
Formal Methods in System Design, 2:277-321 (1993)
@ 1993 Kluwer Academic Publishers

Test Case Verification by Model Checking
KSHIRASAGAR NAIK
Concordia University, Dept. of Elect. and Computer Eng., 1455 de Maisonneuve West, Montreal, CANADA,
H3G IM8

BEHCET SARIKAYA
Bilkent University, Dept. of Computer Eng. and lnfo. Science, Bilkent, Ankara 06533, Turkey

Abstract. Verification of a test case for testing the conformance of protocol implementations against
the formal description of the protocol involves verifying three aspects of the test case: expected
input/output test behavior, test verdicts, and the test purpose. We model the safety and liveness
properties of a test case using branching time temporal logic. There are four types of safety properties:
transmission safety, reception safety, synchronization safety, and verdict safety. We model a test
purpose as a liveness property and give a set of notations to formally specify a test purpose. All
these properties expressed as temporal formulas are verified using model checking on an extended
state machine graph representing the composed behavior of a test case and protocol specification.
This methodology is shown to be effective in finding errors in manually developed conformance test
suites.

Keywords: reachability analysis, extended finite-state machines, temporal logic, Estelle, TTCN, model
checking, safety properties, liveness properties

1. Introduction

Communication protocols are the rules that govern communication among com-
ponents in a distributed system. The four steps in a protocol development
process, called protocol engineering lifecycle, are design of a protocol specification,
validation and verification of the specification, generation of an implementation
from the specification, and conformance checking of the implementation [1].
Conformance of a protocol implementation with its specification means that
the implementation under test (IUT) behaves according to the rules described
in its specification. In the open systems interconnection (OSI) framework [2],
checking the conformance of an implementation to the corresponding protocol
specification is done by testing the implementation using a set of test cases. The
testing activity is important, because it ensures that one independently generated
implementation of the same protocol can interwork with another.

In the protocol development process, the use of formal description techniques
(FDTs) enables protocol designers to verify and validate specifications, and de-
sign and verify test cases. Standards organizations, such as the International
Organization for Standardization (ISO) and the International Consultative Com-
mittee for Telephone and Telegraph (CCITT) have defined various FDTs such
as LOTOS [3, 4], Estetle [5, 6], and SDL [7] to specify protocols; ASNA [8] for

278 NAIK AND SARIKAYA

defining a data transfer syntax; the Tree and Tabular Combined Notation (TTCN)
[2] to specify test suites; and test architectures [2] for executing the test cases.

There are two main approaches to designing a test suite: semiautomatic and
human design. In the semiautomatic approach, the formal specification of a
protocol is used as a basis for generating test cases. There are a number of test
design techniques [9, 10] which algorithmically generate test cases from deter-
ministic finite state machine (FSM) models of protocols. However, generating
readily usable complete test cases from other FDTs, such as LOTOS, Estelle, and
SDL, is more difficult, and research until now has produced only a partial solution
[11, 12]. The limited research that has been reported so far deals only with the
local single-layer (LS) test architecture. Semiautomatically generating test cases
for more useful test architectures such as the distributed single layer (DS), the
coordinated single layer (CS), and the remote single layer (RS), requires more
research to be done. Moreover, in the semiautomatic approach, no technique
has yet been reported to generate classes of special test cases required to check
the multiple-connection support and robustness capabilities of implementations.

Therefore, traditionally, a test suite is designed by a team of designers having
expertise in protocol standards and test architectures [13]. Such a human-designed
test suite has three advantages over a semiautomatically designed one. First, a
test case can be designed with a specific test purpose. Second, test cases can be
grouped into various categories, such as basic interconnection tests, capability
tests, valid behavior tests, robustness/invalid behavior tests, multiple-connection
support tests, etc. Finally, test cases can be manually designed for all four
basic test architectures LS, DS, CS, and RS. However, the main disadvantage of
human-designed test cases is that those test cases can be error-prone.

In the absence of any complete technique to generate test cases from formal
description languages used in specifying protocols, a good alternative is to design
test cases manually and use a methodology to verify the correctness of those test
cases against the reference formal protocol specification. In this paper, we focus
on developing a methodology to verify human-designed test cases.

To verify the correctness of a system, one must verify that the system satisfies
its safety and liveness properties. Safety properties st.ate that something bad
never happens and liveness properties state that something good eventually does
happen. In order to understand the motivations for characterizing the correctness
of test cases in terms of safety and liveness, it is important to understand the
difference between traditional program testing and protocol testing [1].

Because protocol systems are not the same as traditional software systems, they
have special design and implementation concerns. Traditional systems consist of
functions that go from an initial state to a final state. Systems accept all input
at the beginning of their operations and yield their output at termination. These
systems are called transformational because they transform an initial state to a
final state. Typical examples are batch, off-line data processing, and numeric
computational packages. In transformational systems, a test case consists of
a pair of (input, output) [14], where the input is given to the system at the

TEST CASE VERIFICATION BY MODEL CHECKING 279

beginning of its execution and the output is the desired output of the system on
its termination.

But some systems, like operating systems and process-control systems, may
never terminate. These are called reactive systems. The purpose of running
reactive systems is not to get a final output, but rather to maintain some
interaction with the system's environment. A reactive system is not restricted
to accepting input on initiation and generating output on termination. Some of
its input depends on intermediate output. Thus, one cannot adequately specify
reactive systems by referring only to their initial and final states. Instead one
must refer to their continued behavior, which may be a very long sequence of
states and input/output events.

Communication-protocol systems are reactive systems with several unique
characteristics: Each protocol input may not have a corresponding output, and
one input may have many outputs. The correctness of a protocol's output
depends on the values of its preceding output.

Therefore, the structure of a test case for testing communication protocols
cannot be described by a simple (input, output) pair. Rather, test cases for such
systems must have the following characteristics: sequences of input/output events,
ability to check values of parameters in a received event, timer management
facility, ability to retransmit the same event for a finite number of times if there
is no response from the IUT in an expected time duration, and ability to assign
a test verdict at the end of a test session.

Associated with every test case is a test purpose, which is a high-level description
of the protocol function to be tested by the test case. If the behavior of the IUT
is allowed by the protocol and the test purpose is satisfied, then the test case
assigns a Pass verdict. If the behavior of the IUT is not allowed by the protocol,
then the test case assigns a Fail verdict. However, if the behavior of the IUT
is allowed by the protocol, but the test purpose is not satisfied, then the test
case assigns an Inconclusive verdict. Therefore, the correctness of conformance
judgment of a test case depends on the correctness of sequences of events input
to the IUT, the expected protocol events stated in the test case, the verdicts
assigned by the test case, and the purpose of the test case.

Some well-known examples of safety properties of concurrent systems are
partial correctness, absence of deadlock, and mutual exclusion. A liveness property
that has received a lot of formal treatment is program termination. However,
program termination is not a good thing to happen to every computing system~
For example, an operating system should never terminate (crash). For such
systems, other kinds of liveness properties are important, for example: Each
request for service will eventually be answered, a process will eventually enter
its critical section, etc. The nature of safety and liveness properties of a
system depends on the nature of the computing system. Therefore, to verify the
correctness of test cases, one must define safety and liveness properties applicable
to test systems. One contribution of this paper is to define safety and liveness
properties relevant to test systems.

280 NAIK AND SARIKAYA

An outline of the test verification methodology presented in this paper is as
follows. Because protocols and test cases are generally specified using different
FDTs, it is essential to represent them in a common notation for the purpose of
being able to obtain their combined behavior. Thus, we define a kind of extended
finite state machine (EFSM) to which a variety of protocol and test specification
languages can be translated. Since a test architecture plays an important role
(in the form of defining the logical and distributed interconnection among the
entities in a test system) in the design of a test case, we define the notion of
a test verification system based on a test architecture and generate the global
behavior of the test verification system. That is, we consider test architectural
issues [15] in the verification process. To verify the correctness of test cases, we
express the test case properties in terms of formulas in branching time temporal
logic using the well-known notions of safety and liveness. We define four types
of safety properties and one type of liveness property. These properties are then
verified, using a model-checking approach, on the global behavior of the test
verification system.

The paper is organized as follows. In section 2, we present the EFSM
models of a test case and a protocol specification, a uniform way of representing
exchanged data, and a brief introduction to branching time temporal logic. In
section 3 the test case verification system is defined, an overview of model-
checking-based test case verification methodology is given, followed by step 1 of
the methodology, the global state space generation. Step 2, the generation of the
model is discussed in section 4. Step 3, formulation of the test case properties
is discussed in section 5 where a notation for test purpose representation is
developed. The last step of the methodology, the verification of test case
properties on the model is presented in section 6. A detailed example of test
case verification is given in section 7. In section 8, we summarize all the
reported research on test case verification. Some concluding remarks are stated
in section 9.

2. EFSM models and temporal logic

In general, test cases and protocols are specified in different formal description
techniques which use different notations to define data types and different
behavioral semantics of their operations. For example, according to ISO's
standardization framework, test cases are specified in TFCN, whereas a protocol
can be specified in LOTOS, Estelle, or SDL.

Estelle is based on a finite state machine model, which is extended by Pascal
data types, expressions, and statements. The Estellc specification of a protocol
may consist of a large number of interconnected modules which communicate
among themselves through (FIFO) channels. LOTOS, a process algebraic speci-
fication language, is a combination of Milner's calculus of communicating systems
(CCS) formalism for behavior description and abstract data types (ADTs) for

TEST CASE VERIFICATION BY MODEL CHECKING 281

data description. A set of composition rules is used to derive larger specifications
from the primitive notions of events and processes. SDL, like Estelle, is also
based on an extended finite state machine model. It is largely oriented toward
a graphical representation. Abstract data types are used to define data in an
SDL specification. In the TTCN test specification language, constrained events
and subtrees constitute the building blocks in the design of the behavior part of
a test case. Data in a test case are described using both a tabular notation and
the abstract syntax notation 1 (ASN.1) [8].

It is not possible to compare the behavior of a test case and the behavior
of a protocol specified in different FDTs and using different data definition
techniques. Moreover, with such differences, it is not possible to get a combined
behavior representing all interaction sequences between a test case and a protocol
specification. Therefore, we introduce the notion of a common intermediate
model, which is a kind of extended finite-state machine (EFSM), to which
protocols and test cases specified in different FDTs can be translated.

In this section, we define an EFSM for modeling protocol and test specifica-
tions, define a common notation for events exchanged among the entities in a
test architecture, and present a brief overview of branching time temporal logic.

2.1. EFSM models

In this section, we describe the EFSM models of test cases and protocol speci-
fications. A communicating EFSM is an 8-tuple, F = < S, V, R, s~ t , Z, h0, Ic,
Oc >, where S is a tagged set of states such that a tag is an element of the
verdict set {Pass, Fail, Inconclusive, Null}; V is a finite set of variables; R is a
finite set of possible transitions between states; slnit is the initial state; Z _c S is
the set of final states; h0 is the initial assignments to the variables in V in the
form of vi ~ vali for some vl ~ V; I~ is a set of input channels from which F
receives messages; and O~ is a set of output channels to which F sends messages
to communicate with other EFSMs.

A transition in an EFSM is a 6-tuple, r = < 8, 8', a, e, h, n >, where 8 is the
from state; s ~ is the to state; a is an action or event clause causing the transition to
fire; e is the enabling predicate; h is a set of assignments of values to the variables
in V, and n is the priority number of the transition. The priority number is used
to model the priority of execution in the case of several alternative transitions
from the same state.

An event in a transition can be one of {input, output, internal}, where the
input and output events are known as external events and occur at some well-
defined interaction points through which EFSMs communicate. An external event
is characterized by three parameters: interaction point, direction ("?" denotes an
input and "!" denotes an output), and the value (message) passed in the event.
No channel or direction is associated with an internal event.

We use function notations to access the parameters of a transition. For

282 NAIK AND SARIKAYA

example, dir(E) returns the direction field in the event E; pco(E) returns the
interaction point of the event E; and from(r) and to(r) return the from and
to states of transition r, respectively. The notation ps(X) denotes the present
state of an EFSM M. The function ezt(E) (int(E)) returns a true value if E is
an external (internal) event. To extract the first message in a channel Q, we use
the notation head(Q). The function verdict(state) returns the verdict tag of the
state. We also denote the enabling condition e of a transition r by e~ and the
set of transitions R of an EFSM M by RF.

2.1.1. EFSM model of a specification. Communication protocols can be specified
using specification languages such as LOTOS, Estelle, and SDL. Any specification
in one of these languages can be algorithmically mapped to the EFSM model.
In this paper, we only describe a mapping for Estelle [6].

The transformation procedure assumes single-module normalized Estelle tran-
sitions where the Begin ... End block may contain a sequence of assignments
and a sequence of output events [16] such as in:

From ACSE_IDLE
To AWAIT_AARE_APDU
when A. A_ASCreq
Provided Event.Mode = MODE_Supported

Begin
P_CONreq.User_data.Protocol_version := I;
P_CONreq. Session_Con_Id := Event.Session_Con_Id;
0utput P. P_CONreq;

End,

where the From and To clauses represent the current and the next state of the
transition; When clause represents the input event A_ASCreq at the interaction
point A; Provided clause represents the enabling predicate; and Output statement
represents the output event P_CONreq at the interaction point P.

The normalized transitions with no Output statements transform directly to
the EFSM transitions. Two or more transitions are generated from a normalized
transition with Output statements by separating the input and output events and
creating new states between From and To of the Estelle transition. Spontaneous
transitions, i.e., the transitions with no When clause are represented in the EFSM
model by transitions whose action clause is set to internal. In this case if the
transition has a priority, it is kept in the priority clause of the EFSM transition.

Applying the above mapping process to the example transition we generate
two EFSM transitions:

<ACSE_IDLE, X, A?ASCroq, [Event.Appl_Mode = MODE_Supported],
{P_CONreq.User_Data.Protoco1_Version := I,
P_CONreq.Session_Con_Id := Event.Session_Con-Id}, 1>

<X, AWAIT_AARE_APDU, P!PCONreq, True, {}, I>

TEST CASE VERIFICATION BY MODEL CHECKING 283

The initial assignment h0 of S-EFSM is obtained from the initial transition
of the Estelle specification. The set of final states Z is usually equal to si,~it, but
in some cases may include other states. Ic/Oc are FIFO queues denoting the
external input/output interaction points of the Estelle specification, respectively.

The process of mapping from normalized Estelle to EFSM is of linear com-
plexity since in many cases transitions map one-to-one. However, if there are n
output events in a normalized transition, then we generate (n + I) transitions,
one for the input event and one for each output event.

2.1.2. EFSM model of a test case. Test cases are specified in a test specification
language called the Tree and Tabular Combined Notation (TI'CN). A TTCN
specification contains four parts: overview, declarations, constraints, and dynamic
behavior. The overview part specifies the name of the test suite and contains
information about the hierarchical test suite structure. The declaration part is
used to declare test suite parameters, points of control and observation (PCO),
protocol data units (PDU), abstract service primitives (ASP), and timers.

The constraint section allows one to specify values for each field of the ASPs
and PDUs. A constraint table contains a constraint name for the ASP (PDU)
and a list of parameter names and their values. The parameter values in an
ASP (PDU) constraint are sent if the ASP (PDU) appears in a send event and
they shall be the values received if the ASP (PDU) appears in a receive event,
i.e., values of parameters in a send event constraint are used to assign values to
the corresponding parameters, whereas values of parameters in a receive event
constraint are used to check whether the received values of parameters are equal
to the respective values in the constraint.

The dynamic behavior table for a test case contains the specification of the
combinations of sequences of test events that are deemed possible by the test
suite specifier. The events are combined in two ways: sequences and sets of
alternatives. A sequence of events is represented one line after the other,
each new event being indented once from left to right, as time is assumed to
progress. Test events at the same level of indention and belonging to the same
predecessor event represent the possible alternative events which occur at that
time. Alternative test events are specified in the order in which the tester shall
repeatedly attempt them until one occurs. All the undesired external input events
can be trapped by specifying an OTHERWISE event as an alternative to the
desired events. Therefore, in a sequence of alternative events, an OTHERWISE
event is the last event or an event just before a TIMEOUT. Design of a test
case can be modularized by using subtrees and default trees.

It is possible to algorithmically map a TTCN test case to an EFSM [17].
The translation process consists of three steps. In the first step constraints
are processed and default behaviors are expanded. A send event constraint is
translated to a set of assignments and a receive event constraint is translated to
a conjunction of predicates. In the second step, an EFSM is derived from the
main tree and for each of the subtrees. In the third step, subtree attachments

284 NAIK AND SARIKAYA

are resolved by combining the corresponding EFSMs. Each event line in a test
case is modeled as a transition. For example, consider the TTCN event line:

L!P_CONreq[x = 2] (a := 1)P_CON_base

where ! represents a send event P_CONreq at the PCO L; x = 2 is a predicate; a :=
1 is an assignment; and P_CON.base is a constraint reference. Constraint table
that defines P_CON.base is processed first to obtain a sequence of assignments
f l to be placed in the assignment clause of the EFSM transition. Then the
predicate is placed in the enabling clause, the assignment a := 1 is added to f l ,
and finally the event clause is set to Lt.P_CONreq. Assuming that the transition
occurs from state S1 to state 82 then the verdict tags of both the states are set
to Null. If this is the first event in a set of alternatives, then the priority is 1.
The corresponding transition in EFSM notation then becomes:

< $1, S2, L!P_CONreq, [x = 2], f l , 1 >

The initial assignment h0 of T-EFSM is obtained from the initial values
provided in the declarations section of the TTCN test case specification. Initial
values of ASPs/PDUs are obtained from the base constraints declared in the
constraints section. The set of final states Z is derived from the To states of
the last event in a sequence. I~/Oc are the PCOs. Since PCOs are bidirectional
Ic = Oc. Consecutive events in a set of alternatives are assigned consecutive
priority numbers starting with 1. The higher the priority number is, the lower
the execution priority.

2.1.3. Representation of data structures. In the layered OSI communication
architecture [18], two protocol entities communicate through the exchange of
events, called abstract service primitives (ASP) and protocol data units (PDU), at
the service boundary between them. If data in two communicating entities are
defined using different data definition techniques, it is not possible to interpret
a received event in a communicating entity. It is rather natural to use different
data definition techniques while specifying communication protocols in different
FDTs, a test case in TTCN, and a test management protocol in a semiformal
manner. The specification languages LOTOS, Estelle, "SDL, and TTCN use
abstract data types, Pascal data types, abstract data types, and a tabular notation
in addition to ASN.1 to define data and events, respectively.

Therefore, it is important that the syntax of and the naming conventions used
in the events are interpreted in a unified manner. For this purpose, we use a
notation called input/output diagram (IOD) to model events exchanged between
two communicating entities. The concept of an I/O diagram was first introduced
by Jackson in the context of structured programming [19].

The IOD notation is selected as a means of representing a communication
event because of its ability to represent a variety of attributes of the parameters in
the event, such as tree structure of ASP/PDU parameters representing composite

T E S T C A S E V E R I F I C A T I O N BY M O D E L C H E C K I N G 285

Figure 1 (a) Structure of an intema| node and (b) structure of a leaf node.

Name I Tag

Type

(a)

Value

(b)

Figure 1. (a) St ructure of an internal node; and (b) s t ructure of a leaf node.

data types, grouping of parameters using sequence and set semantics, choice of a
parameter among a set of alternatives, repetitive nature of the same parameter,
optional~mandatory presence of some parameters in an event, and default values
of some parameters.

To represent a communication event as an IOD, we define two primitive
building blocks and a notation to combine them to describe a complete ASP/PDU.
An IOD takes a tree structure using two types of nodes: internal and leaf. An
internal node, shown in figure 1, contains three fields: name, type, and tag.
The name and type fields represent the name and type of a parameter field.
The tag represents a data value's attribute, whose possible values are {optional,
mandatory, default, choice, set, sequence}. A leaf node has only one field to
contain the value of a type stated in its parent node. Only the leaf nodes in a
tree structure contain actual values, whereas the internal nodes are used to build
composite data types. For example, an internal node in an ASP may contain a
composite type representing a PDU.

An IOD is a tree structure representing an ASP or a PDU. Since only ASPs
and PDUs are exchanged among the entities in a test system and since these
structures can be specified using different techniques, IOD becomes a common
representation. Mapping of IOD from or to individual data representations need
only be done at the time ASP/PDUs are placed into channels.

An event parameter can be either a primitive type or a composite type.
Examples of a primitive type are integer type, boolean type, bit string type, etc.
A composite type may contain more than one primitive type or a combination
of primitive and composite types.

Abstract data types in LOTOS and SDL, record types in Pascal, and tabular
notations and ASN.1 in TTCN are used to define events. It is possible to
represent all those data types as I/O diagrams [20].

2.2. Branching time temporal logic

Temporal logic has been of particular interest to the designers of both hardware
and software specifications for more than a decade in the form of verifying

286 NAIK AND SARIKAYA

some well-defined properties of specifications [21, 22]. With the widespread use
of communication protocols and the subsequent global effort in standardizing
formal specifications of protocols, temporal logic has also been used in verifying
protocol specifications [23, 24].

Temporal logics are extensions of the propositional logic. A temporal formula
is constructed using propositional variables, the conventional logical operators,
and a set of temporal operators. The set of temporal operators in a temporal
logic is defined based on the structure of time on which the temporal formalism
is based. There are two main classes of temporal logic: linear time and branching
time [25]. The linear time temporal logic considers time to be a linear sequence
and the branching time approach adopts a tree structured time allowing some
instants to have more than a single successor instant. Both types of temporal
logic are used in the verification of communication protocols [23, 24, 26].

Whether to use the linear time logic or the branching time logic is pragmatically
based on the types of systems and properties one wishes to formalize and
study [25]. Since the global behavior of a test system containing multiple
nondeterministic protocol and test entities takes a tree structure rather than
a sequential structure, we use branching time temporal logic for studying the
properties of a test system. In the following, we present the syntax and semantics
of branching time logic.

The advantages of using temporal logic to express test case properties are
that it allows us to verify test case properties in terms of the well-known notions
of safety and liveness and to express the validity of Pass test verdicts with the
satisfaction of test purposes.

Let AP be a set of atomic propositions. BTL formulas are obtained by using
the following two rules.

1. Every atomic proposition p E AP is a BTL formula.

2. If f and g are BTL formulas, then so are -~f, f ^ 9, f v9, A[f U9], E[f Ug].

The symbols -1, ^, and V have their usual meanings. U is the until operator;
the formula A[f U 9] (El f U g]) intuitively means that for every computation path
(for some computation path) there exists an initial prefix of the path such that
9 holds at the last state of the prefix and f holds at all other states along the
prefix.

The semantics of a BTL formula are defined with respect to a labeled
state transition graph. Formally, a BTL structure is a 5-tuple: M = <
S, V, R, Pr, s~,~t. > where S is a finite set of states; V is a finite set of variables;
R is a finite set of possible transitions between states; (P~ : fi' ~ 2 Ae) assigns
to each state the set of atomic propositions that hold in that state; and Sinit E S
is the initial state.

Apath is a sequence of states (so, sl, 8z, ...) such that u si+l) E R]. The
state 80 need not be the initial state of a BTL structure. We use the standard
notation to express truth in a structure: (M, 80 [= f) means that the temporal

TEST CASE V E R I F I C A T I O N BY M O D E L C H E C K I N G 287

formula f holds at state so in structure M. When the structure M is understood,
we simply write so I = f . The relation I = is defined inductively as follows:

1. so 1= p iff p E P~(so).

2. s0 I = -~y iff not(so I = y).

3. so [= f / X g i f f s 0]= f a n d s 0]= g.

4. so I = f V a i f f s 0 I = y o r s 0 1= g.

5. so [= A[f Ug] iff for all paths (so, sl, . . .) starting with so,

3i[(i >_ O) A (si I = g) A (Vj[O_< j _< i ---, (sj [= f)])].

6. so I = E [f U g] iff for some path (so, sl, . . .) starting with so,

3i[(i _> 0) ^ (si I = g) ^ (vj[o _ j ___ i --, (sj 1= y)])].

The following abbreviations are also used in writing BTL formulas:

�9 A F (f) = A[True U f] means that f holds in the future along every path
from s0; that is f is inevitable.

�9 E F (f) =_ E[True U f] means that there is some path from so that leads to
a state at which f holds; that is, f potentially holds.

�9 EG(f) = -~AF(-~f) means that there is some path from so on which f
holds at every state.

�9 AG(f) - -~EF(-~f) means that f holds at every state on every path from
so; that is f holds globally.

�9 (f l ~ f 2) - - AG(f l ~ AF(fz)) (read "f l leads to f2") means that for any
time at which f l is true, fz must be true then or at some later time.

3. Test verification system state space

Since every test case is designed in the context of a specific test architecture, in
this section we explain the notion of a test architecture in layered-protocol testing.
We define a generic test verification system applicable to all test architectures.
Then we give an outline of the test case verification methodology followed by
a reachability analysis-based algorithm to generate a global state space from a
test verification system.

288 NAIK AND SARIKAYA

3.1. Test architectures

According to the OSI reference model, a protocol entity communicates by
exchanging abstract service primitives (ASPs) with the layers immediately above
and below it in order to provide services to the layer above it using the services
provided by the layer below it. Thus, a protocol test system contains two test
entities, a lower tester (LT) and an upper tester (UT). The LT controls and
observes the ASPs at the lower service boundary by monitoring the ASPs at the
lower point of control and observation (PCO). Similarly, the UT controls and
observes the ASPs at the upper service boundary by monitoring the ASPs at the
upper point of control and observation.

Generally, the LT functions as the master tester and the UT functions as a
test responder. In practice, there are some variations to the above descriptions of
testing activities. The lower service boundary of an IUT may not be accessible to
the LT, in which case the LT controls and observes those events at a point away
from the actual lower boundary of the IUT through the use of an underlying
service provider. Moreover, the LT may control and observe the events at the
upper service boundary of the IUT in an indirect manner by controlling the
activities of the UT through a specialized test management protocol.

Thus, the number of PCOs, the proximity of the PCOs to the IUT, and the
interconnection mechanism among the entities in a protocol test system give rise
to the notion of basic test architectures [2]. In the OSI testing framework, there are
four basic test architectures: local single layer (LS), coordinated single layer (CS),
distributed single layer (DS), and remote single layer (RS). From the point of
error-detection capabilities, these test architectures have been compared in [15].

In the CS architecture, the LT communicates with the IUT through the service
provider while controlling and observing the IUT's behavior at the lower PCO
(L) as shown in figure 2. The IUT communicates with the service provider
through the interaction point N and with the UT through the interaction point
U. The LT part of a CS architecture-based test case is written in TTCN and a
standardized test management protocol (TMP) is used as the UT whose behavior
is deterministically controlled by the LT through the use of command and reply
test management protocol data units (TMPDU). A TMP is described in detail
in section 7.

3.2. Test verification system

Replacing the IUT by the EFSM model of the corresponding protocol speci-
fication, the test entities by their respective EFSM representations, the service
provider by its EFSM representation, and representing each point of interaction
between two communicating entities by two FIFO channels, we derive a test
verification system as defined below.

TEST CASE VERIFICATION BY MODEL CHECKING 289

[.~_..o.,.~,~.(is.,.,.,.,.,.li,,,,,. [Upper Tester (UT)
(Test Management

Lower Tester (LT) protocol)
1~'~ (N) PDUs . [Implementation

I(N- 1) ASPs Under
L [Test

(N-layer)
(N-I) Underlying Service Provider

u: Interaction Point between the TMP and the L'nplememation
N: Interaction Point between the Implementation and the Service Provider

Figure 2. Coordinated single-layer (CS) test architecture.

Definition 1. A test verification system (TVS) is defined to be a 5-tuple,
TVS = < 27, O, P, ~P, C >, where S is an EFSM corresponding to the lower
tester (LT-EFSM); O is an EFSM corresponding to the underlying service provider
(USP-EFSM); P is an EFSM corresponding to the protocol specification (S-
EFSM); ~P is an EFSM corresponding to the upper tester (UT-EFSM); and C' is
a set of channel functions defining the interconnection among S, ~2, P, and ~P.

A channel function channeI(EFSM1, EFSM2) denotes that EFSM1 outputs
messages to the channel which are received by EFSM2. In general, we denote
a test EFSM by T-EFSM while referring to either the lower tester or the upper
tester EFSM. Corresponding to a test architecture, we derive a test verification
system as follows.

1. Replace the implementation under test (IUT) module by the EFSM rep-
resentation of the corresponding protocol specification.

2. Replace the LT module by the EFSM representation of the lower tester
part of the test case.

3. For a given test architecture, replace the UT module in the following
manner.

a. For LS and DS test architecture, replace the UT module by the EFSM
representation of the TTCN specification of the upper tester part of the
test case.

b. For CS architecture, replace the UT module by the EFSM representation
of the test management protocol (TMP) specification.

c. For RS architecture, the behavior of the UT module is dynamically gen-
erated during the model generation process. Initially, the UT-EFSM con-
sists of only one state 80 and one transition r = < 80, 80, U?OTH, true, {},
1 >. Implicit send events in conjunction with the behavior of the S-
EFSM are used to dynamically update the UT-EFSM while generating
a global state space.

290 N A I K A N D SARIKAYA

1
EFSM Model of the [
Test Management

i

Protocol (UT-EFSM)

EFSM Model of
a Test Case
Representing the

Protocol Specification
L~ LO (S-EFSM)

NI] NO

I EFSM Model of the Underlying Service Provider (USP-EFSM) / t 1

Figure 3. The test verification system for the CS architecture.

4. Replace the underlying service provider module by its EFSM representation,
that is, by its input/output behavior.

5. Replace each interaction point and point of control and observation (PCO)
between two modules in the test architecture by two unidirectional FIFO
channels.

In general, we denote a test EFSM by the notation T-EFSM while we refer
to any test EFSM including the service provider EFSM. The test verification
system for the CS architecture in figure 2 is shown in figure 3. The LT-EFSM is
obtained from a TTCN test case specification as explained in section 2.2. The
UT-EFSM is derived from a TTCN test case specification of the upper tester
in case of LS and DS architectures and the specification of a test management
protocol in case of CS architecture. In case of the RS test architecture, the
EFSM model of the UT is dynamically generated in an incremental manner [20].
The S-EFSM is obtained from the formal specification of the protocol written
in one of the FDTs: LOTOS, Estelle, and SDL. An outline of a methodology
to translate an Estelle specification to an EFSM is discussed in section 2.1 and
a detailed methodology can be found in [20]. Protocols specified in LOTOS
and SDL can also be translated to their corresponding EFSM models using the
methodologies in [27]. The USP-EFSM is obtained from the service specification
of the layer providing services to the protocol layer under test.

3.3. Outline of the methodology

Temporal logic can be used to model test case properties in terms of safety
and liveness properties. Two approaches exist for verifying temporal formulas:
theorem proving and model checking. Theorem proving involves logical deduction
and requires the protocol and test case specifications to be expressed as temporal
formulas. Model checking, on the other hand, involves verifying the properties

TEST CASE VERIFICATION BY MODEL CHECKING 291

on a state space. We take the model checking approach because:

1. Formal specifications in one of FDTs and TTCN of protocols and test cases
are of common use.

2. These specifications can algorithmically be mapped to EFSM models.

3. Using a modified version of a traditional reachability analysis algorithm, a
global state space can be generated.

Therefore, the model-checking approach to test case verification consists of
the following four steps:

1. Derive a global state space by combining the behavior of all the entities in
the TVS.

2. Associate a set of atomic propositions to each global state.

3. Express the safety and liveness properties of a test case as temporal formulas.

4. Use a model checker to verify whether the global state space derived in
step 1 is a model for the test case properties in step 3.

Step 1 is covered below in section 3.4; steps 2-4 are detailed in sections 4, 5,
and 6, respectively.

3.4. State space generation

We generate a global state space representing the combined behavior of a test
verification system by using a reachability analysis algorithm. The teachability
analysis algorithm is based on perturbing a global state using all the executable
transitions in the component machines' present states [28].

Definition 2. The global state s of a test verification system T V S = <
S, O, P, ~, C > is defined as a 6-tuple < Ss, ~ , Ps, f ir C~ , / - /u v >, where Ss,
I2s, P,, and #~ represent the present states of S, S2, P, and #, respectively; C,
is a set of states consisting of the present states of each channel in C ; / - / i s the
set containing values of all the variables of the EFSMs in the TVS; and v is a
verdict variable assumed to be unique.

In a global state space, the states are connected by global transitions. A
global transition in the transition space R is a 6-tuple defined in section 2. The
initial global state 80 is defined as follows:

< si,m(~), Sinit(Y2), si.it(P), si,m(~'), C~mpty, i n i t (I I)U v = Nul l >,

292 NAIK AND SARIKAYA

where sinit(S) is the initial state of S; si~it(9) is the initial state of ~; si,m(P)
is the initial state of the protocol specification entity P; 8i~itQP) is the initial
state of ~P; C~,tu denotes all the channels in C to be empty; and init(H) =
ho(S) U ho(12) U ho(P) U h0(~P), where the function h0 denotes initial assignments
to the variables in the corresponding EFSM. Notationally, the present state of
an EFSM, M, is denoted by the function notation ps(M).

In the following, we define the sets of enabled transitions, executable transi-
tions, pending transitions, and must transitions.

Definition 3. The set of executable transitions XT(s) occurring in the present
state s = < S~, ~2,, Ps, ko,, C , , / / U v > in TVS = < S , O , P , O ,C > is defined as
the set of all transitions, in the EFSMs S, ~ , P, and k~ whose enabling conditions
evaluate to true, that is,

XT(s) ={rtr E {RE U Ra U Rp U R~} A

from(r) C (Es,-(28, Ps, k~'8} A er = true}.

Since the evaluation of er involves accessing the channel contents and taking the
priority number of a transition in a set of alternative transitions in an EFSM,
XT(s) is computed in the following manner.

ZT(s) = Exec(r, s) u Exec(e, 8) u Exee(P, 8) U E ec(a, 8),

where the procedure Exec is given below.

procedure Exee(M, s) { / * M is an EFSM E {2?,/2, P, ~} with all its transitions
ands=<Es,~s , Ps,~'~,Cs, I I U v > */
/ . TXT is a temporary variable that holds the set of executable transitions in
M corresponding to s. � 9
TXT(s) := r R = {r I from(r) = ps(M)}, init_priority := 0,
Flag(cj) := False Vcj E C
While R ~ r begin {

init_priority := init_priority +1
for r E R[(priority(r) = iniLpriority) do {

if ((int(E)h eval(s, r e)) then
TXT(s) := TXT(s) U {r}, R := n - {r}

if (ext(E) A (dir(E) =!) A eval(s, r e)) then
TXT(s) := TXT(s) U {r}, R := R - {r}

if (ext(E) A (dir(E) =?) A (msg(E) = head(channel(E)))A
(flag(channel(E) = False) A eval(s, head(channel(E)), e)))

then
{TXT(s) := TXT(s) U {r}, R := R - {r},

Flag(channel(B)) := True}
if (ext(E) A (dir(E) --.9) A (msg(E) = OTH)A

(content(channel(E)) ~ r (flag(channel(B) = False)^

TEST CASE VERIFICATION BY MODEL CHECKING 293

eval(s, head(channel(E)), e))) then
{TXT(s) := TXT(s) U (r}, R := R - {r},

Flag(channel(E)) := True}
}/* for-loop �9 /

}/* while-loop �9 /
Return(T XT)
}

Here TTCN TIMEOUT events translated as timeout transitions in T-EFSMs
are treated qualitatively by assuming that a timeout can occur any time without
referring to its quantitative value. The advantage of such a treatment is that all
possible effects of the timeout transitions can be studied. Also TTCN OTHER-
WISE events translated as OTH transitions in T-EFSMs are selected only if none of
the events of higher-priority alternatives match with the first event in the channel.

3.4.1. Predicate evaluation. Here the procedure eval used in computing XT will
be defined. This procedure decides on the truth value of the enabling predicate
e of a transition in S-EFSM or one of T-EFSMs given a global state s and the
IOD at the head of the channel.

Assume that e is expressed in conjunctive normal form such that each operand
of a logical operator in e is either a boolean variable or an expression of the form
opl relop op2, which we call an elementary predicate, and relop is a relational
operator. Next it is assumed that IOD has nonsymbolic values assigned at all
leaf nodes. These assumptions are essential for the procedure eval to always
return a true or false value.

procedure eval(s, IOD, e)
{/* IOD is a composite tree-structured data representing an ASP in a
FIFO channel or r for an internal t rans i t ion . /

.

.

Execute step 2 for each elementary predicate in e. If any of the returned
values are false, then exit the procedure with a false value. If all the
returned values are true, then exit the procedure with a true value.

Evaluation of a relational operator consists of the following three cases
which return a boolean result:

a. opl relop op2, where both opl and op2 are local variables: Evaluate opl
relop op2 and return the boolean result.

b. opl relop op2, where opl is a field of the IOD and op2 is a constant:
Traverse the tree-structured data IOD and extract the valu~ of opl,
evaluate "opl relop opT', and return the boolean result.

c. opl relop op2, where opl is a field of the IOD and op2 is a local
variable: Traverse the tree-structured data IOD and extract the value of

294 NAIK AND SARIKAYA

opl. Since Ol)2 can be an expression in the local variables, first compute
the value of op2, then compute "opl relop opT', and return the boolean
result.}

3.4.2. State perturbatior~ The idea of state perturbation [28] is central to
generating the global state space of a system containing a set of communicating
modules. The reachability analysis algorithm [28] generates the global state space
of a protocol system consisting of deterministic FSM entities. The reachability
analysis algorithm presented in this paper generates the global state space of a
system modeled as a set of communicating nondeterministic EFSMs. In addition,
the algorithm takes into account the semantics of OTHERWISE events used in
a test case [2].

Given the present global state and a transition, the perturbation function
computes the next global state. If the transition is an implicit send in an
RS architecture, then the perturbation function also updates the UT-EFSM
by calling the UT_gen procedure. In the following definition, the procedure
map_to_IOD(Event) is assumed to transform the Event of type ASP or PDU to
an IOD.

Definition 4. The perturbation of a global state s = < 27~, I2,, P,, !P,, { e l , . . . ,
c~, ..., c~} , / /O v > by an executable transition r E XT(s) in T V S = < 27, J?, P,
~, C >, denoted by the function pert(s, r), is defined as the process of obtaining
a new state z,~ of the TVS by executing r in s. Notationally, s~ pert(z, r).

The perturbation function pert(s, r) is given below.

procedure pert(s, r) (
/ * s = < Ss, 12,,P,, ~',,{ci ,ci , . . . ,c~}, I I U v > and
r = < From, To, E, e, h, n> �9 /

if ((From = 27~) Aint(E)) then
sn := < To, ~2~, P,, ~P,, {el , . . . , c , . . . , c~}, 1I' U v' >, where
/ / ' := h(H) and v' := new_verdict(v, verdict(To)).

ff ((From = 27~) A(dir(E) =?) A (channel(E) = c~) A (mEg(E) = head(~)))V
((mEg(E) = OTH) A (ci ~ r then

sn := < To, ~2~, P~, ~ , {e l , . . . , tail(ci),... , c~}, II' U v' > .
if ((From = 278) A(dir(E) =!) A (channel(E) = el)) then

sn := < To, I2,, P~, ~ , {cl , c~_~o,..., an}, / / ' U v' >, where
C/_ne~ := append(ci,map_to_IOD(msg(E))).

if ((From = 27~) A(dir(E) =!)A (channel(E) = IUT)) then
s , := < To, 12~, P~, ~,, {cl , . . . , c4,..., c,}, / / ' U v' >, s.t. c~(~, P) E C
Call UT_gen(s, r).

if ((From = Ps) A int(E)), then
~ := < S~, 08, To, 08, {c1,.. . , c~,..., c~}, / / ' u v' >.

if ((From = Ps) A(dir(E) =?) A (channel(E) = ci) A (mEg(E) = head(c4))),
then s,~ := < 27,, J2,, To, ~,, {cl , . . . , tail(c~),..., c,~},//' U v' >.

TEST CASE VERIFICATION BY MODEL CHECKING 295

if ((From = P~) A(dir(E) =!) A (channel(E) = ei)), t h e n
s,~ := < S , , $28, To, k~8, {ct , . . . , ~:_~,~,..., c~}, H' U v' >, where
ci_~e~ := append(c{, map_to_I O D(msg(E)).

if ((From = f2,) A int(E)), then
Sn := < S,,To, P~, kr'~,{Cl,...,c/, ,en}, I I 'Uv ' >.

if ((From = I?~) A(dir(E) =?) A (channel(E) = ci) A (msg(E) = head@i))),
then s,~ := < Z',, To, P~, k~8, {cb. . . , tail@i),..., c~}, 17' U v' >.

if ((From = s h(dir(E) = !) h (channel(E) = c4)), then
s,~ := < S~,To, P,, k~,,{c~, ci_n~,...,c~}, I I tUv ' >, where
ci_~ := append(c4, msg(E)).

if ((From = k~) A int(E)), then
s~ := < E~, s P~, To, {ca, . . . , ci , . . . , . . . , c~}, H ' t_J v' >, where
H ' := h(H) and v' = new_verdict(v, verdict(To)).

if (((From = ~) A(dir(E) = ?) A (channel(E) = o4) A (msg(E) = head(cO))V
((msg(E) = OTH)A (o4 ~ r then

sn := < S~, g2,, P,, To, {c l , . . . , tail(c4) an}, II' U v' >
if ((F r o m = ~) A(dir(E) = !) h (channel(E) = ci)), then

sn := < S~, ~ , P,, To, {c l , . . . , ei_~c~o,..., c~}, H ' U v' >, where
e~c~ := append(c4, map_to_I O D(msg(E))).

return (sn))
}

In the T T C N specification of a test case, a test designer may associate
intermediate test verdicts with expected receive events from an implementat ion
and a final test verdict may be assigned on termination of a test case behavior.
Depending on the expected responses of an implementation, different v e r d i c t s -
pass, fail, or inconclus ive- may be assigned to receive events in a sequence of test
behavior. The resultant test verdict at any point in a sequence of test behavior
depends on the previous verdict and the current verdict. Therefore , to compute
a resultant verdict in a state given the previous verdict and the present verdict,
in the following we define a procedure new_verdict(or, pv), where ov is the old
verdict or the previous verdict and pv is the present verdict.

procedure new_verdict(or, pv) {
if (or = = "none" then return(pv)
else{

if (ov = = Fail) or (pv = = Fail) then return(Fail)
else if (or - -= Pass) and (pv = = Inconclusive) then return(Inconclusive)
else if (ov = = I n c o n c .) and (pv = = Inconc.) then return(Inconclusive)
else if (ov = = Pass) and (pv = = Pass) then return(Pass)

}}

The RS test architecture does not have an explicitly defined upper tester.
However, while executing an RS architecture-based test case, it is required to
specify some behavior at the upper service boundary of the IUT. Therefore ,

296 NAIK AND SARIKAYA

during the global state space generation process, we dynamically generate the
desired behavior of the upper tester in an incremental manner by calling the
following UT_gen() procedure.

procedure UT_gen(s, rl) {
Let ~ = < S, {}, V, R, a0, {a~}, h.C1, Co >,

s = < 57,, fls, P,, g's, {cl , . . . , c~ ,en}, 1-lUv >, and
r l = < ~s~81, El, el, hi , n l >

1. Explore all paths from P, until a transition r3 = < s3, s~, E3, e3, h3, n3 >
is encountered such that the event E3 matches E~.
Let r2 = < s2, a~, E2, e2, h2, n2 > be a transition on the path from P3
to *3 such that ((dir(E2) = ?)A (channel(E2) = channelOI', P))).

2. Generate:
En = channel(E2)!event(E2)
hn = a set of assignments to the field of En such that e2 is satisfied
and all tansitions up to and including r3 can be fired.

3. Update the UT behaviour by creating a state aj+l and two transitions
r ! =< aj, aj+l, En, true, hm 1 >, r" =< aj+l, aj+l, OTH, true, r 1 >
k~ ----< S' LI {aj+l}, r RU{r' , r"}, ao, {aS+l}, h, CI, CO >

}

In the following, we present a state space generation algorithm based on the
traditional reachability analysis algorithm extended to EFSMs [28]. Our algorithm
handles some special characteristics of test specifications such as nondeterminism,
OTHERWISE events, and verdict computation.

3.4.3. Channel capacities. In a reachability analysis-based validation system,
where communication paths between state machines are modeled as FIFO chan-
nels or queues, it is important to analyze the effects of channel capacities on the
validation process. A channel capacity can be either bounded or unbounded.
The existence of system states in which the channel bounds are exceeded may
indicate that the validation is incomplete [29]. However, the validation problem
becomes unsolvable if channel capacities are assumed to be unbounded [16]. In
a physical implementation, all channels must be bounded. Therefore, while ana-
lyzing a test system, we assume that all channels are bounded. This assumption
precludes any possibility of the global state space being infinite. For the model
checking method to work, it is essential to have a finite global state space.

With bounded channel capacities, there are possibilities of channel overflows.
In the global state generation algorithm, channel overflows are handled by not
perturbing a state using a transition that causes a channel overflow. This method
of handling channel overflows is similar to the one in [29].

In the following algorithm, the predicate channdoverflow(s) in a state s is
evaluated as follows. Every global state contains the present contents of each

TEST CASE VERIFICATION BY MODEL CHECKING 297

channel. To evaluate the predicate channeloverflow(s), the number of messages
in each channel is compared with the bounded capacity of the channel. If
the number of messages in the channel exceeds the channel capacity, then the
predicate evaluates to true.

Algorithm 1

Input: a set of EFSMs, a set of communication channels, and the capacities
of the channels.

Output: a global state space.

S1. Define a set of global states S and a set of global transitions R. Initially,
S contains only the initial global state sinit and R = r

$2. Find a member s E S of the set of global states whose perturbations have
not been determined. If no such member exists, then terminate.

$3. Calculate the set of executable transitions XT(s) in state s using defini-
tion 4.

$4. Compute Sp, a set of global states by perturbing s. Initially S v = r

Vr = < From, To, E, e, h, n > E XT(s) , do
{ Sp = S v U {s'}, where s' = pert(s, r);

P~(s) = r / * P~(s) is the set of predicates begin true in state s. �9 /
R = R U { < s , s ' , E , e , h , n > } ;

}

$5. If Sp is an empty set, report s as a terminal state in the global state space.

$6. Vs E Sp do {
if ehanneloverflow(s) then mark s "perturbed" and S = S U {s}
else if s r S then mark s "unperturbed" and S = S U {s}

}

$7. Go to step $2.

4. Model generation

A model for a TVS is generated from the global state space of the TVS by
associating a set of atomic propositions to each state. Therefore, we first identify
the predicate types and then present an algorithm to systematically associate a
set of predicates with each global state.

298 NAIK AND SARIKAYA

4.1. Atomic propositions

In the following, we identify five types of predicates-state predicates, variable
predicates, event predicates, PCO predicates, and verdict predicates - to be associated
with the states in the global state space of a test verification system. Identification
of the predicates types is guided by the test properties to be verified.

1. State predicates: The state predicate INIT is associated with the initial
state

2. Variable predicates: These are assertions about the values of the variables
in the structure. These assertions arise from the enabling conditions of the
transitions of all the TVS entities.

3. Event predicates: These characterize the possibility or the actual execution
of specified events. There are two types of event predicates: AT and
A F T E R used with different parameters. The predicate AT(Treceive(Channel,
Event)) is true in a state s if there is a test case transition such that the
Event is received from the Channel. Similarly, AT(Sreceive(Channel, Event))
is true in a state 8 if there is a protocol transition such that the Event is
received from the Channel. AFTER(Treceive(Channel, Event)) is true in a
state s' in the BTL structure if there is a transition to the state s' such that
the Event is received from the Channel as a result of firing the transition.
A similar explanation holds for AFTER(Sreceive(Channel, Event)).

4. PCO predicates: The direction of events in a TTCN test case is with respect
to the points of control and observation (PCO). We define a set of asser-
tions about the PCOs and the input/output directions of events occurring
at the PCOs: LOWER, UPPER, INPUT, OUTPUT, LOWER_OUTPUT,
UPPER_OUTPUT, INTERNAL, and NULL. The predicate L O W E R (UP-
PER) is true in a state if a transition fires in the state with an external event
occurring at the lower (upper) PCO. The predicate INPUT (OUTPUT)
is true in a state if a transition fires in the state with an external input
(output) occurring at one of the two PCOs. If the external event is output
at the lower (upper) PCO then LOWER(UPPER)_OUTPUT is true. If an
internal event occurs in a state, then INTERNAL is true. If a transition
containing neither an external nor an internal transition, but containing
some assignment functions occurs in a state, then the predicate N U L L is
true in that state.

5. Verdict predicate: This is an assertion about the test verdict and is one of the
following three: (Verdict = = P), (Verdict = = I), and (Verdict = = F) .

The first three classes of predicates are common to all communication systems
and have been found to be useful in verifying communication protocols [26].
The last two classes of predicates are specific to protocol test systems. The first

TEST CASE VERIFICATION BY MODEL CHECKING 299

four classes of predicates are used in specifying safety properties and the verdict
predicate is used in specifying iiveness property of a test case.

4.2. Algorithm

Algorithm 2

Input: the state set S and the transition set R of the global state space.
Output: predicated S.

S1. Initialization: Vs E S, P r (s) = r , where Pr assigns a set of predicates
to s.

$2. Vr = < s, s', a, e, h, n >E R do P r (s) = P r (s) U Pper(r)
PKs') = mKs') u Pge.(~)

The functions Pper and Pgen are defined to compute the set of atomic
predicates evaluated to true in a global state. The function Pper(r) associates a
set of predicates with a state s when s is per turbed by the executable transition
r. Similarly, the function Pgen(r) associates a set of atomic predicates with the
state s' when s' is generated by perturbing the state s using the transition r.

nper(r){/ * r =< s, s', E, e, h, m > * /
if (ext(E)A (dir(E) ---=!)) then

{ if (pco(E) = = L) then temp = {LOWER_OUTPUT, LOWER};
else if (pco(E) == U) then temp = {UPPER_OUTPUT, UPPER};

}
else if (ext(E) A (dir(E) = =?)) then

{ if (pco(E) = = L) then temp = {LOWER};
else if (pco(E) = = U) then temp = {UPPER};

}
else if (E = = i) then temp = {INTERNAL};
else temp = {NULL};
if (ext(E) and r is a test transition), then

{ if (dir(E) ==?) then temp = temp U {AT(Trecieve(pco(E), message(E)))};
else if (dir(E) = = !) then temp = temp U {AT(Tsend(pco(E), message(E)))};

}
else if (ext(E) and r is a protocol specification transition), then

{ if (dir(E) ==?) then temp = temp u {AT(Sreceive(pco(E), message(E)))};
else if (dir(E) ==!) then temp = temp tA {AT(Ssend(pco(E), message(E)))};

}
return (temp tA {e})

}
P g ~ n (~) { / � 9 r = < s, s', E , ~, h, m > �9 /

if (ext(E) and r is a test transition), then
{ if (dir(E) ==?) then temp = {AFTER (Treceive(pco(E), message(E)))};

else if (d i r (E) = = t) then temp = {AFTER(Tsend(pco(E), message(E)))};

300 NAIK AND SARIKAYA

}
else if (ext(E) and r is a protocol specification transition), then

{ if (dir(E) ==?) then temp = {AFTER (Sreceive(pco(E), message(E)))};
else if (dir(E) --= !) then temp = {AFTER(Ssend(pco(E), message(E)))};

}
else temp= {};
return (temp)

5. Safety and liveness properties

5.1. Safety properties

Based on the idea that nothing bad happens during a testing process, we classify
the safety properties of a test case into four distinct types: transmission safety,
reception safety, synchronization safety, and verdict safety. Each type of safety
property is defined below.

]Transmission safety: There are two transmission safety properties correspond-
ing to transmission of events by the test case and transmission of events by the
protocol.

1. I N I T 1= (AFTER(Tsend(Q, E)) ~ AFTER(Sreeeive(Q, E))) and

2. I N I T [= (AFTER(Ssend(Q, E)) ~ AFTER(Treceive(Q, E))).

In the above formulas, Q is any communication channel between the test
system and the protocol specification; and E stands for an event. Intuitively,
the first property states that every event sent by the test case must eventually
be accepted by the protocol specification. That means the test case does not
generate any event that is unacceptable to the protocol. The second property
states that every event generated by the protocol specification during the testing
process must eventually be accepted by the test case, i.e., the test case is ready to
receive any event generated by the protocol. Satisfaction of these two properties
ensures that there is no blocking reception error in the test case [30].

Reception safety: There are two reception safety properties corresponding to
reception of events by the test case and reception of events by the protocol.

1. I N I T]= (AT(Treceive(Qs, 17,8)) ~ AFTER(Treeeive(Qi, Ei))V
AFT E R(Tinternal)) and

2. I N I T [= (AT(Sreceive(Qs, E,)) ~ dFTER(Sreceive(Qi, Ei))V
AFT E R(Pinternal)).

In the above formulas, AT(Treeeive(Q~, Es)) = AT(Treceive(Q1, E1))V

AT(Treceive(Qn, En)).

TEST CASE VERIFICATION BY MODEL CHECKING 301

The predicate AT(Sreceive(Qs, E.~)) is defined in a similar way.
Intuitively, the first (second) reception property states that when control

reaches a state in the test case (protocol specification) where there is a set of
alternative receive events, one receive event must be enabled or an internal event
must occur in that state. Satisfaction of these two properties ensures that the
test case is not deadlocked with the protocol specification. The internal event
may be due to a timeout.

Synchronization safety: This safety property is a special characteristic of
protocol testing and is not found in conventional program testing. The issue of
synchronization in a test case, which is an event timing problem, was first studied
in [31] using deterministic FSM models of a protocol specification and a test case.
This problem arises when the test system interacts with the protocol through
two PCOs. Conceptually, a test case faces a synchronization problem at one of
the PCOs if an output test event is preceded by a sequence of events consisting
of internal protocol events and/or a test event occurring at the other PCO.
We express the synchronization safety properties using the unti l (U) operator as
follows.

1. For every state 8 in the BTL structure,
s 1= -~E[flUf2],wherefl = U P P E R V I N T E R N A L V N U L L

f2 = L O W E R _ O U T P U T and

2. For every state s in the BTL structure,
8 l= ~E[f lUf2] ,where f l - L O W E R V I N T E R N A L V N U L L

f2 = U P P E R _ O U T P U T .

The first (second) synchronization safety property is for the lower (upper)
PCO.

Verdict safety: Intuitively, during the testing process a test case must not assign
a Fail verdict to any behavior allowed by the protocol specification. Therefore,
a BTL structure representing the composed behavior of a test and a protocol
specification must not contain any state with the (Verdict = = Fail) predicate
true. Therefore, the verdict safety property is formulated as follows.

I N I T I = AG(-~(Verdict = = Fail))

5.2. Liveness property

While testing a protocol implementation using a test case, if the implementation
fulfills the test purpose, the test case assigns a Pass verdict. Therefore, the test
case behavior satisfying the test purpose must end with a Pass verdict. Satisfaction
of the test purpose is a good thing that must happen in a test case. Thus, a
test case that has the liveness property means the test behavior satisfies the test

302 NAIK AND SARIKAYA

purpose and eventually assigns a Pass verdict. The liveness property is formally
stated as follows.

I N I T l= (fl ~ (Verdict = = Pass)), where fl is a temporal formula repre-
senting the test purpose. In the following, we present a notation for representing
test purposes fl.

5.2.1. A notation for test purt~ses. 5.2.1.1. Primitive test purposes. We identify
the following five primitive test purposes from which more complex test purposes
can be derived. The test purposes are expressed as temporal formulas using the

operator defined in section 2.

1. Direct response

(p, A AFTER(Tsend(Qi, E~)) A (t = T))

(p~ A AFTER(Treceive(Qj, Ej)) A (T < t < T + To)

This purpose states that if the test system sends an event E~ to the protocol
through the channel Q~ at time T with the predicate ps true, then it receives
an event Ej from the protocol through the channel Qj during an interval
of length To such that the predicate pr is true.

2. Timed response

(Ps A (t ---- T)) ~-* (pr A AFTER(Treceive(Qj, Ej)) A (T < t < T + To))

This purpose states that if the predicate p, is true in the test system at
time T and the test system waits without doing anything, then it receives
an event Er from the protocol through the channel Qr during an interval
of length To such that the predicate pr is true. This test purpose can be
used to specify a conformance requirement in which the protocol outputs
an event after a timeout.

3. No response to external input

(p~ A AFTER(Tsend(Qi, Ei)) A (t = T))

(p, A -~ A F T E R(Treceive(ANY_channel, ANY_event))A

(T < t < T + To))

This purpose states that if the test system sends an event Ei to the protocol
through the channel Q~ at time T with the predicate p~ true and waits
an interval To, then no event is received from the protocol specification
through any of the channels during the same period. This purpose is useful
to model a conformance requirement in which the protocol ignores an
invalid/inopportune event and does not output any event.

TEST CASE VERIFICATION BY MODEL CHECKING 303

4. No response in an interval

(p~ A (t = T)) ~ (p, A -AFTER(Trec i eve (ANY, A N Y)) A

(T < t < T + To))

This purpose states that if the predicate ps is true in the test system at time
T and the test system waits for an interval To, then no event is received
from the protocol specification through any of the channels during the same
period. This purpose is useful to model a conformance requirement in
which a timer does not prematurely expire in the protocol.

5. Eventual response

(p~ A (t = T)) ~ (pr A AFTER(Treceive(Qi, El)) A (T < t < oc))

Intuitively, this purpose states that if the predicate p~ is true in the test
system at time T and the test system waits indefinitely without doing
anything, then it eventually receives an event E~ from the protocol through
the channel Qi such that the predicate pr is true. This test purpose
can be used to specify a conformance requirement in which the protocol
nondeterministically outputs an event. Though this purpose looks like
a special case of the timed response test purpose, conceptually they are
different.

5.2.1.2. Composing test purposes. We define SEQ, a sequential operator for
composing primitive test purposes into larger test purposes using the following
syntax where fl and ./'2 are two test purposes.

so 1= (f l SEQ f2) iff so I = fl and Vs~ ~ last(f1)3sj E reachable(si) s.t.
s~ I = f2. Intuitively, (fl SEQ f2) means f2 is satisfied after li-

The function reachable(s) returns a set of states that can be reached from s.
The function last(f) is the set of all the terminating states of the finite paths

from 80, over which f is evaluated. In the expression so [= f, the formula f is
evaluated over a set of paths starting with so.

For example, referring to figure 4, let a formula f be evaluated over all the
finite paths whose extents are indicated by the bold states. Then last(f) =
{83, 85, a6~ 89, Sll}.

6. Property Verification

�9 Safety and liveness properties of a test case are verified by evaluating, also called
model checking, the corresponding temporal formulas. The formulas used to
express the test case properties contain expressions of the form: E[fl U f2], fl

304 NAIK AND SARIKAYA

sO

is9 0 0
s12 s13

slO

Figure 4. An example to compute last(f)

�9 indicates the extent of the finite
path over which a formula is
evaluated.

f2, and fl SEQ f2. In the following, we present algorithms for each of these
expressions.

In general, fl and f2 can be any temporal formulas with arbitrary nesting of
subformulas and temporal operators. However, in the context of this paper in
expressing the safety properties of test cases, only the logical operators --1, v, and
A are used. No temporal operators such as the until operator are needed.

6.1. Evaluation of SEQ

Algorithm 3

Input: A BTL structure, s, and f = (fl SEQ f2).
Output: True or False.

S1. begin
If --,(s [= f l) then go to step $4
else begin

Compute St = last(f1);
If St = ~b then go to Stop/fail else go to step $2

end
$2. If St = ~b then go to $5

else for any si c St begin
compute Sr = reachable(sl);

(s z -

Go to step $3
end

$3. If Sr = r then go to $4
else for 8j E Sr begin

If s~ 1= fz then go to step $2
else begin S~ ~ S ~ - {s~}; go to step $3 end

end

TEST CASE VERIFICATION BY MODEL CHECKING 305

$4. Result := False; Stop.
$5. Result := True; Stop.

6.2. Model-checking algorithm

Using global state space S and its transitions R derived from algorithm 1 and
predicated in algorithm 2 and safety and liveness properties stated in section
5, we are in a position to apply the model-checking algorithm of [23]. The
following algorithm uses algorithms 3 and 4 and the algorithm for evaluating the
until operator given in [23] to verify test cases.

Algorithm 4

Input: BTL structure M and a test case property as a temporal formula f.
Output: Correctness of f.

1. Obtain the total number of subformulas in f denoted by length(f).

2. Build two arrays n f[1 : length(f)] and sf[1 : length(f)] where nf[i] is the ith
subformula of f , sf[i] is the list of the numbers assigned to the immediate
subformulas of the ith formula. Essentially these two arrays maintain the
tree structure describing the formula f .

3. Define a bit array L[s] of size length(f) for each global state 8 such that
L[s][i] is set to true if the subformula nf[i] holds in s.

4. /* Successively apply the state labeling algorithm label_graph to f. */
for f~ := length(f) step - 1 until 1 do

label_graph(n f [f i])

Procedure label_graph(f)
begin
{main operator of

{execute the
{main operator of

{execute the
{main operator of

{execute the
{main operator of

{execute the

f is AU}
corresponding procedure in [8]}
f is EU}
corresponding procedure in [8]}
f is AG}
corresponding procedure in [8]}
f is AF}
corresponding procedure in [8]}

{main operator of f is SEQ}
execute Algorithm 3 for f

end

306 NAIK AND SARIKAYA

Figure 5. Class 2 transport protocol specification.

In the above procedure, we do not need a procedure to evaluate the operator
~-+, since (fl H f2) -= AG(fl --~ aF(f2)).

7. Example

In this section, we present an example of verifying a test case chosen from a CS
architecture-based test suite [13] designed to test a class 2 transport protocol
implementation. The CS architecture and its corresponding test verification
system are shown in figures 2 and 3, respectively.

Z1. Class 2 transport protocol specification

A nondeterministic EFSM model of a class 2 transport protocol specification [32]
is shown in figure 5. State 1 is both the initial and final state of the EFSM and
represents a closed connection. State 10 corresponds to an open connection state.
On one hand, if the connection establishment procedure is initiated by the user
of the transport entity, then the EFSM moves from state 1 to state 10 through the
state sequence {1, 2, 3, 4, 10}. In this case, if the peer entity refuses to establish
a connection, then the EFSM goes back to the initial state through the sequence
{1, 2, 3, 19, 20, 21, 1}. On the other hand, if the connection is established
by the peer entity, then the EFSM moves from state 1 to state 10 through the
sequence {1, 5, 6, 7, 10}. In this ease, a request for connection establishment
can be refused by the protocol EFSM such that the EFSM goes back to the

TEST CASE VERIFICATION BY MODEL CHECKING 307

%
Initial State

Figure 6. Underlying service provider of the transport protocol.

initial state through the state sequence {1, 5, 1}. However, if the request for
connection establishment is refused by the user of the protocol entity, then the
protocol EFSM goes back to the initial state through the sequence {1, 5, 6, 8, 1}.
There are two internal transitions in the EFSM. The first internal transition from
state 10 to 11 models the effect of the environment on the protocol specification
leading to a disconnection of the transport connection along the state sequence
{10, 11, 12, 9, 1}. The second internal transition from state 10 to 18 models the
acknowledgment (AK) transmission policies including timeouts. The transitions
of the EFSM shown in figure 5 are given in Appendix A.

7.2. Service provider

The transport protocol, in order to provide the desired service to its user, uses
the services of a network layer. That is, the network layer acts as the underlying
service provider in the CS test architecture. A simplified EFSM view of the
service provider is shown in figure 6. The transitions of the EFSM are given in
Appendix B

7.3. Test management protocol (TMP)

A TMP is required to function as a test responder (upper tester) while testing
an implementation in the CS architecture. In this section, we explain a TMP
[13] corresponding to a transport protocol. The TMP contains three types of
internal variables: counts, models, and stored items.

There are 38 count variables, C1-C38, which monitor the traffic of transport
service primitives across the interface between the TMP and the transport protocol
entity. Counts are assigned to each category of service primitive in each direction
across the interface. Data and expedited data octets received by the TMP entity
are also counted. The behavior of the TMP is controlled by the lower tester
through a set of 25 mode parameters, M1-M25. Mode parameters are used
to define the series of actions which make up the response to received events

308 NAIK AND SARIKAYA

Figure 7. Test management protocol.

or for generating data to be sent. The 28 stored items S1-$28 consist of
additional variables, which include the last received parameters from incoming
service primitives and the values supplied as parameters to outgoing primitives.
The TMP's internal variables can be controlled and monitored by the lower tester
through the 23 test management protocol data units (TMPDUs), which can be
classified into two groups: command and reply. The lower tester can issue a
command to the TMP to take some action by sending a command TMPDU and
the TMP can send a reply to the lower tester through a reply TMPDU.

We show the EFSM description of the part of the TMP that is used in the
verification of a test case in figure 7. The transitions of the TMP EFSM are
given in Appendix C.

7.4. Test case

For verification purposes we select a test case from a human-designed CS
architecture-based test suite [13]. The main dynamic behavior of the test case
is shown in figure 8. For the sake of clarity, the subtrees of the test case,
identified by a "+" sign in front of them, are not shown here. The functionality
of the test case consists of two distinct phases: preamble and test body. The
preamble part consists of five steps. In the first step, the test case establishes
a transport connection between the LT and the TMP. In the second step, the
LT sends a command TMPDU (TMPDU1) directing the TMP to set the default
values of its counters, mode parameters, and stored items. In the third step,
the LT sends a command TMPDU (TMPDU4) directing the TMP to set the
value of the stored item $8, which is used as the "User_data" parameter in a T-
CONNECT response primitive. The "User_data" parameter in a T-CONNECT
response primitive becomes the "User_data" parameter in a connect confirm
transport protocol data unit (CC TPDU). In the fourth step, the LT waits for
acknowledgments of the previously sent two DT TPDUs containing the TMPDUs
from the implementation. In the fifth step, the LT disconnects the transport

TEST CASE VERIFICATION BY MODEL CHECKING 309

Test Ca.~ Dynamic Behavior

Identifier:
Group:

Default: Deft
Comments t

ABCr2URA00

LT sends CR, receives CC with VAL octets of user data.

q'r. Lab restBehavl~176 Constraint[Verdict] Commeat

i p.reamble

+ LT_eon Stepl: Establish a transport cormectinn.

LITMPI0 Step2: Send TMPDUI in a DT TPDU.

LITMP4 (S8 := VAL) Step3: Send TMPDU4 in a DT TPDU.

+ Walt_for_ak Step4: Wait for acknowledgements.
+ LT_dis Step5: Release the transport connection.

+ preamble
LICR CR1 Initiate a cormectien establisltmenI.

Start (A, no_response) Stsn a no response timer.
L?CC [usea" data = VAL] CC1 Pus Connection is established.

C~en l (A)

I + PO1/Postamble Release tha connection.
[

?Time, out (A) Fail Implementation not responding

Comments: This test relies on the ability to control user data.

Figure 8. Single connection test case.

connection. The objective of the preamble is to set $8 to a known value VAL.
In the test body, the LT initiates the establishment of a transport connection

with the TMP by sending a connection request (CR) TPDU and waiting for a CC
TPDU. If the LT receives a CC TPDU with VAL as the "User_data" parameter,
then the LT assigns a Pass test verdict and releases the transport connection.
Otherwise, if the LT receives a CC with the "User_data" value different from
VAL, or it receives a different TPDU, or a timeout occurs, then the LT assigns
a Fail test verdict and terminates its operations. The transitions of the above
test case are given in Appendix D.

7.5. Model generation

We generate the global state space of the test verification system, shown in
figure 3, by using the LT-EFSM in figure 9, the USP-EFSM in figure 6, the
S-EFSM in figure 5, and the TMP-EFSM in figure 7. The global state space
contains 110 states and 109 transitions. We show the entire global state space
in EFSM notation in [20] and only partially in graphical form in figure 10.

The sets of executable transitions in the global states 916 and 933 are given by
XT(916) = {LT_5, LT_12} (Appendix D) and XT(933) = {SPEC_7, SPEC_17}
(Appendix A.) Global states 916 and 917 have been obtained by perturbing state

"916 using the transitions LT_12 and LT_6 in XT(916), respectively. Similarly,

310 N A I K A N D S A R I K A Y A

rfitial State' Preamble < I > Body

F: Fail (~
P: Pass

P- " ~ F F

21 29f i ~

Figure 9. E F S M r e p r e s e n t a t i o n of the t es t case in f igure 8.

states g34 and g87 have been obtained by perturbing state g33 using the transitions
SPEC_17 and SPEC_7 in XT(g33), respectively.

Z6. Verification of safety and liveness properties

The global state space of the TVS, shown in figure 10, contains one initial state
and 10 final states. Therefore, there are 10 paths from the initial state to the final
states. Let us denote a path by a function path(gi, gj), where gi and gj are the
initial and a final states, respectively. The 10 paths in the global state space are
denoted by path(g1, g6), path(g1, g96), path(g1, g97), path(g1, g40), path(g1,946),
path(g1, g102), path(g1, gllO), path(g1, g60), path(g1, g78), and path(g1, g86).

Z6.1. Safea] properties. In the given test case, there are a few transmission
safety errors. Let us consider the property

I N I T 1= AFTER(Ssend(N, NDTreq(CC))) ~-~

AFT E R(Treceive(L, N DT ind(C C))).

The predicate AFTER(Ssend(N, NDTreq(CC))) holds in the global state
g14, but the predicate AFTER(Treceive(L, NDTind(CC))) holds only in state
g17. Therefore, the property AFTER(Ssend(N, NDTreq(CC))) ~-* AFTER
(Treceive(L, NDTind(CC))) holds on all the paths except path(gt, g6). That is,
the safety property does not hold on all possible executions of the test system.
This safety error arises because of a timeout in the test case as explained in the

T E S T C A S E V E R I F I C A T I O N BY M O D E L C H E C K I N G 3 1 1

INIT (~ The sequence of states connected by
thick arrows (-,-q~) the represent

~ g2) r2 behavior of the verification system
' '~ /"~ ' , . , . r4 eon'esponding to the main path in

the test case satisfying the
lest purpose.

~ = L T 12
rl7 l~17 F- ~l,v ~ " Q

r94 ""~ ,~-~ ,

f - ' ~ f ~ r44 " - Fail

i ~ 6 ~ 5 9
lrl03t / "~ r76 r71 /"[~r70 r61 ~ "~.

Fail ~ "~-. -7~ r79

~F~il ~ " ' . ~

Figure I0. G l o b a l s t a t e space.

following.
From the global state g16, there are two possible transitions, r5 and r16, which

are derived from the LT_4 and LT_5 transitions in the test case EFSM. Transition
LT_4 represents a timeout event as an alternative to transition LT_5, which is an
L?NDTind(CC) event. If the timeout occurs before the test case receives the
NDTind(CC) event from PCO L, then the safety error would occur.

Consider another transmission safety property

INIT l= AFTER(Ssend(N, NDTreq(AK)))

AFT E R(Treceive(L, N DTind(AK)))).

The predicate AFTER(Ssend(N, NDTreq(AK))) holds in state g35, but the
predicate Treceive(L, NDTind(AK)) holds only in state 941. Therefore, the
formula

312 NAIK AND SARIKAYA

AFT E R(Ssend(N, N DTreq(AK)))

AFT E R(Treceive(L, N DT ind(AK)))

does not hold on the path path(gl,g4o) leading to a transmission safety error in
the test system. This error is also due to the timeout in the test case represented
by the LT_12 transition.

The other transmission safety properties, which are not satisfied due to the
test case timeout transitions LT_19, LT_25, and LT_31, are

[NIT I= (AFTER(Tsend(L, NDTreq(DR)))

AFTER(Sreceive(N, NDTind(DR)))),

INIT I= (AFTER(Tsend(L, NDTreq(CR)))

AFTER(Sreceive(N, NDTind(CR)))), and

INIT I= (AFTER(Tsend(L, NDTreq(DC)))

AFT E R(Sreceive(N, N DT ind(DC)))),

respectively. It is observed that if the timeouts in the test case are appropriately
tuned, then all the above transmission safety properties are satisfied. That is,
in a qualitative sense, if the timeouts are well tuned, then the global transitions
r5, r39, r45, r59, and v77 would be absent from the global state space and the
safety properties would hold in the remainder of the state space.

Two other transmission safety properties, which do not hold in the test system,
are:

INITI= (AFTER(Ssend(N, NDTreq(DR)))

AFT E R(Treceive(L, N DTind(D R)))) and

I N I TI= (AFT E R(Ssend(N, N DTr eq(AK)))

AFT E R(Treceive(L, N DT ind(AK)))).

The predicate AFTER(Ssend(N, NDTreq(DR))) holds in the state g89, but
the predicate does not hold in any of the states following gs9. To find out the
cause of the error, we analyze the test system in the following.

The test system arrives at global state gs9 from state g33 due to the global
transition sequence {rs6, rs7, r88} derived from the transition sequence {SPEC_7,
SPEC_8, SPEC_9} in the protocol specification EFSM. The sequence {SPEC_7,
SPEC_8, SPEC_9} means the specification nondeterministically releases an open
connection by sending a TDISind primitive to its service user and a DR TPDU
to its peer entity, which is the test case EFSM in this situation. The safety error

TEST CASE VERIFICATION BY MODEL CHECKING 313

denotes a design error in the test case in the sense that the test case is not ready
to receive the DR TPDU from the protocol specification.

Similarly, the second transmission safety error is due to a design error in
the test case in the sense that after the establishment of a transport connection,
the test case is not ready to receive spontaneous acknowledgment (AK) TPDUs
from the protocol specification.

Z6.2. Liveness properly. To verify the liveness property of the test case, we first
express the test purpose as a temporal formula. As a part of the test case, the
test purpose is specified in a natural language as follows:

1. LT sends CR.

2. LT receives CC with VAL octets of user data.

In the following, corresponding to each part of the test purpose, we state a
temporal formula:

1. AFTER(Tsend(L, NDTreq(CI=t))).

2. (AFTER(Treceive(L, NDTind(CC))) and (NDTind.CC.User_data = VAL))~

We compose these basic test purposes using the SEQ operator to give rise to
a formula for the entire test purpose as follows:

fl = (AFTER(Tsend(L, NDTreq(CR))))SEQ

(AFT E R(Treceive(L, N DTind(C C))) A
(NDTind.CC.User_data = VAL))).

Then, the liveness property of the test case is stated as I N I T I= (fl
(verdict = Pass)).

The liveness property is satisfied by the sequence of global states denot-
ed by the path(gl,g86). The predicate (AFTER(Tsend(L, NDTreq(CR))))
holds in state g58 and the predicates (AFTER(Treceive(L, NDTind(CC)))) and
(NDTind.CC.User_data = VAL) hold in a subsequent state g71 where the
p r e d i c a t e (verdict = Pass) also holds.

All other paths do no satisfy the test purpose. The paths reachable due to the
timeout transitions (r5, r39, r45, r59, and r77) can be avoided from the global
states by appropriately turning the timeout intervals. However, the test purpose
is not satisfied if the implementation behaves nondeterministically.

8. Related research

The topic of test case verification is a relatively new research area. There are
very few published works in the direction of verifying single connection test cases,
that is, test cases with no parallelism [33-35].

314 NAIK AND SARIKAYA

The first verification approach [33] consists of two steps. First, a TTCN test
case is translated into a LOTOS specification. Second, a test and trace analysis
tool, based on a LOTOS interpreter [36], takes the LOTOS description of the
test case and that of the protocol specification as inputs and computes their
parallel composition by tracing all the executable paths in the two specifications.
The concerns expressed about the tool are its high run-time space requirement
and long verification time. Another disadvantage of the technique is that it
is applicable only to test cases designed to run in the local single-layer test
architecture.

The second verification approach [34] consists of three steps. First, a T r C N
test case and the formal description of a protocol are translated to a common
EFSM notation. Second, a global state space representing all the possible inter-
action sequences between the test case and the protocol specification is obtained
using a reachability analysis algorithm. Third, the global state space is analyzed
to detect errors such as unspecified receptions, deadlocks, synchronization errors,
etc. [30]. This approach does not take into account many test system attributes
such as test architectures, test management protocols, test purpose, etc.

In the third verification approach [35], a tool interprets TTCN test cases
and compares the defined behavior with the behavior produced by a formal
description technique (FDT) simulator. In this approach, there is no formal
model of the verification process, rather the verification process has been treated
in an informal and intuitive manner.

9. Conclusions

We presented a test case verification methodology consisting of four steps:
generating a state space by combining the behaviors of the test case and protocol
specification EFSMs, associating atomic propositions to these states, expressing
the safety and liveness properties of a test case as branching time temporal logic
formulas, and finally verifying the test case properties on the state space using
a model-checking algorithm. The complexity of the model-checking process is
linear in the size of the state space.

We identified four types of test safety properties: transmission safety, reception
safety, synchronization safety, and verdict safety. The first two types of safety
properties are due to the communication functions of a test case and are similar
to the safety properties of any data transmission protocol. The last two safety
properties are unique to test systems. The synchronization safety is due to the
fact that output events of the lower and upper testers must satisfy some timing
constraints. The verdict safety property ensures that the test case does not
assign a Fail verdict to an implementation behavior accepted by the protocol
specification. Since the assignment of a Pass verdict is directly coupled with the
satisfaction of the test purpose, a notation was presented to formally specify test
purposes. The liveness property of a test case is derived using the test purpose

TEST CASE VERIFICATION BY MODEL CHECKING 315

and the Pass verdict.
We applied the verification methodology to a test case in a real test suite

developed for the transport protocol. Our methodology led to the detection of
a few errors in safety properties. Those errors were due to the nondeterministic
output acknowledgment PDUs and nondeterministic disconnection of transport
connections.

In our technique, so far only a sequential composition of primitive test pur-
poses was sufficient to model the test cases of the test suites we have studied.
Investigation of other composition operators, especially parallel composition op-
erators would be useful in the context of concurrent TTCN, which is being defined
by the standardization organizations. We assumed that fixed values are assigned
to the PDU/ASPs exchanged during global state space computation. Considera-
tion of symbolic values in the input/output structures is another extension of our
methodology.

In this verification methodology, we generate the global behavior of a test
verification system using a reachability analysis technique. State explosion is
a limitation of any verification technique involving rechability analysis. In the
context of protocol validation, a number of techniques have been proposed to
contain the state explosion [37]. The state explosion problem arising while
generating the global behavior representing all possible interaction sequences
between a test case and a protocol specification is analyzed as follows. A protocol
specification is assumed to provide several protocol functions and, generally, one
test case is designed to test one protocol function. That is, due to the execution
of one test case, only a small part of a large protocol specification is activated.
Therefore, the process of generating the global behavior representing all the
interaction sequences of a test case represented by a small EFSM and a protocol
specification denoted by a large EFSM would not result in state space explosion.

The liveness property is expressed using a sequential combination of a few
basic test purposes which may contain predicates in terms of real-time. Further
research is needed to incorporate the notion of time in protocol and test case
models similar to the timed-transition systems in [38].

Acknowledgments

The authors are grateful to the reviewers for careful reading and constructive
criticism.

Appendix 1: Transitions of the EFSM shown in figure $

The following variables are updated during the example state
exploration process,

opt := "" /* negotiation option */

316 NAIK AND SARIKAYA

PRseq :=0 /*receive sequence number */
PRcredit :=2 /* receive credit */
SPEC_I: <1, 5, N?NDTind (CR), T,

{opt :=CR.Exp.option, PScredit :=CR.credit}, I>
SPEC_2: <5, 6, U!TCONind(CR.called_addr,

CR.calling_addr, opt, CR.Qos, CR.User_data),
T, {}, 1>

SPEC_3: <6, 8, U?TDISreq, T, {}, 1>
SPEC_4: <8, 1, N!NDTreq(DR(TDISreq.Reason,

IDISreq.User_data)), T, 0, i>
SPEC_5 <6, 7, U?TCONresp, [TCONresp.Exp_option<=opt],

{opt:TCONresp.Exp_option, PRseq:=PSseq:=O}, i>
SPEC_6: <7, 10, N!NDTreq(CC(TCONresp.Calling_addr, TCONresp.Qos,

opt, PRcredit, TCONresp.User_data), T, {}, 1>
SPEC_7: <10, 11, i, T, {}, 1>
SPEC_8: <11, 12, U!TDISind (Reason, User_data),

T, {User_data:NULL}, 1>
SPEC_9: <12, 9, N!NDTreq(DR(Reason, User_data)),

T, {User_data:=NULL}, I>
<10, 13, U?TDISreq, T, {}, I>
<13, 9, N!NDTreq(DR(TDISreq.Reason,
TDISreq.User_data)), T, {}, 1>

<9, 1, NTNDTind(DC), T, {}, 1>
<9, 1, N?NDTind(DR), T, {}, 1>
<10, 14, N?NDTind(DR), T, {}, 1>
<14, 15, U!TDISind (DR, Reason, DR.User_data), T, {}, 1>
<15, I, N!NDTreq (DC), T, {}, 1>
<10, 18, i , T, {} , 1>
<18, 10, N!NDTreq (AK (PRcredit)),
T, {}, 1>

<10, 17, N?NDTind(DT),
[PRcredit <> 0 & DT.Seq=PRseq, {}, 1>

SPEC_20: <17, 10, U!TDATAubd (DT.User.data, DT.EDT), T,
{PRseq:=(PRseq+l)mod 128, PRcredi%:PRcredit-1}, 1>

SPEC.21: <1, 2, U?TCONreq, T, {opt:=TCONreq.proposed_options}, 1>
SPEC_22: <2, 3, N)NDTreq(CR(TCONreq.called_addr,

TCDNreq.CallinE_addr, opt, PRcredlt)),
T, {}, 1>

SPEC_23: <3, 4, N?NDTind(CC), [CC.Exp_option <=opt],
{opt:CC.Exp_option, PRseq:=O,
S_r !>

SPEC_24: <4, 10, U!TCONcon(CC.Calling_addr,
CC.Exp_optlon, CC.Qos, CCUser_data),
T, {}, 1>

SPEC.25: <3, 19, N?NDTind(CC),
[not(CC.Exp_option <=opt)], T, {}, I>

SPEC_26: <19, 20, N!NDTreq(DR(procedure_error,
User_data)), T, {User_data:=NULL}, 1>

SPEC_27: <20, 21, U!TDISind (procedure_error,
User_data), T, {User_data:=NULL}, 1>

SPEC_28: <10, 22, N?NDTind(AK),
[TSseq < AK.expected_send_sequence],

SPEC.IO:
SPEC_11:

SPEC_12:
SPEC_13:
SPEC.14:
SPEC_15:
SPEC_16:
SPEC_17:
SPEC_18:

SPEC_I9:

TEST CASE VERIFICATION BY MODEL CHECKING 317

SPEC_29:

SPEC_30:
SPEC_31:

SPEC_32:

SPEC_33:

SPEC_34:

SPEC_35:

{new_credit:ffiAK.credit_value +
AE.expected_send_sequence - (TSseq + 128)}, I>

<I0, 22, N?NDTind(AK),
[PSseq>=AK.expected_send_sequeuce],
{new_credit:AK.credir +
AK.expecZed_send_sequence - PSseq}, I>

<22, I0, i , T, {PScredit:=new_credit}, i>
<I0, 16, U?TDATAreq,

[PScredit > 0], {PScredit:PScredit - I}, I>
<16, 23, n!ndtREQ(dt(tsREQ,
tdaataREQ.ts_USER_DATA, TDATAreq.EOT)),
T, {}, I>

<23, 10, I , t,
{PSseq:=(PSseq+l) mod 128}, I>

<5, I, N!NDTreq (DR(Reason, User_data)),
[opt not supported], {User_data:Null}, 2>

<21, i, N?NDTind(DC), T, I>

Appendix 2: Transitions of the EFSM given in figure 6

USP_I:
USP_3:
USP_5 :
USP_7 :
USP_9 :
USP_ll:
USP_13:
USP_I5:

<i, 2, L?NCONreq(x), T, {}, i>, USP_2:
<I, 6, N?NCONresp(x), T, {}, 1>, USP_4:
<1, 3, L?NCONresp(x), T, {}, i>, USP_6:
<I, 7, N?NCONresp(x), T, {}, 1>, USP_8:
<I, 4, L?NDTreq(x), T, {}, I>, USP_IO:
<1, 8, N?NDTreq(x), T, {}, I>, USP_12:
<I, 5, L?NDISreq(x), T, {}, I>, USP_I4:
<I, 9, N?NDISreq(x), T, {}, I>, USP_16:

<2, 1, N!NCONind(x), T, {}, 1>
<6, I, L!NCONind(x), T, {}, I>
<3, 1, N!NCONconf(x), T, {}, 1>
<7, I, L!NCSNconf(x), T, {}, 1>
<4, 1, N!NDTind(x), T, {}, I>
<8, I L!NDTind(x), T, {}, I>
<5, 1, N!NDISind(x), T, {}, I>
<9, I, L!NDlSind(x), T, {}, I>

Appendix 3: Transition of the EFSM shown in figure 7

TMP_I :

TMP_2 :
TMP_3 :

TMP_4:

TMP_5 :

<IDLE, IDLE-M9, Internal_START, IT],
{Cl:=O, C2:=0, ..., C38:0, , MI:=A4, M2:=aO, ...,
MIO:=AO, MII:=A5, MI2:=A5, M13:=AO, ..., M25:=AO,
SI:=.., $2:=.., , , ~ S6:="you",
ST:="No ", S8:="any data", .., $28}, 1>

<IDLE_Mg, IDLE, Null, [M9=AO], {}, i>
<IDLE, IUT_WFTRESP_M1, U?TCONind, [T],
{$16 : =TCONind. Called_address,
S 17: =TCONind. Calling_address,
$18: =TCONind. Exp. _data.option,
S19: =TCONind. qos,
S20:=TCONind.TSuser_data, inc(Cl, C19), 1>

<IUT_WFTRESP_M1, OPEN,
U!TCONresp ($5, $6, $7, $8), [MI=A4],
{inc (C24, C37)}, 1>

<OPEN, OPEN_I, U?TDTind, [P_TMPDU],
{inc (C4)per o c t e t , inc (C5, ClS)}l>

318 N A I K A N D S A R I K A Y A

Tl~O_6 :

TMP_7 :
TMP_8:

TMP_9 :

TMP_lO:

TMP_ll:

TMP_12:

TMP_13:

OPEN_I, OPEN_M9, Null, [TMPDU1 in TDTind],
{MI : =TDTind. TMPDU_M1

M2: -TDTind. TMPDU.M2
M25: =TDTind. TMPDU.M25), 1>

OPEN Mg, OPEN, Null, [Mg=AO], {}, I>
OPEN_I, OPEN, Null, [TMPDU4 in TDTind],
{$5: TDTind. TMPDU4. $5, $6: TDTind. TMPDU4. $6,
S7:=TDTind. TMPDU4.S7, SO:=TDTind.TMPDU4.S8}, 4>

<OPEN, IDLE_M3, U?TDISind, [T],
{SI4:TDISind. Reason,

Sl5:=TDISind.TSuser_data, inc(C3, ClO)}, I>
<IDLE_M3, IDLE, Null, [M3=AO], [, I>
<OPEN_i, OPEN, Null, [TMPDU3 in TDTind],

{SI:=TDTind. TMPDU3.SI}, 3>

<OPEN_l, OPEN, Null, [TMPDU5 in TDTind],
{$9 : =TDTind. TMPDU5. $9,
$10: =TDTind. TMPDUS. $I0,
S I I : =TDTind. TMPDU5. S 11
S12 : =TDTind. TMPDU5. $12

$13 : =TDTind. TMPDUS. $13}, 5>
<OPEN_I, OPEN, U!TDTreq(TSuser_data), [TMPDU8 in TDTind],

{TSuser.data:=HERALDl I"8"I I"25" I I �9 �9 �9

... l lm25I ITRAILER}, 8>

Appendix 4: Transitions of the EFSM shown in figure 9.

Following are the verdict TAGS of the states:
verdict (5) =verdict (12) = verdict(17) = verdict(22) =Fail

verdict (30) =verdict (31) = verdict(32) = Fail
verdict (33) =verdict (34) =Fail verdict(23) = Pass

Initialization:

VAL :="test_data"
/* Parameters of a TCONresp primitive.*/

TS5 :=I /*Quality of services*/
TS6 := "you /*Called.address*/
TS7 := No /*Expedited data option*/

TS8 := VAL /*User_data*/

Called_address := "you"
CallinE_address := "me"
Exp_option :="No"

qos : = "I"
User_dataO := "any_data"

Seeqrecak := 0
Seqsendt := 0

Transitions of the LT EFSM :

LT_I: <2, 3, L!NDTreq(CR(Called_addr, calling-addr,

Exp_option, qos, User_dataO)), T, {}, 1>

TEST CASE VERIFICATION BY MODEL CHECKING 319

LT_2:
LT_3:
LT_4:
LT_5
LT_6:
LT_7:

LT_8:

LT_9:
LT_IO:
LT_II:
LT_12:
LT_13:
LT_I4:
LT_15:
LT_16:

LT.17:
LT_I8:
LT.19:
LT_20:
LT_21:
LT_22:

LT_23:
LT_24:
LT_25:
LT_26:
LT_27:
LT_28:

LT_29:
LT_30:
LT_31:
LT_32:
LT_33:

<3, 4, Start (A, no~esponse), T, {}, I>
<4, 5, L?OTH CA), T, {}, 3>
<4, 5, ?Timeout (A), T, {}, 2>
<4, 6, L?NDTind (CO), T, {}, 1>
<6, 7, Cancel (A), T, {}, 1>
<7, 8, L!NDTreq (DT(Oser.datal, EOT)),
{MI:=A4, M2:=AO MIO:=AO0, M11:=A5, MI2:=AS,
MI3:=AO, ..., M25:=AO,
User_datal : =TMPl(M1, M2..., M25),
EOT:=True, seqsendt:=O}, I>

<8, 9, L!NDTreq (DT(User_data2, EOT)),
{User_data2:=TMP4(TSS, TS6, TST, TS8),
EOT:=True, seqsendt:=l}, I>

<9, 10, Null, [seqrecak < seqsendt], {}, I>
<10, 11, Start (B, wait_ak), T, {}, 1>
<11, 31, L?OTH, T, {}, 3>
<II, 12, ?Timeout (B), T, {}, 2>
<11, 13, LTNDTind(AK), T, {seqrecak:=AK.seqno}, I>
<13, 9, Cancel (B), T, {}, 1>
<9, 14, Null, [seqrecak >= seqsendt], {}, 1>
<14, 15, L!NDTreq(DR(Reason, User_data3)), T,
{Reason:="normal_disconnect ''' User_data3:=Null}, I>

<15, 16, S ta r t (A, waiZ_dc), T, {}, 1>
<16, 32, L?DTH, T, {}, 3>
<16, 17, ?Tlmeout (A), T, {}, 2>
<16, 18, L?NDTind (DC), T, {}, 1>
<18, 19, Cancel (A), T, {}, 1>
<19, 20, L!NDTreq(CR(Called.addr, calling_addr,
Exp_option, Qos, User_dataO)), T, {}, 1>
<20, 21, Start (A, no_response), T, {}, 1>

<21, 33, L?OTH (A), T, {}, 3>
<21, 22, ?Timeout (A), T, {}, 2>
<21, 23, L?NDTind(CC), [CC.User_data=VAL], {}, 1>
<23, 24, Cancel (A), T, {}, I>
<24, 25, L!NDTreq(DR(Reason, User_data3)), T,
{Reason:="normal_disconnect '' User_data3:=Null}, 3>

<25, 26, S ta r t (A, wait_tic), T, {}, 1>
<26, 34, LTOTH, T, {}, 3>
<26, 27, ?TimeouZ (A), T, {}, 2>
<26, 28, L?NDTind (DC), T, {}, 1>
<28, 29, Cancel (A), T, {}, I>

References

[1] K. Naik and B. Sarikaya Testing communication protocols. IEEE Software, 27-37, 1992
[2] ISO/IEC 9646: Information Technology - Open Systems Interconnection - Conformance

Testing Methodology and Framework, 1991.
[3] ISO/IEC IS8807: LOTOS, a formal description technique based on the temporal ordering of

observable behavior, ISO/TC97/SC21/WG1-FDT/SC-C, June 1988.
[4] T. Bolognesi and E. Brinksma. Introduction to ISO specification language LOTOS. Computer

320 NAIK AND SARIKAYA

Networks and ISDN Systems, 25-59 1987.
[5] ISO/IEC IS9074: Estelle - A formal description technique based on an extended state transition

model, ISOfFC97/SC21/WG1, 1987.
[6] S. Budkowski and E Dembinski. An introduction to Estelle: A specification language for

distributed systems. Computer Networks and ISDN Systems, 14: 3-23, 1987.
[7] CCITt, Specification and Description Language SDL, Recommendation Z.100, 1992.
[8] ISO/IEC 8824: Profile of abstract syntax notation one, IS8824, 1987.
[9] D.E Sidhu and T.K. Leung. Formal methods for protocol testing: A detailed study. IEEE Trans.

on Software Engineering, 15 (4): 413-426, 1989.
[10] A.T. Dahbura, K.K. Sabnani, and M.U. Uyar. Formal methods for generating protocol confor-

mance test sequences Proceedings of the IEEE, 78 (8): 1317-1326, 1990.
[11] B. Sarikaya, G.v. Bochmann, E. Cerny. A test design methodology for protocol testing. IEEE

Trans. on Software Eng., 13(5): 518-426, 1989.
[12] E Tripathy and B. Sarikaya. Test case generation from LOTOS specification. IEEE Trans. on

Computers, 40: 543-552, 1991.
[13] Abstract test suite for transport protocol class 2. The National Computing Centre Limited,

Manchester, UK, 1988.
[14] J.B. Goodenough and S.L. Gerhart. Toward a theory of test data selection. IEEE Trans. on

Sofware Eng., SE-1 (2): 20--37, 1975.
[15] B. Sarikaya. Conformance testing: Architectures and test sequences. Computer Networks and

ISDN Systems, 17: 111-126, 1989.
[16] D. Brand and R Zafiropulo. On communicating finite-state machines. JACM 30, (2): 323-342,

1983.
[17] K. Naik and B. Sarikaya. An extended finite state machine model for TTCN. Proc. of the 15th.

Biennial Symposium on Communications, Kingston, Ontario, 1990, pp. 296-299.
[18] Information Processing Systems - Open System Interconnection - Basic Reference Model,

ISO 7498, 1984.
[19] M. Jackson. System development. Prentice Hall, 1983.
[20] K. Naik. Verification of test cases for protocol conformance testing. Ph.D. theseis, Concordia

University, Montreal, 1992.
[21] G. v. Bochmann. Hardware specification with temporal logic: An example. IEEE Trans. on

Computers, C-31: 223-231, 1982.
[22] L. Lamport. Specifying concurrent program modules. ACM TOPLAS, 5, (2): 190-222, 1983.
[23] E.M. Clarke, E.A. Emerson, and A.R Sistla. Automatic verification of finite state concurrent

systems using temporal logic specifications. ACM TOPLAS, 8 (2), 224-263, 1986.
[24] K. Sabnani. An algorithm technique for protocol verification. IEEE Transaction on Comm,

COM-36 (8): 924-931, 1988.
[25] M. Ben-Ari. A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta lnformatica,

20: 207-225, 1983.
[26] J.C. Fernandez, J.L. Richier, and J. Voiron. Verification of" protocol specifications using the

CESAR system. IFIP PSTV V, 1985.
[27] P. Tripathy.A Unified Model for test generation for communication protocols. Ph.D. thesis, Concordia

University, Montreal, 1992.
[28] C.H. West. General techniques for communication protocol validation. IBM Journal of Res. and

Development, 22 (4): 393-404, 1978.
[29] J. Rubin and C.H. West. An improved protocol validation technique. Computer Networks, 6:

65-73, 1982.
[30] E Zafiropulo, C.H. West, H. Rudin, D.D. Cowan, and D. Brand. Towards analyzing and

synthesizing protocols. IEEE Trans. on Comm., COM-28 (4): 651-661, 1980.
[31] B.Sarikaya and G. v. Bochmann. Synchronization and specification issues in protocol testing.

IEEE Trans. on Comm. COM-32 (4): 389-395, 1984.

TEST CASE VERIFICATION BY MODEL CHECKING 321

[32] G. v. Bochmann. Specification of a simplified transport protocol using different formal description
techniques. Computer and Networks and ISDN Systems, 18: 335-377, 1990.

[33] M. Dubuc and G. v. Bochmann. Translation from TrCN to LOTOS and verification of Test
Cases. FORTE'90, Madrid, 1990.

[34] K.Naik and B. Sarikaya. Verification of protocol conformance test cases using reachability
analysis. The Journal of Systems Sofa, are, 19: 41-57, 1992.

[35] U. Bar and J.M. Schneider. Automated validation of TI'CN test suites. IFIP PSTV XII, Orlando,
FL, pp. 279-295, 1992.

[36] L. Logrippo, et. al. An interpreter for LOTOS, A specification language for distributed systems.
Software Practice and Experience, 18: 365-385, 1988.

[37] EJ. Lin, EM. Chu, and M.T. Liu. Protocol verification using teachability analysis: The state
space explosion problem and relief strategies. SIGCOMM'87, Stowe, Vermont, 126-135, 1987.

[38] J.S. Ostroff. Deciding properties of timed transition models. IEEE Trans. on Parallel and Dis-
tributed Systems 1 (2): 170-183, 1990.

