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Abstract

Algorithm and Hardware Co-Design for Local/Edge Computing

Zhewei Jiang

Advances in VLSI manufacturing and design technology over the decades have created many com-

puting paradigms for disparate computing needs. With concerns for transmission cost, security,

latency of centralized computing, edge/local computing are increasingly prevalent in the faster

growing sectors like Internet-of-Things (IoT) and other sectors that require energy/connectivity-

autonomous systems such as biomedical and industrial applications.

Energy and power efficient are the main design constraints in local and edge computing. While

there exists a wide range of low power design techniques, they are often underutilized in custom

circuit designs as the algorithms are developed independent of the hardware. Such compartmen-

talized design approach fails to take advantage of the many compatible algorithmic and hardware

techniques that can improve the efficiency of the entire system. Algorithm hardware co-design is

to explore the design space with whole stack awareness.

The main goal of the algorithm hardware co-design methodology is the enablement and im-

provement of small form factor edge and local VLSI systems operating under strict constraints of

area and energy efficiency. This thesis presents selected works of application specific digital and

mixed-signal integrated circuit designs. The application space ranges from implantable biomedical

devices to edge machine learning acceleration.
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Introduction

VLSI technology over the decades have created many computing paradigms for disparate com-

puting needs in power, form factor, deployment environment, application, etc. In addition to the

traditional pursuit of large scale and centralized computing, edge computing have increased in

prominence in recent times, driven largely by the fast growing Internet-of-Things (IoT) in the con-

sumer electronics sector. Similarly, local computing saw the same technological enablement in

fields that demand energy or connectivity autonomy such as in biomedical and industrial applica-

tions.

Local and edge computing often operate under stringent resource constraints, the chief of which

is power or energy efficiency. For many of these applications, the computing tasks and their associ-

ated parameters are limited in a way that embedding general purpose computing devices into such

systems is inefficient and potentially infeasible. Such systems would benefit by unitizing appli-

cation specific hardware, i.e. custom circuit that performs only the desired algorithms. Compart-

mentalized design methodology for algorithm and hardware takes system agnostic approach and

develop algorithm independent of hardware, and to a less extent vice versa. Algorithm/hardware

co-design is the design methodology that explores the large design space from algorithm and hard-

ware perspectives simultaneously. Design efforts across multiple design stacks are often itera-

tive, co-design methodologies are efficiency tools developed to address that, aiming to provide

higher performance gain per design effort. Algorithm/hardware co-design has functionality and

non-functionality specifications. Functionality spec simply refers to that the algorithm must be

executable in the hardware. This is an open-ended problem with large design space. The non-

1



functionality specs refer to overall system performance like speed, power, and area. The co-design

efforts are largely put toward the compliance of non-functionality specs.

At the most fundamental level, algorithm/hardware co-design is the optimization of an algo-

rithm model that reflects hardware and system architectural behavior, with the inclusion of schedul-

ing, data traffic model, and linkage between operators in the algorithm stack and processing ele-

ment (PE) in the hardware stack.

The optimization method used in the presented projects is constraint allocation and partitioning.

The process is as follows. First identify the baseline algorithm and the main constraints in the

specification; then model the algorithm operators with the associated PE cost in the constraint

domain; then experiment with applicable hardware techniques to allow re-allocation of constraint

domain budget to in turn enable further modifications to PE/operator, scheduling, architecture; do

so iteratively until design is optimized.

In the following chapter, 5 projects are presented, detailing designs achieved via constraint

allocation based algorithm/hardware co-design.

In the first three chapters, the designs tackle implantable brain computer interface (BCI). For

implantable hardware, the power and energy is the main design constraint, limited by battery

life, charging mechanism, and most importantly the biological environment it interacts with. The

projects make use of existing algorithms that were hardware-agnostic as they were not designed

for implantable devices. Hence, there are many vectors for major hardware-aware augmentations

through constraint allocation and partitioning.

Chapter 1 tackles the spike sorting problem for hardware with a power budget fit for implant.

The baseline algorithm selected is the sequential leader algorithm. As with many clustering al-

gorithms, there’s an initialization challenge which can leads to high transient stage storage and

computation cost. To re-allocate the resources, the transient memory units and high per-input run-

time are targeted for optimization. The design implements a modified leader algorithm with an

added screening stage. The screening stage samples the input data feature space and only per-

forms cluster training using informative inputs, drastically reducing the memory and computations

2



necessary for centroid convergence.

Chapter 2 presents another spike sorting hardware. This project can be considered another

iteration of the Chapter 1 design. By experimenting with power-gating memory elements, the

sorting algorithm’s constraint model is changed accordingly to trigger a constraint re-allocation.

Schedule-based algorithm modifications is the new design goal. Given the algorithm/hardware for

input feature distribution from the previous design iteration, a Bayesian boundary based sorting

algorithm is devised to achieve improvements in energy and power by minimizing the per-input

computing run-time.

Chapter 3 presents an end-to-end BCI system inclusive a Bayesian boundary based spike sorter

from Chapter 2 and a partial neural intention decoding hardware. The baseline algorithm for

neural decoding is the Kalman Filter. There are several vectors for modifications as there are on-

chip/off-chip constraints in this project, giving it more freedom in constraint re-allocation. The

major resource-consuming elements of the implant are the multiplier PE, wireless communication,

and data traffic jam. In experimenting with a novel modified form of Kalman Filter, the algorithm

allows data stream partition to reduce earlier than the baseline version, moving majority of high

cost computations off-chip without incurring any on-chip cost, this in turn enables the replacement

of multiplier PE with simpler adder, exploiting the discrete input of the on-chip portion of the

neural decoding, which in turn solves the data traffic jam issue through the event-driven adder

staggering the computations.

In the later two chapters, the in-memory-computing macros are designed to serve as compo-

nents for larger ASIP systems handling the more flexible application of machine learning. In this

fast growing sector, the energy and power limitation is imposed by the scaling of the already power

hungry computations and memory wall. The co-design optimization goal is directed at the main

computing primitive of machine learning tasks.

Chapter 4 presents a mixed-signal in-memory-computing macro which is capable of perform-

ing binary multiply-and-accumulate operation on the entire content of a memory module without

explicit access. Chapter 5 presents another mixed-signal in-memory-computing macro which op-
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erate using a more robust and power efficient computing mechanism of capacitive coupling.
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Chapter 1: A Low Power Unsupervised Spike Sorting Accelerator

Insensitive to Clustering Initialization in Sub-optimal Feature Space

Online unsupervised spike sorting or clustering is an integral component of implantable closed-

loop brain-computer-interface (BCI) systems. Robust clustering performance against various non-

idealities such as poor initialization and order-of-arrival of inputs are desirable while meeting

the minimal area and power requirements for implants. We explore an online and unsupervised

spike-sorting algorithm utilizing a low-overhead feature screening process that improves feature

discriminability in the use of sub-optimal features for reducing hardware complexity. Based on

the algorithm, an accelerator architecture that performs feature screening and clustering is devised

and implemented in a 65-nm high-VTH CMOS, largely improving clustering accuracy even with

poor clustering initialization. In the post-layout static timing and power simulation, the power

consumption and the area of the accelerator are found to be 2.17 µW/ch and 0.052 µm2/ch, respec-

tively, which are 53% and 25% smaller than the previous designs, while achieving the required

throughput of 420 sorting/s at the supply voltage of 300mV.

1.1 Motivation

Advances in the BCI research have shown promising results in prosthetic, clinical, and other

applications in laboratory settings [1, 2, 3]. In order to improve the practicality of these platforms,

it is critical to develop a closed-loop BCI system which can be entirely integrated on a chip, and can

autonomously operate with minimal need for user interference, thereby necessitates all processes

to execute in a real-time unsupervised manner.

Figure 1.1 illustrates the operation flow of a typical invasive BCI system. The front-end begins

with an implanted electrode array that probes the extracellular action potentials (i.e. multi-unit
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Figure 1.1: A general brain-computer interface operation flowchart.

activities) near the target neurons. The analog waveforms are then digitized, followed by spike

detection and alignment. After this, features of spikes are extracted for reducing the data dimen-

sionality, and discriminable values in a chosen feature space are computed for clustering purpose.

Then, each spike is assigned to a cluster by its waveform. Sorted spikes can be used in various

ways depending on the application; the cluster indexes can be transmitted, or used to compute spike

rates of targeted neurons which in turn can be inputs for various neural signal processing (e.g. re-

gressions) to derive neural models for prosthesis, or, in a trained system, inputs to be translated

into neuro-prosthetic intents and commands.

Feature-extraction and clustering are integral parts that are desirable to be performed in an

unsupervised manner. Performing supervised training after placing an implant on a patient can

require a significant amount of characterization efforts for creating and training with a patient

specific dataset. In addition, the characteristics of spikes that an electrode array captures can vary

over time, which may require regular expensive maintenance for re-training in case of long-term

implants.

It is also critical to achieve online operation. The wireless communication between implants
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and any external devices is expensive in power consumption. If all the detected spikes need to be

wirelessly transmitted for offline feature-extraction and clustering, the power can be prohibitive [4,

5]. Online feature extraction and clustering have been shown to significantly reduce the required

data rate for wireless communication, resulting in large energy savings in the system level [6].

Existing methods of feature extraction range from computationally intensive methods, e.g.

principle component analysis (PCA), discrete wavelet transform (DWT), Bayesian algorithm, to

computationally efficient ones which often extract time-domain features, e.g. peak-to-peak am-

plitude, spike width, zero-crossing feature, spike energy. Computationally intensive features like

principle components and wavelet coefficients provide better inter-cluster discriminability but their

power consumption and area, when implemented in a VLSI circuit form, can be prohibitive for

resource-constrained implants.

On the other hand, time-domain waveform characteristics are intuitive to use and also inex-

pensive to extract but are not optimal in differentiating spike shapes [7]. Low discriminability

negatively impacts clustering reliability by accentuating inherent non-idealities in many cluster

algorithms such as sensitivity to initialization, input order-of-arrival, and disparate cluster mem-

bership. However, if we can mitigate those problems, i.e., improving clustering performance in

sub-optimal feature space, the low complexity can help to significantly scale down power con-

sumption and hardware footprint.

Therefore, we focus on developing a low-complexity yet robust multi-phase algorithm using

sub-optimal features, and its efficient mapping onto VLSI accelerator architecture, for unsuper-

vised and online feature extraction and clustering. The algorithm integrates three sub-algorithms,

namely informative sample screening, density-based centroid seeding, and centroid-based cluster-

ing. The VLSI accelerator architecture of the algorithm is designed and implemented in a 65nm

high threshold-voltage (VTH) CMOS. The post-layout static timing and power simulation shows

that the accelerator consumes 53% less power (2.17 µW/ch) and 25% smaller silicon footprint

(0.05µm2/ch), as compared to the previous work [8], while easily meeting the required throughput

(420 clustering/s) at the supply voltage (VDD) of 300 mV and the clock frequency of 140 kHz.
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The chapter is organized as follows: Section 1.2 introduces the proposed algorithm; Section

1.3 details the VLSI architecture; Section 1.4 presents the circuit implementation, the delay and

power consumption and the design, and the comparisons to the previous works; and Section 1.5

summarizes the chapter.

1.2 Algorithm

This section explores a 3-phase unsupervised online spike sorting algorithm for improving

clustering performance at low hardware complexity using sub-optimal features. Figure 1.2 shows

the flow chart for the entire algorithm. The overview of the algorithm is: phase 1 informatively

screens incoming samples based on a density-based metric, which is computed through construct-

ing distribution histograms on feature space axes. The first phase concludes when a statistically

significant amount of data is collected to faithfully represent the density distribution of the dataset.

Phase 2 uses those selected informative samples to create centroids (i.e., centroid seeding). Cluster

centroids are initialized and updated at the locally densest areas in the feature space. The second

phase concludes when cluster centroids converge. Finally, in phase 3, spikes are assigned a cluster

index via centroid-based clustering. No feature extraction is performed.

1.2.1 Dataset

The algorithm and accelerator architecture is designed based on the dataset of single channel

extracellular neuronal signals which were recorded in the sensory thalamus of vibrissa pathway in

anesthetized rats. Neuronal signals were amplified, band-pass filtered (300–5 kHz), digitized in 8-

bit resolution at 40 kHz/channel and collected using a 32-channel data-acquisition system (Plexon,

Dallas, Tx). The dataset contains a total of 40k spikes originating from 4 neurons and has a signal-

to-noise ratio of 2.9dB. A single spike consists of 32 samples. We also use the two other datasets

which contain 40k spikes from 2 and 3 neurons, respectively, but mostly use the first dataset since

it gives the lowest clustering success rate across all the experiments that we perform.

Detail procedures for creating the datasets were described previously [9, 10], approved by the
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Figure 1.2: Algorithm flow chart. The black, red, blue, and green boxes represent steps that are
common operation and scheduling, phase 1, phase 2, and phase 3, respectively.
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Institutional Animal Care and Use Committee at Columbia University. Briefly, female rats (225

–300 g; Sprague Dawley) were sedated with 2% vaporized isoflurane and anesthetized with sodium

pentobarbital (50 mg/kg, i.p., initial dose). Body temperature of the animals was maintained at 37

°C by a servocontrolled heating blanket (FHC, Bowdoinham, ME). After initial anesthesia, the

animal was mounted on a stereotactic device (RWD Life Science, China) in preparation for the

surgery and subsequent recordings. After the initial midline incision on the head, a small cran-

iotomy ( 1 mm X 1 mm) was made on the left hemisphere over the ventroposterior medial nucleus

(VPm) of the thalamus (2.0–4.0 mm caudal to the bregma, 2.0–3.5 mm lateral to the midline). A

tungsten microelectrode was slowly advanced into VPm using a hydraulic micropositioner (Kopf

Instruments, Tujunga, CA).

1.2.2 Informative Sample Screening

Initialization sensitivity is a critical problem for centroid-based clustering such as k-means

since they are heuristic [11] such that random initialization schemes can lead to drastically different

results on the same data. Furthermore, fully implemented distance minimization is NP hard [12],

hence reliable initialization are essential for enabling online unsupervised spike sorting.

For this purpose, we propose to perform informative sample screening in phase 1. The screen-

ing starts with establishing the knowledge of feature distributions. Specifically, using the early

set of incoming spikes, histograms for features are generated, which are then used to determine if

spikes are informative or not. Those informative spikes are passed to the phase 2 for the density-

based cluster seeding, which serve as a critical foundation for the low-complexity centroid-based

clustering in phase 3.

We select peak/trough amplitudes as spike features which are simple to extract but have large

noise component in the feature space. Figure 1.3 (b) contour plot shows one dataset’s feature

space distribution. The features have multimodal distributions when projected onto feature space

axes. As illustrated in the density histograms in Figure 1.3 (a) and (c), the low SNR of the dataset,

however, contributes to the high variance in the distinguishable modes. High overlaps in modal
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Figure 1.3: (a) Histogram of spike peak amplitudes; (b) log scale contour plot of spike density in
feature space, peak/trough amplitudes as X/Y axes; (c) histogram of trough amplitude.

distribution represent poor inter-cluster separation. This makes the dataset ideal for evaluation of

the proposed screening algorithm.

The distribution histograms of the peak and trough amplitudes are used as the density metric,

devised with low hardware overhead by projecting each data points’ amplitude features onto the

axes which are segmented into bins with width n . The bins’ width n is selected to match the

proximity parameter of the density-based cluster seeding in phase 2. (Subsection 1.2.2 for details).

The density is represented by the count of spikes in the bin and for each input, the peak and trough

values are divided by bin size n and used as index to access and increment the density values (eq.

1.1 and 1.2). The screening rule relies on the multimodal density distributions in the feature space

having distinguishable peaks in at least one dimension.

�4=B8CH(<0G(B?:8=)
n

) + + (1.1)
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(1.3)

If spikes have both peak and trough amplitudes that belong to target bins, they are chosen as

informative samples. Target bins are bins that have local maximal density which corresponds to

the peak of mode in the histogram. Fig. 3(b) shows that contours of highest density are located

at coordinates where the bins are local maxima. The data shown in the Figure 1.3 is for the

illustrative purpose. The full dataset has large ambiguity on border point assignment which might

not be linearly separable.

The distribution histogram is found to be well converged, confirming the effectiveness of the

informative sample screening. As shown in Figure 1.4 which shows the distribution error as more

spikes are used to create the distribution, the error of the density metric reaches -60dB with nor-

malized true density distribution at around 700 spikes. The error is defined as eq. 3. Dn and Dfinal

are normalized distribution functions generated from n samples and the entire dataset respectively.

The approximate convergence period, i.e. the time to reach reliable density metric, is approx-

imately 2 second based on the assumption maximum firing rate at 70 spikes per second from 6

neurons as specified by [8]. The 1-to-2 phase change can be scheduled by the use of a counter.

1.2.3 Density-based Centroid Seeding

In the second phase, the proposed algorithm performs density-based centroid seeding, which

estimates centroids using the informative samples screened in the phase 1. These parameters are

passed to the phase 3 for centroid based clustering.

The proposed seeding part of the algorithm performs as such: screening process looks up each

incoming spikes’ feature in the density histogram, if both peak and trough belongs in local max-

imally valued bins, the spike is an informative sample. If it is the first spike found in a particular
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Figure 1.4: The error in feature distribution decreases as more spikes are collected.

intersection, the spike waveform (not its features) is saved as the centroid of the cluster. All subse-

quent spikes with features matching the same bins are used to update the existing cluster median.

Spikes that do not pass screening are discarded. After a period of time, the centroid for each

cluster converges. And the converged median waveforms are used as seeds for the centroid-based

clustering in phase 3.

The proposed density-based centroid seeding is developed based on a reduced DBSCAN (density-

based spatial clustering in applications with noise) with the efforts to reduce computational com-

plexity as well as the number of user-setting parameters.

The standard DBSCAN is an offline algorithm with O(n log n) runtime, and requires two user

setting parameters: proximity threshold n and minPts, the minimum number of data points within

n-neighborhood to be considered density-reachable [13]. Setting appropriate minPts parameter

requires prior knowledge of feature variance, which is non-trivial and costly to compute.

Density based informative sample selection allows the centroid seeding algorithm to execute

without the parameter minPts. As mentioned previously, the proximity threshold n matches the
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Figure 1.5: The centroids convergence is shown to be more reliable in the algorithm with screening
procedure (a) than without the procedure (b).

bin width defined for the screening rule. As a result, all spikes in the same informative-sample-

populated bins are of the same cluster, and no two such bins are adjacent in the feature space as they

represent modal peaks in density distribution. Hence, there exists precisely one cluster centroid in

or near each informative-samples-populated bin, provided that the features present distinguishable

modes for each cluster.

In addition, the proposed algorithm has O(n) runtime. It does not need to visit all the points in

its n-neighborhood while DBSCAN (O(n log n) runtime) does. Rather, for each incoming spike

that passes screening, it is immediately assigned to be a member of the cluster associated with the

bins because the density-reachability is implicitly satisfied based on the distribution curve (modal

peak).

Figure 1.5 illustrates the screening procedure’s effect on centroid convergence error: (a) when

using informative sample, (b) when using all incoming spikes. The convergence behavior of the

proposed methods is shown to be more insensitive to initialization with on average 16dB lower

error.
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1.2.4 Centroid based Clustering

Phase 3 has a simple winner-take-all scheme where the input spike is assigned to the cluster

with the least distance to centroid. This clustering algorithm uses the converged median wave-

forms (seeds) found in the phase 2. The number of the centroids is also provided by the phase 2.

Given that all centroids are initialized at less than -20dB deviation from the true centroids (Figure

1.5(a)), minimization of intra-cluster distance is implicitly met by assigning each incoming spike

to the closest centroid. The distance metric we use is the L1 metric. L1 distance covers the full

dimensions of the data. As pointed out in the previous work on on-chip spike sorting ASIC based

on the sequential leader algorithm [8], L1 metric can provide noise tolerance and lower hardware

cost comparing to the Euclidean distance. The L1 metric can be computed as shown in eq. 1.4 :

3!1 =

#B?:∑
==1
|B?:8= (=) − B?:24=CA>83 (=) | (1.4)

Finally, Figure 1.6 shows the performance of the algorithm. The first column shows an av-

erage of classification accurary of 57.3% with randomly initialized centroids, algorithm based on

sequential leader (used in [8]) with predetermined target for cluster number; second column shows

an average classification accuray of 92.2% with the best case initialization, i.e. the algorithm op-

erates without informative sample screening just as that of the first column but is given an input

order that initialized centroids near the true centroids; the third column shows an average of 98.6%

accurary rate with the propose algorithm, demonstarting superior insensitivity to order-of-arrival

and the highest success rate among three.

1.3 Accelerator Architecture

For the proposed algorithm, we devise the area and power efficient accelerator architecture

(Figure 1.7). For phase 1, the features are used to aggregate the density metric, stored in a dedi-

cated memory block (Memory: Density Metric in Figure 1.7). Memory address is feature values

truncated to 6 bits MSB to represent n value of 4, i.e. feature valued 128 increments density value
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Figure 1.6: Spike sorting accuracy at various initialization schemes.

Figure 1.7: Block Diagram of the accelerator.

in bin 32. The bin size is set to 1/64 of feature range to exploit binary encoding.

In phase 2, the features are used to read from the density metric memory values of the bin and

its neighbors. Proximity check block then determines whether the input is an informative sample.

If informative, the features are looked up in template memory block; if present, the waveform is

used to update the centroid saved in cluster centroid memory block, if not present, the features

are saved in template memory and the waveform is saved in centroid memory. Computations are

performed on the centroid buffer block to reduce read/write accesses.

In phase 3, L1 distance calculation block computes the distance between input and each cen-

troid, and minimum L1 calculation block determines the cluster index the input belongs to. The

index is the final output of the accelerator.
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The main goal in the architecture design is to minimize power consumption and silicon foot-

print. For this, we ensure large memories in the accelerator are not directly clocked to lower

switching power on the clock tree. Switching activities in memories are therefore limited to read-

ing and writing access only. Given that the majority of the circuits are devoted to memories, it is

extremely important to reduce their switching activities.

In the accelerator design, most of the circuit is idle (zero switching activities) at any clock

cycle. As a result, leakage dominates the power consumption. We implemented all computational

blocks serially in order to reduce leakage on the architecture level. Higher switching activity

associated with serial design is insignificant in this accelerator implementation, with only schedule

controller and clock network being affected. Serial implementation decreases the computational

blocks’ silicon footprint by a factor of 32, and also significantly reducing idle leakage.

In addition, we select the lowest operating frequency for low power consumption while still

yielding the comparable throughput reported in [8] where a single channel DSP operating at 480

kHz can process 6 neurons firing at 70 spikes/s. Our design benefits from informed initialization

to achieve the same throughput with 140 kHz clock, on account of lesser transient clusters.

1.4 VLSI Implementation

The accelerator is implemented in a 65nm CMOS. As previous works [8, 14] have identified

leakage power as dominant in implantable chip power budget, the accelerator is synthesized with

high-Vt devices for minimizing leakage. The low clock frequency requirement also allows us

to use near/sub-threshold supply voltage to minimize power consumption. Therefore, in order to

ensure the robustness of gates at the aggressively-scaled supply voltage, we only use a subset of the

industrial standard cell library during the synthesis that are found to be robust at near/sub-threshold

supply voltages. While low-voltage optimized SRAM can be used for reducing the footprint for

various memories, we decide to use the latches in the standard cell library for high robustness.

The design is automatic-place-routed (APR-ed), and the layout view of the implemented ac-

celerator is shown in Figure 1.8. This is a single channel spike sorter unit with no dependency on
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Figure 1.8: The layout of the accelerator in a 65nm CMOS. The footprint is 226x226 µm2.

external computation blocks or parameter, with fixed front end configurations built-in. The area of

the design is 0.052 mm2.

We perform the static timing analysis using the libraries characterized at multiple supply volt-

ages and the interconnect parasitic information generated by the APR tool. The accuracy of the

timing and power characterization flow is calibrated and confirmed by comparing its result to the

results of SPICE simulation for benchmark circuits.

As shown in Figure 1.9, at the supply voltage of 0.3V, the maximum clock frequency can be

as high as 324 kHz, more than twice the required clock frequency of 140 kHz. At 0.3V, the power

consumption is characterized to be 2.17µW.

As shown in Figure 1.10(a), power consumption breakdown by type indicate that the leakage

power consists of 90% of all power consumptions. Leakage breakdown by module in (b) indicates

that majority of the power consumed is still from memory blocks, with the centroid and histogram

memories consuming 65% of the total power (47% and 18% respectively).

Finally, Table 1.1 details comparison with previous works in spike sorting DSP. To our best

knowledge, the architecture in [8] is the only other design that implementes real-time unsupervised

spike sorting. Our accelerator is a single channel classifier that is scaled linearly and inter-unit
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Figure 1.9: Accelerator frequency based on critical path delay at various VDD levels.

Figure 1.10: (a) Power breakdown by type; (b) leakage power breakdown by source.
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Table 1.1: Performance comparisons.

[15] [4] [14] [8] This work

No. of channels 32 128 64 16 1
Detection Y Y Y Y N

Feature extraction N Y Y N/A Y
Clustering N N N Y Y

Data-rate reduction 12.5x 80x 11x 240x 85x
Clock frequency (MHz) – – 0.4 0.48 0.14

Throughput (sorting/ch/s) N/A N/A N/A 420 420
Power (µW/channel) 75 100 2.03 4.68 2.17
Area (mm2/channel) 0.11 1.58 0.06 0.07 0.05

Power density (µW/mm2) 682 63.3 33.8 66.8 43.4
Process(nm) 500 350 90 65 65

Core voltage (V) 3 3.3 0.55 0.27 0.3

independent. The proposed design achieves considerably lower power consumption and silicon

footprint.

1.5 Summary

In this chapter, we propose a hardware spike sorting accelerator that provides online, unsu-

pervised clustering with initialization and order-of-arrival insensitivity. By screening data using

proximity to centroid in feature space, we can improve the performance of the clustering algorithm

as well as reduce hardware complexity. Efficient hardware architecture and circuit techniques are

devised in order to reduce power consumption and silicon footprint. For the dataset instrumented

from rats, the designed accelerator achieves 98% accuracy in spike sorting. The converged cen-

troid error is also improved by 16dB. Implemented in a 65nm CMOS, the accelerator exhibits the

footprint of 0.05µm2 and the power consumption of 2.17µW, which are 25% and 53% better than

the previous state-of-the-arts.
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Chapter 2: 1.74-µW/ch, 95.3%-Accurate Spike-Sorting Hardware based on

Bayesian Decision

This chapter presents algorithm/hardware co-design for real-time unsupervised spike sorting

hardware for reducing power and improving sorting accuracy. We devise an algorithm based on

Bayesian decision, which enables high accuracy while using noisy and simple time-domain fea-

tures. Those simple features significantly reduce computation complexity, memory requirement,

and thus the required number of cycles per sorting. The latter, coupled with the sparsity of spikes

in time, makes the hardware idle for most of time, and thus we employ aggressive power gating

and balloon latches to sleep most of the circuits and wake them up only when a spike is detected

for maximal power savings.

2.1 Motivation

Online neural spike detection and sorting (clustering spikes by waveform features) is an im-

portant step between neural signal sensing and motor-intention decoding for closed-loop neural

prosthetic systems. Implanted electrodes sense activities of multiple neurons while decoding often

needs single-unit spiking rates. Therefore, implantable hardware for real-time spike detection and

sorting [8, 16] is critical to close a loop and to reduce communication cost between an implant and

an external receiver [4, 17].

One of the state-of-the-art hardware for spike sorting implements the sequential leader algo-

rithm which computes sums of differences between samples of incoming and centroid waveforms

[8]. While the simple time-domain feature allows it consume low power (4.68µW/ch) and compact

area (0.07mm2/ch), the hardware suffers from low clustering accuracy (78.2% while sorting 96k

spikes) mainly due to the use of less robust time-domain features.
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In this chapter, we pursue algorithm/hardware co-design to increase clustering accuracy and

minimize power dissipation. We propose a novel sorting algorithm that can self-learn a decision

metric based on Bayesian boundary [18] from incoming spike waveforms. While the algorithm

also uses very simple time-domain feature (i.e., min and max values of a spike), the self-learning

capability enables the algorithm to robustly sort spikes. When mapped onto hardware architecture,

indeed, the simple time-domain features can largely reduce computation and memory requirement,

allowing the hardware to finish sorting a spike in 2 clock cycles, while the conventional sequential

leader algorithm can take hundreds of cycles. The reduced computing complexity coupled with

spike sparsity in time allows us to have the hardware in a sleep mode for most of the time via power

gating switches and balloon latches (BL).

We prototype test chips for the proposed sorter having one channel, which can sort 420 spikes/s

at the sorting accuracy of 95.3% while consuming 1.74µW at VDD of 0.6V, both significantly

improved from the prior arts [8].

2.2 Algorithm and Implementation

The sorter performs spike sorting in a per-channel basis. As shown in Figure 2.1, the hardware

starts with a threshold based spike detector at the input. The detector is preconfigured with a

threshold derived from channel noise, and operates on the continuous sample stream from the

ADC. The features used in the spike-sorting task are the maximum (peak) and minimum (trough)

value of each spike waveform. A feature extractor extracts the peak and trough of action potentials

of each spike waveform for the following training or sorting process.

The theoretically optimal sorting solution in the 2-dimensional feature space is a set of free-

form Bayesian boundaries from clusters’ distribution intersects. This approach is, however, far too

costly to on-implant processing as it requires large memory and complex computations. Instead,

we project two of single-feature Bayesian distribution boundaries to the 2-feature space, forming a

set of grid-constrained boundaries, effectively a 1.5-dimension feature space for a relaxed hardware

requirement.
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Figure 2.1: Spike sorting accelerator block diagram.

2.2.1 Feature Space Distribution

The first step of the training process is to identify Bayesian decision boundary. For each de-

tected spike, the hardware updates the two histograms of the peak and trough values (Figure 2.1)

in the Feature Space Distribution Memory (FSDM). After the specified number of spikes are used

for updating histograms, the Bayesian Prior Controller traverses the FSDM for finding the local

minima of each feature distribution and store them as Bayesian decision boundaries in the Bound-

ary Memory (BM). The boundaries are used to orthogonally partition the feature space, with each

partition identifiable by a pair of indexes.

2.2.2 Cluster Validness Check

After the boundaries are found, each feature space partition is to be assigned a status as either

a cluster or unnecessary segmentation. This is done by updating the confidence level of the cluster

status of each partition in the feature space. The specific steps are as follow. First, the Index Pair

Lookup (Figure 2.2) compares the features of an incoming spike with the Bayesian boundaries in

the BM. This locates the specific partition that the spike belongs in. The pair of indexes is then

fed to a CAM (Figure 2.3). If the CAM finds the pair of indexes in it, it increases the confidence

level of the entry by setting the associated 2b indicator (00-vacant, 01-outlier, 10-weak cluster,

11-strong cluster). If no match, it places the index pair in the first vacant entry, with indicator set
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Figure 2.2: Index Pair lookup for peak feature.

to 01. The controller periodically decreases all entries’ indicators once per N spikes to remove

outliers from strongly-recognized clusters (Figure 2.3).

2.2.3 Decision-Tree-like Sorting

The spike sorting process can start after a specified amount of training. It performs the same

computation for finding an index pair, but the hardware no longer updates the CAM indicators. The

result of the CAM which represents distances to partitions enters the Adjacency Checker, which

then finds the closest partition that is a valid cluster. The checker performs min function with a

vector mask that selects clusters only with 10 and 11 indicators. The partition index is found via

the comparison paths (Figure 2.4).

The algorithm is similar to a decision tree. The branching conditions are Bayesian boundaries

found during training. However, the cluster status update serves as a pruning process on the deci-

sion tree in a manner that leaves it in a partial coverage of the feature space. The pruned branches

are recovered in the deployment stage via a least distance comparison.

The proposed architecture can greatly reduce memory requirement and computational com-
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Figure 2.3: CAM architecture.

Figure 2.4: Adjacency Checker.
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Figure 2.5: Module power gating grouping.

plexity. While the conventional sequential leader algorithm needs to store a full waveform per

each cluster centroid, the proposed architecture stores only a pair of indexes and a few boundaries

per each cluster. Assuming 48 samples/spike, 8b ADC resolution, 4 clusters/ch, and 2b/index, and

6b/boundary, the former requires 1,536 (= 48 * 8 * 4) bits while the latter can require only 36 (= 6

* 2 + 4 * 6) bits. Similarly, the proposed architecture requires eight 6b comparisons and single 6b

equality operation per sorting while the sequential leader algorithm needs 48 8b additions and 45

14b additions per sorting.

Thanks to the low computational complexity, the proposed architecture takes only 2 clock

cycles for sorting a spike. As incoming spikes are sparse in time, the hardware can be idle for most

of the time. In order to minimize the power dissipation during idle time, as shown in Figure 2.5,

the hardware aggressively employ power gating switches (PGS) and BLs. Therefore it can have

most of the modules in a sleep mode and wake them up only when detecting a new spike (Figure

2.6). We design a BL in thick oxide devices for leakage savings (Figure 2.7). The control signals

for PGS are bootstrapped to 1V via level converters for reducing wakeup time (T2WKU). Figure 2.8

shows the operating waveforms of a BL.

2.3 Measurements and Comparisons

We prototype test chips for the proposed sorter in a 65nm high-Vt(Figure 2.9). The macro is

of a single channel as online training has high area cost. In order to integrate the online training
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Figure 2.6: Power gating scheme.

Figure 2.7: Balloon latch schematics.
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Figure 2.8: Balloon latch operation flow.

Figure 2.9: Die photo.
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Figure 2.10: Sorting accuracy comparison.

Figure 2.11: Power vs. spiking rate.

hardware in an implant, we designed the system to perform the training process for each channel

in a time-multiplexed manner. The proposed architecture achieves the average accuracy of 95.3%

in sorting 96k spikes in four datasets. For the same waveforms, the sequential leader algorithm

can achieve the accuracy of only 78.2% (Figure 2.10). At VDD of 0.6V and the throughput of

420 spikes/s/ch, the proposed hardware consumes 1.74 µW, 2.7X smaller than the prior art’s power

dissipation of 4.68 µW/ch at the same throughput. Note that the power consumption scales with

throughput (Figure 2.11). The proposed architecture takes 0.116mm2 .
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Chapter 3: A sub-microwatt 96-Channel Neural Spike Processor for a

Movement-Intention-Decoding Brain-Computer-Interface Implant

This chapter presents sub-microwatt end-to-end neural signal processing hardware for deployment-

stage real-time upper-limb movement intent decoding. This module feature intercellular spike

detection, sorting, and decoding operations for a 96-channel prosthetic implant. We design the

algorithms for those operations to achieve minimal computation complexity while matching or

advancing the accuracy of state-of-art BCI sorting and movement decoding. Based on those algo-

rithms, we devise the architect of the neural signal processing hardware with the focus on hardware

reuse and event-driven operation. The design achieves among the highest level of integration, re-

ducing wireless data rate by more than four orders of magnitude. The chip prototype in a 180-nm

high-Vt, achieving the lowest power dissipation of 0.78µW for 96 channels, 21× lower than the

prior art at a comparable/better accuracy even with the partial decoding function integration.

3.1 Motivation

Advances in brain-computer-interface (BCI) research is aiding the development of prosthesis

for patients with limited mobility. Prosthesis can be categorized as passive or active. While passive

prosthesis only provides structural support for patients, active prosthesis can perform the patients’

intended motor function, autonomously or controlled. BCI can aid active prosthesis by mapping

their neural activities to the intended movements and actuating them. Hence, BCI systems are

invaluable in limited mobility rehabilitative services [19, 20, 21, 22, 23].

A prosthetic BCI operates by measuring neural activity and inferring the intended movement

based on a learned model (cortical map) that relates the neural behavior to the movement intention.

Neural activities useful for motor intention decoding can be sampled directly from residual muscle
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activation near the prosthesis site or deep within the motor cortex in the brain. Any neural sig-

nals encoding motor intention can support BCI prosthesis if the encoding scheme can be reliably

modeled. For locked-in patients without residual muscle activation, only central nervous signals

can aid the prosthesis. Extracellular spiking activity from pre-motor or motor cortex is currently

the state of the arts for upper limb movement decoding [21], outperforming non-invasive systems

based on signals such as EEG [22] or MEG [23]. Unlike EEG or MEG, the detection of spiking

neural signal requires surgical procedure to implant probes and peripheral support devices. The

invasiveness places additional physical design constraint, e.g. power consumption, to the already

complex algorithmic challenges.

In this chapter, we present a full stack design and the prototype of a prosthetic Neural Spike

Processor (NSP). The NSP decodes neural spike information into direction and velocity of intended

muscle movement, enabling rehabilitative services for patients. We modify and improve existing

neural decoding algorithms to implement our design.

The remainder of the chapter is organized as follows. In Section 3.2, we first briefly present the

scope and tasks involved in the BCI system. In Section 3.3, we detail our spike sorting algorithm.

In Section 3.4, we present our neural decoding approach and evaluate the accuracy and cost of our

hardware. In Section 3.5, we present the architecture of the NSP chip. In Section 3.6, we present

the prototype and measurements. Finally, Section 3.7 summarizes the chapter.

3.2 System Overview

Figure 3.1 shows the processing stages of the targeted extracellular spike BCI system. The first

stage is an implanted electrode array. The electrode array senses extracellular potentials, which

originate from surrounding neurons. The signals are then filtered with band-pass or low-pass filters.

Following the filtering stage, analog-to-digital converters (ADC) digitize the extracellular voltage

signals and produce multi-channel digital data streams for later stages of the BCI system. The

NSP initiates after the ADC stage of the BCI and terminates before the transmission of partially

decoded neural data off chip.
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Figure 3.1: Proposed prosthetic BCI task flow.

The motor intention-decoding task is delegated to both on-chip hardware processing at the

implant site (NSP) and off-chip software processing at the prosthesis site. The on-implant com-

putation includes spike detection, spike sorting (which includes feature extraction and clustering),

and partial computation of intention decoding which estimate the movement state via ensemble-

regressed spiking events. The near-prosthesis computation concludes the rest of intention decod-

ing, notably the Kalman filter (KF) operation, which finalize the kinematic state prediction.

The main physical constraints of an implantable BCI device is power efficiency. The tempera-

ture sensitivity of the implant site tissues can render the targeted neurons useless when exposed to

high power implant. Among the tasks performed by the implant, data transmission from implant

to prosthesis is the dominate power consumer for existing BCI implants [8]. Hence, our NSP de-

sign is driven by the objective of achieving the highest data rate reduction while performing the

minimum amount of computation on implant.

Based on the prior works [19, 20, 24], we optimize and improve the algorithms for spike

sorting and intention decoding to reduce the on-chip computational complexity while improving
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the decoding accuracy as compared to the unmodified algorithms. Consider a typical 96-electrode

array sensing at 8-bit resolution at 30 kHz for prosthetic BCI, the data rate is nearly 3MB/s without

any on-implant processing (Figure 3.1). If the full data streams are transmitted off-chip entirely,

the required power would make the system unsuitable for long term deployment. Therefore, we

implement spike detection, feature extraction, sorting, and the first part of decoding on the implant

device. With the on-implant processing capability, we can reduce the wireless data rate by more

than four orders of magnitude.

The functions of the NSP is as follows. The processor receives the 96 channels of streams and

detects neural activations (spikes) by thresholding the action potential. The NSP then performs

spike sorting by their waveform shape. The sorted neurons are then analyzed for their spiking

behavior. The neurons’ efficacy in kinematic information encoding determines their usage in the

following stages. The motor intention decoding uses a cortical model to map instantaneous spiking

rates from the selected neuron population to kinematics. Instantaneous spiking rates are in prac-

tice spike counts in time bins, which are typically around 100 ms. The cortical map is attained

by regressing training data, typically at the same step when we identify the neurons that encode

significant kinematics information. Finally, we use filtering techniques such as the Kalman filter

(KF) to refine the kinematic estimates.

This calibration procedure requires in-patient experiments, and is typically very hard to fully

automate in the deployment system. The typical calibration process is as following. A lock-in

patient with a BCI implant is asked to imagine a preprogramed movement while the BCI sys-

tem asserts a small amount of the control over the visual feedback of said movement (screen or

prosthesis). Gradually, the BCI’s decoded results are asserted more and more influence over the

preprograming of prosthesis until the movement is entirely driven by the BCI system. The cortical

map developed by outpatient analysis is used to make the initial motor prediction. The rigorous

training of the BCI decoding features relies heavily on the neural plasticity of the patient’s neu-

rons. The calibration step is much more of a rehabilitative reconfiguration process on the motor

cortex neurons than a setup step on an out-of-the-box working machine. While the decoding suc-
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cess is dependent on the patient’s neural plastic health, the initial decoding input greatly affects the

viability of the BCI system.

3.3 Spike Sorting

Each extracellular electrode measures the activity of neurons in its proximity; hence, a sorting

process is required to differentiate spikes by their originating neurons. The basis for sorting is the

spike waveform’s shape, under the assumption that multiple neurons are at various distances to the

electrode and they have unique internal ionic gating states. The varying distances through the brain

tissues to the electrode have varying filtering effect; the ionic gating states affect the spike shape

such as relaxation and pre-spiking depreciation. The spike sorting process uses selected waveform

markers to identify the individual neurons. Spike sorting provides substantial savings in power.

Assuming the 10-bit identifier for 96 electrode channels ( 3-bit identifier for each channel), 4 clus-

ters per channel, and an average spiking rate of 50 Hz, spike sorting can achieve 100X reduction in

data transmission (Figure 3.1). Our design goal concerning spike sorting is to implement algorithm

and hardware that consumes minimal energy and area at high accuracy.

3.3.1 Supervised Training of the Constrained Bayesian Boundary Sorting

For the NSP development, we designed the similar spike sorter based on the constrained

Bayesian boundary model in Chapter 2 yet uses the offline-training model for improving accu-

racy. The accuracy of the online-trained model is weaker for several reasons. One factor is the

suboptimal feature selection. The independent nature of the single-feature Bayesian boundaries

over-segments the feature space. Another is that the pruning process leaving only partial coverage

of the feature space. Some of this problem is recovered by the adjacency checking of the feature to

the known branching nodes. Still, it is not fully reliable since not all nodes are Bayesian optimal

for that particular modality.

Our supervised-trained sorter uses two voltage samples directly selected from the waveform,

but not necessarily the peak and trough values as used in the unsupervised training version. This
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Figure 3.2: Visualization of spike sorting via Bayesian approximate decision tree.

change is motivated by the followings. The use of raw waveform samples performs near optimal

in our simulation but it exhibits large dimensionality, and thereby increasing power dissipation

[8]. To improve accuracy while keeping the dimensionality low, we determine which two sample

indexes used for the feature during the offline training process. We perform a parameter sweep

to find the best performing pair of indexes, across all the spike waveforms used in the training

process, as the decision tree’s feature space.

We construct the decision tree in offline training (Figure 3.2). First, we estimate the distribu-

tion of data points with Gaussian kernels. We then sweep for boundaries under the orthogonality

constraint. The boundary information (direction, order, and values) is stored in implants. We limit

the maximum number of neurons per channel to four, which is anyway rarely exceeded. In the

case of more than four clusters present in a channel, the decoding performance is not affected with

a heuristic that no more than three neurons from one channel are selected for intention decoding.
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Figure 3.3: Feature space segmented block identification coding.

Under the constraint limiting to four clusters per channel, eleven unique segmentation patterns

exist in the feature space (Figure 3.3). Here, the diagonally symmetric patterns are considered a

single class. Each spike, as a point in the space, can be located by simple comparison with the

segmentation boundaries (these are the decision tree branching conditions). Its cluster is identified

by the 3-bit comparison results. The comparisons against each of the boundary, combing with

the feature organization, produce a unique marker that identifies it as a particular cluster within a

channel.

The 11 segmentation patterns are organized into six groups. For all patterns in the same group,

the four blocks share the same boundary comparison identifier. This also means the order of the

features being used for of decision tree branching condition are in the same order. This allows

an encoding scheme that reduces memory needed to characterize the channel as compared to the

online-trained implementation in [24]. Online training require allocation of memory for the full

4x4 grid since the optimal segmentation pattern is unknown. This requires three boundaries along

each dimension, and a large hash table to store 16 blocks’ information (cluster validness, its as-

sociated weight for intention decoding). The proposed offline variant thus has more than 50%

reduction in memory requirement.
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Table 3.1: Spike sorting accuracy.

Datasets (Number of neurons)

Decision metric D1(2) D2(3) D3(4) D4(4)

L1 Norm 99.97% 99.25% 91.39% 89.00%
Const. Boundary 99.99% 99.19% 91.61% 89.49%

3.3.2 Accuracy and Cost Evaluations

We use the data measured from mice [9] to evaluate the sorting accuracy of our proposed

algorithm. The dataset (D1, D2, D3, and D4) contains channels having signals from two to four

neurons. The sampling rate is 40 kHz, band-pass filtered between 300 Hz and 5 kHz.

We categorize prior works on on-chip spike sorting by their decision metric, namely distance

to template [8, 25, 26] or boundary [24]. Due to the high area and power cost of a multiplier, all of

the distance-based sorters use L1 distance metric (the sum of absolute difference of two vectors)

on time-domain features. In 3.1, we compare our constrained Bayesian boundary sorting to the L1

norm and find that ours achieves a comparable sorting accuracy with the L1 norm, both using two

features.

The decision boundary based on L1 norm is not constrained to orthogonal grids in the feature

space, which can theoretically outperform the proposed constrained boundary model. However, as

the features are voltage samples taken directly from the spike waveform, its non-idealities (noise)

account for its sorting performance. Since spike’s peak, trough, and relaxation slope are primarily

driven by different ion pumps, different parts of a spike waveform have different variances. L1

metric does not consider this phenomenon; thus, its sorting accuracy is negatively affected.

The advantage of the decision tree is that it requires much less on-chip memory and computa-

tion than the distance based technique. The memory required in the presented sorter per channel is

3 bytes for storing boundary information, 4 bits for segmentation pattern (total 28 bits) for n-cluster

per channel (n < 5). The total is 336 bytes for the 96-channel NSP. By comparison, a 2-feature
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L1 metric requires 2n bytes (64 bits when n=4), marking 768 bytes for the 96-channel system. In

term of the computation complexity, the 2-feature L1 requires 3n 8b additions/subtractions and n-1

8b comparisons, while our proposed model only needs three 8b comparisons and one 3bit 4-entry

CAM read.

3.4 Intention Decoding

3.4.1 Ensemble Observation Kalman Filter

In this subsection, we present Ensemble Observation Kalman filter (EOKF). This filter not only

improve decoding accuracy, but also reduce on-chip computation workload, and minimize the data

rate in transmission to off implant.

The standard KF for motor intention decoding has the following form:

G:+1 = �G: + F: (3.1)

I: = �G: + @: (3.2)

The term x is the state, i.e. position, velocity, etc. A is the state transition matrix; w is the

state noise (typically zero-mean Gaussian variable); z is observation, i.e., binned spiking rates; H

is the observation matrix, i.e. cortical map; q is observation noise (zero mean Gaussian variable);

subscript k is the time step.

Eq. 3.1 describes the state transition in a Markov chain. It simply provides a movement con-

straint from one moment to another. The constraint acts as a dampener to avoid overly aggressive

prosthetic movement. Eq. 3.2 describes the more interesting behavior as it formulates the cortical

mapping between kinematic state and neural activity. Given an estimated state, Eq. 3.2 reconstructs

the expected spiking rates from the selected population.

The standard KF updates its state and parameters iteratively, beginning with an a priori estimate
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of next kinematic state via the Markov process. A priori estimate is given as:

G−: = �G
−
:−1 (3.3)

The standard KF’s posterior estimate combines the passive estimate from state transition and

the weighted error between expected observation and actual observation in the following equation:

G: = G
−
: +  : (I: − �G

−
: ) (3.4)

The error weights are known as Kalman gain K, computed as:

 : = %
−
:�

) (�%−:�
) +&)−1 (3.5)

The Kalman gain is updated with the error covariance matrix P and the measurement error

matrix Q. Eq. 3.5 represents a substantial computation load, since the number of neurons selected

for motor intention decoding is relatively large, typically between 20 to 50 [21, 27], making H P-k

HT at least a 20×20 matrix. In particular, there exist no closed-form solution to inverse such large

matrix. Employing a numerical method for this inversion problem inevitably increases power and

area overhead for an implant.

To reduce this computational complexity, we propose an inverse form of observation-to-state

transition as a committee machine, essentially changing eq. 3.2 to:

G: = �I: + @: (3.6)

in which the expected state is constructed with ensemble spiking rates, weighted by E. Figure

3.4 illustrates this. After this operation, the cortical map H now becomes trivial (identity matrix)

in EOKF, therefore reducing the computational workload henceforth. The proposed filter has the

same a priori estimate as the standard KF, as shown in 3.4.
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Figure 3.4: Instantaneous spiking rates weighted in ensemble average for the observation based
estimate of a kinematic state.
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In the EOKF, eq. 3.5, 3.6 are reduced to:

G: = G
−
: +  : (�I: − G

−
: ) (3.7)

 : = %
−
: (%

−
: +&)

−1 (3.8)

With the new smaller filter (i.e., eqs. 3.4, 3.7, 3.8 ), the lowest data bandwidth of the entire BCI

system is located at computation of Ezk. This term has the equivalent data rate as the final decoder

output (xk). Therefore, we perform only the computation of Ezk and all the other computations

are offloaded to prosthetics sites where power and area budget is much greater. This partition also

includes the computation of eq. 3.4 in the prosthetics site since there is no data dependency.

The posterior error covariance matrix updates in the standard KF in the following form.

%−: = �%
−1
: �

) +, (3.9)

%: = (� −  :�)%−: (3.10)

The error covariance estimate is first updated with state transition and state error variance W in

eq. 3.9. The posterior error covariance incorporates the observation error in the form of Kalman

gain in eq. 3.10. In the proposed filter, eq. 3.10 is reduced to eq. 3.11.

%: = (� −  : )%−: (3.11)

As mentioned, the posterior error covariance matrix width is now the number of state elements,

3 (x/y directions, and velocity), instead of the number of neurons.

Finally, in 3.2, we compare the number of multiplications, additions, and divisions in the pro-

posed EOKF and the standard KF. We assume to select 20 neurons for intention decoding. We

can find 1-2 orders of magnitude reduction in the operations, even for the case of including the
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Table 3.2: Comparison of number of calculations in EOKF and standard KF (20-neuron cortical
map).

Number of Calculations (Mult/Add/Div))

Equations Standard Kalman EOKF

3.4 4/2/- 4/2/-
3.5/3.7 80/80/- 46/46/-
3.6/3.8 32180/32060/1180 10/9/4

3.9 8/8/- 8/8/-
3.10/3.11 88/84/- 8/8/-

computations both on implants and prosthetics site.

3.4.2 Theoretical Basis

The standard Kalman filter (hereafter referred to as Kalman filter) has been one of the state-of-

art decoding methods in cortical spiking based motor intention BCI. Its observation (state) model

is straightforward. The estimate computation is based on the preferred direction property of se-

lect neurons. The observation based state estimate, i.e. instantaneous velocity, is modeled as a

weighted sum of target neurons’ time-binned spiking rate. The weight is derived solely from error

covariance.

The Kalman Filter’s weighting basis does not regard the neuron’s firing behavior across in-

tended movement directions, using the same error variance in all cases. This assumes that a neu-

ron’s spiking rates maintains the same signal-to-noise ratio regardless if the intended movement is

in its preferred direction. In actuality, the spiking rate variance during a state of excitation, inhibi-

tion, and idle are not constant, thus the linear regression of single neuron observation have uneven

reliability depending on the a priori estimate. Furthermore, even if the spiking variance is always

constant, high firing rate (preferred direction) is more reliable simply due to higher SNR.

The more biologically realistic model has been validated by some studies that have fitted the

excitation response in cosine or wrap-around Gaussian functions [28]. This is the tuning curve of
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the neuron. If the tuning curve model is used to improve the Kalman filter, it will take the form

of a separate iterative process to modify the error covariance from the previous step to one that

corresponds the current state transition prediction. This will require a large lookup table for the

error covariance values from training experiments and would increase the cost of computation.

Furthermore, neural models are non-stationary. Changes in neural behavior would require more

drastic correction to the tuning curves if an adaptive model is needed [29].

The proposed EOKF adapts an entirely different approach to weighting neurons’ predictions.

By reducing the probability distributions of many individual observations to a single population en-

semble observation, the EOKF uses a population vector model and determines the weights through

multi-variate regression. Instead of the individual spiking rate modulated only by error covariance,

it is further modulated by its own excitatory state, benefiting from the signal of a higher SNR. As

shown in Figure 3.5, an example of 4 neurons firing when the movement is in direction of radian

angle of -1. For neuron 1, the intended movement does not corresponds to excitation. However,

the baseline firing is noisy and still has a high spiking rate. For neuron 2 to 4, the spiking rate

is close to the tuning curve profile. The baseline Poisson noise dominated spiking from neuron 1

is thus compensated in an ensemble, since the weights acquired via multiple regression account

for the behavior of excited neurons at the same time. Hence the weighted vector sum is a better

observation than the single neurons’.

3.4.3 EOKF Evaluation

To evaluate the performance of our proposed EOKF, we use an upper-limb reaching data set

[30] from the Database for Reaching Experiment and Models (DREAM) [31]. The task is the

standard 2D equal-distance 8-target center-out-reach-and-return performed by a Rhesus monkey

well trained in the experiment. Only the velocity vector of the hand movement in the x, y plane is

used as kinematic state, same as the velocity-Kalman study [20]. The data set contains 194 trials

of the 196-neuron spiking traces from the motor cortex.

In this study, the data is used for offline reconstruction of native movements. We train the filter
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Figure 3.5: Multivariat regression of ensemble neurons reduce the effect of noise.

state parameters (transition matrices, error variances) with 80% of the data (randomly selected for

each trial). Post-training decoding (reconstruction) is done on the remaining 20%.

The proposed EOKF outperforms the standard KF with lower trace reconstruction error, by

5% to 46% depending on trial selection. This outperformance comes from the advantage that the

proposed EOKF always has better observation than the standard KF. In the proposed EOKF, the

error variance of the observation-based estimate has an upper bound that is equal to the lowest

error variance of its members, in which case, the committee is trivial having the single member

determine the output.

The advantage of the committee machine also manifests in error variance consistency. Figure

3.6 demonstrates the regression residuals of an ensemble and a single neuron. Each dot represents

a kinematic state instance. The residual is color-mapped to show that the accuracy of single neuron

model (used in the standard KF) is less consistent across directions and movement speed than the

ensemble model used in the proposed EOKF. The error variance matrices are assumed invariant

in both the standard KF and EOKF; hence, the ensemble better fits the variance model due to its

evenness.
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Figure 3.6: State prediction error of ensemble prediction (left) and single neuron prediction (right)
across angles and speed.

3.5 NSP Processor Architecture

Based on the optimized sorting and decoding models, we prototyped the 96-channel Neural

Spike Processor (NSP). The NSP architectural design focuses on resource sharing to minimize

area and power. In addition, we exploit data sparsity inherent in neural spike activities to imple-

ment event-driven computation for lower resources. All stages after parallel spike detection can

share hardware without a separate fast/slow clock domain, data stream multiplexers, or additional

controller for time multiplexing.

Figure 3.7 shows the on-chip hardware architecture of the proposed NSP. It includes the mod-

ules for spike detection, spike sorting, and the ensemble regression part of the EOKF. The NSP

starts with 96 non-overlapping spike detectors each of which integrates a simple feature extractor.

These spike detectors deliver spike features directly to the sorter modules. We grouped 32 of the

spike detectors to share a single set of sorter hardware. Each sorter hardware has the memory

entries of boundaries for the 32 channels and those for neuron identifiers for the data transfer of
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Figure 3.7: The architecture of the proposed NSP.

spike events to the following decoding module.

The spike waveform length mainly determines the group size, i.e., the number of spike detectors

that share sorting hardware. In our design, each waveform has 32 samples. Therefore, as long as

the sorter takes only 1 cycle to perform sorting (the case for the NSP) or fully pipelined and

it employs the non-overlapping detection scheme, no channel can generate more than one spike

event within 32 cycles and the sorter can sort every detected spike online without data buffering.

Specifically, at the event of a spike, the detector enters an event token (i.e., spike features) onto

a conveyor style queue (Figure 3.8). The queue entry points from detectors have a simple stalling

rule that gives priority to the token already on the conveyor, the stalled token then attempts to enter

the queue in the subsequent clock cycles until a free spot is available. With the non-overlapping

detection and the defined samples per spike, token stalling does not generate backpressure to earlier

stages. The conveyor queue does not preserve the time order of spikes. However, the order is

irrelevant downstream where only spiking rate is considered. Thus, this minimally affects the

accuracy of the rate based decoding schemes that our EOKF belongs to. No spike is stalled beyond

the time bin edges (nor would it be problematic as spike rate has relatively high Poisson noise) to

affect the following rate computation.

The sorter modules, each responsible for 32 channels, consume event tokens in the order of the

channel array if no collision is present in the data streams, but in cases of token stalling, channel

order is compromised. As a result, a neuron index (i.e., address) must be included in the token
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Figure 3.8: Conveyor style queue of a 4-detector example.

to retrieve correct boundary information used in sorting. The sorter checks the incoming features

against boundaries stored in the Bayesian boundary memory. Note that we use the coding based

on fixed segmentation patterns in the feature space (Section 3.3.1). Thus, the outputs of the sorter

are the indexes (addresses) for the memory storing weights for decoding.

Finally, the architecture has a single ensemble-regression module (memory and accumulator).

This decoding module does not require resource sharing since all data paths converge to a single

register per state element in Ezk. Instead of calculating spike rates and multiply them with weights

(E), upon every spike event, we perform memory read for retrieving a coefficient and then accu-

mulate it using a single adder. This is equivalent to multiply-accumulate since the instantaneous

spiking rate is a count of spikes in a fixed-duration time bin. In place of the multiplier, each spike

event immediately triggers an addition of its weight in the ensemble observation registers. This

architecture can reduce silicon area and thus leakage power.

A typical challenge of event-driven implementation in place of a scheduled one is potential

data collision hazards. In our architecture, we can have collisions among the three spike sorting

modules when they try to access the ensemble-regression module at the same time. Unlike spike

detection, the sorter has no hardware constraint for token generation. With a finite amount of buffer

memory, therefore, token loss is possible. Practically, however, token loss is improbable since only

a small subset of all sorted neuron channels (e.g., 20 50 in typical experiments) is selected for

intention decoding. In our test, no token loss or even collision occurs even with all sorted neuron
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Figure 3.9: Die photo and area breakdown.

channels considered valid. In the unlikely event that a token is lost, its effect is minimal since the

ensemble-regression module can easily tolerate small loss.

3.6 Prototype Measurement

We prototyped the 96-channel NSP in a 0.18 µm CMOS technology. The technology is chosen

since leakage power is the major energy efficiency bottleneck in the NSP [32]. Figure 3.9 shows

the chip die photo. The total area is only 1.86 µm2. The 96 detectors, three sorters, and one EOKF

decoder take the similar silicon footprints.

The power consumption of the NSP is data rate dependent thanks to its event-driven operation

(Figure 3.10). Operations at each step may be terminated as soon as information of each spiking

event’s efficacy at changing the decoding output becomes available. Spiking event from electrode

channels that do not factor in the ensemble is not active at all and spiking from useful channels

but not in selected ensemble is stopped after sorting. The power consumption scales with patient

movement intent.

The target clock frequency of the NSP is the same as the sample frequency of the ADC, which

is 30 kHz in our system. Our detecting, feature extracting, sorting, and decoding models exhibit
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Figure 3.10: Spike rate dependency of the NSP power.
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Figure 3.11: Power and performance of the NSP.

substantially small computational complexity and therefore can easily meet the 30-kHz timing

requirement. This invites us to scale supply voltage to the subthreshold level of 0.32 V (Figure

3.11), at which the 96-channel NSP consumes only 0.61 µW.

In Table 3.3, we compare the NSP to the state-of-the-art BCI processors [24, 26, 8, 33, 34]. The

proposed NSP achieves 21× smaller power dissipation than [26]. It also demonstrates the highest

level of integration, namely the first end-to-end integration of neural signal processing at better

accuracy over prior arts.

3.7 Summary

In this chapter, we present a nanowatt neural spike processor for a movement-intention-decoding

neural interface implant. We devise/optimize algorithms and architecture for hardware and energy

cost. Our design provides substantial resource savings from prior arts. We verified our algorithm

using data driven testing for spike sorting and intention decoding, and with additional boundedness

analysis for the proposed ensemble observation model. Our proposed hardware architecture en-
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Table 3.3: Comparison to prior BCI processors.

This work [24] [26] [8] [33] [34]

Process (nm) 180 65 65 65 130(sim) 180
No. of Channels 96 96 128 16 32 64

Detection Algorithm AT* AT ICD* AT NEO* NEO
Supervised Sort Y N Y N N N

Sorting Algorithm Design tree Bayesian K-means O-sort GSKM* C-sort
Spike Dataset [9] [9] [7](sim) [35](sim) [36] [7](sim)

Accuracy 89-99% 95% 77-87% 75% 91% 67-93%
Partial Decoding Y N N N N N
Core VDD (V) 0.32 0.6 0.54 0.27 1.2 1.8

Core Power/ch (nW) 6.3 1740 175 108.8 750 231.3
Core Area/ch (mm2) 0.0194 0.12 0.003 0.07 0.023 0.094

*AT: absolute threshold; ICD: integer coefficient detector; NEO: Nonlinear energy operator
*GSKM: Gap statstics K-means

ables effective hardware sharing and event-driven architecture, thereby substantially reducing area

and power dissipation. The NSP not only achieves the highest level of functional integration from

spike detection to the intention decoding but also marks a record power efficiency.
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Chapter 4: XNOR-SRAM: In-Memory Computing SRAM Macro for

Binary/Ternary Deep Neural Networks

In this chapter, We present XNOR-SRAM, a mixed-signal in-memory computing SRAM macro

that computes ternary-XNOR-and-accumulate operations in binary/ternary deep neural networks

(DNNs) without row-by-row data access. The XNOR-SRAM bitcell embeds circuits for ternary

XNOR operations, which are accumulated on the read bitline (RBL) by simultaneously turning on

all 256 rows, essentially forming a resistive voltage divider. The analog RBL voltage is digitized

with a column-multiplexed 11-level flash ADC at the XNOR-SRAM periphery. XNOR-SRAM

is prototyped in a 65-nm CMOS, and achieves the energy-efficiency of 403 TOPS/W for ternary-

XNOR-and-accumulate operations with 88.8% test accuracy for CIFAR-10 dataset at 0.6V supply.

4.1 Motivation

As deep convolutional neural networks (DCNNs) continue to demonstrate improvements in

inference accuracies [37, 38, 39, 40, 41], deep learning is shifting towards edge computing. This

development has motivated works on low-resource machine learning algorithms [42, 43, 44, 45,

46, 47, 48, 49], and their accelerating hardware [50, 51, 52, 53, 54]. The dominant operations in

DCNNs are multiply-and-accumulate (MAC), which consumes the most power and delay. MAC

operations have high regularity and parallelism, therefore is very suitable for hardware accelera-

tion. However, the amount of memory access severely limits the energy-efficiency in conventional

digital accelerators [51, 52, 53, 54, 55]. As a result, IMC has become increasingly appealing to

DCNN acceleration.

IMC is the design approach that performs large-scale and highly-parallel computation inside

the memory block without explicit row-by-row memory access. Recent IMC works [55, 56, 57,
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58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69] show significant energy-efficiency and throughput

advantages over conventional architectures.

4.2 IMC OVERVIEW

IMC refers to memory architectures that support computations that takes place inside the mem-

ory fabric, thus avoiding the energy intensive memory wall [70]. IMC works are not exclusively

MAC accelerators. For instance, designs in [55, 64] and Neural Cache [65] support two-row logic

operations. Some IMC works support machine learning algorithms other than neural networks,

such as Ada-boost [57] and Random Forest [62]. In this section, we provide an overview of IMC

designs for neural network acceleration.

4.2.1 Multi-bit weights in IMC designs

Conventionally, in a neural network, both its activations and weights are multi-bit values. Since

the physical topology of memory bitcells are independent at the array level, multi-bit weight repre-

sentation in IMC is implemented at circuit level instead of at architecture level. The following IMC

works are designed to support multi-bit weight neural networks [67, 71, 72, 73]. For example, the

Twin-8T design in [67] stores multi-bit weights in multiple SRAM cells, where these bitcells are

numerically related to each other through the transistor width ratio in adjacent columns.

Alternatively, there are IMC designs based on emerging non-volatile memory technologies

that can store multi-bit weight in a single bitcell, such as Phase Change Memory (PCM) [71, 72]

and Resistive RAM (RRAM) [73]. However, these devices exhibit variability and nonlinearity

limitations [74, 75].

4.2.2 Binary weights in IMC design

One of the chief algorithmic advancements that address the difficulty in multi-bit weight IMC

design is the binary weight network (BWN) [44], in which the network weights are binarized but

the input and output activations can remain multi-bits. Weight binarization relaxes the storage
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constraint and makes storing weights straightforward.

A subset of BWNs called binary neural networks (BNN) binarize both weight and activation

to +1 and -1 such that multiplications can be represented by simple XNOR [45, 46, 47]. While

early BNNs are not very accurate, recent advances [48] show BNN can approximate high MAC

precision via weight duplication akin to stochastic computing, achieving comparable accuracy with

multi-bit DCNN at lower hardware cost. As a result, many IMC works [57, 58, 61, 62, 66, 68, 69],

are designed to support BWNs or BNNs.

4.2.3 Multi-bit activation in IMC designs

Computing with multi-bit activations can be done in digital or analog domains. Digital rep-

resentation can be done through multi-cycle operations. For the analog representation of input

activations, IMC designs have to perform the digital-to-analog conversion (DAC) before actual

computing can take place. Several IMC works have employed DAC techniques to preprocess the

input activations, expressing the analog value in voltage or current.

Using the DAC circuits with voltage output, the Twin-8T IMC design [67] can represent up to

four levels of input activations with four distinct voltage levels on the wordlines. XNOR-SRAM

[69] can similarly support up to three voltage levels to perform ternary MAC computation. Voltage-

level-based DACs generally have limited resolution.

Current-based DAC circuits have been employed in designs like [57] and Conv-SRAM [58].

Using pulse-width-modulation (PWM), the input activation is first converted into a pulse. Within

the window of the generated pulse, a charging current is then applied to a capacitive element. It

has two main design challenges: 1) the PWM needs to be linear and 2) the current source needs to

be constant. Both of these challenges would require area/energy tradeoff.

4.3 XNOR-SRAM Macro Design and Optimization

We propose an in-memory mixed-signal SRAM macro titled XNOR-SRAM that not only

energy-efficiently computes ternary-XNOR-and-accumulate (XAC) in binary/ternary DNNs, but
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also supports the DNNs/CNNs of arbitary size with high accuracy. XNOR-SRAM performs a 256-

input XAC without explicit memory readout, via analog accumulation of bitwise ternary-XNOR

results on the read bitline (RBL) voltage of the SRAM array, and digitizes the RBL voltage (+'�!)

using a flash ADC embedded in the periphery. XNOR-SRAM supports binary weights (+1, -1)

and binary inputs (+1, -1) as well as ternary inputs (+1, 0, -1).

4.3.1 XNOR-SRAM Bitcell Design

Figure 4.1 presents the XNOR-SRAM architecture, which can map convolutional and fully-

connected layers of CNNs and multi-layer perceptrons (MLPs). It consists of a 256-by-64 custom

bitcell array, a row decoder, an XNOR-mode WL driver, and a column periphery including a 3.46-

bit flash ADC. The XNOR-SRAM operates in either of two modes: memory mode and XNOR

mode. In memory mode, it performs row-by-row digital read/write as regular SRAM. In XNOR

mode, it performs in-memory XAC computation with all rows asserted simultaneously.

Figure 4.2(a) shows the proposed 12T bitcell for XNOR-SRAM. T1 to T6 form a 6T cell;

T7 to T10 form complimentary pull-up (PU) and pull-down (PD) circuits for XNOR mode (and

memory mode read); T11 and T12 power-gate the PU/PD circuits when the corresponding column

is disabled. Figure 4.2(b) shows the layout of the bitcell drawn in logic ground rules. The area is

3.915 µm2(2.7-by-1.45 µm). Except T7, T8, and T11, all transistors in the bitcell use the minimum

size. We slighltly sized up the PMOS transistors T7, T8, and T11 to match its strength to their

NMOS counterparts.

In XNOR mode, the read wordline (RWL) driver translates each ternary/binary input activation

to four RWLs according to Figure 4.2(c). In the second half of a clock cycle, T11 and T12 in a

selected column are turned on, and T7 to T10 perform ternary-XNOR operation between RWLs

(activations of +1, 0, or -1) and the binary weight (+1 or -1) stored in the bitcell. The RBL voltage

finally settles and is read by the flash ADC.
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Figure 4.1: (a) XAC operation illustration and (b) the proposed XNOR-SRAM macro architecture.
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Figure 4.2: XNOR-SRAM bitcell design and XNOR-ACC operation with ternary in-
puts/activations and binary weights. Bitwise ternary-XNOR output from each bitcell forms pull-
up/-down paths on the RBL voltage, which represents the XAC value.
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4.3.2 XNOR-SRAM Operation and Analysis

Binary Activations and Binary Weights

For binary activations, the bitcell produces the XNOR output of ‘+1’ with one strong PU by

PMOS and one weak PU by NMOS. It produces the XNOR output of ‘-1’ with one strong PD

by NMOS and one weak PU by PMOS. This operation is summarized in the first two rows of

the Figure 4.2(d). The 256 bitcells in a column contribute such XNOR-output-controlled PU and

PD circuits and essentially form a resistive voltage divider from the supply voltage to the ground,

where RBL is the output. If PU and PD resistances are identical, the RBL voltage (+'�!) will

be a symmetric and monotonic function of the XAC value. In practice, they are subject to PVT

variation. Our design addresses this by making the bitcell array PMOS body bias tunable.

The first-order analysis on the relationship between XAC value and RBL voltage is as follows.

If the number of rows is # , the range of XAC is from −# to +# . Suppose that D is the number

of PU cells among # cells in a column, and 3 is the number of PD cells. As shown in (4.1), we

can represent # as the sum of D and 3. Given that each PU and PD cell represents bitwise XNOR

output of ‘+1’ and ‘-1’, respectively, the XAC result that accumulates all cells’ XNOR outputs is

formulated as (4.2). As described in Figure 4.2(c), the bitwise XNOR output of ‘+1’ and ‘-1’

results in two PU and two PD paths, respectively. This is illustrated in Figure 4.3, and +'�! can

be represented as (4.3) with the resistive divider. Using (4.1) and (4.2), +'�! can be formulated

as (4.4), showing a linear relationship with XAC value. Note that +'�! is not affected by the

activation/weight patterns as long as they result in the same the XAC bitcount.

Ternary Activations and Binary Weights

To support ternary activations, we have additionally considered the activation value of ‘0’ and

have derived the equations that are similar to (4.4). Suppose that the number of cells that exhibit

the bitwise ternary-XNOR output of ‘0’ as I, # would be the sum of D, 3 and I ((4.5)). Since those

I bitcells do not contribute to the XAC output, the equations for the XAC value are identical for the
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# = D + 3, (4.1)
-�� = D − 3, (4.2)

+'�! =
2D

2D + 23
, (4.3)

+'�! =
-�� + #

2#
, (4.4)

Figure 4.3: PU/PD paths for +'�! with binary
activations.

binary and ternary activation case (i.e., (4.2) and (4.6)). To maintain the same linear relationship

between +'�! and # as in (4.4), the I bitcells should contribute I PU and I PD circuits. This is

illustrated in Figure 4.4.

# = D + 3 + I, (4.5)
-�� = D − 3, (4.6)

+'�! =
2D + I

2D + 23 + 2I
, (4.7)

+'�! =
-�� + #

2#
, (4.8)

Figure 4.4: PU/PD paths for +'�! with ternary
activations.

Since each D and 3 cell leads to 2D PU paths and 23 PD paths (one strong plus one weak),

each I cell should ideally yield the average strength of the D and 3 cells, or 0.5 strong PU + 0.5

strong PD + 0.5 weak PU + 0.5 weak PD. However, since T9-T10 (T7-T8) use (close to) minimum

size, splitting T7-T10 transistors to support such half/full strengths will complicate and enlarge

the XNOR-SRAM bitcell design by about 50% and double the current consumption. The bitcell-

embedded ternary XNOR computation and operation are summarized in Figure 4.2(c). Note that

having I cells to exhibit no PU and PD paths (i.e., turning off ‘0’ activation rows) will make (4.8)

deviate from equation (4.4), and introduce further difference in +'�! depending on the number of
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‘0’ activation rows. Without changing the bitcell design that implements binary activations and

weights, we propose to drive even ‘0’ rows with weak PU/PD and odd ‘0’ rows with strong PU/PD

(Figure 4.2(e)), to effectively support ternary activations. This design is based on the assumption

that ‘0’ activations are evenly distributed on even and odd rows. Deviation from this assumption,

i.e., the number of even-row zeros and odd-row zeros are not equal, would cause +'�! deviation.

According to our post-layout simulation with parasitics annotated, the+'�! variance caused by the

mismatch in these two numbers in the ternary VGG-like and ResNet CNNs (for CIFAR-10) and

MLPs (for MNIST) that we benchmarked is negligible compared to other variability sources such

as transistor mismatch in the XNOR-SRAM cells.

4.3.3 Transfer Function and ADC Optimization

The ADC plays an important role in the computing throughput and accuracy. It digitizes the

analog RBL voltage to the digital output. We chose to use the flash ADC using strong-arm com-

parators for the high-speed advantages. We shared the ADC among 64 columns via a 64-to-1

analog multiplexer for two reasons. First, the RWL drivers could be considerably large to support

column parallel operation as the drivers need to supply the current flowing in the resistor dividers.

Second, the 64 ADCs would incur a large overhead for the ADC area. As pointed out in [76], the

column multiplexing scheme would not degrade the energy efficiency in the first order, since the

amount of voltage switching on all the wordlines and bitlines are roughly the same for both column

multiplexing and column parallel schemes. Nonetheless, the column multiplexing in our design

hurts the throughput by roughly 64 times, compared to a fully column parallel design.

We investigate the distribution of XAC values. As the data distribution from MLP for MNIST

shows (Figure 4.5), the XAC value is highly concentrated around zero. Exploiting such statistics,

we confined the quantization range to the region that covers most data (-60 to +60), within which

we linearly divided the quantization levels with reference values. Each quantization reference in

XAC value maps to a particular reference voltage (Vref) for the flash ADC (Figure 4.5). Note that

the non-linearity of the PD and PU resistance makes the +'�! transfer function non-linear, placing
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Figure 4.5: XAC is mapped to +'�! . The confined linear quantization scheme is shown, along
with the corresponding 10 reference voltages for the 11-level flash ADC.

Vrefs non-uniformly, as shown in Figure 4.5.

We investigated the required ADC precision based on the MLP for MNIST (784-512-512-

512-10) and the VGG-like CNN for CIFAR-10 (128C3-128C3-MP2-256C3-256C3-MP2-512C3-

512C3-MP2-1024FC-1024FC-10FC). Figure 4.6 shows the simulation results across the different

numbers of ADC levels. This simulation ignore analog non-ideality such as offset voltage and

transistor variability. We have found that employing 11 quantization levels results in satisfactory

accuracy. In addition, the accuracy saturates for the ADC levels beyond 11. Based on these results,

we have designed the 11-level flash ADC, which consists of ten strong-arm comparators.
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Figure 4.6: The accuracy of the MLP trained for MNIST and that of the CNN for CIFAR-10 as a
function of ADC levels.

4.4 Measurement Results

We prototyped the proposed XNOR-SRAM macro in a 65-nm CMOS (Figure 4.7(a)). The

area and power breakdowns are presented in Figure 4.7(b). The area of XNOR-SRAM is majorly

consumed by the bitcell array, where the array efficiency is 70.75%. On the other hand, the XNOR-

mode driver dominates the total power as it needs to supplies the current of the resistive voltage

divider formed for XAC evaluation.

4.4.1 Energy Consumption and Performance Measurements

We measure the power and energy dissipation of the XNOR-SRAM macro under a range of

conditions. First of all, the power consumption depends on the XAC result (Figure 4.8). This is

because most of the power is consumed in the form of the crowbar current in the resistive voltage

divider. The input data that corresponds to XAC value near 0 poses the worst case for energy-
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Figure 4.7: (a) 65nm XNOR-SRAM prototype chip micrograph. (b) Power and area breakdown.

efficiency. Post-layout simulation shows that the worst-case crowbar current is 1 mA and lasts

for 1.26 ns in the second half of a clock cycle at 0.6V. Under this worst case, we measured that

XNOR-SRAM consumes 235.5 pJ and takes 54.21 ns for 64 operations of 256-input XAC at 1.0V.

Figure 4.9 shows the energy and the maximum frequency with voltage scaling from 1.0 V to 0.

5V. At 0.6 V, XNOR-SRAM achieves 2.48 fJ per operation. Considering one operation is either

ternary multiplication or accumulation, this marks the energy efficiency of 403 TOPS/W.

4.4.2 Variability and Compensation

Figure 4.11 shows the measured +'�! variability resulting from process variation and para-

sitics across different columns and data patterns, where the top and bottom bars represent +3f

and -3f points, respectively. The highest variation (20mV standard deviation) occurred at the

lowest XAC value of 0. The systematic strength imbalance between NMOS and PMOS can skew

the transfer function. We addressed this by providing a knob to tune the body bias for PMOS

transistors in the XNOR-SRAM array at marginal area/power penalty (Figure 4.12).

To compensate for the local variability or offset of the ADC, 10 external Vrefs for the 11-level

(3.46-bit) flash ADC were first calibrated for the corresponding 10 reference XAC values. For
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Figure 4.8: Data dependent XNOR-SRAM power.

Table 4.1: VRBL variance of a single column at 1.0V and 0.6V supply extracted from post-layout
Monte-Carlo simulations.

Δ VRBL (mV)
VDD (V) from mismatch from IR drop from both

1.0 2.71 36.6 36.8
0.6 7.09 6.06 9.33

each reference XAC value - 5 , 2,000 combinations of random input vectors, columns and weight

matrix that yield XAC values that fall in the range of [- 5 − 5, - 5 + 5] were used to optimize each

comparator’s Vref. The Vref was initialized at 0.5×+�� .

After compensation of the ADC offset, there are two remaining major variability sources: i)

the transistor mismatch in the XNOR-SRAM cells and ii) the IR drop on RBL wires. The tran-

sistor mismatch causes the bitcells in the different rows but in the same column have different

PU/PD strength (after the array-wide body bias calibration), making RBL voltage depend on the

input/weight pattern even for the same XAC value. On the other hand, the RBL IR drop is a

function of input/weight patterns.

We performed Monte-Carlo simulations for the parasitic-annotated netlist of a single column
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Figure 4.9: Energy and frequency scaling with supply voltage.

of bitcells to characterize these two variability sources. We used 1,000 random combinations of

input/weight vectors that result in the XAC value of 0. To isolate the impact of each variability

source, in our extracted simulations, we i) included only the mismatch for the cell transistors;

ii) included only the extracted resistance of the RBL; iii) included both two variability sources.

Table 4.1 summarized the results of the post-layout simulations. We can see that at 1V, as the

current is very large, the IR drop along the RBL contributes most to the overall variation of +'�! .

At 0.6V, variation due to IR drop significantly decreases as the current decreases, reducing the

overall amount of variation to just a quarter of that at 1V.

4.4.3 The Statistical Model of XNOR-SRAM and Voltage Scaling

We developed the statistical model of XNOR-SRAM as a function of the XAC value. To do so,

we measured the ADC output for 1,600 times for each XAC value, 25 times per column. Each time

a random test vector that will result in the target XAC value for a given column is generated. Based

on 1,600 measured ADC outputs for each XAC value, we estimated the probability distribution of

the ADC output as function of the XAC value (Figure 4.13). We iterated this experiment at four

different supply voltages of 1.0V, 0.8V, 0.6V, and 0.5V.
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Figure 4.10: Energy and delay comparison with digital baseline.

Counter-intuitively, Figure 4.13 shows that, as supply voltage lowers, the ADC output distri-

bution becomes tighter. To see it clearly, we can model the read bitline voltage +'�! as a function

of XAC value - and +�� as

+'�! (-,+��) = +̄'�! (-,+��) ± Δ+'�! (-,+��), (4.9)

where +̄'�! (-,+��) represents the average +'�! for given XAC value - under supply voltage

+�� over all possible combinations of input and weight vector, Δ+'�! (-,+��) represents the

standard deviation of the actual +'�! over all possible combinations of input and weight vector

for given XAC value - . ADC’s Vrefs are calibrated against +̄'�! (-,+��) as aforementioned.

ADC quantization error is then governed by the distribution of Δ+'�! (-,+��) and quantization

scheme. The reduced ADC quantization error at lower +�� can be explained from two aspects:

reduced Δ+'�! (-,+��)/+�� and enhanced normalized slope of transfer function.
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Figure 4.11: Measured transfer function and variability.

Voltage scaling of RBL voltage variance

As shown in Table 4.1, according to our post-layout simulation on a single column of XNOR-

SRAM array, RBL voltage variance at - = 0 reduces from 36.8 mV to 9.33 mV when we scale

+�� from 1.0 V to 0.6 V. This reduction in RBL voltage variance majorly comes from the reduction

of variance contribution from IR drop along the RBL, which is a result of reduction in current.

Normalized slope of transfer function

As +�� decreases, the transfer function slope in near-zero region increases when normalized

to+�� as shown in Fig 4.14. As a result, two adjacent XAC values will be more separated in terms

of +'�!/+�� , tolerating larger variance in +'�!/+�� .

Combining the above two aspects, as +�� decreases, the enhanced normalized slope of +'�!

transfer function and reduced variance of +'�! lead to reduced ADC quantization error as shown

in Fig. 4.13.
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Figure 4.12: Body bias tuning for PMOS/NMOS mismatch.

4.4.4 Strategy for Mapping DNNs onto XNOR-SRAM arrays

A weight-stationary mapping scheme optimized for data reuse is adapted in our experiments.

The mapping of FC layer weights in XNOR-SRAM is as such: weights of a layer is organized

column-wise, inputs/activations are applied at each row. On the other hand, convolutional layer

mapping is an extension of the FC layer mapping. Mapping a 3x3x256 filter from a convolution

layer is the same as mapping nine 256-neuron FC layer weights. The channels are organized in

column orientation, each channel’s kernel is distributed across multiple macros. The partial sums

produced by ADCs are accumulated to generate the pre-activation for each neuron. The mapping

of a representative 256-channel 3x3 kernel filters is shown in Figure 4.15.

4.4.5 DNN Accuracy Characterization

Using the XNOR-SRAM macro, we evaluated the accuracy of DNNs for MNIST and CIFAR-

10 datasets. For MNIST, an MLP with three hidden layers, each with 512 neurons, is used (784-

512-512-512-10). For CIFAR-10, we evaluated two deep CNNs: VGG-like CNN and ResNet-14.

VGG-like CNN [45] has six convolutional layers and three fully-connected (FC) layers: 128C3-
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Figure 4.13: Measured ADC output probability distribution as a function of XAC value at +�� of
1.0V, 0.8V, 0.6V, and 0.5V.

128C3-MP2-256C3-256C3-MP2-512C3-512C3-MP2-1024FC-1024FC-10FC, where =C3 repre-

sents a convolutional layer with = 3×3 filters, <FC is a FC layer with < neurons and MP2 is a

max-pooling layer with 2×2 pooling size. ResNet-14 [45] consists of 3 basic residual blocks (block

widths of 80, 160 and 320), with a total of 13 3×3 convolution layers, two 1×1 convolution layers

in short-cut paths (not counted for the number of layers), and 1 FC layer. Starting from the first

hidden layer of the MLP/CNN, XNOR-SRAM computes 256-input XACs for MAC/convolution

operations in all convolution/FC layers. Accumulation of XAC outputs, pooling, and batch normal-

ization are performed in digital simulation with bit precisions of 12, 12, and 10, respectively. Note

that the digital hardware that executes these functions would degrade the overall energy-efficiency

to some extent. Recently, several works have tried to shed a light on this matter[77].

The MNIST accuracy results were obtained entirely from measurements, while the CIFAR-

69



Figure 4.14: Normalized transfer function at different +�� .

10 accuracy results were obtained from our measurement based simulation framework (illustrated

in Figure 4.16) due to limited scan chain throughput of the prototype chip. Employing the same

methodology used to generate the probability distribution in Figure 4.13, ADC output distributions

for each possible XAC value were estimated from measured samples from 10k MNIST test images

MLP inference.

Each column was sampled from the probability table, obtaining an ADC output for each bit-

count, then this mapping was kept for all the 10k CIFAR-10 test images. The measured distribu-

tions were then used to draw random samples in a GPU-accelerated Python program that simulates

XNOR-SRAM XAC and quantization operations for inference of 10k CIFAR-10 test images using

trained binary CNN [45]. Our Python simulation program repeated 20 runs with different random

seeds, and the average accuracy values are reported.

Table 4.2 summarizes the measured accuracy results of MLP for MNIST and VGG/ResNet-
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Figure 4.15: Mapping convolutional neural networks to XNOR-SRAM-based in memory comput-
ing.
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Figure 4.16: Measurement based simulation framework for CIFAR-10 accuracy evaluation using
XNOR-SRAM macros.

14 CNNs for CIFAR-10 datasets with binary/ternary activations at 0.6V chip #2. DNNs with

ternary activations demonstrate relatively higher accuracy than those with binary activations for

both MNIST and CIFAR-10 datasets, and our XNOR-SRAM can execute both ternary and binary

activations in a single cycle with the same design (Sec. 4.3.2).

4.5 Summary

The IMC concept is developed to meet the challenge of memory bottleneck in neural network

inference in conventional hardware. It can achieve high parallelism and throughput via memory

cell density and achieves low power from analog computing and substantial reduction in data

access. We present an IMC SRAM macro titled XNOR-SRAM that computes ternary-XNOR-
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Table 4.2: Measured MLP (for MNIST) and CNN (for CIFAR-10) accuracy summary using
XNOR-SRAM at 0.6V supply.

Dataset MNIST CIFAR-10

DNN Model MLP VGG-like CNN ResNet-14 CNN

Activation Precision Binary Ternary Binary Ternary Binary Ternary
SW Baselien Accuracy 98.77% 99.07% 88.60% 90.70% 89.61% 90.80%

HW Measured Accuracy 98.65% 98.84% 87.23% 88.78% 85.72% 87.05%

and-accumulate operations in binary/ternary MLP and CNNs with high energy-efficiency and high

accuracy. Our 256x64 XNOR-SRAM asserts all 256 rows simultaneously, performing a 256-input

ternary XAC in a single cycle via analog accumulation of bitwise XNOR results on the read bitline

voltage, which is digitized using an optimized 11-level flash ADC embedded in the periphery. The

prototype achieves energy-efficiency of 403 TOPS/W for XAC operations and 88.8% test accuracy

for CIFAR-10 dataset.
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Chapter 5: C3SRAM: An In-Memory-Computing SRAM Macro Based on

Robust Capacitive Coupling Computing Mechanism

This chapter presents C3SRAM, another in-memory-computing SRAM macro. The macro

is of an SRAM module with the circuits embedded in bitcells and peripherals to perform hard-

ware acceleration for neural networks with binarized weights and activations. The macro utilizes

analog-mixed-signal capacitive-coupling computing to evaluate the main computations of binary

neural networks, binary-multiply-and-accumulate operations. Without needing to access the stored

weights by individual row, the macro asserts all its rows simultaneously and forms an analog volt-

age at the read bitline node through capacitive voltage division. With one ADC per column, the

macro realizes fully-parallel vector-matrix multiplication in a single cycle. The network type the

macro supports and the computing mechanism it utilizes are determined by the robustness and

error tolerance necessary in analog-mixed-signal computing. The C3SRAM macro is prototyped

in a 65-nm CMOS. The prototyped macro is 256x64 in size and computes 64 256-input bMAC

in parallel. The macros can be used in a modular fashion to support networks of arbitrary size. It

demonstrates an energy efficiency of 672 TOPS/W and a speed of 1,638 GOPS (20.2 TOPS/mm2),

achieving 3,975X better energy-delay product than the conventional digital baseline performing

the same operation. The macro achieves 98.3% accuracy for MNIST and 85.5% for CIFAR-10,

which is among the best in-memory-computing works in terms of energy efficiency and inference

accuracy trade-off.

5.1 Motivation

As detailed in 4.1, IMC designs show significant energy-efficiency and throughput advantages

over conventional architectures. However, these benefits come at the cost of accuracy degradation
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from analog-mixed-signal (AMS) computing non-idealities. Hence, robust computing mechanisms

and error-tolerant algorithms are the IMC design’s main considerations and challenges [76].

Analog MAC can be broadly placed in two categories. 1) Current domain computing tech-

niques include resistive voltage divider, discharging rate; 2) charge domain computing techniques

include charge sharing, capacitive voltage divider.

XNOR-SRAM bitcells would each turn on pull-up/pull-down transistors according to activa-

tion input and stored weights. These paths are applied to the same MAC bitline, creating a resistive

voltage divider. The non-linearity of transistor resistance creates high gain in the desired transfer

function region. However, it is at the cost of high crowbar current and device variability. [57] im-

plements its MAC operation by (dis)charging the wordlines like PWM-based DAC. However, the

current source is a simple transistor and thus non-linear. To compensate, the design uses additional

transistors to calibrate current in various conditions.

[62] uses charge-sharing to performs bMAC. Each bitcell has an individual capacitor which

is charged/discharged based on a bit-multiplication result. The capacitors are then tied together

to share the charges, performing accumulation. Conv-SRAM [58] also uses charge-sharing to

perform MAC, where the charges (one row at a time) are placed on the bitline and shared row-

wise. However, the multi-bit activation is derived from PWM-based DAC, thus the charges being

shared are already the result of current-domain computing.

The proposed C3SRAM macro uses capacitive coupling to compute bMAC in the charge do-

main. The detailed description of architecture and operational procedures is presented in the fol-

lowing section.

5.2 Architecture and Operation

5.2.1 Memory Array Operation

In this subsection, we present the C3SRAM architecture and the operations in detail. Figure 5.1

presents the architecture of the proposed macro. C3SRAM performs a fully-parallel vector-matrix

multiplication of 256 binary inputs and 256x64 binary weights. The macro consists of a 256x64
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Figure 5.1: Architecture of C3SRAM in-memory computing macro.

memory cell array, SRAM peripherals for read/write operations, input activation decoder/driver,

and per-column flash analog-to-digital converters (ADCs).

Figure 5.2 shows the 8T1C bitcell layout of the proposed design, a circuit diagram showing

two bitcells in a column, and the table of XNOR operands. The bitcell is 80% larger than the

conventional 6T bitcell in the same logic design rule, due to the two additional pass transistors and

one capacitor constituting 27% of the bitcell area. The capacitor is implemented as MOSCAP for

high capacitive density. A MOMCAP covering the area of a C3SRAM bitcell (MOMCAP can be

placed on top of transistors with no area overhead) has 80% lower capacitance than CC ( 4 fF).

To perform binary dot product, the cap is charged/discharged by MAC wordlines (MWL/MWLB)

via the pass transistors, which are gated by the stored weight and its complement. Since the pass
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Figure 5.2: C3SRAM bitcell design and in-cell bMAC operand table.
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Figure 5.3: Threshold voltage variability effects on charged capacitor voltage.

transistors are NFETs, there would be highly variable threshold voltage (Vt)) drop across T7/T8

if the MWLs and the memory core have the same voltage source. To avoid the variability prob-

lem, we implement T7/T8 with LVT devices, and set a separate source VDR to drive the MWLs, at

200mV lower than VCORE (e.g., 0.8V VDR for 1V VCORE). We ran Monte Carlo SPICE simulations

including only CC, T7, and T8 to isolate the variation of the pass transistors’ effect on capacitor

charge. As shown in Figure 5.3 histograms, the x-axis (note the different scales) shows the voltage

level at the VC node. Given the 200mV margin, the variation of VC has the small sigma of only

0.36mV. T7/T8 decouple memory function and compute function to avoid potential read and write

disturb [57, 61].

The bMAC operation is shown in Figure 5.4. There are two steps in this operation; each is

completed in a half cycle duration. In step 1, each column’s MAC bitline (MBL) is pre-charged

via the footer TFT to VRST =0.5VDR. VRST is set near the voltage corresponding to bMAC output

of 0 (nominally 0.4V). This is done to minimize the voltage swing on the MBL nodes since typical

bMAC outputs in BNNs have a narrow distribution near 0 value. In the same step, each row’s

MWL and MWLB are likewise reset to VRST such that there is no voltage potential on bitcell
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capacitors. At this step, the capacitors are effectively arranged in parallel where both nodes are

reset to the same voltage, as illustrated in Figure 5.4 bottom left.

In step 2, the footer is turned off. The 256 input activations (denoted Ini) are applied to 256

MWLs/MWLBs in parallel. For Ini = +1 (-1), MWL is driven from VRST to VDR (VSS), while

MWLB is driven to VSS (VDR). For Ini = 0, both MWL and MWLB remain at VRST without

consuming dynamic power. When the weight is +1 (-1), the voltage ramping via T7 (T8) induces

a displacement current through capacitor CC ( 4 fF) in the bitcell, whose magnitude is:

�� = ��
3+",! (�)

3C
(5.1)

The charge transferred from the bitcell to MBL is:
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where t1 is the time it takes VMWL to reach VDR. The shared MBL voltage is set to:
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where XNORi is the XNOR output of the i-th bitcell and Cp is the parasitic capacitance of

MBL plus the input capacitance of the ADC. At this step, each column can be seen as two sets of

parallel-connected capacitors which are in turn connected in series between VDR and VSS, forming

a capacitive voltage divider as illustrated in Figure 5.4 bottom right.

MOSCAP’s high capacitive density gives bMAC transfer curve a wider full-scale range (FSR)

than using the less capacitively-dense MOMCAP [62]. Given the same level of MBL parasitics,

the FSR loss from using MOMCAP would be 80% higher than using MOSCAP. MOSCAP ca-

pacitance is dependent on temperature and gate voltage. Figure 5.5(a) shows CC change over

temperature and gate voltage. Figure 5.5(b) shows the simulated transfer function of a capacitive

voltage divider composed of CC. The good news is that the temperature-related non-ideality of

MOSCAP has small impact on the transfer function stability. The voltage-related non-linearity
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Figure 5.4: Capacitive coupling based in-memory computation of bMAC.
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Figure 5.5: (a) MOSCAP capacitance at TT corner simulation shows variation across temperature
as well as the gate voltage; (b) MOSCAP capacitive voltage divider transfer function at various
temperatures.

gives the transfer function a slight sigmoidal shape which in fact could give some benefit to ADC

(negligibly small in our design) because the slightly steeper slope in the region of interest provides

slightly higher margins for reference voltages.

5.2.2 ADC Operation

The bMAC output of each column is a pre-activation partial sum. To digitize these values,

C3SRAM includes an 11-level flash ADC per column. Each ADC each consists of 10 double-

sampling-based self-calibrating single-ended comparators (Figure 5.6 top). Each comparator con-

sists of an offset-cancelling capacitor followed by an inverter chain, where the first inverter acts as

an amplifier.

The ADC operation has two steps (Figure 5.6): during bMAC computation (step 2), MBL con-

nects to the comparator input capacitor. The input and output of the first inverter are closed, placing
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Figure 5.6: Operation of the double-sampling self-calibrating single-ended comparator.

82



the inverter in the high voltage gain region. In step 3, the input node of the capacitor switches to the

reference voltage, and the negative feedback path is turned off. The voltage differential between

VMBL and Vref then causes (dis)charging on the capacitor. The inverter previously balanced at the

trip point is driven high or low according to the direction of the induced current. The gain-stage

inverter chain completes the amplification to digital domain.

5.2.3 Signal Switching Order

In the aforementioned three-step procedure, relevant signal transitions in step 1 and step 3 are

decoupled in separate modules, meaning that while the digital output is being evaluated by the

ADC, the memory array can begin computing the next batch of bMACs. This allows a pipeline of

a half-cycle where step 1 (Figure 5.3) and step 3 (Figure 5.6) operate concurrently.

The bMAC operation is timing sensitive. To minimize analog non-idealities, concurrent signal

switches described in the previous subsections must follow a strict order, shown in Figure 5.7. We

implemented timing control circuitry with minimal delay elements to guarantee the correctness

of the signals’ order. The relevant transitions from steps 1/3 to step 2 follow this order: 1) the

reference voltage must be disconnected from the comparator input capacitor before MBL leaves

reset, otherwise, reference voltage source would inject charge onto MBL floating node; 2) the neg-

ative feedback on the inverter stage must turn on before MBL is connected to the input capacitor,

otherwise, VMBL will be affected by the induced current of inverter gates driven to trip point; 3)

MBL must be connected to the comparator input capacitor before MBL leaves reset, otherwise,

the charge differential of reference voltage stored on the capacitor will be injected into the floating

MBL; 4) MWL cannot be driven until MBL is floating, otherwise, some coupling current would

be discharged.

The relevant transitions from step 2 to step 1/3 follow this order: 1) MBL must disconnect from

comparator input before MWL drivers switch to reset voltage, otherwise, the input changes will

induce current on the MBL; 2) also, MBL needs to disconnect before MBL reset footer turns on,

otherwise, VMBL stored on the input capacitor would begin to reset as well; 3) also, MBL needs
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Figure 5.7: Signal transition order for reducing analog non-idealities.

to disconnect before the negative feedback is turned off, since the act of disconnection can disturb

the inverter input which is at the sensitive trip point; 4) the negative feedback needs to switch off

before reference voltage is connected to the comparator input, otherwise, the charge differential

would be (dis)charged via the feedback path.

5.3 Algorithm Hardware Specification

In this section, we determine the design specification pertaining to algorithmic support: activa-

tion precision and pre-activation quantization levels.

5.3.1 Activation Bit Precision

Operating using the same IMC hardware, inference accuracy loss of a BNN is found less than

that of a BWN with multi-bit activation [69]. One reason is that the analog representation of

multi-bit activation requires additional domain conversion through DAC [67]. Another reason is

that network models trained at higher precision are more sensitive to AMS error. As the study in
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Figure 5.8: MLP on MNIST dataset inference accuracy losses at various levels of activation preci-
sions.

[78] suggest, robustness is a benefit of weight redundancy. In similarly accurate models, error in

multi-bit MAC is more severe than bMAC due to BNNs’ weight duplication scheme.

We examine this issue by applying various levels of stochastic error during the inference of

the MNIST dataset. The network topology used in this examination is a binary-weight multi-layer

perceptron (MLP) consisting of three fully-connected (FC) hidden layers, each with 512 neurons.

The network is trained at various activation precisions from 1 to 4 bits. The trained MLPs are

then mapped on the C3SRAM for testing inference accuracy, each time with decreasing the pre-

activation resolution to simulate increasing level of stochastic noise. Here, we use the digital

representation for activations as in [69], i.e., activations are fed in a bit-serial fashion and outputs

are accumulated using digital adders. As shown in Figure 5.8, at the same level of stochastic error,

networks trained at higher precision degrade more. We conclude that, for IMC hardware running

multi-bit activation BWN to achieve comparable accuracy as BNN, the hardware may need more

resources to compensate for AMS errors and this could result in inefficiencies. For this reason, the

proposed C3SRAM primarily supports BNN acceleration.
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5.3.2 Partial Convolution Quantization Levels

In practical neural networks, a typical convolution filter is too large to fit in a column of memory

cells, therefore would be split into several C3SRAM arrays. In such cases, each array produces

partial convolution results which are then accumulated in digital peripheral to produce final output.

For the 256-row C3SRAM, the full resolution of partial convolution results is 8 bit. For an

ADC to achieve this high resolution, it would incur considerable area, power, and latency overhead.

The objective here is to use a lower resolution ADC design that is still able to maintain the final

accuracy.

To find the appropriate ADC resolution that can maintain inference accuracy, we examine the

effect of quantization on the MNIST and CIFAR-10 datasets. We use the same MLP described in

the previous subsection for the MNIST dataset. For CIFAR-10, we use a VGG-like convolutional

BNN [45], with six convolutional layers and three FC layers. For partial convolution results in

these network models, we apply several quantization levels, successively reducing Δ+A4 5 . Figure

5.9 shows the effect of quantization on the task accuracy. We find that in both cases the accuracies

reach saturation at 30mV Δ+A4 5 which corresponds to 5-bit resolution given the 640mV FSR. This

is consistent with results in [58] where 5-bit ADC is used to achieve high accuracy on MNIST

dataset using LeNet-5.

To further reduce the cost of the ADC, the pre-activation distribution can be exploited to reduce

unnecessary hardware. Partial convolutions are not uniformly distributed for the entire range of the

activation function input, rather, they are usually narrowly distributed around 0 which is the point

of nonlinearity in common BWN/BNN activations functions ReLU/binary step. Figure 5.10 top

shows the MLP bMAC distribution. Since the data is distributed in a small region of the FSR,

the ADC range can be confined to this region without accuracy loss. Fig. 10 bottom shows an

illustration of an ideal transfer function and linear quantization levels in a confined range. The

x-axis is the bMAC outputs; the y-axis is VMBL corresponding to the bMAC output. In the voltage

region corresponding to bMAC value from -120 to +120, only 11 reference levels (Δ+A4 5 = 30

mV) are needed to match 5-bit ADC resolution.
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Figure 5.9: MNIST and CIFAR-10 inference accuracies increase as quantization resolution of pre-
activation partial sum (256 input) increases.

5.4 Measurement and Analysis

The C3SRAM macro is implemented in a 65-nm CMOS. Figure 5.11 shows the micrograph of

the test chip. The macro has a capacity of 16 kb at the footprint of 0.081 mm2.

5.4.1 Energy and Throughput

The memory macro has 2kB capacity. For bMAC computations, the macro operates at a max

frequency of 50 MHz, limited by minimal sized footer discharging ADC input capacitors. The

macro computes 64 independent 256-input bMACs per cycle. The throughput is 2*256*64/20ns

= 1638 GOPS. The compute density is thus 20.2 TOPS/mm2. At the operating voltages of 1V

core supply (VCORE), 0.8V driver (VDR), and 0.6V ADC (VADC), it consume 49 pJ excluding

in/output data movement, reaching an energy efficiency of 671.5 TOPS/W, a 3,975X improvement

in energy-delay-product (EDP) over the digital baseline formulated in [69], 14X over XNOR-

SRAM (Figure 5.12). Figure 5.13 left shows the power breakdown measurements: 38.7% of the

total power is consumed by driving the MWL and bitcell capacitors, 22.0% by ADCs, and 39.3%
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Figure 5.10: The bMAC distribution of MLP for MNIST and quantization in limited ADC range.
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Figure 5.11: C3SRAM prototype chip micrograph.

by all other digital peripherals including MWL decoder and partial sum accumulation.

To fully benefit from the speed and power improvement of C3SRAM, striding and other dedi-

cated input movement circuits such as those in the implementation of Vesti [69] are also needed to

prevent the memory macros from idling for input. Otherwise, it would impose significant overhead

in activation data movement. Hence, C3SRAM is better utilized in a stand-alone module than a

direct replacement of SRAM in conventional von Neumann architecture.

Table 5.1 shows the comparison of recent IMC works for neural network acceleration. C3SRAM

achieves high energy efficiency and throughput. Note that some designs support higher activation

precision.

5.4.2 Transfer Function

In this subsection, we measure and analyze the transfer function characteristics of C3SRAM

under the same operating condition as Section 5.4.1. The transfer function is measured according

these following steps. First we set all weights to zero, then apply known input pattern correspond-
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Figure 5.12: C3SRAM energy and delay comparison with XNOR-SRAM and digital ASIC with
traditional SRAM and ALU.

Figure 5.13: Left: measured power consumption breakdown between the three supplies powering
bMAC compute (blue), partial sum accumulation (red), ADC (green). Right: area breakdown of
the C3SRAM module.
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Table 5.1: Comparison to prior IMC works.

[58] [61] [62] [66] [67] [79] This work

Technology 65nm 65nm 65nm 65nm 55nm 65nm 65nm

Cell Type 10T Split-6T 10T1C 12T Twin-8T 6T 8T1C

Operating
Voltage

1.2V (DAC)
0.8V (Array)

1V (rest)
1V 1V 0.6-1V 1V 1V

1V (Array)
0.8V (Driver)
0.6V (ADC)

Memory
Capacity 2 kB 512 B 32 kB 2 kB 480 B 16 kB 2 kB

Input
Precision 6 1 1 1 1-4 8 1

Weight
Precision 1 1 1 1 2-5 8 1

Output
Precision 6 1 1 5 3-7 4 51

Efficiency
(TOPS/W)2 40.3

30.49-
55.8 658 403

18.37-
72.03 6.25 671.5

Throughput
(GOPS)3 8 1,112.8 589.9 665

84.8-
269.6 8.26 1,638

1 Margin equivalent to 11-level mid-range of 5-bit resolution.
2 One MAC is counted as two operations (multiplication and addition).
3 Consider an array size of 256x64 as unit capacity.
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Figure 5.14: Measured VMBL transfer curve shows lower FSR from ideal curve due to charge
sharing with ADC input capacitors.

ing to a target bMAC output, resulting in a determinate voltage output on the MBL which we then

measure. We set the off-chip flash ADC reference voltages such that we observe the result of a

single comparator, i.e. set all but the first reference voltages beyond the VDR range. Then sweep

the reference voltage of the comparator to find the value at which the result flips. This trip point

corresponds to the bMAC output. We repeat these steps at each bMAC value to construct the trans-

fer function. As shown in Figure 5.14, the transfer function measurement shows good linearity and

stability, note the FSR is reduced due to ADC input capacitors and MBL wire parasitics.

5.4.3 Variability Measurement

In this subsection, we characterize C3SRAM variabilities. The box chart in Figure 5.15(a)

shows the variation measurements of the ADC comparator offset. The data include offset statistics

of 10 chips, each with 64 columns and 10 comparators per column. The variation is resultant from

charge leakage, input/reference signal noise, and device mismatch. Monte Carlo simulations at TT

corner shows 5mV sigma in comparator variations, consistent with measurements. The charge
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leakage that most significantly affects comparator output is during the capacitor input switch. As

described in Section 5.2.3, if the level of leakage or noise is greater than the delta between VMBL

and reference during input capacitor switch, the comparator output can be corrupted. After the

input stage, device mismatch dominates the variation. It causes trip point differential in the inverter

chains. Figure 5.16 shows that the lower the operating voltage is, the trip point variation becomes

less prominent. Since the post-input offset voltage is dominated by the trip point delta between the

first and second inverters divided by the gain of the first, we operate the ADC at a lower voltage of

0.6V and use long channel device for the first inverter to achieve high gain. This also helps with

power reduction as shown in Figure 5.16.

Figure 5.15(b) shows the measured variation of bMAC operations. The main sources of varia-

tion are CC mismatch. The mismatch variation of a single CC has f�/�� of 4.2% according to MC

simulation. We determine the deviation on the transfer function using propagation of uncertainty

rule:
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The variation of VMBL from the confined region of -120 to +120 has a sigma ranging from

deviation is 0.91mV to 1.77mV, based on the 600mV FSR from Figure 5.14, consistent with

Figure 5.15(b) (which also includes intra-chip ADC offset variation).

Figure 5.15(c) shows the RMS error of the macro performing bMAC operations. As pre-

activation vary greatly in distribution variance, there is no universal input set that can characterize

C3SRAM for neural networks in general. A uniform input set is used for the measurement. This

result includes all non-idealities previously described, and the additional errors from unary-to-

binary conversion which has no error-correction feature for low area overhead. Thus, simple bubble

error can cause deviations at the final output larger than the signal variation level. This error can

be mitigated with additional error correction circuitry in future works.
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Figure 5.15: (a) ADC output offset due to comparator gain stage mismatch, (b) VMBL error varia-
tion measurement, (c) RMS error of the macro.
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Figure 5.16: ADC power increases exponentially as ADC power supply increases; the trip point
variation increases linearly.

5.4.4 Evaluation on Neural Network Tasks

In our evaluation for BNN accuracy, C3SRAM is responsible for the computations of convolu-

tion layers and FC layers, and all other operations of the BNN are performed in digital simulation.

To evaluate the accuracy performance of C3SRAM for deep neural networks, C3SRAM computes

all bMAC operations from the first hidden layer. The mapping scheme remain the same as in

section 4.4.4.

As detailed in Table II, we evaluated the inference accuracy of C3SRAM for MNIST and

CIFAR-10 datasets. Max-pooling and batch-normalization are performed in the digital domain

with bit precisions of 12 and 10, respectively. The accuracy for MNIST is 98.3%, against the

digital baseline result of 98.7%. This accuracy results were obtained from direct measurements of

the entire network. For CIFAR-10, due to test chips’ limited throughput, the accuracy is evaluated

from simulations based on measured error probability. We injected AMS and quantization errors

in the inference of CIFAR-10 test images. At 20 runs with random seeds, the average accuracy

is at 85.5%, while the digital baseline accuracy is 88.6%. This accuracy can be improved with

better trained model, as researches [48, 78] have found BNN conversion with wider topology

improve both robustness and accuracy. As [48] demonstrates the algorithmic advances of BNNs,
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Table 5.2: Measured MLP (for MNIST) and CNN (for CIFAR-10) accuracy summary using
C3SRAM.

MNIST CIFAR-10

Neural Network MLP VGG-like CNN

Network Topology
784FC-512FC-
512FC-512FC-

10FC

128C3-128C3-MP2-
256C3-256C3-MP2-
512C3-512C3-MP2-

1024FC-1024FC-10FC

Baseline Accuracy 98.7% 88.6%

Test Chip Accuracy 98.3% 85.5%

nCk – kxk kernel convolutional layer with n filters.
mFC – m-neuron FC layer.
MPp – max-pooling layer with pxp pooling size.

the scalable mapping of C3SRAM could be used as computational primitive for larger BNNs for

more complex machine learning tasks.

5.5 Summary

IMC faces design challenges of its own in the form of analog computing robustness issues,

from process variation to system noise. Design decisions such as error-tolerant algorithms and

low-variation hardware are important considerations. In this chapter, we present C3SRAM, an

IMC macro for neural network acceleration. It supports noise-resistant binary neural networks,

utilizes low variability components, and is scalable to map large networks in a modular fash-

ion. Using robust capacitive coupling mechanism, the architecture can reach comparable accuracy

with algorithmic baseline. The 16 kb prototype in 65 nm achieves the energy-efficiency of 671.5

TOPS/W and throughput of 1,638 GOPS for bMAC operations.

96



Conclusion

This work has demonstrated several algorithm/hardware co-designs for the low power local

and edge computing environments. The designs presented here have disparate optimization goals

and task partition considerations, thus leading to vastly different optimization focuses. It presents

low power techniques across the design stacks from algorithm to micro-architecture to circuit. The

designs are simulated and realized in deep sub-micron silicon technology, demonstrating state-of-

the-art energy-efficiencies in their respective area.

Key enablements for local and edge computing are power and energy efficiency, which in

turn effect many other aspects of these devices, like form factor, battery cycle, and device life

time. To achieve high energy efficiency, many IC design techniques have been proposed over

the decades, ranging from circuit level techniques like voltage scaling, power gating, clock gat-

ing, sub-threshold computing, to micro-architectural techniques like event-driven design, time-

multiplexing, etc. Through early algorithm/hardware iteration, these techniques can be used to

improve the co-design specification and constraint allocation and partition. This thesis demon-

strates a range of low power techniques on the hardware stacks and how these techniques can

be combined with algorithmic specification and implementation to improve the energy and power

efficiency of the hardware systems. The designs are designed, fabricated, and tested to show signif-

icant improvements over the prior state-of-art in either hardware energy and power or algorithmic

accuracy.

In this thesis, Chapter 1 presents a spike sorting hardware supporting an augmented leader al-

gorithm. The added feature screening stage drastically reduces centroid convergence time, both
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improving the spike sorting task accuracy and reducing the energy consumption of the training

stage. The project discussed in Chapter 2 improves the design presented in Chapter 1 through

another major modification to algorithm to allow more aggressive sleep-to-wake time to further

improve the energy-efficiency. By adapting boundary based sorting criteria instead of distance

based criteria, the dimensionality of the feature, and hence the computation run-time, is greatly

reduced. This also allows other techniques such as utilizing content addressable memory to unroll

iterations at low cost to achieve even more energy savings. Chapter 3 includes a modified off-

line trained variant of the Chapter 2 design as well as partial decoding computation. The major

modification of the classic Kalman Filter for neural decoding produces low data rate early in the

computing pipeline to optimize task partition for implant-side power. The biological time scale

of the algorithm is also taken advantage of, allowing event driven computing to compress multi-

plication to mere additions. Chapter 4 presents an IMC macro using a resistive voltage divider

mechanism. The IMC computing paradigm is a tailor made approach for machine learning in-

ference at the edge. The high throughput and mixed signal computing are the primary drivers of

the energy and power efficiency. Chapter 5 presents an IMC macro with improved computing

mechanism of capacitive coupling. By using capacitive elements as computing units, the design

variability and power consumption are drastically improved.

This thesis presented algorithmic, micro-architectural, and circuit level techniques for improv-

ing the power and energy efficiency of digital and mixed signal integrated circuits for local and

edge computing. The presented BCI works showcase co-design decisions bringing together ex-

isting low power hardware techniques and algorithmic modifications; the IMC works demon-

strate designs in the entirely new area specifically developed for machine learning application.

As algorithm/hardware co-design methodology continue to see growing practice, more computing

paradigms, co-synthesis methodologies, and partition guideline will be arise in its steps, paving

way for future advances in low power computing systems.
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