10 research outputs found

    A high speed serializer/deserializer design

    Get PDF
    A Serializer/Deserializer (SerDes) is a circuit that converts parallel data into a serial stream and vice versa. It helps solve clock/data skew problems, simplifies data transmission, lowers the power consumption and reduces the chip cost. The goal of this project was to solve the challenges in high speed SerDes design, which included the low jitter design, wide bandwidth design and low power design. A quarter-rate multiplexer/demultiplexer (MUX/DEMUX) was implemented. This quarter-rate structure decreases the required clock frequency from one half to one quarter of the data rate. It is shown that this significantly relaxes the design of the VCO at high speed and achieves lower power consumption. A novel multi-phase LC-ring oscillator was developed to supply a low noise clock to the SerDes. This proposed VCO combined an LC-tank with a ring structure to achieve both wide tuning range (11%) and low phase noise (-110dBc/Hz at 1MHz offset). With this structure, a data rate of 36 Gb/s was realized with a measured peak-to-peak jitter of 10ps using 0.18microm SiGe BiCMOS technology. The power consumption is 3.6W with 3.4V power supply voltage. At a 60 Gb/s data rate the simulated peak-to-peak jitter was 4.8ps using 65nm CMOS technology. The power consumption is 92mW with 2V power supply voltage. A time-to-digital (TDC) calibration circuit was designed to compensate for the phase mismatches among the multiple phases of the PLL clock using a three dimensional fully depleted silicon on insulator (3D FDSOI) CMOS process. The 3D process separated the analog PLL portion from the digital calibration portion into different tiers. This eliminated the noise coupling through the common substrate in the 2D process. Mismatches caused by the vertical tier-to-tier interconnections and the temperature influence in the 3D process were attenuated by the proposed calibration circuit. The design strategy and circuits developed from this dissertation provide significant benefit to both wired and wireless applications

    High Voltage and Nanoscale CMOS Integrated Circuits for Particle Physics and Quantum Computing

    Get PDF

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Low power digital baseband core for wireless Micro-Neural-Interface using CMOS sub/near-threshold circuit

    Get PDF
    This thesis presents the work on designing and implementing a low power digital baseband core with custom-tailored protocol for wirelessly powered Micro-Neural-Interface (MNI) System-on-Chip (SoC) to be implanted within the skull to record cortical neural activities. The core, on the tag end of distributed sensors, is designed to control the operation of individual MNI and communicate and control MNI devices implanted across the brain using received downlink commands from external base station and store/dump targeted neural data uplink in an energy efficient manner. The application specific protocol defines three modes (Time Stamp Mode, Streaming Mode and Snippet Mode) to extract neural signals with on-chip signal conditioning and discrimination. In Time Stamp Mode, Streaming Mode and Snippet Mode, the core executes basic on-chip spike discrimination and compression, real-time monitoring and segment capturing of neural signals so single spike timing as well as inter-spike timing can be retrieved with high temporal and spatial resolution. To implement the core control logic using sub/near-threshold logic, a novel digital design methodology is proposed which considers INWE (Inverse-Narrow-Width-Effect), RSCE (Reverse-Short-Channel-Effect) and variation comprehensively to size the transistor width and length accordingly to achieve close-to-optimum digital circuits. Ultra-low-power cell library containing 67 cells including physical cells and decoupling capacitor cells using the optimum fingers is designed, laid-out, characterized, and abstracted. A robust on-chip sense-amp-less SRAM memory (8X32 size) for storing neural data is implemented using 8T topology and LVT fingers. The design is validated with silicon tapeout and measurement shows the digital baseband core works at 400mV and 1.28 MHz system clock with an average power consumption of 2.2 μW, resulting in highest reported communication power efficiency of 290Kbps/μW to date

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore