

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Implementation of Extended Finite State Machine

This chapter describes the implementation of constructing EFSM-based web application

navigation model from the web application design by adding browser behavior. The

implementation includes reading web application design written in XML, and EFSM

construction following conversion rules. All implementation work has been done with

Microsoft Visual Basic .Net.

5.1 Navigation Design of Web Applications
5.1.1 Describing Navigation Design of Web Applications with XML

As described in Chapter 3, the navigation design of a web application consists of pages

and hyperlinks. For simplicity, we concentrated on the page attributes and links related to

page navigation and authentication. All other web page properties, such as page layout,

font, image, etc., are not considered in our web application navigation design.

We use XML to describe the navigation design of web applications. The XML schema of

web navigation design is shown in Figure 5.1.

The root element of the navigation design of a web application is “web design”. This

root tag is used to encapsulate all pages and links in the navigation design. The sub tags

under “web_design” are “page” and “link”.

A “page” is a composed element that contains other elements. The elements under “page”

tag are “secure_page”, “entry_page”, “enablecache” and “link”. Each page has an

attribute “id”, which is defined by the attribute tag definition. The data type of page “id”

is integer. “secure_page”, “entry_page” and “enable cache” are boolean values. We

assume the page ID starts from integer 1 and is increased continuously in a web

navigation design. This assumption will make the implementation of EFSM verification

model easier.

A “link” is an empty tag and it has two attributes, “linkto” and “type”, “link to”

indicates the page that current link points to, and “type” are the hyperlink type we defined

in chapter 3. They are “hyperlink”, “signlnOK”, “signlnFail” and “SignOut”.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<?xml version= 'l.0" encoding-"utf-16" ?>
<xs:schema id="web_design" >
<xs:8leitteHt. .naiie="webidesi:gn''>

<xs:complexType>
<xs:choice aaxOccurs="unbounded">

<xs: element. nasne="page")
:: <xs:complexType>: s.: ,

■: :: :<xs: sequencek'fl; ■■ -n:-.
<xs:element name=" securejage"

type="xs:boo1ean"
minGceurs^O" msdata:0rdinal="0" />

<xs:element name="entry__page"
type="xs:boolean"
«ln0cc«rs=#0'‘ msdata:Ordinal="l" />

<xs: element nante="enable_cache"
tvpe="xs:boolean"
fflin(k;cui’s="0" asdata:Qrdinal="2" />

<xs:eleraent name="link"
min0ccurs="0" DaxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="1ink_to" , '

type-"xs:integer" />
<xs ‘.attribute name="type"

type="xs:string" />
</xs:complexType>

</xs:element>
</xs:sequence)
<xs:attribute naroe="id" type="xs:integer" />

</xs:complexType>
</xs:element)

</xs:choice)
</x s:complexType)

</xs:element)
</xs:schema)

Figure 5.1 XML schema for web navigation design

Since data type can be defined in XML schema, it is easy to convert the data within XML

tags into the corresponding data type. XML reader can do all the conversion work while

reading the XML file, and there is no need for additional codes.

Figure 5.2 shows a simple example of navigation design expressed in XML tags we
defined. There are only two pages in this example: page 1 and page 2. Each page contains

page attributes and links. According to the web design XML schema, a “web design” can

contains multiple pages and each page can also have more than one links or none. Once

the navigation design of a web application is written in the XML format, the conversion

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tool we developed will add back and forward transitions among the pages and construct

the EFSM based navigation model.
<web_design>

<page id='T>
<secure_page>0</secure_page>
<entryjaage>1 */entry_page>
<enable_cache>0</enable_cache>
<link link_to="2" type-'hyperlink"/>

</page>
<page id="2">

<secure_page>0</secure_page>
<entry_page>0 </entry_page>
<enable_cache>1 </enable_cache>

</page>
</web_design>

Figure 5.2 An example of navigation design described in XML

5.1.2 Object Model of Web Application Navigation Design
In order to process the navigation design of web applications, we define the object model

of it. When an XML-based navigation design has been read, an object model that

contains page objects and link objects are generated. The structure of the object model of

navigation design consists of three kinds of elements: DesignPagesCollection is a

collection object that only consists of page objects. Each page object is generatted from

page class that contains page attributes and links defined in Chapter 4. Each page object

is identified by its page id, and this id has the same value of “id” attribute in the page tag

of XML web navigation design. The link class consists properties of “linkto” and

“linkjype”. The collection variable “links” is declared in the page class, and it contains

all link objects of current page. The object model is shown in Figure 5.3.

LinksCollection

L-Link

DesignPagesCollection

— Page

Figure 5.3 Object model of navigation design

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.3 Constructing Web Application Design Object Model
The reading of web navigation design XML file is based on dataset object of Microsoft

.Net framework. DataSet is a class that contains data tables, and relations. It embeds

XML operations that support XML reading and writing. When an XML file is processed

by a dataset object, the structured XML data is mapped to tables with one-to-many

relations. The XML reader in a dataset can assign primary keys for each table and

establish their relations. The construction of tables is divided into two steps: 1) Reading

“webdesign” XML schema, and creating table schema. 2) Reading “web_design” XML

file with the full file name.

Once the web navigation design XML file has been read by dataset object and the related

tables are generated, the page object generating is performed by reading every record in a

table and assigning the fields to the corresponding variables of page object. The link

objects of each page are created by searching all links in the link table with the page id.

5.2 Constructing EFSM Navigation Model from Web Navigation
Design

5.2.1 Overview

As described in Chapter 4, the EFSM-based navigation model is constructed by adding

browser behavior into the navigation design of a web application. The navigation design

is provided by the web application designer and it follows the XML format defined in

section 5.1. We model a browser’s behavior on history stack and browser cache in

Chapter 4 and define a set of rules that map the hyperlinks from navigation design into

back/forward and browser cache operations on EFSM model. The EFSM construction

work is to convert the navigation design on pages into EFSM states and transitions with

operations on history stack and browser cache. Figure 5.4 shows the work of EFSM

model construction.

Rules
Navigation Design

EFSM Model
with

Browser Behavior
Back/Forward

Figure 5.4 EFSM based navigation model construction

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 EFSM Object Model
The EFSM object model consists of an EFSM state collection that consists of state

objects. Each state object has a state ID and a collection of all outgoing transitions. Each

transition is an object that indicates the transition’s ffom_state, to state, conditions, input

label and post-actions, “from state”, and “to state” are variables that store state objects.

Other members of a transition object are declared as strings. The input labels used in a

transition class include “back”, “forward” and all hyperlink types in web page navigation

design.The EFSM object model is shown in Figure 5.5.

I-Transition

■State

OutGoingTransitionsCollection

EFSMStatesCollection

Figure 5.5 EFSM object model

The variables defined in an EFSM model include “history stack”, “cache”, and

“session”. “history_stack” and “cache” are the same variable described in Chapter 4.

“session” is a boolean variable that is set to true when a user login the web application by

“signlnOK” transition, and it can be set to false when “signlnFail” and “signOut”

transitions are triggered.

In an EFSM, a transition is fired when the transition’s input label comes and all

conditions of the transition become true. Conditions are the results of predicate functions

upon the EFSM variables. In order to simplify the processing of the EFSM conditions, we

define a set of enumeration values that stand for different predicate functions upon the

EFSM variables. The “condition” in a transition is a string that consists of the

enumeration values separated by “|”. The enumeration values are InCacheTrue,

InCacheFalse, SessionOn, SessionOff, PreviousStatelD, NextStatelD. InCacheTrue and

InCacheFalse indicate whether the end state’s ID is already stored in browser cache.

Different boolean values lead to different operations on browser cache, and history stack.

SessionOn and SessionOff stand for the different value of session. SessionON means

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

session condition is “session=trae” and SessionOff indicates the condition is

“session=false”. PreviousStatelD and NextStatelD stand for the conditions that the state ID

stored in the previous or next position of stack pointer in history stack equals to the end

state ID of current transition.

Post-actions of a transition include MovePrevious, MoveNext, AddCache, SetSessionOn,

SetSessionOff and Err. MovePrevious, MoveNext and AddCache are described in Chapter 4.

SetSessionOn, and SetSessionOff are actions that set the value of session true or false. Err

actions include clear the history stack and push an error state ID into the history stack.

We already add hyperlinks from a page to the entry page except the entry page itself. All

post actions in a transition are stored in the property “post actions” in a transition object.

The data type of “post_actions” is string and all actions are separated by the character “|”.

Since we implement the EFSM model with Promela, we use enumerated values to stand

for the post actions.

5.2.3 Algorithm
The construction of EFSM model is based on web design object model introduced in

section 5.1. The algorithm is:

1 Add an additional error state “Err” into EFSM states collection.
2 For each page of web design, create a corresponding state node, and the state ID of

the node is assigned as the page ID. Add this node into EFSM states collection.
3 For each page except the entry page itself, add hyperlinks to all entry pages.
4 For each page of web design

4.1 Search its corresponding state node in EFSM States collection, and assign
this node to variable from state;

4.2 For each link in current page
4.2.1 Search the state node with link to page ID, and assign this node to

variable to_state.
4.2.2 Get the link-to page of current transition
4.2.3 Add a transition into from state’s outgoing transitions collection and

to_state’s incoming transitions collection. The condition and post
actions are added according to the rules defined in Chapter 4.

4.2.4 Add “back” transition into from state’s incoming transitions
collection and to state’s outgoing transitions collection, the condition
and post actions are added following the rules defined in Chapter 4.

4.2.5 Add “forward” transition into from state’s outgoing transitions
collection and to_state’s incoming transitions collection, the
condition and post actions are added following the rules defined in
Chapter 4.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.4 Rules
The rules defined in Chapter 4 are used in 4.2.3, 4.2.4 and 4.2.5 of the construction

algorithm. While adding transitions, the corresponding rules determine the transition

conditions and post actions according to the attributes of the link-to page in navigation

design, link type, and the values of EFSM variables.

In 4.2 of the EFSM construction algorithm, when a link object is processed, the page that

owns the link and link-to page are obtained. The page IDs of these two pages can be used

to obtain the corresponding state objects. When the hyperlink and forward transitions are

added, the link-to page’s attributes are used to select the corresponding rules. For back

transition, current page’s attributes are considered when selecting rules.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Spin and Promela
6.1 Overview
Model checking is one kind of formal verification, and it relies on building a finite model

of a hardware or software system and checking that the model satisfies the desired

properties. In order to perform model checking, a formal abstract model has been

established in advanced. The desired correctness properties are expressed in a concise

and unambiguous way. A series of model checking techniques will be applied to perform

exhaustive state analysis in order to search the desired properties in verification models.

Spin is a state-based model-checking tool developed by Genalod Holzmann at Bell Labs.

It is designed for the verification of distributed systems, especially for the verification of

communication protocols. The native modeling language of Spin is Promela

(Process/Protocol Meta Language), a modeling language that is used to describe

verification model and correctness requirements. Actually Spin stands for Simple

Promela Interpreter, and it is a model checker generator. It accepts a verification model

and correctness requirement, and generates a C code model checker. After compiling and

executing the model checker, the final results are reported. The correctness requirements

can be expressed in 3 aspects: assertions, state labels and never claims. Never claims are

used to describe the temporal properties of a Promela model and it can also be expressed

in LTL (Linear Temporal Logic) expressions. Spin embeds a LTL converter, which

translates LTL formula into never claims in Promela.

SPIN is a free, well-documented, and actively maintained model checking tool with a

large and rapidly growing user-base. It won the 2001 ACM System Software Award.

Other awards include TCP/IP, Unix, Java, and Tcl/Tk.

6.2 Spin
As mentioned above, Spin is a translation tool. It can be used separately as a command-

line application or it can be used within Xspin, a graphical interface application. In
addition, the execution of Spin needs a standard C compiler. Figure 6.1 shows the

structure of Spin(Redraw from Fig.l in [13]).

Xspin is a front-end graphical tool that is responsible for processing inputs and outputs.

Developed in Tcl/Tk, Xspin is a standard GUI (Graphical User Interface) application that

can be executed independently under Unix and Windows platforms. Xspin runs Spin in

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the background with corresponding command parameters, and presents the results

gathered from Spin. Promela verification models and LTL expressions could be written

under Xspin.

Spin has two functions: simulation and verification. A user can select either simulation or

verification in the menu of Xspin. For simulation, the parsed Promela model could be

executed line by line, and a message sequence chart will show the message passing

within communication channels. For verification, the Promela and LTL correctness

claims are translated into a C model checker. After this model checker is compiled, an

executable verifier is generated. When this verifier is executed, it performs on-the-fly

modeling checking according to model checking algorithms provided with Spin. If the

verification model does not satisfy the correctness requirements, the counter examples are

created and these counter examples are returned to Xspin. Xpin will present these

examples with simulation.

Spin.exe

Counter-
Examples

PROMELA
Parser

LTL Parser
and Translator

Interactive
Simulation

Executable
On-The-Fly

Verifier

Syntax Error
Reports

Optimized
Model Checker
(ANSI C code)

Verifier
Generator

XSPIN
Front-End

(Tcl/Tk Code)

Figure 6.1 The structure of Spin

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Promela Basics
Promela is a formal modeling language that is used to describe distributed systems. A

model of distributed systems gives an abstract view over a system, focusing on certain

important aspects and ignoring low-level details. As a modeling language, Promela has

strong abilities in describing communications within processes in a distributed system.

The communications by shared variables or message passing can be easily modeled with

a simple statement. The non-deterministic execution of a distributed system could also be

modeled with executable conditional conditions. Promela also provides the ways that the

correctness requirements are described.

6.3.1 Procsses, Channels and Variables
In Promela, a basic distributed system contains three types of objects: processes, message

channels and state variables.

• Process
A process must be declared before they are instantiated. A process can communicate with

other processes synchronously or asynchronously. A sample process declaration is shown

below.
proctype A(int x, int y) {

/‘Statements of the process*/

The process declaration starts with “proctype” and follows the process name and a list of

parameters. The process body is marked with and “}”. A process declaration only

defines a process type, and a process definition can have multiple instances after

instantiated by “run” statement.
init {run A(1,2); run A(5,6)}

In the above example, two processes are initialized with the same process definition,

“init” is the initial process of a system. It is similar as the main function in a C program.

The initial process can initialize global variables, create message channels, and instantiate

processes, “run” is a unary operator and it is used to instantiate processes from process

definition. The values of parameters are initial values of the local variables used in the

process.

• Variable

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Variables in Promela include global variables storing system information or local

variables that is only used in a process. There are six predefined data types: bit, bool,

byte, short, int, and chan. The first five data types are basic data types and the variables

of these types could only be of assigning a single value. The last one, chan, is used to

define message channels that store more values depending the channel buffer size and the

structure of each message.

The declarations are the same as C. A single variable or an array of the same data type

could be declared. The bit defines a variable that holds one bit of the information. A byte

variable is the same as C unsigned char. The length of int and short variables depends on

the machine that the SPIN is executed. An example of variable declaration is shown

below.

bool switch;
int x,y;
byte msg;

Each Promela model can have one enumeration data type which contains symbolic

constants. The enumerated symbolic values are defined with mtype={...}, and a variable

is also declared with mtype.
mtype = {green, red, yellow };
mytype traffic_light;
traffic_light=green;

The above example shows the declaration of the enumeration constants and a variable.

The first statement declares mtype contains three traffic light colors, “green”, “red”, and

“yellow”. After an mtype variable traffic light is declared, the color value could be

assign to it.

• Message Channel
Message channels are used to model the data communication from one process to another

by message passing. Each channel declaration defines the channel name, message type

and maximum messages stored in the channel.
chan q=[16] of {int, mtype, bool}
q!5,green,1;
q?varl,var2,var3;

The above example shows a message channel declaration and operations. A message

channel q is defined, q can store maximum 16 messages. Each message has three fields:

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an integer value, an mtype value and a boolean value are stored in these three fields

respectively. The operations on a channel include send and receive. The operator / and

?stands for send and receive respectively. The second statement sends a message into the

channel. The message contains three fields with the values 5, green and 1 respectively.

The third statement shows a message receiving. Three variables, varl, var2 and var3 are

assigned the value from the first message in the message channel q.

6.3.2 Executablility of Statements
In Promela, a statement can only be passed if it is executable, otherwise it is blocked.

There is no difference between conditions and statements. A Boolean condition is also

considered as a statement. If the condition is false, the execution is blocked until the

condition becomes true. The executability of Promela statements forms the basis of

synchronization in a verification model.

while (a!=b) skip; /*wait for a==b*/
(a==b)

The two statements listed above have the same meaning, and there is no difference

between them.

Assignments to variables are the same as C assignments, and they are always executable.

6.3.3 Flow Control Statements
In Promela, there are three control flow statements. They are selection, repetition and

unconditional jumps.

A selection statement begins with i f and ends with fi. A statement block is separated with

the flag Following the separator, there is a condition or boolean variable that controls

the execution of the statement block. When the condition becomes true, the subsequent

statements could be executed. If more than one conditions become true at the same time,

the executable block is selected randomly.

if ■■■ ■ ■ ••
:: a>0 ->

/* statement block 1 */
:: a=0 ->

/* statement block 2 * /
:: a<0->

/* statement block 3 */
:: /* statement block 4 */

 fi

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the example above, a is an integer. Among the first three conditions, only one can be

true at one time. Suppose the current value of a is 0, then the second condition becomes

true. The statements in block 2 could be executed. Because block 4 has no condition, it

also could be executed. The statements in block 2 or block 4 will be selected randomly.

A repetition statement begins with the keyword do and ends with od. Like i f statement,

do statement also contains select conditions. When a condition becomes true, the

subsequent statements could be executed. The main difference is after the execution of

the statement block, the control is set back to the beginning of the do statement. A new

statement block is selected and the statements in the selected block become executable. In

order to exit the repetition statement, a break or unconditional jump statement is used. In

the following example

do
:: a>0 -> break;
:: a=0 ->

/* statement block 1 * 1
:: a<0->

/* statement block 2 */
od

the do statement will execute until a ’s value is greater than 0.

The unconditional jump statement is a goto statement. A label is put in the desired

position before a statement. When a goto statement is executed, the next statement under

the label will be executed,

do
:: a>0 -> goto done;
:: a=0 ->

/* statement block 1 */
:: a<0->

/* statement block 2 */
od
done:

a=0 ;

The example above illustrates a goto statement, “done” is a label which is syntactically

followed by a colon. When “goto done” is executed, the next executable statement is

“ a = 0 ” .

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.4 Atomic Sequences
When a sequence of statements is defined as atomic sequence by enclosing these

statements in curly braces with the keyword atomic, the sequence is to be executed as one

indivisible unit, non-interleaved with any other processes. All statements except for the

first statement must be executable if the atomic statement is executed. This means when

the first statement in an atomic sequence becomes executable, there is no statement that

can block the execution of all statements in the atomic sequence. Otherwise a run-time

error is caused. The use of atomic sequences can significantly reduce the complexity of

verification models.

6.4 Correctness Requirements
The behavior of a Promela verification model is determined by the set of all execution

sequences it can perform. Each execution sequence is considered as a finite, ordered set

of states. A state consists of all values for local and global variables, all control flow

points of running processes, and the contents of all message channels. Once model

checking is applied to a Promela model, all possible sequences are checked according to

correctness requirements by the model checker that is generated with Spin. The model

checker performs state reachable analysis with embedded state reduction algorithms and

the violations will be reported.

There are 3 ways that the correctness requirements are expressed, assertions, state labels,

and never claims.

6.4.1 Assertions

Assertions are statements that define invariant conditions for some specific process, or

the whole system. A process’s invariance is declared in a process, and the system

invariance is declared in a standalone monitor process. The formats of assertions are

shown below.

assert (invariant condition)

proctype monitor () {
assert(invariant condition)

}

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first one is an assertion statement, and the second one is an assertion defined in a

separate monitor process as system invariance.

6.4.2 State Labels
State labels include end labels, progress labels and accept labels. The label name must be

unique in a proctype definition. If more than one state labels with the same type are used,

the labels have the same prefix, and different label names. For example, “end” is a state

label that describes the proper end states. If a process contains two end labels, one label

could be “end first”, and another is “endsecond”.

End State
An end state label is any label that starts with “end”. Each end state label indicates that

the current state can be considered as a proper end state in an execution sequence.

In a Promela model, all execution sequences either terminated after a finite number of

state transitions, or they cycle back to a previously visited state. A final state in a

termination sequence could be considered as a proper end state if it satisfies: 1) Every

process that was instantiated has terminated; 2) All message channels are empty. All

other end states are unexpected end states, including deadlocks. A model checker can

check all end states and reports the unexpected end states after analysis. However, not all

unexpected end states are necessarily bad, because some processes could be alive all the

time. For example, server processes stay alive and wait to be activated after user process

terminates. We must distinguish the expected or valid end states from the unexpected, or

invalid ones. End state labels identify individual process states as expected end states

even if the process is still alive.

Progress State and Accept State
Like unexpected end states, Spin also checks invalid cyclic execution sequences. There

are two categories of invalid cyclic sequences: non-progress cycles and livelocks. Two

common properties that specify the cyclic sequences are described in [8]: “There are no
infinite behaviors of only unmarked states” and “There are no infinite behaviors that

include marked states”. The first one explains that the system cannot infinitely cycle

through unmarked states, and the second one is the opposite of the first one. The marked

states are progress-states, and the execution sequences that violate these two properties

are called “non-progress cycles ” or “livelocks

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When SPIN is used to perform exhausted analysis of a Promela model, it will find all

invalid cyclic execution sequences. We must define what cyclic sequences are invalid

sequences. For progress cycles, we need to specify precisely which statements in the

specification constitute progress. Progress state labels are used to specify progress cycles,

thus violations are reported during model checking. For the non-livelock cycles, accept

state labels are used to express properties that something cannot happen infinitely often.

An accept-state label indicates a state that may not be part of a sequence of states that can

be repeated infinitely often.

Progress and Accept state labels have “progress” and “accept” prefixes respectively, and

they are unique in one process definition.

6.4.3 Never Claims
The never claim is used to express temporal order of propositions, and all temporal

claims are claimed to be impossible. Therefore, if a temporal claim is matched, it means a

violation is detected. In a Promela verification model, there is only one never claim

statement.

The syntax of never claim is:
never {... body...}

Where “never” is a keyword, the functionality of “never” is the same as “proctype”. The

body consists of statements that do not change the behaviors of the verification model.

Every statement is interpreted as a proposition and the executability of a statement

depends on the value of the proposition.

The checking of matched temporal ordered propositions starts from the first state of the

model, i.e. the system state that is reached after first statement in the init process has been

executed. For each system state along an execution path, the executability of the

corresponding proposition of the never claim is evaluated. If the proposition becomes

true, the statement of the never claim is executable and the state of the claim moves to the

next statement. If the proposition is false, the behavior of the Promela model does not

match the temporal claim, and there is no temporal claim violation so far. The model

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

checker continues the search by inspecting other reachable system states. After all

statements in the body of a never claim become executable, a violation is reported,
never{

do
:: skip
:: P->break
od;

accpt: do
::!Q
od

}

The example above shows a temporal claim that expresses “every state in which property

P is true is followed by a state in which property Q eventually becomes true”. The first do

statement indicates the start point that P becomes true, and second do statement is

responsible for searching the condition that Q becomes true. If Q becomes true, then !Q

blocks the further state property evaluation and indicates that Q is impossible to be false

infinitely. If Q is false infinitely, the claim is matched and a violation is reported.

6.4.4 Linear Temporal Logic
In addition to never claims the temporal property of a system can also be expressed as

linear temporal logic (LTL) formula. An LTL expression is a combination of predicate

logical expressions and temporal operators. The temporal operators include “[]” (always),

“<>” (eventually), and “U” (strong until). “[]” means a logical expression P has the truth

value in a time series. “<>” stands for the logical expression P becomes true eventually in

a time series. “U” involves 2 operands P and Q. “PUQ” is true when P becomes true until

Q becomes true.

Spin provides the translation from LTL (Linear Temporal Logic) formula into never

claim statement in Promela. The translation can be done either by typing “spin - f

LTL formula” under command line, or entering the formula in window of LTL property

manager of Xspin.

For example, one property of a system is “any occurrence of p will eventually be

followed by q”. The property can be translated into LTL formula “p-> <>q”.

The translation from LTL formula into never claim will be done by typing spin - f “p-

>(<>q) ” > and the never claim is:

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

never { /* p->(<>q) */
TOJnit:

if
"(((! «P))) II ((q)))) -> goto accept_all
:: (1)-> goto T0_S2
fi;

T0_S2:
if
" ((q)) -> goto accept_all
::(1)-> goto T0_S2
fi;

accept_all:
skip

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Translating EFSM into Promela
This chapter describes the translation from EFSM model generated in Chapter 5 into

Promela model, and introduces the verification work on the translated Promela model

with correctness requirements.

7.1 Expressing EFSM with Promela
A Promela model is mainly divided into three parts: data type definition and global

variable declaration, process definition, and process instantiation. We implement these

three parts separately. Mtype and Marco are defined first, and these definitions will be

used in the following Promela statements. All global variables including EFSM variables

are declared. The states and transitions are implemented in one process definition. At last,

the process is instantiated with “init” statement. The example of EFSM Promela model is

illustrated in Appendix D.

7.1.1 Data Type Defintion and Variable Declaration
In the first part of our verification model with Promela, we define all marcos, data type

definitions and variable declarations.

In order to make the Promela model readable, we use named value, e.g. marco, to replace

the actual value in Promela statements. “True” and “False” stand for the boolean value

“1” or “0”. “On” and “Off’ are used to describe the session status, and the value is

assigned to the boolean variable “session”. “Local” and “Server” are used to indicate

where the web page is loaded for a transition output. “Local” means that the web page is

loaded from the local browser cache when a URL is used to request a web page. “Server”

indicates the web page is generated by the web server. We use Err to stand for the error

state, and its ID is 0. In our implementation, the history stack and browser cache are

declared with array. In order to control the sizes of history stack and cache, we define two

marcos, “STACK_SIZE” and “CACHE SIZE”. If we want to test the performance of the

EFSM model with different stack size and cache size, we can simply change the value of

these two marco settings, and we do not need to modify all statements that are related to

these two values.

As introduced in Chapter 6, each Promela program can have one “mtype” statement that

defines the constant message type. We define all link types as mtype, including

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hyperlink, signlnOK, signlnFail, signOut, back and forward. A variable “input_lable” is

declared as mtype variable.

The variables used in EFSM itself include history stack, stack pointers, cache, and

session, “history stack” and “cache” are declared as array of integer. State ID or page ID

is stored in these two arrays. “stack_pointer”, “top”, and “bottom” are integer variables,

and they are all assigned with non negative values. Obviously, session is a boolean

variable, and its value is either “On” or “Off’.

In order to trace the current state of EFSM, we use a variable “state” to identify it. “state”

is an integer variable, and the value of “state” always indicates the current state ID. We

also use a boolean variable “stack_overflow” to indicate the status of the history stack.

When the history stack is overflown, the back and forward transitions are disabled.

7.1.2 Implementing EFSM with Promela
An EFSM is defined in a Promela “proctype” definition, “proctype” defines a process

type, and the instance of the process is executed concurrently with other process in the

same verification model. The “proctype” definition consists of two parts, initialization

and EFSM body.

All variables are set their initial values in the initialization part. We assume the EFSM’s

start state is the state 1. The initialization works include “session”, “state”, “top”,

“bottom”, and “stack_overflow”. Since the history stack and cache are arrays of integer,

the initial value of each element is already set to 0 by Spin automatically.

EFSM body consists of at least two if-selections. The outer “i f ’ selection statement is

used to select a designated state, and the inner one is responsible for triggering outgoing

transitions of the current state. Figure 7.1 shows the structure of an EFSM implemented

in Promela. The EFSM begins with a label “efsm start:” and each transition ends with a

statement “goto efsm_start” which forces the outer selection statement to reselect a state

as current state according to the value stored in the variable “state”. Because the first

state’s ID is already set into variable state, and the operations for the first state have been

done in the initialization part, we can consider the EFSM starts from the first entry state.

When the outer if-statement is executed, each condition “state= =state_id” is responsible

for selecting a corresponding state as the current state. For example, at the very

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

beginning, the value of variable state is 1, and the current state should be 1. When the

outer “i f ’ statement is executed, it searches all conditions and find the value of

expression “state= =1” becomes “True”. That means “state= =1” is executable and the

subsequent statements following could also be executable. Since there is only one

transition selection statement under this “i f ’ statement can be executed and an

outgoing transition of the state 1 is triggered.

efsm_start:
if
::(state==1)->

■0 ;; ; ̂ ...''" W / - 5 j ? ' :.,,
:: (conditionl)->

state=Transition1’s end state ID
input_label=Transition1’s inputjabel
Transitionl’s post actions
Transition 1’s output
goto efsm_start

:: (condition2)->
state=Transition2’s end state ID
input_label=Transition2’s inputjabel
Transition2’s post actions
Transition2’s output
goto efsm_start

fi
::(state==2)->

if
:: (conditionl)->

state=Transition1’s end state ID
inputJabel=Transitionl's inputjabel
Transitionl’s post actions
Transitionl’s output
goto efsm_start

:: (condition2)->
state=Transition2’s end state ID
inputJabel=Transition2’s inputjabel
Transition2's post actions
Transition2's output
goto efsm_start

fi

Figure 7.1 EFSM with Promela

When the current state is 1, the two conditions, “conditionl” and “condition2” are

responsible for selecting a subsequent transition. If “conditionl” and “condition2” are not

all true at one time, only the statements following the truth expression value will become

executable. If “conditionl” and “condition2” become true at the same time, the

subsequent statements following “conditionl” or “condition2” are selected randomly. We

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assume only “condition2” is true at a moment, then the statements after “(condition2)->”
will be executable. All the statements under a transition selection are responsible for

changing the current state and doing the post actions. After the “condition2” becomes

true, the state is assigned with the end state ID of Transition2, and input label is also

assigned with the corresponding link type. The post actions are the operations on global

variables declared in the definition and declaration part of the Promela model, including

“history_stack”, “cache”, “session”, etc. The outputs of a transition will be used to verify

the correctness of the model. At last, “goto efsm start” leads the execution restarting

from the label “efsm_start:” and the state ID stored in “state” will become new current

state of the EFSM.

7.1.3 Conditions
We define three kinds of conditions: cache status condition, session on/off condition and

back/forward enable condition. Each condition is expressed as an enumeration value, and

all conditions in a transition are stored in this transition object’s member variable

“condition” as a string. All conditions are extracted from the string and translated into the

corresponding Promela condition respectively. At last, these Promela conditions are

connected with boolean operator “&&” as one condition.

Since we use an array cache to express the cache status of each page, the InCache

condition is translated into “cache[to_state]==True”, where “to state” is the variable that

stores the end state ID of a transition. The translation of SessionOn and SessionOff is

straightforward. We only use “session==On” or “session==Off” to express then.

For back/forward condition, we need to identify which state is the previous state or next

state of current state. Figure 7.2 shows a simple example. A state s has three incoming

transitions: tO, tl, and t2. For each incoming transition there is a corresponding back

transition. We use bO, b l, and b2 to stand for the corresponding back transitions of tO, tl,
and t2 respectively.

When the current state of an EFSM is s, there are three back transitions starting from

current state. According to the introduction in Chapter 3, only the page stored before the

stack pointer in a browser’s history stack can be retrieved when a back button is clicked.

Among the three back transitions, only one transition can be triggered at one time. In

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

order to identify which transition can be triggered, we need to check if the end state of a

back transition matches the state that is stored in the previous position of the stack pointer

points to. If these two state IDs are the same, it indicates that back transition can be

triggered. The comparison work is done by the expression “history_stack[stack_pointer-

1]==to_state”, where to state is the state ID of the end state in the back transition. For

forward transition, we need to consider if “(history_stack[stack_pointer+1]== to_state) &&

(stack_pointer!=top)”. This is a forward transition which is enabled when the stack pointer

does not point to the top of the stack.

Figure 7.2 A state with multiple incoming transitions

7.1.4 Post Actions
Post actions are operations on EFSM variables. We declare historyjstack, cache, and

session as EFSM global variables. At the same time, we use stackjpointer, and top to

indicate the status of the history stack. We assume the home page of the application has

been loaded when a user accesses a web application, thus the first member of variable

history_stack must be the state ID which is mapped from the home page of the web

application. Since we do not need to model initial transition that leads the current state to

an entry state, all post operations are easily implemented.

A push operation adds the state ID of current state into history stack and moves the stack

pointer and top to new position that the newly pushed member is stored. Typically a push

operation is:

:: (stack_pointer<STACK_SIZE-1)->
stack_pointer=stack_pointer+1 ;
top=stack_pointer;
history_stack[stack_pointer]=1;

:: else->
stack_overflow=True;

fi;

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We define the stack size of the history stack. When the stack is full, the push operation

aborts and generates stack overflow. This stack overflow also disables the use of back

and forward. In real life, a stack is impossible to overflow, because the storage is large

enough. Due to the capability of the verification tool, we must limit the stack size in a

reasonable scope.

The operations of adding cache, set session on, set session off are straightforward and

they are:
cache[to_state]=T rue;
session=On;
session=Off;

When a back or forward transition is triggered, it means the state ID stored in the

previous or next position of stack pointer is available. The only work is to move the stack

pointer back and forth.

7.2 Translation Algorithm
According to the introduction above, we summarize the translation algorithm below:

1 Add marco and data type definition.
2 Declare all variables, including state, history_stack, cache, etc.
3 Set the corresponding state of the home page as the EFSM’s initial, state, and add the

state ID into history stack and browser cache if applicable.
4 Set statckjpointer, top and bottom.
5 Add state and transitions

5.1 Add a start label: EFSM Start and “i f ’ statement. Each state will be selected
according to the ID stored in variable state.

5.2 For each state, add an if-statement condition (::(state=-state_id’))
5.3 Add assertion if the assertion variable of current state is not empty
5.4 Add “i f ’ statement to start the processing of post actions for all incoming

transitions.
5.5 Put all outgoing transitions of current state into three groups: back, forward,

and normal.
5.5.1 For each transition in normal group, write and the following

conditions and post actions.
5.5.2 Add “::((!stack overflow) && (stack_pointer>bottom))->” for the

transitions on back group and create a new “i f ’ statement.
5.5.3 For each transition in back group, write “::”and the following

conditions and post actions.
5.5.4 Add “::((!stack_overflow) &&(stack_pointer<top))->” for the

transitions on forward group and create a new “i f ’ statement.
5.5.5 For each transition in forward group, write “::”and the following

conditions and post actions.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.6 Add “fi” to finish the post action operations.
5.6 Add “fi” as the end of the “i f ’ statement.

6 Add “init” statement to start the EFSM process.

7.3 Expressing Correctness Requirements
As mentioned in Chapter 6, there are 3 ways that the correctness requirements are

expressed in Promela. For verifying the correctness if a web navigation design has been

involved in re-login, and re-submit phenomenon, we will use assertions and LTL formula

to express the correctness requirements.

7.3.1 Assertion
In order to investigate the re-login related errors, we need to identify if the session is on

when a secured page is accessed. We use an assertion statement to express this kind of

correctness:
assert(session= =On);

This assertion statement should be put into each state mapped from secure page in the

navigation design. In order to implement the insertion of the assertion statement, we add

a new attribute “assertion” in the state class. If the variable assertion is not empty, the

assertion statement will be added into the corresponding state implemented with Promela.

The following sample code shows the position where we put the assertion statement.

efsm_start:
if
::(state==1)->

/‘assertion statement for state 17
assert(session==On);

if
:: (conditionl)->

state=Transition1's end state ID
input_label=Transition1 's inputjabel
Transitionl’s post actions
Transition 1’s output
goto efsm_start

:: (condition2)->
state=Transition2’s end state ID
inputJabel=Transition2’s inputjabel
Transition2's post actions
Transition2’s output
goto efsm_start

fi
fi

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the state is created according to the corresponding web page in the navigation

design, we can add the assertion into the assertion variable if the page is a secure page.

We also put this assertion in the place shown above during the EFSM -> Promela

translation.

7.3.2 EFSM Output and LTL Expression
The correctness of page navigation sequences can be expressed in LTL. For the

expression that describes the resubmit phenomenon, we need to investigate where a page

is from when a request is sent. In the EFSM introduced above, a state stands for a web

page that can be presented in a browser’s windows, but there is no information that

describes the source of the web page. In order to provide additional information in an

EFSM, we consider putting this kind of information into the output of a transition.

We use a data type “efsm output” to describe the output of a transition. Each transition’s

output includes state ID, secure, and source. State ID is a transition’s end state ID, which

stands for the page to be displayed in a browser’s window, when the transition finishes,

"secure” identifies if the page that the end state stands for in a transition is a secure page

or not. “source” indicates the page returned to a web browser is from browser cache or

the application’s web server. The definition of “efsm output” is shown below:

typedef efsm_output{
int stateJd;
bool secure;
bool source

efsm_output output;

With this data type definition, we declare a new variable “output”. When a transition is

finished and the current state is set to the end state of a transition, the members of this

“output” are also assigned to the corresponding values. The outputs of each transition are
listed in the rules defined in Table 4.5-4.7.

According to the LTL grammar supported by Spin, the logical comparison operations,

such as “a>=b”, “a= =b”, etc., cannot be accepted for the translation from LTL formula to

never claims. These kinds of logical expressions should be replaced by marco definitions

in order to perform LTL-never claim translation.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the re-submit phenomenon, let pi be the page that contains a form, and p2 is one of

the subsequent pages after the form in pi is submitted. PI and p2 may not be linked

directly. When p2 is visited, the actual information displayed in pi is changed. At this

time, when pi is revisited again, it should be regenerated with the updated information.

In order to create the LTL formula that describe the properties above, we define

plvisited, p2_visited and pl_from_server as marcos.

define p1_visited (output.$tate_id= =1)
define p2_visited (output.statejd = =2)
define p1_visited_again (output.stat_id= =1) && ((output.source= =Cache))

The LTL expression is:

[]! ((pl visited && [] !(p2_visited&& []!(pl_visited_again)))

7.3.3 Error Tracing

The verification work with Spin is divided into four steps: 1) Describe the model with

Promela; 2) Express correctness requirements by state labels, assertions or LTL

expressions; 3) Generate a verification program by running Spin with the model and

correctness requirements as input; 4) Compile and execute the verification program. After

the execution of the verification program, the result that indicates if the model is correct

according to the correctness requirements will be reported. If the model is incorrect, the

execution sequences that lead to the errors are reported. By analyzing the execution

sequences, we can conclude where an error is located and what causes the error in the

Promela model.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 Experiments and Evaluation
Model checking is based on the state analysis of a system model and the ability of a

model-checking tool is highly related to the maximum states that the tool can handle.

Although each model checking tool embeds state reduction algorithms, the maximum

processing states of a model checking tool is restricted within a certain state scope, due to

the limitation of computer hardware. After generating EFSM based web page navigation

models with Promela, we have to face the problem that the model to be verified by Spin

can only be of reasonable size. The evaluation works of these EFSM models are mainly

focused on investigating the number of actual verified states of each model while they are

verified. We evaluate the influence on the number of verified states by experiments with

different sizes of history stack, and different numbers of states and transitions.

8.1 Stack Size
During the state analysis of an EFSM model, the state explosion might happen if the

stack size is set too big. Another problem is the cycled links. We assume there are two

pages in a navigation design, A and B. Page A contains a hyperlink to page B and page B

also has a link to page A. These two hyperlinks construct a link cycle. If a web design

includes cycled links or it contains entry pages, the history stack of EFSM model will be

full very quickly during the executing of the model. No matter how large the stack size

we set, the sequence “ABABAB...” is increased continuously and the stack is overflow

finally. Each sequence and the position of stack pointer lead to different states. The state

explosion is inevitable for the EFSM model with cycled links.

We select two experiment schemes to evaluate the size of history stack on verified states

of EFSM models (See Figure 8.1). Most of experiments of Experiment Scheme I are the

cases that the number of visited web pages along a hyperlink chain exceeds the stack size.

On the contrary, all experiments followed Experiment Scheme II do not contain

hyperlink chain that the number of pages in each chain exceeds the stack size. For each

experiment, the web navigation design contains one entry page, and this page is also the

home page. Other pages are insecure pages. Every page has only one hyperlink that links

the page to a subsequent one. All test pages consist of a link chain.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 2 Page nPage 1

Page n

Page 2
Page 1

Experiment Scheme I

Experiment Scheme II

Figure 8.1 History stack size experiment schemes

Table 8.1 and Table 8.2 illustrate the experiment results of verified states on navigation

design followed experiment schemes I, II respectively. The maximum number of pages

used in these 2 kinds of experiment is 40.

Table 8.1 Stack size and verified states I
Stack
Size

Verified S tates
Page=5 Page=10 Page=15 Page=20 Page=25 Page=30 Page=35 Page=40

5 4998 5351 5701 6051 6401 6751 7101 7451
6 20728 25195 25755 26315 26875 27436 27995 28555
7 100674 144569 145426 146357 147299 148209 149119 150012
8 501152 967987 972615 973798 957331 975160 973948 981302
9 2242410 4735700 4553550 4776650 4793140 4717800 4348710 4803820
10 5869130 7600520 7417420 7382000 7287720 7407000 7325710 7593480

8000000
7000000 ------
6000000 -
5000000
4000000
3000000 --------
2000000
1000000 -

0
10 12

—*— Rage Number=5

—■— Rage Number=10

Rage Number=15

Rage Number=20

X Rage Number=25

—• — Rage Number=30

— I— Rage Number=35

—— Rage Number=40

Figure 8.2 Stack size and verified states relation diagram 1

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.2 Stack size and verified states II
Stack
Size

Verified S ta tes
Page=5 Page=10 Page=15 Page=20 Page=25 Page=30 Page=35 Page=40

5 10526 80056 260449 602436 1153230 1949850 2995240 4234080
6 44798 691126 3205260 7573170 11600100 14651800 16713200 17891100
7 87486 1387340 5664730 10476900 13714700 15196200 17303280 18142800
8 321321 7221950 14706600 17540100 18221200 18582800 18946900 19279900
9 600926 9874580 14381200 16847900 18236100 18558800 18948700 19119300
10 1967740 14261000 16419300 17934200 18305900 18731800 18878800 19232500

25000000

20000000 - ■

15000000 -

10000000 ------

5000000 ■

120 2 4 6 8 10

—«— Rage Number=5

- m Rage Number=10

Rage Number=15

Rage Number=20

—* — Rage Number=25

—• — Rage Number=30

— I— Rage Number=35

— — Rage Number=40

Figure 8.3 Stack size and verified states relation diagram II

Figure 8.2 and 7.3 illustrate the trend of verified states with different stack size. The

results of the two kinds of experiments indicate that the EFSM models we generate can

be verified very quickly if the stack size is less than 6. If the stack size is greater than 6,

the number verified states is increased significantly.

8.2 Number of States
Once the stack size is set to a const value, we can evaluate the relations between verified

states and the number of state on the generated EFSM models with browser behavior.

Because a web page in a web application must be connect with others by any kind of link

in a web application, we can not used an experiment scheme that the number of states can

be changed, but the number of transitions is kept in a certain value. In order to evaluate

the influence of the number of states on our EFSM model, we choose the experiment

scheme II described in section 8.1. According to this experiment scheme, the change of

number of states will also cause the change of number of transitions. Since the number of

transitions is not increased significantly, the experiment results are acceptable.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25000000 n

20000000 -

15000000

10000000 -

5000000 -

100 120

Figure 8.4 Number of states and verified states

Figure 8.4 shows the relationship between the number of states and verified states when

the stack size is set to 6. The change on number of states will cause the verified states

increased significantly if the states of EFSM models less than 40. When the number of

states increases continuously, the increasing of verified states will be a little bit

difference.

8.3 Number of Transitions
The evaluation of the relations between verified states and the number of transitions on

the generated EFSM models with browser behavior is based on a navigation design with

20 pages. Initially all the web pages in this navigation design are linked by at least one

hyperlink. We add more hyperlinks randomly while doing the experiment. The stack size

is also set to 6. Figure 8.5 shows the experiment results.

Verified States

20000000

15000000 — -

10000000 - -

5000000 -

100 120 140

Figure 8.5 Number of transitions and verified states

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.4 shows no matter how many transitions are added into a web navigation design

with certain number of pages, the verified states of its corresponding EFSM model does

not change significantly.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 Conclusion and Future Work

9.1 Conclusion
The research work presented in this thesis includes: 1) applying EFSM to model web

page navigations with browser behavior, 2) translating EFSM navigation model into

Promela, 3) using Spin to perform model checking on the navigation model described in

Promela.

Focusing on the browser’s influence on web page navigation design of a web application,

we establish an EFSM-based navigation model considering static and dynamic web

pages. The browser’s behavior on history stack and browser cache is integrated into this

EFSM model. Because the EFSM model is generated from the navigation design of a

web application, the web designer does not need to know much details of the modeling

methodology. When the correctness of the navigation behavior needs to be checked, the

designer’s work is to provide the navigation design with the format we defined. The

following work will be done with the tool we developed.

According to our investigation so far, some researchers proposed techniques to verify the

correctness of web applications with model checking. For model checking tool, Spin, no

other researchers have been applied it on checking the correctness of web page

navigations. The evaluations in Chapter 8 indicate it is possible to perform model

checking on the EFSM based navigation model and it is also practical and realistic to

used model checking tool to check the navigation correctness of web applications. For the

quality assurance on web page navigation, model checking can be considered as an

effective solution.

Due to the limitation of model checking techniques, no model-checking tool can handle a

model with large amount of states. The pages that can be handled by Spin are limited.

According to the evaluation works in Chapter 8, the verification work on the EFSM

model we created has good performance if the size of history stack is less than 6. The

verified states do not change significantly when the number of states, or the number of

transitions change.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.2 Future Work

The future work can be considered in two aspects: improving the model itself and

generating web navigation design from other tools (such as UML) or from source code.

In this thesis, we only considered normal web page without frames. For a page with

multi-frames, the communication between one frame and another should be considered

and more than one EFSMs are needed. These EFSMs needs to communicate via

communication channel.

In this thesis, we defined a simple XML schema that allows the designers to provide the

navigation design with this format. Since UML is widely used in application design, our

web navigation model could be derived from the UML directly. Another important

source of web application design is the source code. If an application’s navigation design

can be obtained from the source code by reverse engineering, the created verification

model can be used to check the correctness of the implementation of a web application.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] L. D. Alfaro, “Model Checking the World Wide Web”, In Proc. o f the 13th

Conference on Computer Aided Verification, 2001.

[2] L. Baresi, G. Denaro, L. Mainetti, and P. Paolini, “Assertions to better specify the

amazon bug”, In 14th Software Engineering and Knowledge Engineering, 2002.

[3] L. Baresi, F. Garzotto, and P. Paolini, “Extending UML for Modeling Web

Applications”. In Proc. o f the 34th Annual Hawaii International Conference on System

Sciences, 2001.

[4] H. Baumeister, N. Koch, and L. Mandel, “Towards a UML Extension for Hypermedia

Design”, In UML-99, Lecture Notes in Computer Science, Vol. 1723, pages 614 - 629,

1999.

[5] H. V. Beek and S. Mauw, “Automatic conformance testing of internet applications”,

In Proc. o f the 3rd International Workshop on Formal Approaches to Testing o f

Software, Lecture Notes in Computer Science, vol. 2931, pages 205-222,2004

[6] S. Ceri, P. Fratemali and A. Bongi, “Web Modeling Language (WebML): a modeling

language for designing Web sites”, In Computer Networks, Vol. 33, Issue 1-6, pagesl37-

157,2000.

[7] J. Chen and S. Chovanec, “Towards Specification-Based Web Testing”, In

NETWORKING 2002 Workshops on Web Engineering and Peer-to-Peer Computing,

Lecture Notes in Computer Science, Vol. 2376, pages 165-171, 2002.

[8] J. Conallen, “Modeling Web Application Architectures with UML”, Communications

o f the ACM, Vol. 42, No. 10, 1999.

[9] J. Gomez and C. Cachero, “OO-H: Extending UML to Model Web Interfaces”, In

Information Modeling fo r Internet Applications, Idea Group Publishing, 2002.

[10] P. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. “Modeling Web

Interactions”. In European Symposium on Programming, 2003.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[11] S. Greenberg, and A. Cockbum, “Getting Back to Back: Alternate Behaviors for a

Web Browser’s Back Button”, In Proc. o f the 5th Annual Human Factors and the Web

Conference, 1999.

[12] R. Hennicker, N. Koch, “A UML-Based Methodology for Hypermedia Design”, In

Proc. o f the 3rd International Conference on the Unified Modeling Language (UML

2000), Lecture Notes in Computer Science, Vol. 1939, Pages 410-424, 2000.

[13] G. Holzman, “The Model Checker Spin”, In IEEE Trans, on Software Engineering,

Vol. 23, No. 5, pages 279-295, 1997.

[14] G. Holzman, “Design and Validation of Computer Protocols”, Prentice Hall, New

Jersey, ISBN 0-13-539925-4, 1991.

[15] N. Koch, H. Baumeister, R. Hennicker, and L. Mandel, “Extending UML for

Modeling Navigation and Presentation in Web Applications”, In Modeling Web

Applications in the UML Workshop, UML2000, 2000.

[16] D. C. Kung, C. Liu and P. Hsia, “An Object-Oriented Web Test Model for Testing

Web Applications”, In The 1st Asia-Pacific Conference on Quality Software (APAQS

2000), pages 111-120, 2000.

[17] D. Lee and M. Yannakakis, "Principles and Methods of Testing Finite State

Machines - A Survey", In Proc. o f The IEEE, vol. 84, No. 8, pages 1090-1123, August

1996.

[18] K. R. Leung, L. C. Hui, S. M. Yiu and R. W. Tang, “Modeling Web Navigation by

Statechart”, In the 24th Annual International Computer Software and Applications

Conference, 2000.

[19] G. D. Lucca and M. D. Penta, “Considering Browser Interaction in Web Application

Testing”, In Proceedings o f the 5th IEEE International Workshop on Web Site

EvolutionfWSE ’03), 2003.

[20] M. Nottingham, “Caching Tutorial for Web Authors and Webmasters”,

http://www.web-caching.com/mnot_tutorial/, last access: August 2004.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.web-caching.com/mnot_tutorial/

[21] J. Offutt, Y. Wu, X. Du and H. Huang, “Bypass Tesing of Web Applications”, In the

15th IEEE International Symposium on Software Reliability Engineering, 2004.

[22] F. Ricca and P. Tonella, “Testing Processes of Web Applications”, Annals o f

Software Engineering, vol. 14, pages 93-114, 2002

[23] F. Ricca and P. Tonella, “Building a Tool for the Analysis and Testing of Web

Applications: Problems and Solutions”, In Proc. o f Tools and Algorithms for the

Construction and Analysis o f Systems (TACAS 2001), Lecture Notes in Computer

Science, vol. 2031, pages 373-388, 2001.

[24] RFC2616, “Hypertext Transfer Protocol - HTTP/1.1”, 1999.

[25] RFC 1738, “Uniform Resource Locators (URL)”, 1994.

[26] D. Schwabe, R. de Almeida Pontes, and I. Moura, “OOHDM-Web: An environment

for implementation of hypermedia applications in the WWW”, In ACM SIGWEB

Newsletter, vol. 8, issue 2, June, 1999.

[27] E. D. Sciascio, F. M. Donini, M. Mongiello, G. Piscitelli, “Web Applications Design

and Maintenance Using Symbolic Model Checking”, In Proc. o f IEEE the 7th European

Conference on Software Maintenance and Reengineering (CSMR'03), 2003

[28] E. D. Sciascio, F. M. Donini, M. Mongiello, G. Piscitelli, “AnWeb: a System for

Automatic Support to Web Application Verification”, In Proc. o f the 14th International

Conference on Software Engineering and Knowledge Engineering, 2002.

[29] SPIN, http://spinroot.com/spin/whatispin.html, last access: Autust 2004

[30] Y. Zheng, and M. Pong, “Using statecharts to model hypertext”, In Proc. ACM

EHCT, European Conference on Hypertext Technology, 1992.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://spinroot.com/spin/whatispin.html

Appendix A A Sample Web Design

<web_design>
<page id="1">

<secure_page>0</secure_page>
<entry_page>1 </entry_page>
<enable_cache>1 </enable_cache>
<link link_to="2" type="signlnOK" />
<link link_to="5" type="signlnFail" />

</page>
<page id="2">

<secure_page>1 </secure_page>
<entry_page>0</entry_page>
<enable_cache>1 </enable_cache>
<link link_to="3" type="hyperlink" />

</page>
<page id="3">

<secure_page>1 </secure_page>
<entry_page>0</entry_page>
<enable_cache>0</enable_cache>
<link link_to="6" type="hyperlink" />
<link link_to="4" type="signOut" />

</page>
<page id="4">

<secure_page>0</secure_page>
<entry_page>0</entry_page>
<enable_cache>0</enable_cache>

</page>
<page id="5">

<secure_page>0</secure_page>
<entry_page>0</entry_page>
<enable_cache>0</enable_cache>
<link link_to="1" type="hyperlink" />

</page>
<page id="6">

<secure_page>1 </secure_page>
<entry_page>0</entry_page>
<enable_cache>1 </enable_cache>
<link link_to="4" type="signOut" />

</page>
</web_design>

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B Translated Promela EFSM Model
#define On 1
#define Off 0
#define True 1
#define False 0
#define Err 0
#define STACK_SIZE 5
#define CACHE_SIZE 100
#define Local 0
#define Server 1

typedef efsm_output{
int statejd;
bool secure;
bool source

}

int state;
int history_stack[STACK_SIZE];
bool stack_overflow;
int top, stack_pointer, bottom;
bit cache[CACHE_SIZE];
bit session;
mtype={hyperlink, back, forward, signlnOK, signlnFail, signOut};
mtype inputjabel;
efsm_output output;

/*EFSM Proces Definition */
proctype efsm(){

/‘ Initialize start state */
session=False;
top=0;
bottom=0;
stack_pointer=0;
stack_overflow=False;
state=1;
h istory_stack[0]=state;
cache[state]=True;

efsm_start:
if
::(state==0)->

if
/*Transitions for state 0 */

::((cache[1]==T rue))->
state= 1;
input_label=hyperlink;
/* Post actions for transition 0 ==> 1 *1
/* input label=hyperlink */
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

history_stack[stack_pointer]=1 ;
:: else->

stack_overflow=T rue;
fi;
/* Outputs for transition 0 ==> 1 */
output.state_id=1 ;
output.secure=False;
output.source=Local;
goto efsm_start

::((cache[1] ==False))->
state= 1;
input_label=hyperlink;
/* Post actions for transition 0 ==> 1*/
/* input label=hyperlink */
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;
history_stack[stack_pointer]=1 ;

:: else->
stack_overflow=T rue;

fi;
cache[1]=True;
/* Outputs for transition 0 ==> 1 */
output.state_id=1 ;
output.secure=False;
output.source=Server;
goto efsm_start

/‘Forward transitions for state 0 */
::((!stack_overf!ow) &&(stack_pointer<top))->

if
: :((history_stack[stack_pointer+1] ==1))->

state= 1;
input_label=forward;
stack_pointer=stack_pointer+1;
/* Outputs for transition 0 ==> 1 */
output.state_id=1;
output.secure=False;
output.source=Local;
goto efsm_start

fi;
fi;

::(state==1)->
if

/‘Transitions for state 1 */

state= 2;
input_label=signlnOK;
/* Post actions for transition 1 ==> 2*1
/* input label=signlnOK */
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;
history_stack[stack_pointer]=2;

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:: else->
stack_overflow=T rue;

fi;
cache[2]=True;
session=On;
/* Outputs for transition 1 ==> 2 7
output.state_id=2;
output.secure=T rue;
output.source=Server;
goto efsm_start

state= 5;
input_label=signlnFail;
/* Post actions for transition 1 ==> 57
/* input label=signlnFail 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;
history_stack[stack_pointer]=5;

:: else->
stack_overflow=T rue;

fi;
cache[5]=True;
session=Off;
/* Outputs for transition 1 ==> 5 7
output.state_id=5;
output.secure=False;
output.source=Local;
goto efsm_start

/‘Back transitions for state 1 7
::((!stack_overflow) && (stack_pointer>bottom))->

if
::((history_stack[stack_pointer-1] ==0))->

state= 0;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 1 ==> 0 7
output.state_id=0;
output.secure=False;
output.source=Server;
goto efsm_start

::((history_stack[stack_pointer-1] ==2))->
state= 2;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 1 ==> 2 7
output.state_id=2;
output.secure=T rue;
output.source=Local;
goto efsm_start

"((session ==On) && (history_stack[stack_pointer-1] ==3))->
state= 3;
input_label=back;
stack_pointer=stack_pointer-1;

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/* Outputs for transition 1 ==> 3 7
output.state_id=3;
output.secure=True;
output.source=Server;
goto efsm_start

::((session ==Off) && (history_stack[stack_pointer-1] ==3))->
state=Err;
input_label=back;
stack_pointer=0;
top=0;
history_stack[stack_pointer]=Err;
/* Outputs for transition 1 ==> 3 7
output.state_id=Err;
output.secure=False;
output.source=Server;
goto efsm_start

: :((history_stack[stack_pointer-1] ==4))->
state= 4;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 1 ==> 4 7
output.state_id=4;
output.secure=False;
output.source=Server;
goto efsm_start

: :((history_stack[stack_pointer-1] ==5))->
state= 5;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 1 ==> 5 7
output.state_id=5;
output.secure=False;
output.source=Server;
goto efsm_start

::((history_stack[stack_pointer-1] ==6))->
state= 6;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 1 ==> 6 7
output.state_id=6;
output.secure=T rue;
output.source=Local;
goto efsm_start

/‘Forward transitions for state 1 */
::((!stack_overflow) &&(stack_pointer<top))->

if
::((history_stack[stack_pointer+1] ==2))->

state= 2;
input_label=forward;
stack_pointer=stack_pointer+1 ;
/* Outputs for transition 1 ==> 2 */
output.state_id=2;
output.secure=T rue;
output.source=Local;

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

goto efsm_start
: :((history_stack[stack_pointer+1] ==5))->

state= 5;
input_label=forward;
stack_pointer=stack_pointer+1;
/* Outputs for transition 1 ==> 5 7
output.state_id=5;
output.secure=False;
output.source=Server;
goto efsm_start

fi;
fi;

::(state==2)->
assert(session==On);

if
/*Transitionsforstate2 7

"((session ==On))->
state= 3;
input_label=hyperlink;
/* Post actions for transition 2 ==> 37
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_poi nter;
history_stack[stack_pointer]=3;

:: else->
stack_overflow=T rue;

fi;
/* Outputs for transition 2 ==> 3 7
output.state_id=3;
output.secure=T rue;
output.source=Server;
goto efsm_start

-((session ==Off))->
state= 0;
input_label=hyperlink;
/* Post actions for transition 2 ==> 07
/* input label=hyperlink 7
stack_pointer=0;
top=0;
history_stack[0]=Err;
/* Outputs for transition 2 ==> 0 7
output.state_id=Err;
output.secure=False;
output.source=Server;
goto efsm_start

: :((cache[1]==T rue))->
state= 1;
input_label=hyperlink;
/* Post actions for transition 2 ==> 17
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

history_stack[stack_pointer]=1;
:: else->

stack_overflow=T rue;
fi;
/* Outputs for transition 2 ==> 1 */
output.state_id=1;
output.secure=False;
output.source=Local;
goto efsm_start

::((cache[1] ==False))->
state= 1;
input_label=hyperlink;
/* Post actions for transition 2 ==> 1 */
/* input label=hyperlink *1
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1 ;
top=stack_pointer;
history_stack[stack_pointer]=1;

:: else->
stack_overflow=T rue;

fi;
cache[1]=True;
/* Outputs for transition 2 ==> 1 */
output.state_id=1;
output.secure=False;
output.source=Server;
goto efsm_start

/*Back transitions for state 2 */
::((!stack_overflow) && (stack_pointer>bottom))->

if
::((history_stack[stack_pointer-1] ==1))->

state= 1;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 2 ==> 1 */
output.state_id=1;
output.secure=False;
output.source=Local;
goto efsm_start

fi;

/‘Forward transitions for state 2 */
::((!stack_overflow) &&(stack_pointer<top))->

if
"((session ==On) && (history_stack[stack_pointer+1] ==3))->

state= 3;
input_label=forward;
stack_pointer=stack_pointer+1;
/* Outputs for transition 2 ==> 3 */
output.state_id=3;
output.secure=T rue;
output.source=Server;
goto efsm_start

::((session ==Off) && (history_stack[stack_pointer+1] ==3))->

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

state=Err;
input_label=forward;
stack_pointer=0;
top=0;
history_stack[stack_pointer]=Err;
/* Outputs for transition 2 ==> 3 7
output.state_id=Err;
output.secure=False;
output.source=Server;
goto efsm_start

::((history_stack[stack_pointer+1] ==1))->
state= 1;
input_label=forward;
stack_pointer=stack_pointer+1;
/* Outputs for transition 2 ==> 1 7
output.state_id=1 ;
output.secure=False;
output.source=Local;
goto efsm_start

fi;
fi;

::(state==3)->
assert(session==On);

if
/*Transitionsforstate3 */

::((cache[6] ==False)&& (session==On))->
state= 6;
input_label=hyperlink;
/* Post actions for transition 3 ==> 67
/* input labeNhyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;
history_stack[stack_pointer]=6;

:: else->
stack_overflow=T rue;

fi;
cache[6]=True;
/* Outputs for transition 3 ==> 6 7
output.state_id=6;
output.secure=T rue;
output.source=Server;
goto efsm_start

::((cache[6]==True)&& (session==On))->
state= 6;
input_label=hyperlink;
/* Post actions for transition 3 ==> 67
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;
history_stack[stack_pointer]=6;

:: else->
stack_overflow=T rue;

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fi;
/* Outputs for transition 3 ==> 6 7
output. state_id=6;
output.secure=True;
output.source=Local;
goto efsm_start

::((cache[0] ==False)&& (session==Off))->
state= 0;
input_label=hyperlink;
/* Post actions for transition 3 ==> 07
/* input label=hyperlink 7
stack_pointer=0;
top=0;
history_stack[0]=Err;
/* Outputs for transition 3 ==> 0 7
output.state_id=Err;
output.secure=T rue;
output.source=Server;
goto efsm_start

::((cache[6]==T rue)&& (session==Off))->
state= 6;
input_label=hyperlink;
/* Post actions for transition 3 ==> 67
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;
history_stack[stack_pointer]=6;

:: else->
stack_overflow=T rue;

fi;
/* Outputs for transition 3 ==> 6 7
output.state_id=6;
output.secure=T rue;
output.source=Server;
goto efsm_start

state= 4;
input_label=signOut;
/* Post actions for transition 3 ==> 47
/* input label=signOut 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;
history_stack[stack_pointer]=4;

:: else->
stack_overflow=T rue;

fi;
session=Off;
/* Outputs for transition 3 ==> 4 7
output.state_id=4;
output.secure=False;
output.source=Local;
goto efsm_start

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

::((cache[1]==True))->
state= 1;
input_label=hyperlink;
/* Post actions for transition 3 ==> 1 */
/* input label=hyperlink */
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1 ;
top=stack_pointer;
history_stack[stack_pointer]=1;

:: else->
stack_overflow=T rue;

fi;
/* Outputs for transition 3 ==> 1 *1
output.state_id=1 ;
output.secure=False;
output.source=Local;
goto efsm_start

::((cache[1] ==False))->
state= 1;
input_label=hyperlink;
/* Post actions for transition 3 ==> 1 */
/* input label=hyperlink */
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1 ;
top=stack_pointer;
history_stack[stack_pointer]=1 ;

:: else->
stack_overflow=T rue;

fi;
cache[1]=True;
/* Outputs for transition 3 ==> 1 */
output.state_id=1;
output.secure=False;
output.source=Server;
goto efsm_start

/*Back transitions for state 3 *1
::((!stack_overflow) && (stack_pointer>bottom))->

if
: :((history_stack[stack_pointer-1] ==2))->

state= 2;
input_label=back;
stack_pointer=stack_pointer-1 ;
/* Outputs for transition 3 ==> 2 */
output.state_id=2;
output.secure=T rue;
output.source=Local;
goto efsm_start

fi;

/‘Forward transitions for state 3 */
::((! stack_overflow) &&(stack_poi nter<top))->

if
::((history_stack[stack_pointer+1] ==6))->

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

state= 6;
input_label=forward;
stack_pointer=stack_pointer+1;
/* Outputs for transition 3 ==> 6 7
output.state_id=6;
output.secure=T rue;
output.source=Local;
goto efsm_start

::((history_stack[stack_pointer+1] ==4))->
state= 4;
i n putJabel =forward;
stack_pointer=stack_pointer+1;
/* Outputs for transition 3 ==> 4 7
output.state_id=4;
output.secure=False;
output.source=Server;
goto efsm_start

: :((history_stack[stack_pointer+1] ==1))->
state= 1;
input_label=forward;
stack_pointer=stack_pointer+1 ;
/* Outputs for transition 3 ==> 1 7
output.state_id=1 ;
output.secure=False;
output.source=Local;
goto efsm_start

fi;
fi;

::(state==4)->
if
/*Transitionsforstate4 7

: :((cache[1]==T rue))->
state= 1;
input_label=hyperlink;
/* Post actions for transition 4 ==> 17
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;
history_stack[stack_pointer]=1;

:: else->
stack_overflow=T rue;

fi;
/* Outputs for transition 4 ==> 1 7
output.state_id=1 ;
output.secure=False;
output.source=Local;
goto efsm_start

::((cache[1] ==False))->
state= 1 ;
input_label=hyperlink;
/* Post actions for transition 4 ==> 17
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stack_pointer=stack_pointer+1 ;
top=stack_pointer;
history_stack[stack_pointer]=1;

:: else->
stack_overflow=T rue;

fi;
cache[1]=True;
/* Outputs for transition 4 ==> 1 7
output.state_id=1;
output.secure=False;
output.source=Server;
goto efsm_start

/*Back transitions for state 4 7
::((!stack_overflow) && (stack_pointer>bottom))->

if
-((session ==On) && (history_stack[stack_pointer-1] ==3))->

state= 3;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 4 ==> 3 7
output.state_id=3;
output.secure=T rue;
output.source=Server;
goto efsm_start

::((session ==Off) && (history_stack[stack_pointer-1] ==3))->
state=Err;
input_label=back;
stack_pointer=0;
top=0;
history_stack[stack_pointer]=Err;
/* Outputs for transition 4 ==> 3 7
output.state_id=Err;
output.secure=False;
output.source=Server;
goto efsm_start

::((history_stack[stack_pointer-1] ==6))->
state= 6;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 4 ==> 6 */
output.state_id=6;
output.secure=True;
output.source=Local;
goto efsm_start

fi;

/‘Forward transitions for state 4 *1
::((!stack_overflow) &&(stack_pointer<top))->

if
::((history_stack[stack_pointer+1] ==1))->

state= 1;
input_label=forward;
stack_pointer=stack_pointer+1;
/* Outputs for transition 4 ==> 1 */
output.state_id=1 ;

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output.secure=False;
output.source=Local;
goto efsm_start

fi;
fi;

::(state==5)->
if
/*Transitions for state 5 7

::((cache[1]==T rue))->
state= 1 ;
input_label=hyperlink;
/* Post actions for transition 5 ==> 17
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1 ;
top=stack_pointer;
history_stack[stack_pointer]=1 ;

:: else->
stack_overflow=T rue;

fi;
/* Outputs for transition 5 ==> 1 7
output.state_id=1;
output.secure=False;
output.source=Local;
goto efsm_start

::((cache[1] ==False))->
state= 1 ;
input_label=hyperlink;
/* Post actions for transition 5 ==> 17
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1 ;
top=stack_pointer;
history_stack[stack_pointer]=1 ;

:: else->
stack_overflow=T rue;

fi;
cache[1]=True;
/* Outputs for transition 5 ==> 1 7
output.state_id=1;
output.secure=False;
output.source=Server;
goto efsm_start

/‘Back transitions for state 5 7
::((!stack_overflow) && (stack_pointer>bottom))->

if
::((history_stack[stack_pointer-1] ==1))->

state= 1 ;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 5 ==> 1 7
output.state_id=1;
output.secure=False;

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output.source=Local;
goto efsm_start

fi;

/‘Forward transitions for state 5 7
::((!stack_overflow) &&(stack_pointer<top))->

if
::((history_stack[stack_pointer+1] ==1))->

state= 1;
input_label=forward;
stack_pointer=stack_pointer+1;
/* Outputs for transition 5 ==> 1 7
output.state_id=1 ;
output.secure=False;
output.source=Local;
goto efsm_start

fi;
fi;

::(state==6)->
assert(session==On);
if

/*Transitions for state 6 7

state= 4;
input_label=signOut;
/* Post actions for transition 6 ==> 47
/* input label=signOut 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1 ;
top=stack_pointer;
history_stack[stack_pointer]=4;

:: else->
stack_overflow=T rue;

fi;
session=Off;
/* Outputs for transition 6 ==> 4 7
output.state_id=4;
output.secure=False;
output.source=Local;
goto efsm_start

: :((cache[1]==T rue))->
state= 1;
input_label=hyperlink;
/* Post actions for transition 6 ==> 17
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1 ;
top=stack_poi nter;
history_stack[stack_pointer]=1 ;

:: else->
stack_overflow=T rue;

fi;
/* Outputs for transition 6 ==> 1 7
output.state_id=1 ;

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output.secure=False;
output.source=Local;
goto efsm_start

::((cache[1] ==False))->
state= 1;
input_label=hyperlink;
/* Post actions for transition 6 ==> 17
/* input label=hyperlink 7
if
:: (stack_pointer<STACK_SIZE-1)->

stack_pointer=stack_pointer+1;
top=stack_pointer;
history_stack[stack_pointer]=1 ;

:: else->
stack_overflow=T rue;

fi;
cache[1]=True;
/* Outputs for transition 6 ==> 1 7
output.state_id=1;
output.secure=False;
output.source=Server;
goto efsm_start

/*Back transitions for state 6 7
::((!stack_overflow) && (stack_pointer>bottom))->

if
".((session ==On) && (history_stack[stack_pointer-1] ==3))->

state= 3;
input_label=back;
stack_pointer=stack_pointer-1;
/* Outputs for transition 6 ==> 3 7
output.state_id=3;
output.secure=T rue;
output.source=Server;
goto efsm_start

::((session ==Off) && (history_stack[stack_pointer-1] ==3))->
state=Err;
input_label=back;
stack_pointer=0;
top=0;
history_stack[stack_pointer]=Err;
/* Outputs for transition 6 ==> 3 7
output.state_id=Err;
output.secure=False;
output.source=Server;
goto efsm_start

fi;

/‘Forward transitions for state 6 7
::((!stack_overflow) &&(stack_pointer<top))->

if
::((history_stack[stack_pointer+1] ==4))->

state= 4;
input_label=forward;
stack_pointer=stack_pointer+1;
/* Outputs for transition 6 ==> 4 7

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output.state_id=4;
output.secure=False;
output.source=Server;
goto efsm_start

::((history_stack[stack_pointer+1] ==1))->
state= 1 ;
input_label=forward;
stack_pointer=stack_pointer+1 ;
/* Outputs for transition 6 ==> 1 */
output.state_id=1 ;
output. secure=False;
output.source=Local;
goto efsm_start

fi;
fi;

fi;
}

init{run efsm()}

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

Name: Xiaoshan Zhao

Beijing, China

1968

Place of Birth:

Year of Birth:

Education:
University of Windsor, Windsor, Ontario, Canada
2001-2004 M.Sc. in Computer Science

Zhejiang University, Hangzhou, China
1986-1990 B.Eng. in Computer Science and Engineering

Programmer/Analyst
Walter Products Inc., Windsor, Ontario, Canada
2001-2004

Network Administrator
Beijing Petrol Chemical Engineering Co., Beijing, China
1990-2000

Working Experience:

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Model checking: Correct Web page navigations with browser behavior.
	Recommended Citation

	tmp.1617972026.pdf.1YR4N

