
1st International Conference of Recent Trends in Information and Communication Technologies

*Corresponding author: elhagari_u@yahoo.com

Towards a New Framework for TPM Compliance Testing

Usama Tharwat Elhagari1*, Bharanidharan Shanmugam2, Jamalul-lail Ab. Manan 3

1Faculty of Computing, Universiti Teknologi Malaysia (UTM), Malaysia
2 Advanced Informatics School, Universiti Teknologi Malaysia (UTM), Malaysia

3 MIMOS Berhad, Malaysia

Abstract

Trusted Computing Group (TCG) has proposed the Trusted Computing (TC) concept.
Subsequently, TC becomes a common base for many new computing platforms,
called Trusted Platform (TP) architecture (hardware and software) that, practically,
has a built-in trusted hardware component mounted at the hardware layer and a corre-
sponding trusted software component installed at the operating system level. The
trusted hardware component is called Trusted Platform Module (TPM) whose specifi-
cation has been issued by TCG group and it is implemented by the industry as a tam-
per-resistant integrated circuit. In practice, the security of an IT TPM-enabled system
relies on the correctness of its mounted TPM. Thus, TPM testing is urgently needed to
assist in building confidence of the users on the security functionality provided by the
TPM. This paper presents the state of the art of the modelling methods being used in
the TPM compliance testing. Finally, the paper proposes new framework criteria for
TPM Testing that aim at increasing the quality of TPM testing.

Keywords. Trusted Platform Module; Compliance Testing; Modelling

1 Introduction

Recently, software on computing platforms has become increasingly complex
leading to a large number of potential vulnerabilities. Consequently, protecting
information technology systems through software-based mechanisms has become
increasingly more unable to solve all security problems there in. To mitigate this
issue, hardware-based embedded security solutions have been used in the
information technology industry. Among the key advances, Trusted Computing
Platform Alliance (TCPA), which was later replaced by the Trusted Computing
Group (TCG), proposed the Trusted Computing (TC) concept. Subsequently, TC
became the common base for many new computing platforms, called Trusted
Platform (TP) architecture that, practically, has a built-in trusted hardware

IRICT 2014 Proceeding
12th -14th September, 2014, Universiti Teknologi Malaysia, Johor, Malaysia

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/83531768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 497

component at the physical level and corresponding trusted software component at
operating system level. The trusted hardware component is called Trusted Platform
Module (TPM) whose specification was issued by the TCG group and is
implemented by industry as a tamper-resistant integrated circuit. TPM is dedicated
to performing cryptographic functionality and to securely store cryptographic keys
and secrets.

Since the last couple of years, hundreds of millions of PC laptops and desktops have
been equipped with TPM chips. In fact, there are many different vendors that
produce TPM chips, such as Atmel, Infineon, Broadcom, Sinosun and
STMicroelectronics / Winond, and, of course, with different modes of
implementation. This implies that there is an urgent need to have a testing
methodology that can help security application developers and end-users to verify
the compliance of their TPM-enabled systems with respect to TCG specifications
[1],[2].

Past research works in the area of TPM testing fall into two broad categories,
namely; compliance testing, [2-8] and security analysis on the TPM specifications,
[2], [9-15]. This paper presents several modelling methods which are in the domain
of TPM compliance testing. Recent efforts show that many TPMs available in the
market are non-compliant to the TCG specification [2-8]. At this point, it is worth
mentioning that China has its own specification and its trusted hardware component
is called Trusted Cryptography Module (TCM). The TCM chip has been specified
and manufactured by China. In [16], it was concluded that there was a gap between
the TCM implementations and the Chinese specification. This paper presents the
state of the art of the modelling methods in the TPM compliance testing. We begin
with the informal method in section 2. Sub-section 2.1 is the discussion on the
informal method of TPM compliance testing (with an example). Modelling of TPM
specification based on FSM and EFSM (with examples) are presented in sub-section
2.2 and sub-section 2.3 respectively. Section 3 concludes this paper with proposing
features of a new framework for TPM testing.

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 498

2 Modelling Methods of TPM Specifications

There are mainly three methods that have been used in modelling the TPM
specifications. The TPM testing was first introduced in [1] and [17], however, the
method is informal. On the other hand, the two methods discussed in [4], [5], [16]
are formal and based on state machine theory namely, Finite State Machine (FSM)
and Extended Finite State Machine (EFSM). In the next sub-sections a brief
discussion on the following three methods; informal modelling, FSM-based
modelling and EFSM-based modelling is presented.

2.1 Informal Modelling

The TPM compliance testing was first introduced [1], [17] in which TPMs from
different vendors were evaluated. In informal modelling, testing is conducted in two
levels and two quality dimensions, as shown in Figure 1.

Figure 1. Compliance Testing Levels and Quality Dimentions of TPM

Firstly, the Compliance Testing Levels consists of the application level and the
protocol level. At the application level, the TPM is tested from real application
standpoint to test the TPM functionality. The protocol level is dedicated to test the
TPM's commands with respect to the data structures. Secondly, in Compliance TPM
Testing there are four core quality dimensions namely, functionality, reliability,
security and performance. Nevertheless researchers in [1], [17] considered only two
quality dimensions, which are functionality and reliability. Notably, under the
functionality dimension, only a function test is conducted. Whereas under the
reliability dimension, integrity test and stress test are conducted. In this paper, the
other quality dimensions namely, security and performance are discussed in later
subsections.

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 499

Two other aspects of the Compliance TPM testing include, TPM behavior which
is examined via function test and TPM behavior upon failures which is examined
using the integrity tests. Yet another aspect is the stress tests which examine TPM
behavior under extreme conditions . Here, we emphasize and focus on their method

test the data structure of a single command, many test cases are needed to test the
command parameters. Thus to generate test cases for each command, the execution
command is modeled as a state transition into a return code, as shown in Figure 2.

Figure 2. TPM Command Execution Model

It is observed that the number of test cases in compliance testing is an issue. To
mitigate this issue, the input parameters of the TPM commands are categorized into
four different categories based on input parameters which are described below [1],
[17]:

Valid: they are acceptable inputs and allow TPM to correctly and successfully
process the command. Consequently, the return code must be TPM_SUCCESS.

The following three categories should return code indicating an error:

Illegal (A): these are inacceptable inputs as they have either wrong data structure or
unspecified values, which are not stated by TPM specifications,

Invalid (B): these are inacceptable inputs as their values are wrong or meaningless
values.

Unsupported (C): these are inputs with values stated by TPM specifications but not
acceptable in the context of the command.

The steps of the integrity tests at the protocol level are as follows [1], [17]:

1. Study in detail the TPM specifications.
2. Categorize the TPM commands based on their related TPM functionality (De-

pendency Graph).

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 500

3. From the Dependency Graph draw the action graph which shows the required
execution order of the TPM commands for successful individual TPM com-
mands execution.

4. Define the state(s) at which the command (under test) is allowed to execute.
5. Define the TPM return code(s) for those state(s) at which the command is not

allowed to execute.
6. Construct a table/graph showing all the command parameters after manipula-

tion and the related return codes. Table 1 shows TPM_CreateWrapKey as an
example.

7. Execute all the commands required, indicated by the action graph, for the suc-
cessful command execution.

8. Send the command input message with only one manipulated parameter to the
TPM.

9. Compare the return code from the TPM with the expected one as stated in the
table/graph.

10. Repeat step 9 and 10 for each manipulated parameter.
11. If all the return codes from the TPM match the expected ones then the imple-

mentation of the command under test is complaint with TPM specification,
based on integrity test only.

12. Repeat step 2 up to step 11 for TPM commands, stated on the TPM specifica-
tions.

Researchers [1], [17] are considered as the founder of TPM compliance testing and
has contributed valuable knowledge and experience significantly in TPM testing.
From their past works we know that some TPM implementations which are from
(Infineon, Atmel, and ST STM 19 WP 18) were found to be incompliant with TCG
specification and have security related bugs. However, the method used in
determining the compliance was still informal [16] and, furthermore its generation
of test cases was not automatic and the test method needs to be reviewed and
improved so that it becomes more systematic [2].

It is generally known that manual generation of test cases is an expensive, error-
prone and time consuming process. Nowadays, with the improvement of TPM
implementations, the informal method and manual generation of test cases might not
be so effective in dealing with greater number of cases of incompliance of TPM
implementations.

2.2 FSM-based Modelling Method

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 501

Mealy machines and Moore machines are two types of finite state machines or finite
automata. These are widely used to model finite state systems in different areas such
as communication protocols and sequential circuits.

Definition 1: a deterministic finite state machine (FSM) D is a six-tuple:

init) where S, I , and O are finite and non-empty sets of states, in-
put alphabet and output alphabet, sinit is the initial state,
the functions of state transition and output, respectively.

The conformance of system implementation to the system specification can be
tested by using FSM. This problem is called conformance testing or fault detection
problem [18]; at which two FSMs are given: a specification machine SPEC and im-
plementation machine IMP. We can only observe the behavior of IMP that is a black
box.

To test the conformance of an implementation under test IUT to its specification,
it is needed to generate test cases from the SPEC model and then apply these test
cases to the IUT. Test cases can be generated automatically from SPEC. A test case
contains input and expected output. Therefore IUT conforms to its specification if it
passes all the test cases.

Table 1. Return codes for TPM_CreateWrapKey after manipulating its Input-
Parameters

STATE PARAM Input
Type

Return Code
Name

S2,S4,
S6,S8

TPM_CreateWrapKey Input Message TPM_DISABLED

S3 TPM_DEACTIVATED
S5 TPM_NOSRK
S7 TPM_DEACTIVATED

TPM_NOSRK
S1 tag A TPM_BADTAG

B
paramSize B TPM_BAD_PARAM_SIZE
ordinal A

C
parentHandle B TPM_INVALID_AUTHHANDLE

TPM_KEYNOTFOUND
C

dataUsageAuth
dataMigrationAuth
keyInfo
ver
keyUsage A TPM_INVALID_KEYUSAGE

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 502

C
keyFlags A TPM_BAD_PARAMETER

C
authDataUsage A TPM_BAD_PARAMETER

C
algorithmParms A TPM_BAD_KEY_PROPERTY

C
TPM_NOTFIPS

algorithmID
authHandle B TPM_AUTHFAIL

C TPM_INVALID_AUTHHANDLE
authLastNonceEven
nonceOdd
continueAuthSession
pubAuth B TPM_AUTHFAIL

Researchers in [4], [5] modelled the TPM operational states, as shown in Table 2,
and the commands of TPM based on deterministic finite state machine. There are
four FSM models have been constructed which include the TPM operational states,
TPM disabled-command suite, TPM deactivated-command suite and TPM un-
owned-command suite.

Table 2. TPM Operational States

State Enable/Disable Active/Inactive Owned/Unowned
S1 Enable Active Owned
S2 Disable Active Owned
S3 Enable Inactive Owned
S4 Disable Inactive Owned
S5 Enable Active Unowned
S6 Disable Active Unowned
S7 Enable Inactive Unowned
S8 Disable Inactive Unowned

We give an explanatory example for modelling TPM specifications based on FSM;
Figure 3 shows the FSM model of the eight TPM operational states. This example is
based on the methodology employed in [4], [5]. The parameters of the FSM model are as
follow:

D0 = (S0, I0, O0 0 0, sinit0)

S0 ={s1,s2,s3,s4,s5,s6,s7,s8}

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 503

I0={ TPM_OwnerSetDisable, TPM_PhysicalDisable, TPM_PhysicalSetDeactivated,
TPM_SetTempDeactivated, TPM_OwnerClear, TPM_ForceClear,
TPM_PhysicalEnable, TPM_TakeOwnership}

O0= {S } where S means that the TPM successfully has executed the related com-
mand. sinit0= s5

Bread-First Search has been used to generate test cases from D0.

Figure 3. FSM Model for the TPM Operational States

Basically, FSM is used to model the control portions of system specification. This
could be the main weakness of FSM as system specification normally contains data
dependencies between the specification parts; which means that FSM is not power-
ful enough to model concrete systems in a concise way [18]. Consequently, FSM
model may have issues such as state explosion as the number of states increases rap-
idly [19] and FSM is not realistic in most practical situations [20]. According to the

data from each
other and a successful command execution may need other command(s) that have
been successfully executed. Therefore, modeling the TPM specification using FSM,
taking into account control and data dependencies between the commands, could re-
sult in impractically huge model and consequently having state explosion problem.

e-
termine the behaviors of the TPM implementation.

2.3 EFSM Modelling

EFSM [21] is generalization of FSM; i.e. EFSM is a traditional Mealy FSM ex-
tended with variables, predicates, and operations. Additionally, one main advantage
of EFSM over FSM is that EFSM helps in reducing number of states. This ad-
vantage is because of the fact that EFSM is able to model the control flow of a sys-
tem while its data flow is represented by variables, predicates, and operations.

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 504

Definition 2: An EFSM is a six-tuple [16, 19] (S, s0, I, O, T, V) where S is a non-
empty finite set of states, s0 S is the initial state, I and O are non-empty finite sets
of input and output interactions, T is a non-empty finite set of transitions and V is a
non-empty finite set of variables. t T is a six-tuple (si, se, x, c, y) where si, se S
denote the initial and terminating states of t, respectively, x I is the input interac-
tion of t, c is a logical expression representing a condition of t and expressed in
terms of the variable of V, y O is the output interaction of t.

EFSM-Based specification modelling was used in trusted computing by [16],
where the authors modelled the specifications of the Trusted Cryptography Module
(TCM) by EFSM. Firstly, the dependencies between the TCM commands were de-
fined and, consequently, a dependency graph was drawn. Secondly, an EFSM model
was constructed and test cases were generated for the EFSM model. The authors
mentioned that the test case generation was not fully automatic. Finally, the TCM
compliance testing was conducted in two layers, namely: command-level and func-
tion level. The former was used to test the TCM reliability, i.e. its behaviour when
receive legal-manipulated command message, as well as testing the TCM robustness
where the behaviour of the TCM was tested by sending illegal-manipulated com-
mand message. In the latter, functionality test was conducted for testing the TCM
functions.

To give an illustrative example of the EFSM modelling of the TPM specifica-
tions, Figure 4 shows EFSM model for a portion of the TPM specification, storage
functions sub-module and some commands of the admin ownership module sub-
module. This example adopts the methodology used in [16]. The EFSM model was
constructed based on the research work of and the TPM specification version 1.2,
level 2 revision 116. As can be seen from Figure 4, the parameters of the EFSM
model are as following:

S= {S1, S2, S3, S4};
s0= S1;
I= { TPM_TakeOwnership, TPM_OwnerClear, TPM_ForceClear,
TPM_DisableOwnerClear, TPM_DisableForceClear, TPM_Seal, TPM_Unseal,
TPM_Unbind, TPM_CreateWrapKey, TPM_LoadKey2, TPM_GetPubKey,
TPM_Sealx}
O= {Create Owner, Clear Owner, Create Key, Disable ForceClear, Disable Owner-
Clear, Load Key, Unseal, Seal, UnBind, Get PubKey}
V= {Ownership Enabled, KeyLoaded, KeyExists, OwnerClearEnabled,
ForceClearEnabled}

There are 13 transitions where t1 T is TPM_TakeOwnership [OwnershipEnabled]/
Create Owner.

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 505

Figure 4. EFSM Model for Storage Functions and Admin Ownership sub-modules

The EFSM-Based specification modelling in [16] has made some improvement to
the model proposed in [4, 5] in modelling and generating test cases. However, it
needs lacks the automatic generation of test cases. Furthermore, in order to use this
method in TPM compliance testing it needs to involve the internal TPM data, such
as flags, as variables to represent the relationship among the TPM commands.

3. Conclusion

Trusted computing (TC) is a promising technology for enhancing the security of
computer systems and networks. TCG issued specifications for TC technology
which is called TCG specifications. We emphasize on the TPM specifications.
Based on past works it is discovered that there is a gap between some TPM imple-
mentations and the TPM specifications. This gap may cause the TPM component to
fail in performing its security functionality and consequently may result in failing
the security of its mounted system. Therefore, there is an urgent need to test the
compliance of TPM implementation with reference to its specifications. In this pa-
per, we report on some progress of the research works in the field of TPM testing
have been achieved. The two major contributions of our work are on TPM compli-
ance testing and security analysis on TPM specifications. In compliance testing of
TPM, we presented the three modelling methods, namely, informal, FSM and
EFSM. The main problem of these three methods is that there is a high possibility
that it might cause state space explosion. Furthermore, the existing TPM compliance
testing framework that we have referred to in the literature so far, conducted their
tests based on test cases pre-generated earlier. In other words, a complete test suite
must first be derived completely before conducting the TPM compliance testing.
This approach is referred to as batch-mode testing.

We can safely conclude that testing security devices such as TPM needs to be
done systematically through automatically generated random test cases to increase
the quality of testing. Moreover, automatic security testing has never been empha-

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 506

sized as a quality dimension in the exiting Framework for TPM Testing. We have
discussed and highlighted the urgent need to enhance the current TPM testing
frameworks to achieve higher quality TPM testing.

For future work, we propose a new framework for TPM Testing that has several
features. Firstly, it should have capacity to generate random test cases on-the-fly.
This helps in alleviating the state space explosion problem and improves the quality
of testing. Secondly, it should posse other quality dimensions such as automatic se-
curity testing. Furthermore, it should be suitable for the TPM stakeholders such as
normal TPM users who have abstract knowledge about TPM.

References

1. Ahmad-Reza, S., Marcel, S., Christian, S., ble, Christian, W., and Marcel, W.
"TCG inside?: a note on TPM specification compliance" Proc. of the first ACM
workshop on Scalable trusted computing, Alexandria, Virginia, USA2006, pp. 47-
56, 2006

2. Zhang, H., Yan, F., Fu, J., Xu, M., Yang, Y., He, F., and Zhan, J. "Research on
theory and key technology of trusted computing platform security testing and
evaluation", SCIENCE CHINA Information Sciences, 2010, 53, (3), pp. 434-453

3. Sadeghi, A.R. "Challenges for trusted computing", Challenges for trusted
computing (Springer Verlag, 2006, edn.), pp. 414, 2006

4. Zhang, H., Luo, J., Yan, F., Xu, M., He, F., and Zhan, J. "A practical solution to
trusted computing platform testing", A practical solution to trusted computing
platform testing (Inst. of Elec. and Elec. Eng. Computer Society, 2008, edn.), pp.
79-87, 2008

5. Zhan, J., Zhang, H., Zou, B., and Li, X. "Research on automated testing of the
trusted platform model", Research on automated testing of the trusted platform
model (Inst. of Elec. and Elec. Eng. Computer Society, 2008, edn.), pp. 2335-
2339, 2008

6. Xu, M.-D., Zhang, H.-G., and Yan, F. "Testing on trust chain of trusted computing
platform based on labeled transition system", Jisuanji Xuebao/Chinese Journal of
Computers, 32, (4), pp. 635-645, 2009

7. He, F., Zhang, H., Wang, H., Xu, M., and Yan, F. "Chain of trust testing based on
model checking", Chain of trust testing based on model checking (2010, edn.), pp.
273-276, 2010

8. Chen, X.F. "Formal analysis and testing of trusted platform module", Jisuanji
Xuebao/Chinese Journal of Computers, 32, (4), pp. 646-653, 2009

9. Lin, A.H. Automated Analysis of Security APIs, Massachusetts Institute of
Technology, 2005

10. Bruschi, D., Cavallaro, L., Lanzi, A., and Monga, M. "Replay attack in TCG
specification and solution", Replay attack in TCG specification and solution
(IEEE Computer Society, 2005, edn.), pp. 127-137, 2005

Usama Tharwat Elhagari et. al. /IRICT (2014) 496-507 507

11. Chen, S., Wen, Y., and Zhao, H. "Formal analysis of secure bootstrap in trusted
computing", Formal analysis of secure bootstrap in trusted computing (Springer
Verlag, 2007, edn.), pp. 352-360, 2007

12. Delaune, S., Kremer, S., Ryan, M.D., and Steel, G. "Formal Analysis of Protocols
Based on TPM State Registers", Formal Analysis of Protocols Based on TPM
State Registers (2011, edn.), pp. 66-80, 2011

13. Degano, P., Etalle, S., Guttman, J., Delaune, S.p., Kremer, S., Ryan, M., and Steel,
G. "A Formal Analysis of Authentication in the TPM" Formal Aspects of Security
and Trust (Springer Berlin Heidelberg), pp. 111-125, 2011

14. Namiluko, C., and Martin, A. "An abstract model of a trusted platform"
Proceedings of the Second international conference on Trusted Systems, Beijing,
China, pp. 47-66, 2011

15. Bai, G., Hao, J., Wu, J., Liu, Y., Liang, Z., and Martin, A. "TrustFound: Towards
a Formal Foundation for Model Checking Trusted Computing Platforms" FM
2014: Formal Methods (Springer), pp. 110-126, 2014

16. Li, H., Hu, H., and Chen, X.-F. "Research on compliant testing method of trusted
cryptography module", Jisuanji Xuebao/Chinese Journal of Computers, 32, (4),
pp. 654-663, 2009

17. http://www.trust.rub.de/home/current-projects/tpmct/, accessed October 18 2009
18. Lee, D., and Yannakakis, M. "Principles and methods of testing finite state

machines-a survey", Proceedings of the IEEE, 84, (8), pp. 1090-1123, 1996
19. Bourhfir, C., Dssouli, R., Aboulhamid, E., and Rico, N. "Automatic executable

test case generation for extended finite state machine protocols", Testing of
Communicating Systems (Springer), pp. 75-90, 1997

20. Petrenko, A., Boroday, S., and Groz, R. "Confirming configurations in EFSM
testing", Software Engineering, IEEE Transactions on, 30, (1), pp. 29-42, 2004

21. Bochmann, G.V., and Gecsei, J. "A unified method for the specification and
verification of protocols", Proceedings of IFIP Congress 77, pp. 229-23,1977

