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Abstract: This thesis presents the work on designing and implementing a low power 

digital baseband core with custom-tailored protocol for wirelessly powered Micro-

Neural-Interface (MNI) System-on-Chip (SoC) to be implanted within the skull to record 

cortical neural activities. The core, on the tag end of distributed sensors, is designed to 

control the operation of individual MNI and communicate and control MNI devices 

implanted across the brain using received downlink commands from external base station 

and store/dump targeted neural data uplink in an energy efficient manner. The application 

specific protocol defines three modes (Time Stamp Mode, Streaming Mode and Snippet 

Mode) to extract neural signals with on-chip signal conditioning and discrimination. In 

Time Stamp Mode, Streaming Mode and Snippet Mode, the core executes basic on-chip 

spike discrimination and compression, real-time monitoring and segment capturing of 
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high temporal and spatial resolution. To implement the core control logic using sub/near-

threshold logic, a novel digital design methodology is proposed which considers INWE 
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CHAPTER I 
 

 

INTRODUCTION 

1.1 Neural Interface Overview 

Understanding the human brain and body is one of the most generation-spanning and challenging 

effort of human society to explore the meaning of our self-existence, life and universe. “Who are 

we, why we are here, and where we are going” are the three most fundamental questions have been 

asked since our quest for truth. Plato, Descartes and other ancient sages contributed metaphysics 

and idealism to the body of human knowledge and significantly influenced several generations of 

society. However, it is not until the availability of sufficiently mature medical, surgical and 

measurement technology it was made possible for people to explore ourselves through 

physiological means to give both qualitative and quantitive analysis of health and to some extent, 

cognition. Telemetry, a technology that allows measurement and transmission of information at an 

inaccessible location to an accessible location where measured data can be stored, displayed and 

processed by external and peripheral equipment, has evolved and been utilized from its origin in 

battlefield to many places including biomedical field[1-4].  

Biomedical telemetry first came up with a radio cardiograph in a French journal in 1956, since 

then this technology has been adopted in manned space flight. From simulated flight in the training 

session, to real flight in a mission, a pilot’s physiological characteristics such as heart beat, pulse, 

and temperature could be supervised to provide biomedical information. This data could then be 

used for astronauts selection or to ensure their safety. In 1968, Evarts first recorded the
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electrical activity of individual neurons from living animals, starting the field of research on 

neurophysiology with biomedical telemetry being used as an essential technique in the experiments[5]. 

In 1978, Dr. Mirowsk was the first one who used transistors as a “circuit for monitoring a heart and 

for effecting cardioversion of a needy heart”[6]. Micro wires, cone electrodes and arrays were 

developed as the transmission media, and integrated signal processing circuits were also designed to 

provide better SNR (signal to noise ratio), clinical compatibility, reliability and flexibility with 

minimum impacts on the subject under test[7, 8]. The first report on an implantable RFID into human 

body is by Dr. Kevin Warwick, who used this device to open doors, switch on lights, etc in 1998[9]. 

In the same year, wireless ECG monitoring was proven to be a clinical success[10]. These are just a 

few examples how the advances of technologies such as electronics, micro-fabrication and 

communication have boosted instrumentation for human body from outside to inside, and from with 

to without wires. The biomedical telemetry and engineering with the above stated technological 

advancement thereby have opened the door for neural interfacing, which helps people to understand 

ourselves to a deeper extent. As early as in the 1930’s, it was demonstrated that electrical stimulation 

of a cat’s brain would produce motor and emotional responses, and people could then explore the 

functional organization of the cat diencephalon[11]. In the late 1960’s, the concept of both recording 

and stimulation of the brain was demonstrated by showing that the behavior of primates and adult 

bulls can be modified by proper stimulations[12, 13]. Around the same year, an artificial vision 

prosthesis was created to be implanted on the surface of the brain to restore vision sensation by direct 

electrical stimulation to the brain[14]. Also, substantial research efforts have been devoted to advance 

this work to include microchip and high density electrode arrays to even restore rudimentary vision to 

totally blind individuals[15-18]. 

A Neural-Interface (NI) creates a link between the nervous system and machines and devices outside 

the body by two-way communication. This enables exchange of information with the nervous system 

and could ultimately help analyze neurological function, as well as treat people with neurological 
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limitation or dysfunction[19, 20], even seamless human augmentation in the future[21]. While the 

latter may be possible someday, the more significant and immediate application is to record and/or 

stimulate neurons to treat patients with a damaged nervous system. There are millions of people in 

America and around the world suffering from the loss of physical and mental functions due to 

traumatic injuries and diseases such as Parkinson’s, Huntington’s, Alzheimer’s, and various degrees 

of blindness and deafness, etc [22-27]. Severe limb losses and traumatic brain injuries have placed 

major crisis among wounded solders and accident survivors. All these disabilities are caused by 

severed connection in the nervous system [28, 29], where future neural interfaces, can come to the 

rescue by filling this gap with artificial prostheses [30, 31]. Monitoring neural activities in behaving 

subjects enables a deeper understanding of the nervous system and offers the potential to diagnose 

neurological diseases or injuries, and treat/reverse neurological conditions. It is of great interest to 

understand neural sensory/motor encoding from the locations distributed across the brain to more 

fully understand complex processes such as intentional motor control, unintentional reflex, learning, 

memory and cognition [32].  

Neural 
Interface

Invasive 
Interface

Non-Invasive 
Interface

For PNS For CNS

Cuff
Nerve 

Reshaping
Nerve 

Regeneration
UEA/USA Microwires

Silicon/Polymer 
Micro Array

IVEC Chemical EEG|MEG EMG fMRI
Distributed 

Implants

 

Figure 1.1 Neural interface category 

As shown in Figure 1.1, neural Interfaces can be categorized into two groups: Invasive and Non-

Invasive, depending on whether or not the technology requires surgical procedures that break into the 

skin to accomplish implantation[33]. Non-Invasive neural interface does not require surgery, 
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injection, or any other types of procedure to invade the body so it can be used without unwanted 

surgery. For example, EEG (Electroencephalography) and MEG (Magnetoencephalography) use 

scalp electrodes to record voltage fluctuations which are caused by brain neural activities. Although 

this method can provide real-time sensing through multiple channels, it has limited precision due to 

the long distance from the neural transmitter and spatial resolution by the limitation of the number of 

probes that can be placed on the scalp. It also requires sophisticated computation to extract 

meaningful information from the sensed composite signals [34-37]. EMG (Electromyography) shares 

the same concept as EEG but the signals measured are electrical activities produced by muscle cells, 

which are mostly used to detect medical abnormalities, measure activation levels and predict gesture 

movement[38, 39]. fMRI (functional Magnetic Resonance Imaging) measures the brain activity by 

detecting changes in blood flow, which is based on the fact that brain neural activity can be monitored 

by observing cerebral blood flow. fMRI often provides very high spatial resolution but has low 

temporal resolution [40-42]. Invasive Neural Interface, on the other hand, can access to the immediate 

site of human or animal neural acitivity to provide incomparable accuracy on targeting neural tracts 

and even single neurons due to size and proximity to the signal source, but with the risk of infection 

and tissue damage. Invasive Neural Interfaces are often used for both PNS (Peripheral Nervous 

System) and CNS (Central Nervous System). PNS includes nerves that link skin, muscles and internal 

organs to CNS, where CNS consists of the brain and spinal cord[33]. For PNS, probing is usually 

achieved with Cuff Electrodes[43], Nerve Re-Shaping Electrodes[44], or Nerve Regeneration 

Arrays[45]. In CNS, brain is responsible for high level functions such as cognition and voluntary 

motions, while the spinal cord is responsible for low level autonomic functions and reflexive 

response. CNS is typically interfaced using arrays of penetrating micro-fabricated electrodes inserted 

into the tissues. Examples includes UEA (Utah Electrodes Array) and USA (Utah Slant Array), which 

were invented by researchers at the University of Utah[46, 47].  Later the UEA is paired with wireless 

power and communication with the aid of low power circuit designs [48]. Microwires use fine wires 

to record and stimulate the brain with one special feature which is the flexibility to shift position with 
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neuron movement, avoiding the loss of signal strength[49]. Silicon/Polymer Microelectrode Arrays 

provide a flexible and biocompatible means for the adaptive implantation, reducing brain micro-

motion rejection [50-53]. IVEC (In Vivo Electrochemistry) is used for real time detection and 

quantization of neurochemicals in living tissue[54]. Chemical Stimulation is a concept that allows 

stimulation of neuron tissues with chemical stimulus but to date there are no mature fabrication 

technologies to fine control the scale of such system. Distributed Implant combines state-of-the-art 

neural probing with existing technologies such as WSN (Wireless Sensor Network) and RFID (Radio 

Frequency Identification) to develop large scale, high resolution and bio-compatible neural interfaces 

for continuous and chronical neural monitoring. A Neural interface formed by distributed neural 

probes can provide incomparable site coverage and bandwidth which made possible to develop 

advanced prosthetic limbs with dexterous control functions for amputees [55-58].   

The general form of the popular RF-powered wireless neural recording system is shown in Figure 1.2 

which often works as Reader (base station) -Tags (transponders with sensory circuits) pairs similar to 

passive RFIDs. The reader transmits RF waves to power and communicate with the passive sensor 

tags. Downlink data is recovered by the tag demodulating the incident wave. Uplink data is encoded 

and backscattered by the tag modulating its impedance to reflect the incident wave and then decoded 

by the base station. This enables neural interfaces to have low cost, small form factor, implantable, 

addressable and distributed sensing capability with a theoretically unlimited lifespan.   

Reader Tag Low Power 
AFE

Power Gen
&

Comm.

Power & CommandPower & Command

Neural DataNeural Data

Neural SignalNeural Signal

 

Figure 1.2 Common form of wireless neural interface 
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1.2 Existing Work in Neural Interface 

In recent years there have been tremendous advances in collaborative research on wired and wireless 

neural recording systems to develop low power circuit designs to improve signal-to-noise ratio, 

wireless powering and communication with low power consumption [59-61]. Numerous neural 

interfaces have been developed for clinical research experiments with the assistant of integrated 

circuit chips. This section reviews existing work of state-of-the-art neural interface within the past 

decade that use a fully functioning SoC to process sensed neural signals and of suitable form for 

implantation. These surveyed designs all have electrodes or arrays for neural signal acquisition and 

the most commonly deployed form is a derivation of UMA (Utah Microelectrode Array [48]) for 

multi-channel recording. A few examples of such systems are shown in Figure 1.3.  

 

Figure 1.3 Examples of state-of-the-art Neural Interfaces [48, 62, 63] 

As a result to support multi-channel recording, low power low noise band pass amplifiers with 

multiplexers are used extensively in these systems to address the needs of signal conditioning. Some 

systems like [48, 62, 64-70] added low power ADCs and/or comparators to digitize neural samples 

and/or record neural spike events so the data can be transmitted from the recording site to external 

devices and then be recovered for study. The way that neural data is handled and transmitted varies 

widely ranging from using simple shift registers to application specific processor unit. The most 

popular method is to use shift registers to directly stream the serial data out for its simplicity, such as 
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in [62, 66, 68-70]. To maintain proper scheduling of data communication with a large scale 

deployment of  sensors, low power processors with support of general purpose instruction set and 

light weight OS (operating system) were used for high level system management [65, 67, 71]. What 

lies between is custom logic and controllers that can maintain application specific control/scheduling 

of data transmission at a secure level while keeping operation overhead minimum to optimize power 

and communication efficiency. Custom logic offers the best performance power trade-off, however at 

high design time cost and multiple engineering iterations due to the complex nature of the nervous 

system and stringent constraints. The surveyed systems operate at power supply voltages ranging 

from 1V to 5V and have power consumption ranging from tens of μW to over a hundred mW to 

support anywhere from a few Kbps to a few Mbps of communication data rate respectively. Table 1.1 

summarizes the survey. 

Table 1.1 Survey of existing work in neural interface SoC 

 

work Year AFE Neural Data  Handling Uplink VDD Power/Ch Probe Form 

Michigan Probe [64] 2005 Amp + Mux Binary Counter N/A 3 V 2.2 mW microelectrodes 

3D probe [62] 2005 Amp+Comparator + ADC Mux+Shift Register 100 Kbps 3V 170 μW Array + Chip 

MICA2 NI [65] 2006 OTS Amp TinyOS 9.6 Kbps 3 V 66 mW PCB 

Utah Array [48] 2007 Amp+Comparator+ADC Mux+Custom frame 100 Kbps 3.55V 13.5 mW Array + Chip 

Neural WISP [67] 2009 Amp + Comparator MSP430 + Gen2 360 bps 1.8 V 36 μW PCB 

Michigan Probe [63] 2009 Amp + ADC Custom Controller 2 Mbps 1.5~3V 225 μW Array + Chip 

HermesC-INI3[66] 2009 Amp + ADC Shift Register 345.6 Kbps 4 V 63.2 mW Array + Chip 

HermesD [68] 2010 Amp+ ADC Shift Register 24 Mbps 5 V 142 mW Array + Chip 

Brown [69] 2011 Amp + ADC Laser for transmission 40KSps N/A 12.5mW Chip+VCSEL 

3IC-NI [70] 2012 Amp + ADC Direct TX 54.24 Mbps 1/1.8 V 21 mW Electrode + Chip 

Brown [72] 2012 Amp Controller + VCSEL N/A 3V 30.2mW Array +PCB + Chip 

[71] 2012 Amp + ADC Event Based Processor Unit 4 MHz 1.2 V 377 μW Chip 

NUS [73] 2013 Amp + ADC Custom Logic N/A 1/1.8 V 1.16 mW Array + Chip 
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The emphasis on improving these systems has been on the development of fine microelectrodes and 

micro-arrays fabrication technologies, low power low noise band pass amplifiers, low power 

comparators and ADCs, and efficient energy harvesters. Little attention has been focused on custom 

low power digital design to suit the application specific needs. Most systems consume power from 

hundreds of μW to tens of mW and have data rates of a few hundred bps to a few hundreds Kbps [48, 

62-73]. These design constraints place fundamental limitations on wireless power and communication 

with neural interfaces embedded within the brain [74, 75].  

 

1.3 Challenges 

Current Neural Interface technologies provide monitoring and stimulation to a limited extent and have 

not yet reached a point where it can be said to be fully human body compatible and chronically 

functional with sufficient interfacing resolution and site coverage. The physical limitations of the 

nervous system, fine granularity and distributed nature place even more stringent constraints on the 

development of neural interface for advanced sensing and recording.  

First, local neural tissue temperature increase resulting from implanted electronics and RF power 

dissipation must be kept below ~1˚C. This limitation requires that the entire electronics powered by 

far-filed RF energies must have power budgets of a few hundred μW while maintaining all 

functionalities [76, 77]. Second, neural spikes (action potentials) usually last for 1~2 ms with a wide 

range of firing rates ranging from 0.5 Hz to 500 Hz, depending on the recording location and 

behavioral state of the subject. It is essential to capture trains of action potentials at different regions 

simultaneously to understand the spatial and temporal relationships of the spikes to subject behavior 

[78]. Third, inter/intra-spike timing is relevant for understanding network functions due to 

possibilities of timing codes, so it is critical to obtain millisecond precision to describe the temporal 

phasing between spikes. Therefore it is desirable to develop a neural interface capable of recording 

the frequency of spike generations, inter/intra-spike timing and spike strains, and the geographical 
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feature of spikes across the brain simultaneously and continuously to extract the neural spikes rate 

code, temporal code and spatial code. Traditional array based neural interfaces are no longer an 

adequate means to monitor neural activities on a larger scale, such as across the cortex. Having 

several tens, or hundreds, of distributive probes implanted under the skull can elegantly address this 

issue. However, this requires technologies that allow safe probe insertion and efficient 

communication for all probes to update neural data without interfering with one another while 

maintaining temporal accuracy.  

Neural Interface (NI) development is highly inter-disciplinary in nature and also demand advances in 

bio-compatibility, fine micro-electrode/array fabrication, low power analog front-end (AFE) for 

neural signal conditioning and power harvesting techniques. The focus of this work is in custom low 

power digital design to bring a radical solution addressing the above stated challenges. 

 

1.4 Thesis Contributions 

The goal of the funding project is to design and implement a SoC (System on Chip) for distributive 

and implantable neural interface sensors, which can be used for chronical cortex neural monitoring 

and serve as a tool for developing the next generation neural prosthetic devices. This work focuses on 

the digital baseband circuit and system design aspect for such system. The major contributions of this 

work include: 

 Custom tailored protocol with EPC Gen-2 feature for efficient control and communication 

An innovative custom protocol is developed to control the proposed MNI system operation. 

The protocol, with which the sensor tags are controlled by reader commands, allows state 

transition and data query of the MNI sensors with little communication overhead, and enables 

three different modes (Stamp Mode, Streaming Mode and Snippet Mode) to record different 

aspect of neural spikes. This gives possibility of extracting neural spikes temporal, spatial and 

rate coding with the aid of such system. 
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 Low Power Cell Library using Optimum Finger Design Methodology 

With aggressive voltage scaling, power can be significantly reduced with the penalty of 

performance and robustness. Non-ideal effects from fabrication process exacerbate circuit 

energy efficiency and reliability in Sub/Near-Threshold region under this reduced supply. We 

carefully examined INWE (Inverse Narrow Width Effect), RSCE (Reverse Short Channel 

Effect) and Threshold Variation and consider these effect comprehensively for energy 

efficient gate sizing for low power cell library. We proposed optimum finger methodology to 

obtain optimum finger geometry which yields the optimum energy efficiency as a unit device 

for our cell library. The resulted cell library gate design shows 76% ~ 90% reduction in EDP 

(Energy-Delay Product) compared with conventional sizing method and significantly reduced 

ECO (Engineering Change Order) time during physical implementation for timing closure 

and energy optimization.  

 Low Power Sense-Amp-Less 8T SRAM With Read Boost 

A 32X8 SRAM memory which has 8T bitcell, with isolated read path for non-destructive 

read and level shifter on read pass transistor is designed to serve as on chip neural data 

storage.  

 Silicon Implementation of low power digital baseband core for wirelessly power Micro-

Neural-Interface for cortex neural signal extraction 

A digital baseband core is designed to implement the proposed custom MNI protocol and 

demonstrate our optimum finger methodology. The design is taped-out using IBM 180nm 

standard CMOS technology via MOSIS MPW service. Measurement results show the digital 

core consumes 2.2 μW average power with 1.28MHz system clock and 400mV power supply 

for 640Kbps data rate, resulting in a communication power efficiency of 290 Kbps/μW. 
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1.5 Thesis Organization 

This thesis is organized into six chapters. Chapter 1 presents the background of the funding project, 

which covers overview of neural interfaces and brings up the challenges and motivation of the work. 

Chapter 2 describes the concept of proposed MNI and presents the custom MNI protocol for control 

and communication. Chapter 3 discusses the digital core design which implements the MNI protocol. 

It discusses in detail of the design issues of low power digital design including INWE, RSCE and 

variation, and presents our proposed optimum finger methodology for energy efficient operation and 

design flow that uses the developed optimum finger cell library. Chapter 4 presents the silicon 

implementation and measurement results. Finally, the conclusions, future work and discussion are 

given in Chapter 5. 
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CHAPTER II 
 

 

MNI PROTOCOL DESIGN 

2.1 MNI System Overview 

As noted in Section 1.2, the emphasis of previous work has been focused on the development of 

fine microelectrodes and micro-array fabrication technologies, low power low noise band pass 

amplifiers, low power comparators & ADCs, and efficient energy harvesters. Little attention has 

been focused on custom low power digital design to suit the application specific needs. The 

computation speed and communication bandwidth of previous work does not satisfy the needs of 

advanced neural experiment to record with acceptable temporal and spatial resolution to meet 

research and medical diagnostic requirements while extracting inter/intra-spike timing. General 

purpose design methodologies introduce unwanted power dissipation and unacceptable latency in 

neural interfaces to meet the application specific constraints.  

The MNI (Micro-Neural-Interface) proposed in this effort is a distributed neural interface using a 

custom ASIC approach to satisfy the requirements of extreme in low power, small form factor 

and medium/high fidelity data logging for complex neural recording applications. Shown in 

Figure 2.1, the wireless, battery-free MNI ASIC chip sits on top of a SMP (Shape Memory 

Polymer) substrate with off-chip antennas at the edge, neural electrodes vertically bonded and 

penetrating down to the deep brain for sensing neurological signals. The MNI is encapsulated 

inside of stable inorganic coating such as amorphous SiC material for physical isolation from the 

in-vivo tissue fluid, biomedical compatibility and minimum RF power delivery loss[79].
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Figure 2.1: Concept of Micro-Neural-Interface for extracellular neural recording with wirelessly 

powered ASIC implanted under the skull (Figure Courtesy of Robert Rennaker) 

 

The MNI sensor tags are aimed to be inserted and placed under the skull of the behaving subject 

at desired physical locations through surgery. During normal operation, the MNI ASIC receives 

modulated RF waves from external base station as the energy harvesting source to power 

functional circuits. Demodulated signals are used as control commands to maintain/change 

system states and upload neural data.  

Three data collection modes are designed for neural recording. They are Time Stamp Mode, 

Streaming Mode and Snippet Mode. In Stamp mode, the MNI records neural spike occurrence as 

well as the time interval between consecutive spikes, using simple threshold crossing events with 

a remotely programmable reference voltage. In Streaming Mode, the MNI continuously digitizes 

the sensed neural signal with 8 bit resolution at 16 KS/s sampling rate and stores the data into the 

on-chip memory. In Snippet Mode, the system awaits for a neural spike to cross a pre-defined 

reference voltage which is programmed on-the-fly using predefined downlink command. In the 

Snippet Mode, when a threshold crossing event is observed by the spike detector, only the 
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preceding 8 samples and 24 samples after the threshold crossing are to be stored in the memory, 

making more efficient use of the communication bandwidth. 

2.2 MNI System Architecture 

The MNI ASIC system level block diagram is shown in Figure 2.2. The MNI system works as a 

fully passive RFID with sensing capability. One of the challenges when designing this system is 

to integrate three analog front end circuits: a low power low noise band pass amplifier, a low 

power 8-bit ADC at sampling rate of 16 KS/s and a spike detector (Thresholder) consisting of 

dual comparators with programmable references with stringent power budget. These analog 

blocks have power supply regulated at 700mV for low power operation. Another challenge is to 

minimize the power consumption of the digital logic which manages control and communication 

without sacrificing functionality and performance. The digital control logic has its power supply 

voltage regulated at 400 mV and has been carefully designed to be fully functional under such 

down-scaled power supply.   
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Figure 2.2: Block diagram of Micro-Neural-Interface 

Differential neural signal input from the sensing electrodes is first amplified with the low noise 

band pass amplifier. The amplified signal is then either digitized by an 8-bit pipeline ADC at 
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16KS/s or compared with reference voltages by the Thresholder at 16 KHz for spike detection. 

The captured neural data can be stored with on-chip memory and be used to form outbound 

packet as sensor tag responses. The controller also decodes/encodes data and transmits them by 

modulating the impedance of the matching network for backscattering, which establishes uplink 

data communication. 

2.3 MNI System Operation 

The MNI operation is summarized in the simplified state diagram shown in Figure 2.3. The 

digital controller core maintains a totoal number of 12 states for system operation, among which 6 

states are used for the three data collecting mode. This section describes each of the states. 
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Figure 2.3: State diagram of MNI system operation 
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2.3.1 Power up & Sync 

The MNI requires a stable power supply and a synchronized clock before executing any task. 

Upon powering up when receiving RF power and the supply voltages reaching steady state, the 

RF-DC circuit sends out a power on reset signal to asynchronously reset all registers in the 

controller core. The state of the controller enters Sync Mode. During this startup period, the PLL 

is powered up and synchronizes its VCO (Voltage Controlled Oscillator) oscillation with the 

embedded clock from the demodulator, which demodulates the incident wave from the base 

station. After lock is achieved by the PLL, the system clock is synchronized with the base station 

reference clock and a SYNC_FLAG triggers the controller core to enter Do Calibration Mode. 

2.3.2 Do Calibration (ADC Calibration) 

The stringent power requirement of being limited to a few hundred μW maximum puts a severe 

constraint on the analog signal path, particularly on achieving ADC accuracy. There are many 

sources of analog errors to manage under such limited power budget. These errors result from 

manufacturing variation, particularly transistor and capacitor mismatch, linear finite op-amp gain, 

charge injection, offsets, non-ideality in reference voltage, and etc. Digital calibration is needed 

as a way to mitigate the above errors, which otherwise can only be solved by paying an excessive 

power penalty [80-82].  

When the MNI enters Do Calibration Mode, the controller core enables the read operation of a 

calibration ROM and loops through its 32 entries. Each entry, which is a 10 bit word, will be used 

as the input to a calibration DAC to produce a full swing ramp with 32 levels. The ADC will 

initiate operations that convert the ramp signal and each of the 32 levels will be sampled 16 times 

to produce an averaged result to be stored. When the sampled results of all 32 levels are stored in 

the on chip memory, the system automatically goes into Respond Calibration Mode. Figure 2.4 

shows how Do Calibration works. 
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Figure 2.4 Work flow of Do Calibration Mode 

 2.3.3 Respond Calibration 

In Respond Calibration Mode, the 32 stored samples alongside with address of the tag are sent to 

the base station so the samples could be used as a correcting factor for calibrating future neural 

samples. The system then goes to Standby Mode after all samples are sent out. 

2.3.3 Standby 

In Standby Mode, the system power off non-necessary blocks to minimize power consumption 

and waits for further commands. 

2.3.4 Do Stamp 

In Stamp mode, the digital core controls the MNI system to record neural spike occurrences as 

well as the time interval between consecutive spikes, using threshold crossing events. In this 

mode, the analog signal path is through the fully differential band pass amplifier to Thresholder 

while the ADC is disabled. Upon receiving commands to enter this mode, a code in the command 

is used to select the two desired differential reference voltages, and the dual comparator in the 

Thresholder then uses these two references and samples the input with 16 KHz rate. A 

demonstration of this mode is shown in Figure 2.5. Upon detection of a threshold crossing event, 
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the comparator produces a latched QP value for positive reference crossing and QM value for 

negative reference crossing. A 5-bit counter clocked at 128 KHz is used to time the inter-spike 

duration. When the next threshold event occurs, QP, QM with the reference selection code and 

the spike interval value represented by counter values are consecutively written into on-chip 

memory. If there is only one threshold crossing event (positive or negative) triggered which 

caused the counter to be saturated, the saturated value is to be written to denote that the spike 

interval is equal or larger than the maximum countable duration. The system will remain in this 

state with memory being overwritten with the latest recordings until a new command is received 

and triggers the state transition. 

Spike Interval i

Vref 1

Vref 2

Vcm
Vin

QP = ‘1’

QM = ‘1’

QP = ‘1’

QM = ‘0’

Spike Interval i + 1

 

Figure 2.5: Demonstration of Do Stamp Mode 

2.3.5 Respond Stamp 

The Respond Stamp Mode is triggered when MNI is queried with a command for updating time 

stamp recordings. In this mode, neural data in memory will be read with a clock frequency of 80 

KHz, and used to construct a variable length packet for outbound transmission at a data rate of 

640 Kbps. Meanwhile, the Thresholder keeps functioning for neural spike detection and writes to 

memory if a new spike is detected. After sending out a packet, the system will return to Do Stamp 

Mode. It is assumed that the base station is capable of polling the data from MNI with proper 

timing to avoid missing spikes. 

2.3.6 Do Streaming 
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In Streaming Mode, the digital core controls the MNI to continuously sample and record the 

sensed neural signals. In this mode, the analog signal path is through Band Pass Amplifier to 

ADC while Thresholder is disabled. Upon receiving commands to enter this mode, the ADC 

samples the amplified neural signal with 8 bit resolution at a sampling rate of 16 Kbps, and writes 

the digitized samples into the on-chip memory. The system will remain in this state unless further 

command triggers the state transition and memory will be overwritten with the latest recordings. 

2.3.7 Respond Streaming 

The Respond Streaming Mode is triggered when MNI is queried with a command for updating 

the streaming recordings. In this mode, digitized samples will be read with a clock frequency of 

80 KHz and used to construct a fixed length packet for outbound transmission at data rate of 640 

Kbps. Meanwhile, the ADC keeps functioning to continuously digitize neural samples and writes 

memory. After streaming out a packet containing all data from the memory, the system will go 

back to Do Streaming Mode. Again, it is assumed that the base station is capable of polling the 

data from MNI with an adequate timing to avoid loss of data.  

2.3.8 Do Snippet 

In Do Snippet Mode, the system waits for a neural spike to cross a pre-defined reference voltage. 

When a threshold crossing event is detected, only the preceding 8 samples and 24 samples after 

the threshold crossing are stored in the memory. In this mode, Band Pass Amplifier, Thresholder 

and ADC are all enabled and functioning. Upon receiving commands to enter this mode, a code in 

the command is used to select the two desired differential reference voltages. The dual 

comparator in the Thresholder uses these two references and samples the input with 16 KHz rate, 

as in Time Stamp Mode. The ADC, in the meantime, samples the neural signal and continuously 

writes the digitized data into the on chip memory. When any of the positive or negative 

thresholds are crossed by the input signal, a spike occurrence is said to have been detected. At 
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this moment, the ADC will write the next 24 samples into the memory and then stops.  After this 

process, the data stored in the memory contains the 8 samples before the threshold crossing and 

24 samples after the threshold crossing, which is defined as a useful segment and is of great 

interest for neural science research. The sensing is suspended after the memory is filled with this 

spike segment of interest. Figure 2.6 shows a demonstration of Do Snippet Mode. 
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Figure 2.6 Demonstration of Do Snippet Mode 

 2.3.9 Respond Snippet 

The Respond Snippet Mode is triggered when the MNI is queried for updating the snippet data. In 

this mode, the snippet samples are read with a clock frequency of 80 KHz and used to construct a 

fixed length packet for outbound transmission at 640 Kbps. After sending out a packet, the 

system returns to Do Snippet Mode. Again, it is assumed that the base station is capable of 

polling MNI data with proper timing to avoid loss of data. 

2.3.10 ACK & Chatterbox BIST 

If the MNI is in any of the following modes: Standby, Do Stamp, Do Stream and Do Snippet 

Mode, the system can be triggered to enter ACK (Acknowledgement) or Chatterbox BIST Mode 

for quick debugging purposes with minimal impact on neural recording. In ACK Mode, the 

system keeps doing neural recordings as in the previous mode but reply a short uplink packet 
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containing only the bits representing tag address, operation mode and Thresholder reference 

selection codes. After the packet is sent, the system will go back to the previous mode. In 

Chatterbox BIST Mode, the system will stop the neural recording and continuously send out the 

short packet containing address, operation mode and reference selection code repeatedly until a 

new command triggers it to transit to another state. 

2.4 System Constraints and Impact on Digital Core Design 

The MNI has to consume minimum power despite its complex operations in order to reduce the 

possibility of tissue over-heating and neuron cell damage. Table 2.1 summarizes the power 

budget for each critical building block in MNI system. As is shown, digital control and memory 

place a heavy load on the power and must be optimized for energy efficiency. The digital 

controller core manages the system through proper control and efficient communication. Proper 

system operation includes controlling state transition, managing block-to-block interfacing, data 

processing (such as spike discrimination and data manipulation), establishing protocol processing 

for downlink packet decomposition and uplink composition. It is highly desired that the digital 

core to address the need for Kbps data rate protocol processing with just a few μW power budget. 

With these design specifications and constraints in mind, the next section will survey relevant 

work for suitable solutions. 

Table 2.1 Power budget for MNI building blocks 

Block Power Budget (μW) 

Power Management and Voltage Gen 20.0 [83] 

PLL 3.0 [84] 

Modulator and Demodulator 0.2 [84] 

Band pass Amplifier 2.0 (target) 

Thresholder 0.5 (target) 

ADC 5.1 [85] 

Digital Control + Memory 10.0 (target) 

Total 40.8 
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2.5 Survey of Relevant Work in Protocols and Digital Control 

Biomedical sensing systems usually work with a base station-targets or in other words, master-

slaves architecture[3]. The sensor nodes respond to the base station with transmission of 

predetermined messages upon specific requests. Biomedical telemetry communication links will 

generally have low power and short duty cycle requirements for two main reasons[4]. First, low 

power and short duty cycle consumes less battery power or on-chip storage capacitor charge, 

leading to longer usage duration for active systems (with battery) and reliable transmission for 

both active and passive systems (with battery or battery-less); Second, low duty cycle can prevent 

excessive heat generation, especially when the sensors are implanted to avoid destroying the 

tissue or upsetting the biochemical chemistry. Frequency or phase modulation schemes are 

preferred, as opposed to amplitude modulation in order to feed the sensors with more RF power 

through RF-DC power harvesting as well as offering greater data security at cost of increased 

circuit complexcity and power. A summary of existing protocols is shown in Table 2.2. 

Table 2.2 Survey of communication protocol for biomedical sensors 

 Pros Cons 

Bluetooth Mature Power hungry, limited channel # 

ZigBee Mature 
Low data rate and power hungry, 

limited channel count 

Gen-2 Medium data rate and mature for passive RFID Latency penalty 

LEACH Evenly distribute energy load 
Not for passive sensors, 

inefficient communication 

MAC scalability Low temporal resolution 

ANT Mature Low data rate 

 

The most frequently investigated solutions to establish data transmission in biomedical telemetry 

systems are Bluetooth (IEEE 802.15.1 standard), Zigbee (IEEE 802.15.4 standard), EPC Global 

Gen2 Standard and custom designed protocols targeted to specific applications[86-91]. Bluetooth 
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is defined as “an open wireless protocol for exchanging data over short distances from fixed and 

mobile devices”[88]. As defined in Bluetooth, a master Bluetooth device will establish an ad-hoc 

connection with up to 7 other devices, forming a group called piconet. Two or more piconets can 

be connected together to form a scatternet with no interference among each other by using 

different hop sequences and transmitting on different 1MHz hop channels. Bluetooth operates in 

the 2.4GHz band and has a maximum data rate of 720Kbps. Frequency hopping spread spectrum 

is used to divide the bandwidth into a number of channels.  

Zigbee was designed “for a cost-efficient network that supports low data rates, low power 

consumption, security and reliability” based on IEEE 802.15.4 low rate wireless personal area 

network standard. Zigbee working in star topology and is well suited for biomedical telemetry 

application, in which a full function device works as a coordinator while reduced function devices 

work as passive sensors which can be implemented with a pre-assigned address and minimal 

hardware[86, 89].   

RFIDs, which use radio frequency electromagnetic energy to transfer data, can be categorized 

into Active, Semi-Active or Passive RFIDs based on the power supply technology. Active RFID 

tags use battery to power and normally support active transmitter for long range operation. Semi-

Active RFID tags use both battery and RF power as a supplemental energy source. Passive RFID 

tags use only the RF power as energy source by harvesting power using an RF-DC circuit[92] and 

reflecting RF energy for communication [93, 94]. The EPC Global Gen-2 standard is designed for 

passive RFIDs in field applications such as object identification, inventory and tracking[91]. In 

this standard, active reader and passive tags use a random-accessed, packet-based protocol in an 

interrogator-responders fashion to establish communication.  

MAC (B-MAC, D-MAC, S-MAC, T-MAC, Z-MAC and etc) protocols are low duty cycle 

prtocols utilizing various CSMA techniques and are primary for cooperative data transmission of 
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wireless sensors. They are suitable for scalable sensor networks, but have trade-off between 

energy efficiency and latency. The synchronization and re-synchronization of the network can 

lead to significant energy penalty and communication inefficiency, resulting in low temporal 

resolution in neural recording application [95]. ANT protocol is developed for wireless sensors to 

measure parameters that don’t change rapidly (such as temperature) and update data every a few 

seconds [96]. It is maturely developed and used for applications with sports and smart hand held 

devices but has very low data rate, which made is unsuitable for neural recording. 

There are other protocols which can be used for biomedical telemetry, such as IEEE 802.11[97]. 

But the high power consumption makes these options unrealistic with the ultra low energy 

constraint. For our purpose, Bluetooth suffers from limited communication channel count for the 

MNI is intended to deploy tens to hundreds of probes, ZigBee has a low data rate which prohibits 

its adoption for the required temporal resolution, 16 KS/s data rate. EPC Gen-2 addresses the 

above two shortcomings but has a long turn-around time because it requires several command-

and-acknowledgement communications to setup the tag. None of these protocols can be directly 

utilized for efficient communication and control of our MNI system, and thereby a custom 

protocol is needed. This requires careful consideration of all constrains for cortex neural 

monitoring scenario. 

As discussed in Section 1.2, little attention has been placed on the digital aspect of neural 

interfaces, so the neural data have been primarily transmitted using simple shift registers, lacking 

support for advanced sensing tasks and future scaling. As the basis for an innovative way to 

efficiently handle neural data, a survey was carried out to investigate possible solutions from 

existing relevant work in biomedical applications. Table 2.3 summarizes the survey of relevant 

work in digital control within low power and fully functional biomedical platforms. It can be seen 

that most work have been developed to target at general KHz biomedical sensing applications, 

with general-purpose processor to control and process data communication with data rate ranging 
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from 25 Kbps to 640Kbps. In [67, 98], the actual effective data rate is 360 bps due to the latency 

penalty induced by CSMA’s random access overhead. It is desirable to develop a custom 

controller with custom protocol to support efficient control and communication to the neural 

recording specific application. 

Table 2.3 Survey of relevant work in digital control within biomedical platforms 

  Tech. (μ) Control & Comm. Uplink Clock Digital VDD Digital Power Applications 

Kwong [99] 0.13 MSP430+Accelerators N/A 1MHz 0.6 9.68 μW General KHz Biomedical 

Yeager [67] 0.13 EPC Gen-2 640 Kbps 3MHz 0.7  4.2 μW Body Temperature 

Chen [100] 0.18 MCU + ANT 25 Kbps 20~24MHz 0.95  1.3 mW Capsule Endoscope 

Ricci [101] 0.18 ISO 18000-6B 40 Kbps 800 KHz 0.6  440 nW General RFID Sensor 

Reinisch [98] 0.13 EPC HF and Gen2 640Kbps 1.92 MHz 1 3.5 μW Temperature Sensing 

Lee [102] 0.18 EPC Gen-2 64 Kbps 100 KHz 0.87 29.3 μW Healthcare 

Constantin [103] 65 ASIP N/A 100KHz 0.37 288 nW Compressed Sensing 

Zhai [104] 0.13 Processor N/A 833 KHz 0.36 2.6pJ/Inst General Sensor Processor 

Hanson [105] 0.18 Processor N/A 106KHz 0.5 226nW General Sensor Processor 

Yoo [106] 0.18 N/A N/A 512KHz 1 2.03 μJ/clasifc EEG Seizure Classification 

Wattanapani [107] 0.18 Custom 10 Mbps N/A 1.8 42 μW Neural Recording 

 

2.6 MNI Protocol 

There are many existing encoding schemes regarding the physical layer to enhance the reliability 

and security when data is transmitted via RF. For passive RFIDs and low power wireless sensors 

both bandwidth and power limit the algorithm complexity. This most always results in a tradeoff 

between performance and feasibility when choosing an implementation scheme. Six mature 

encoding schemes [108-111] were surveyed and compared by their pros and cons, and are 

summarized in Table 2.4.  
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Table 2.4 Comparison of encoding schemes 

Encode Scheme Pros Cons R->T downlink T->R uplink 

NRZ BW 
Continuing ‘0’s cause 

low power efficiency 
  

RZ Simple; better than NRZ Same above; 2X BW   

Manchester 
Guaranteed bit transition; 

half power efficiency 
2X BW Suitable  

FM0 
More bit transition than above 

Little DC power 
2X BW  suitable 

Miller 

Guaranteed bit transition; 

Easy for R to pick up (fup>fdown) 

Even less DC power than FM0 

2X, 4X, 8X BW 

Less bit transition 
 suitable 

PIE  Max power efficiency 
Data rate not constant; 

Complex to decode 
suitable  

 

The proposed custom protocol for the MNI system communication and control utilizes a limited 

set of the EPC Global Gen-2 features with a custom packet format. The main purpose of using a 

limited Gen-2 feature is to take advantage of Gen-2’s mature and proven techniques and ease 

adopted and transferred to the MNI application. A custom packet format is designed to maximize 

the communication or data transfer efficiency so that each command utilizes the minimum 

number of control bits in the packet, speeding up the whole reader-to-tag control and tag-to-

reader data transfer process. This approach maximizes the effective data transfer rate and 

efficiency. Figure 2.7 shows the data flow of the proposed system in which the information 

primarily travels through between the Reader-End and Tag-End. The user controls the Reader-

End to generate downlink packet test vectors via the user-interface and the Tag-End will decipher 

the incoming packet. Then the system executes the specific task based on received command, and 

if requested, sends data back (as available) to the Reader-End to update information using 

temporarily stored data in the on-chip memory. The downlink communication uses PIE (Pulse-

Interval-Encoding) to maximize power delivery and CRC-5 for error checking of short command 

packet with little overhead. The uplink communication uses FM0 encoding to increase the level 
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transitions so that bit error can be reduced and CRC-16 for error checking of long data packets. 

These data encoding and bit error checking techniques are described in EPC Gen-2 standard [91].  

RX

TX

Core Control

TX

RX

User Interface Reader-End Tag-EndLinkUser End

DUT(tape-out)

Testbench

Test Vectors

 Start-of-Flow

End-of-Flow

PIE and CRC5

FM0 and CRC16

 

Figure 2.7 MNI communication signal flow 

2.6.1 Downlink Communication 

The Reader-to-Tag downlink communication has one defined packet format, in which the Data 

segment can be used or neglected based on whether or not its current command requires 

interfacing with the “Thresholder”. The packet format is shown in Table 2.5 and Figure 2.8.  

Table 2.5 Downlink Packet Format 

Name Length (Bit) Functionality Notes 
R=>T Preamble 24 Sync and start of R=>T Signaling Length determined by PLL Lock Time 

Frame Sync 6 Delimiter, Data-0 and RTcal As in Gen-2 

Address 8 Select Probe 
 

CMD 4 Select Working Mode 4 bit CMD 
Data 6 Threshold Setting 3 bit for TH1 and 3 bit for TH2 

Trailer 5 Error Detection CRC-5 
 

Preamble Payload CRC-5

CW 0s Delimiter Data0 RTCal Address CMD Data

 

Figure 2.8 Downlink packet format 
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The downlink data rate is 160 Kbps. The R=>T Preamble is 24 consecutive clocks (CW-0), 

sufficient for the PLL to synchronize the MNI global clock with base station. The Frame Sync is 

similar to Gen-2 with Delimiter, Data-0 and RTcal to establish a basis for decoding the later PIE 

encoded data. Figure 2.9 and Figure 2.10 from Gen-2 standard shows PIE encoding and R=>T 

Frame Sync respectively. Tari is the reference time interval for downlink communication with the 

duration of one data-0. The Tari value is determined to be 6.25 μs in our work. Thereby a data-0 

is of duration 6.25 μs (1 Tari) and a data-1 is of duration 12.5 μs (2 Tari). The Frame Sync 

comprises a fixed-length 2 Tari start delimiter, a data-0 symbol and 3 Tari RTcal. During 

transmission, the downlink packet is oversampled by the receiver at tag end, and the length of 

RTcal is measured and used to compute a pivot value (pivot = RTcal/2). Subsequent packet data 

will be evaluated with respect to this pivot value so that data shorter than pivot is interpreted as 

data-0 and data longer than pivot is interpreted as data-1. The address denotes the ID of each tag 

and is of 8 bit length so that the MNI system can theoretically support up to 2
8
 probes. The CMD 

is a 4 bit command to control the MNI operation. The function of each command is summarized 

in Table 2.6. 6-bit of Data is used for the selection of the two reference voltage levels for 

Thresholder’s Dual Comparators. 

 

Figure 2.9 PIE Encoding for data-0 and data-1[91] 

 

Figure 2.10 Frame Sync for downlink communication [91] 
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Table 2.6 Downlink command function 

CMD Tag’s Behavior Uplink Packet Preamble 

CW-0 Power up and Sync N/A 

0010 Do Calibration N/A 

0011 Respond Calibration Long 

0001 Enter Standby, do nothing but wait for next command  

0100 Do Stamp, store flag, threshold and interval N/A 

0101 Respond Stamp Short 

0110 Respond Stamp Long 

0111 Do Streaming, write Memory with ADC data N/A 

1000 Respond Streaming Short 

1001 Respond Streaming Long 

1010 Do Snippet, write Memory with ADC data N/A 

1011 Respond Snippet Short 

1100 Respond Snippet Long 

1101 Respond ACK with state & threshold value Short 

1110 Respond ACK with state & threshold value Long 

1111 Respond BIST pattern while keeping interfacing signals Long 

 

2.6.2 Uplink Communication 

The Tag-to-Reader uplink communication requires us to design two packet formats for Respond 

Stamp mode and Respond Calibration/Streaming/Snippet Mode respectively. This is because the 

time stamp mode by its nature may have less than 256 bits of data because the number of spike 

occurrences varies as a direct result of current brain activity. It is best to have a variable length 

packet for this mode in order to avoid channel misuse and reduce turn-around time. Respond 

Calibration, Respond Streaming, and Respond Snippet Mode on the other hand, transmit a fixed 

length of 256 bit digitized samples. This allows them to share the same packet format. Table 2.7, 

Table 2.8, Figure 2.11 and Figure 2.12 show the packet format for each scenario during uplink 

data transmission.  
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Table 2.7 Uplink packet format for Respond Time Stamp Mode 

Name Length (Bit) Functionality Notes 
T=>R Preamble 6 or 18 Start of T=>R Signaling Defined by FM0 Encoding in Gen-2 

Address 8 Select Probe 
 

CMD 4 Working Mode 4 bit CMD 

Data 0 ~ 256 Data trunk 

4bit spike count (EXT) for up to 16 spikes 

TH1[2:0] + TH1_Flag + TH2[2:0] + TH2_Flag 
8 bit counter for spike interval, saturates at 255 

Trailer 16 Error Detection CRC-16 
 

Table 2.8 Uplink packet format for Respond Calibration/Streaming/Snippet Mode 

Name Length (Bit) Functionality Notes 
T=>R Preamble 6 or 18 Start of T=>R Signaling Defined by FM0 Encoding 

Address 8 Select Probe 
 

CMD 4 Working Mode 4 bit CMD 
Data 256 Data trunk 

Real time digitized spike waveform for streaming 

Stored digitized spike segment for snippet 

Trailer 16 Error Detection CRC-16 
 

Preamble Payload CRC-16

FM0 Preamble Pilot Tone (Optional, selected by CMD) Address CMD Data

Spike Count
VREF 

Code1
QM1QP1

VREF 
Code2

QM2QP2
VREF 

Code3
QM3QP3

 

Figure 2.11 Uplink Packet Format for Respond Time Stamp Mode 

 

Preamble Payload CRC-16

FM0 Preamble Pilot Tone (Optional, selected by CMD) Address CMD Data

Sample 1 Sample 2 Sample 31 Sample 32

 

Figure 2.12 Uplink Packet Format for Respond Calibration/Streaming/Snippet Mode 
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The uplink communication uses FM0 encoding and has a data rate of 640 Kbps. Figure 2.13 and 

Figure 2.14 from Gen-2 standard show the FM0 symbols and sequences and basis and generator 

state diagram respectively. The FM0 encoding scheme has the two following characteristics: 

 Baseband phase is inverted at every symbol boundary 

 A Data-0 has an additional mid-symbol phase inversion 

These two characteristics require 4 symbols to represent data-0 and data-1 based on the data 

pattern transmitted (previous and current) and the data being transmitted. The Gen-2 identifies 

these rules that must be followed to implement the encoding scheme.  

 No state transition from S1 to S2 

 No state transition from S2 to S3 & S4 

 No state transition from S3 to S1 & S2 

 No state transition from S4 to S3 

 

Figure 2.13: FM0 Symbols and Sequences [91] 

 
Figure 2.14  FM0 Basis Functions and Generator State Diagram [91] 
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The T=>R Preamble is the start of the Tag to Reader signaling and can either be a 6 bit short 

preamble without a pilot tone (12 clocks) for small packet or an 18 bit long preamble with a pilot 

tone (12 clocks) if the transmitting packet is long and requires more precise clock synchronization 

at the base station. The FM0 preamble and end-of-signaling are described in Gen-2 Standard. The 

address denotes the ID of the tag and the CMD denotes the working mode of MNI so the base 

station knows in what mode the packet data is obtained.  

 

2.7 Digital Core High Level Design 

2.7.1 Digital Core Architecture 

The Wireless MNI digital baseband core high level architecture is shown in Figure 2.15 and is 

comprised of a PIE decoder, a downlink packet De-sequencer and a CRC-5/Address checker, a 

main protocol processing and control FSM, a 32x8 SRAM memory, an uplink packet constructor, 

a CRC-16 checksum generator and a FM0 encoder. The PIE decoder decodes the EPC Gen-2 

standard specified PIE encoded data stream and recovers the downlink packet to the packet de-

sequencer, which works together with the CRC-5/Address checker to successfully select a tag and 

extract commands that trigger its state. The protocol and control FSM controls the MNI’s neural 

AMS-FE (Analog & Mixed Signal Front End) and other on-chip components based on its current 

state. The SRAM implements temporal storage to save sensed and conditioned neural data. The 

packet composer is used to compose an uplink packet upon request, which will be appended with 

CRC-16 checksum by the CRC-16 Generator. The FM0 encoder encodes the raw packet with the 

FM0 Encoding scheme and clocks the data stream to the modulator.  
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Figure 2.15 High Level Block Diagram of the MNI Digital Baseband Core 

 

The system level design partitioning, shown in Figure 2.16, consists of five blocks based on their 

functionality and ease of design. Here “Txbb_mni_rder” is added to the design to serve as the 

reader baseband emulation, which is used be controlled by the user to send proper downlink 

command packets. In later probe station test-benching, it is emulated by the TLA logic analyzer’s 

pattern generator where test vectors are generated. In the tag end, the design is partitioned into 4 

blocks, in which SRAM memory and the main controller remain the same, while PIE Decoder, 

Packet De-Sequencer and CRC5 Checker are grouped together to form “RXbb_p5_mni” as 

packet decomposer for downlink packet decomposition and Packet Constructor, CRC16 

Generator and FM0 Encoder are grouped together to form “Txbb_fm0crc16_mni” as packet 

composer for uplink packet composition.  
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Figure 2.16 Design Partitioning of the MNI Digital Baseband Core 

 

2.7.2 Downlink Packet Decomposition 

The PIE encoding scheme is presented in Figure 2.17.  For PIE, the incoming data rate is to be 

assumed to be 40 Kbps – 160 Kbps according to Gen-2 Standard [91]. This is because ‘1’ is 

represented as 1.5-2 Tari while ‘0’ is represented as 1 Tari, 1 Tari = 6.25 μs ± 0.3125 μs. So the 

maximum data rate that the PLL sees is about 1/Tari = 160 Kbps. Thereby, according to Nyquist 

sampling criteria, at least 320 KHz sampling clock is needed to sample RTCal during the 

preamble.  Or 1.6 MHz is needed for a sampling resolution of 0.625 μs, as 5% of 12.5 μs 

delimiter duration. We have chosen 1.28MHz as the sampling clock rate to allow less constraints 

in later timing closure effort. A state machine was designed to decompose the PIE encoded 

downlink packet consisting of four states: Delimiter Detection, DATA0, RTCal and DECODE. 
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The state diagram of this state machine is shown in Figure 2.18. An internal counter will start at 

the start of the delimiter, which is a falling edge. The delimiter ends at the next rising edge, and 

the counter value indicates the duration should be within 12.5 μs ± 5% which is [11.875 μs, 

13.125 μs], the 5% tolerance is a relative error bound considering both the data rate shift and PLL 

clock frequency drift. This is to say, the last count (blue arrow) should be within this region, 

making the sampling period: 

Ts = 2 · (12.5 · 5%) = 1.25 μs 

Thereby the sampling frequency is: 

Fs = 1/Ts = 800 KHz 

So the extreme when a delimiter is detected is when counter value equals to 10 or 11 at the next 

rising edge, any other counter values indicate an invalid delimiter. As a result the state machine 

remains in its current state. In the DATA0 state, the state machine waits to transits to the RTCal 

state at next rising clock edge. In RTCal state, the state machine does timing calibration by 

counting the RTCal duration. In our design the RTCal duration is set to be 3 Tari, with the 

duration being 18.75 μs. The counter value will be 15, with the pivot calculated to be 15/2 which 

is 7.5 and would be 0111 in binary. A data-0 (6.25 μs) has 5 counts, and a data-1 (12.5 μs) has 10 

counts, they are easily decided by comparing with the pivot value with a safety margin of 2 for 

‘0’ and 3 for ‘1’. In the last DECODE state, a counter counts the duration of the data, if a data has 

a count duration larger than 7, it is a ‘1’; Otherwise, it is a ‘0’. Another counter counts the number 

of rising edges which is representative of the number of data bits decoded, and this counter 

controls the state machine to decode and store all data bits in a register, then trigger it to return to 

the Delimiter Detection State. This counter is also used to initiating ADDR and CRC to 

determining if a valid tag selection occurs.  

Another state machine is designed to work with the PIE decoding state machine to successfully 

decompose a downlink packet and parse command. The packet decomposing state diagram is 

shown in Figure. 2.19. When all bits in the received packet are properly decoded, the payload is 
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stored in a register for CRC check and Address check. The CRC check is to detect bit error 

during transmission and the address check is to determine tag selection. If the tag is selected, the 

command and data bits will be latched for at least 80 cycles because the main mode controller is 

clocked at 16 KHz.  

 

Delimiter DATA0 RTcal DATA0 DATA0DATA1

PIE Preamble PIE Encoded Data

1 Tari 2.5 – 3 Tari12.5 us +-5%

Sync CW (0)

1 Tari 2 Tari 1 Tari
1.25us

 

Figure 2.17 Downlink packet decomposition 

Delimiter
Detection

Reset

DATA0

within 12.5 us +- 5% @ next 
posedge

RTcal

@ next posedge

withoput 12.5 us +- 5% @ next posedge

packet_length_cnt=23

@ next posedge

 packet_length_cnt++
If cnt<pivot, 
   reg_pkt<={reg_pkt[22:0], 0};
else                
   reg_pkt<={reg_pkt[22:0], 1};

1. packet_length_cnt<=0;
2. Pivot<=rtcal_cnt/2

DECODE

 

Figure 2.18 PIE decoding state diagram 
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Figure 2.19 Packet decomposing state diagram 

 

2.7.3 Uplink Packet Composition 

The packet composer block “Txbb_fm0crc16_mni” has three tasks: construct the packet, append 

the CRC-16 checksum at the packet trailer and encode the whole stream using FM0 encoding 

scheme. The three tasks can be done using two state machines, which are shown in Figure 2.20 

and Figure 2.21.  When transmission is initiated with EN_TX signal to be 1, the transmission 

proceeds within an order of forming up packet and then shift the packet out, the shifted packet 

will be used for CRC-16 checksum computation, the checksum will be appended at the end of the 

packet, the new packet with checksum will be encoded with FM0 encoding scheme. If at any time 

during the transmission EN_TX goes to 0, the transmission stops and the reader will receive an 

invalid packet and discard the message. After the transmission is finished, if successful, the 

uplink transmission state machine will go to the idle state and an EOTX (End-of-Transmission) 

flag will be raised and trigger the central state machine to exit the TX mode. 
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Figure 2.20 State diagram of uplink packet formation 
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Figure 2.21 State diagram for uplink packet FM0 encoding 
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2.7.4 Mode Controller 

The main control state diagram for state control and protocol processing is shown previously in 

Figure. 2.3. It consists of two sub-blocks: mode controller and memory controller. The mode 

controller takes in the CMD and DATA in the decoded downlink packet segment and triggers its 

state. The state determines enable/diabled of other functional blocks such as memory controller, 

downlink packet decomposer and uplink packet composer. The memory controller takes the mode 

controller’s state as input, and triggers its state with pre-defined logic constraint that maintain 

proper memory write & read pointer relationship. 

The control signals that drive main controller state transitions are: 

1. Power On Reset 

2. Tag Selected: Downlink data received and decoded successfully 

3. CMD 

4. EOTX: End of uplink data transmission 

5. EOCAL: End of ADC Calibration, generated by memory controller 

The signals that control the memory controller state transitions are: 

1. Power On Reset 

2. Mode controller current state 

3. Write Enable and Read Enable 

4. Write pointer location 

5. Spike detection result 

6. ADC data ready flag 
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2.8 Conclusion 

This chapter gave an overview of the MNI system and discussed system level architecture and 

operations. The MNI is the first proposed neural interface for implantable and distributed neural 

recording. A custom MNI protocol was proposed which utilizes a limited set of EPC Gen-2 

features and has custom packet format for reliable and efficient data transmission. The MNI 

protocol allows Stamp Mode, Streaming Mode and Snippet Mode to collect neural data which 

allows for extracting temporal, spatial and rate coding of neural spikes. A digital baseband core 

was designed at high level to implement the proposed protocol and control. 
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CHAPTER III 
 

 

SUB/NEAR-THRESHOLD DIGITAL DESIGN 

3.1 Introduction 

As discussed in Section 1.2 and Section 2.5, in a wireless neural interface system and similar 

applications such as biomedical platforms, remote sensor nodes and battery-less SoCs, designs 

are primarily implemented using mature and low cost above-100nm technology nodes. These 

processes often feature MIM capacitors, SBD (Schottky Barrier Diode), twin/triple-well and etc. 

offering cost effective solutions to implement mixed-signal designs. However, it is challenging to 

design digital circuits and systems to achieve lowest power performance and reliability with such 

processes while fulfilling the specifications in this work. This chapter is dedicated to discussing 

the low power digital implementation of the proposed MNI protocol. First, the power model of 

CMOS digital circuit is presented, which intuitively lead to down-scaling the power supply below 

or near the threshold voltage to reduce both the dynamic and static power while maintaining 

computational speed. An optimum finger method for transistor sizing targeting optimum EDP 

(Energy-Delay Product) in a custom cell library is proposed to address the non-ideal effects 

resulting from INWE (Inverse Narrow Width Effect), RSCE (Reverse Short Channel Effect) and 

variation. Based on this methodology, an energy efficient cell library was developed in 

conjunction with an EDA flow to physically implement the digital core. Finally, a sense-amp-less 

8T SRAM with read boost is presented as the design for MNI’s on-chip memory.   
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3.2 Power Model 

As shown conceptually in Figure 3.1, the total power consumption of a digital circuit and system 

using CMOS logic gates is composed of dynamic power, leakage power and short-circuit power 

[112]. This can be expressed in Equation (3.1). 

                                            
(3.1) 

The dynamic power is due to the gate drive current charges and discharges the loading 

capacitance of the circuit at the next stage and is expressed in Equation (3.2). 

                
   (3.2) 

where   is the switching activity factor representing the percentage of capacitance being switched, 

C is the total load capacitance,     is the power supply voltage and  is the rate the capacitance is 

switched (in most systems it is the clock frequency). The dynamic power is often the dominant 

contributor to the total power consumption in the active state.  

VDD

GND

Dynamic 
current

leakage 
current

Short-circuit 
current

 

Figure 3.1 Power model of CMOS digital logic circuit 

The leakage power is due to static current flowing through the devices even when they are not 

switching, and it is expressed in Equation (3.3). The sources of the leakage are subthreshold 

leakage, gate tunneling leakage, reversed-biased drain-to-junction leakage, Gate-induced drain 



43 
 

leakage (GIDL) and etc. The leakage power increases proportionally with the total number of 

transistors integrated into a system [113] and it is of significant concern for systems that spend 

most of the time in inactive state such as large memories, wireless sensor node and mobile 

devices with burst communication[114, 115].  

                      (3.3) 

where    is the power supply voltage and         is the sum of all leakage terms. 

The short-circuit power is the result of the direct-path current when NMOS and PMOS transistors 

are simultaneously conducting due to a finite slew rate (input transition) at the gate input. Studies 

show it contributes a minor fraction (<5%) of the total power consumption [116] and can be 

safely ignored. The simplified short-circuit power can be expressed in Equation (3.4) [117]. 

                              
(3.4) 

where   is the switching activity factor representing the percentage of node being switched,      

is the time during which direct current path are established,      is the averaged short-circuit 

current,    is the power supply voltage and  is the rate the capacitance be switched, which is the 

clock frequency in most systems. 

As suggested by the power model, given the assumption that all logic gates in a CMOS digital 

system are identically built (with PMOS pulling up and NMOS pulling down) [118], the power 

consumption can be scaled down by scaling down the switching activity, total load capacitance, 

power supply voltage and frequency. Next section discusses existing techniques used for reducing 

power consumption and maintaining circuit performance under stringent power budget. 

3.3 Survey of Low Power Digital Design Techniques 
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A survey was conducted to review existing popular techniques used in reported literature to 

reduce power consumption or to maintain performance, robustness, and yield in the context of 

energy stringent applications. As shown in Table 3.1, the techniques, which are categorized into 

device level, circuit level and architecture & system level, all reduce the power by reducing one 

or more factors in the power model.  

Table 3.1 Survey of relevant low power digital design techniques 

Level of Abstraction Techniques Optimization Target 
  
  
  
  
  

Architecture & System 
 [112, 119, 120] 

Accelerator Assistance α 
Switched Cap Reduction C 

Switching Activity Reduction α 
Parallelism f 
Pipelining Delay 

Clock Gating α, C 
Power Gating V 

DFS/DVS/DFVS V, α 
Multi-Clock Domain Design α 
Multi-Power Domain Design V 

Logic Optimization α, C 
  
  
  

  
  

  
Circuit (Sub/Near-Threshold) 

[121-135] 

E
min

 Tracking f,V 
NTC Delay 

Constant-Yield Sizing Variation 
Utilizing RSCE RSCE 
INWE-Aware INWE 

Using Dual-VT Delay, leakage 
MTCMOS Delay, leakage 

Minimum PGS Leakage 
NLOPALV Library VT variation 

VT Balancer PMOS NMOS V
T
 Mismatch 

Variability-Aware Sizing Variation, INWE, RSCE 
Body Biasing V

T
 

Optimum Finger[This work] Variation, INWE, RSCE, V
T
 

  
Device 

[119, 136, 137] 

Process Tuning All Device Parameters 
SOI, FinFet SOI Leakage 

High-K Gate tunneling 
UTBB SCE, V

T
 variation, Leakage 
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In general, down-scaling the power supply is the most effective way since it reduces the 

dominating dynamic power quadratically and leakage current also decreases due to the drain-

induced barrier-lowing (DIBL) effect [123, 127]. Low power techniques are surveyed in the 

context of Sub/Near-Threshold operation, and most work shown have emphasis on maintaining 

robustness with the reduced power supply. Transistor sizing and body biasing methods have been 

most frequently investigated to deal with random variation and DSM channel width/length effects 

[122, 124, 125, 133]. It is also proposed that NTC should be used for performance, despite the 

minimum energy point could be in subthreshold region [138]. In summary, cross hierarchical 

design optimization offers power saving at each level of the implementation by trading off cost, 

performance, area, complexity and design time for power. Reducing power supply to near and 

below transistor threshold voltage offers a cost effective solution for reducing power but requires 

special designs to ensure the circuit performance and robustness.    

3.4 Sub/Near-Threshold Digital Design 

With aggressively down-scaled power supplies, the transistor works in weak/moderate inversion 

where the current is an exponential function of the gate over/under-drive voltage. This is modeled 

by the EKV model[123], as shown in Equation (3.5): 

        
 

 
  
(       )

     (   
(    )
  ) 

(3.5) 

Previous work has shown the feasibility of subthreshold design for applications at tens of KHz 

[122, 123, 128, 139]. However, in state-of-the-art neural interfaces and other biomedical research 

applications, the digital processing and system control require a clock frequency ranging from 

hundreds of KHz to a few MHz in order to provide effective data rates from Kbps to Mbps so that 

maximum number of implanted and distributed probes across large regions can be deployed using 

burst communication with limited bandwidth. Note we have the design goal of achieving 
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hundreds of Kbps data rate under the power limit of only a few μW, while fulfilling all the 

complex custom functionality of MNI protocol for advanced neural recording.  

The challenge is in designing digital circuits for achieving both lowest power consumption and 

highest energy-speed efficiency while maintaining robustness under device variation, reduced 

ION/IOFF ratio and non-ideal characteristics such as INWE (Inverse-Narrow-Width-Effect) [128, 

140] and RSCE (Reverse-Short-Channel-Effect) [124, 141]. The major source of device variation 

comes from the RDF (Random Doping Fluctuation) of MOS transistors which causes the 

threshold voltage to  vary[142] and current to be impacted exponentially. The down-scaling of the 

power supply reduces the ION/IOFF ratio which slows down the circuit. INWE and RSCE become 

very noticeable in modern sub-micron CMOS technology and cannot be neglected due to its 

significant impact on the MOS threshold voltage which exponentially impact device current.  

3.4.1 Parameter Variation 

Ttransistor and interconnect parameters were never fabricated 100% as designed due to the 

imperfections in the process. In the EKV model for Near/Sub-threshold design, there are several 

parameters of concern: μ, Cox, W, L and VTH. The mobility variation comes from the process of 

ion implantation, annealing, diffusion and nitride deposition. The Cox variation is due to the 

variation of gate oxidation. The transistor geometry parameter W and L have their variation 

source mainly from lithograph and etch.The threshold voltage variation is due to the gate 

oxidation and most importantly, RDF (Random Dopant Fluctuation) caused by the ion 

implantation and annealing. In DSM (Deep Sub Micron) technology such as processes below 

100nm, the volume of the transistors is so small that only a few tens to low hundreds of dopants 

are implanted into the channel, leading to increasingly non-uniform distribution of the threshold 

voltage and therefore, more design difficulty [142], it is found that threshold voltage and 

transistor channel length are the two most varing parameters and must be taken into consideration 
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in the design of robust sub/near-threshold logic. Parameter variations can be categorized into Lot-

to-Lot, Wafer-to-Wafer, Die-to-Die, and Within-Die variation. The former two are also 

categorized as temporal decomposition variation, and are out of the control of the designers. The 

spatial decomposition variation can be categorized as either systematic variation which has a 

certain variational trend, or random variation which is non-repeatable and can be spatially 

correlated or uncorrelated. It is the designer’s responsibility to choose the right W and L size to 

keep the total variation under control.  

3.4.2 NWE and INWE 

NWE (Narrow Width Effect) and INWE (Inverse Narrow Width Effect) are two second order 

effects associated with the change of transistor width in modern CMOS technology and some SOI 

technology. NWE is often observed in processes using Non and Semi recessed isolation such as 

LOCOS (Local Oxidation of Silicon), as VTH is increased with the decrease of the channel width. 

This is due to the thick-oxide depletion region on both side of the gate tends to prevent inversion 

under the thick gate oxide near the thin-thick oxide interfaces[143]. INWE, a. k. a Inverse Narrow 

Channel Effect (INCE) is often observed in processes using fully recessed isolation such as STI 

(Shallow Trench Isolation), as VTH decreases with the decrease of channel width. This is mainly 

due to the parasitic transistor at STI corner turns on at a lower voltage than the main channel. The 

process of choice of this work (IBM 180nm CMOS) uses STI technology so that INWE is of 

concern in the design process [140, 143]. 

3.4.3 SCE and RSCE 

SCE (Short Channel Effect) and RSCE (Reverse Short Channel Effect) are two second order 

effects associated with the change of transistor length in modern CMOS technology. SCE is often 

observed in processes without halo doping, as VTH is decreased with decrease of gate length, 

which is also known as “VTH roll-off”. This is due to the S/D junction lateral field penetrates into 

the channel, assisting in depleting the Si under the gate, so less gate voltage is required to invert 
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the channel[144]. RSCE is often observed in processes with halo implant doping near drain and 

source, as VTH is increased with decrease of gate length, which is also known as “VTH roll-up”. 

This is due to 1) the halo reduces the depletion thickness of S/D to channel junctions, which 

weakens the SCE; 2) at short channel length, S halo overlaps D halo, increasing average channel 

doping, thus increasing the threshold voltage. When channel length is increased, S halo separates 

from D halo, reducing the threshold voltage [124, 141, 143, 144]. 

3.5 Design considering INWE, RSCE and Threshold Variation 

3.5.1 Threshold voltage W.R.T geometry 

Since the threshold voltage becomes a non-constant parameter with width and length due to 

INWE and RSCE, this along with its exponential effect on the current, will have a significant 

impact on the current. As a result, it is worth of investigating before any device geometry is 

selected for a potential cell library design. This is achieved by extracting the VTH of NMOS and 

PMOS in subthreshold saturation region while sweeping the geometry. Both fingered and non-

fingered devices are included so that results from varing the width directly and varying effective 

width with different number of fingers and a fixed finger size can be compared.  

The results are shown in Figure 3.2(a)-(c). Figure 3.2 (a) and (b) show the comparison of VTH 

w.r.t. different geometries between normal and fingered devices. VTHN and VTHP are normalized to 

their values at minimum geometry, respectively. In Figure 3.2(c) PMOS’s 𝜎VTH is shown. Several 

observations can be made based on these results: 1) there are noticeable impacts from INWE & 

RSCE on the threshold voltage of both NMOS and PMOS, with changing W & L. However, for 

devices with changing only the number of fingers and length, there is no impact from INWE and 

the VTH does not increase with greater finger numbers. 2) For impact from INWE, the threshold 

voltage has a sharp increase with width increasing from Wmin to about 2~3Wmin, and then remains 

relatively constant but with minor increase. 3) For RSCE, the threshold voltage decreases linearly 
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from Lmin to 10Lmin. 4) For non-fingered devices, PMOS suffers less impact from INWE & RSCE 

compared with NMOS. VTHP has a change of 10% compared with VTHN’s change of 20% across 

Wmin to 10Wmin. 5) 𝜎VTH’s tendency of being reduced with more area is lessened as the area 

increases to about 3-minimum area. This is because the initial increase in area minimizes local 

variation, leaving global variation to become dominant since it cannot be reduced by increasing the 

device area. 

 
(a) 

 
(b) 

 

 
(c) 

Figure 3.2 Threshold Voltage VS Geometry (a) Normalized VTHN, (b) Normalized VTHP, (c) 
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3.5.2 Current and Current Efficiency W.R.T Geometry 

Since the threshold voltage has such a significant and unexpected variation from its nominal value, 

one would wonder how the INWE and RSCE affect the current and current efficiency. The same 

approach can be used to extract the drain current ID in subthreshold saturation region and ID/Cgate 

w.r.t. W & L. The results are shown in Figure. 3.3 (a) – (b) and Figure 3.4 (a) – (b). 

 
(a) 

 
(b) 

 

Figure 3.3 Current VS Geometry (a) normalized IDN, (b) normalized IDP 

0
0.5

1
1.5

2

0
0.2

0.4
0.6

0.8
0

2

4

6

8

10

12

 

Transistor Width (um)Transistor Length (um)
 

N
o

rm
a
li
z
e
d

 N
M

O
S

 D
ra

in
 C

u
rr

e
n

t 
(I

D
N

)

With Changing Number of Fingers & Length 

of Fixed min-finger-width

With Changing Actual Width & Length                                                     

0

0.5
1

1.5

2

0

0.2

0.4

0.6

0.8
0

2

4

6

8

10

 

Transistor Width (um)Transistor Length (um) 

N
o

rm
a
li
z
e
d

 P
M

O
S

 D
ra

in
 C

u
rr

e
n

t 
(I

D
P

)

With Changing Number of Fingers & Length 

of Fixed min-finger-width

With Changing Actual Width & Length                                                     



51 
 

 
(a) 

 
(b) 

 

Figure 3.4 Current Efficiency VS Geometry (a) normalized IDN/CggN, (b) normalized IDP/CggP 
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RSCE as compared with NMOS at short channel lengths. However, INWE becomes noticeable for 

devices of lengths greater than 3Lmin. It can be observed that the current stays flat as the width is 

increased. 3) Both NMOS and PMOS exhibit a maximum current efficiency (ID/Cgate) at minimum 

geometry. And this parameter decreases with larger width and/or length, however, it stays constant 

and does not change with increased number of fingers for a fixed finger size. This indicates we 

should use multiple fingers to avoid loss of current efficiency to achieve greater drivability. 

 

3.5.3 Proposed Cell Library Sizing and Design- Optimum Finger Methodology 

By observing the threshold voltage’s behavior and its impact on current w.r.t. the device channel 

width and length, it is clear that conventional sizing approaches which consider neither or only one 

of INWE & RSCE will not lead to gate designs that are most energy-efficient and robust under 

reduced power supplies, because subthreshold current is no longer a linear function of the device 

geometry. A design methodology was developed which takes both non-ideal effects into 

consideration and uses a multi-dimensional optimum-point search to find the optimum width and 

length. The first step, is to fit parameters of interest such as    and       to a function of   and  . 

Here polynomial is used to be the fitting function as an example, as shown in Equation (3.6)-(3.7), 

where         
is the polynomial coefficient.  

               (           )  ∑         
       

       
 

       

       

 
(3.6) 

                       (           )  ∑           
       

       
 

       

       

 
(3.7) 

Then the second step is to set the optimization target, e.g. the Energy·FO4-Delay Product, as can 

be seen in Equation (3.8), where       is the sum of low-to-high and high-to-low FO4-Delays. 



53 
 

    (             
                    )         

 ((        (     )          (     ))     
              

 (
  (        (     )          (     ))     )

    (     )

 
  (        (     )          (     ))     )

    (     )
))

 (
  (        (     )          (     ))     )

    (     )

 
  (        (     )          (     ))     )

    (     )
) 

      (           ) 
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Constraints which suit the application where the cell library will be used may be applied. For 

example, one can set the trip point voltage to be VDD/2 for better SNM (Static Noise Margin) & 

over/under-drive and LN=LP for ease of layout. This correlates the geometry of NMOS & PMOS 

and reduces the optimization target to be a function of only 2 variables as shown in Equation (3.9): 

          (    ) 
(3.9) 

Finally, numerical searching can be performed to obtain the desired geometry by substituting the 

fitted parameter function into the optimization target and constraint functions. The designer can 

also apply any other engineering considerations to the returned result in order to achieve 

application specific goals. Either a 2 dimensional search by any programming language or using 

Matlab “fminsearch” function yields the same result. Pseudo Code using javascript is shown in 

Figure. 3.5 and the design flow is shown in Figure. 3.6.  
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Figure 3.5 Optimum finger size search algorithm 

Based on the proposed design methodology, three cell libraries were designed, laid-out, 

characterized and abstracted. They are HVT (High threshold) library (660nm/180nm) used for 

above threshold operation with reduced leakage using high threshold voltage fingers, LVT (Low 

threshold) library (300nm/560nm) used for below 0.5V operation with robustness enhancement 

using large area low threshold fingers, and OF (Optimum Finger) library (220nm/180nm   2) 

used for below 0.45V operation using energy-delay optimized fingers. 

In the LVT Library, LVT and fingered devices are used to build a custom low power cell library, 

as illustrated in Figure 3.7, and is compared with conventional sizing methodology. In the 

proposed low power library gate design, a unit transistor is sized with small width (300nm) and 

large length (560nm) to reduce the threshold voltage by 128~140 mV, resulting in about 10 times 

(e
2.5

) increase in the drain current (subthreshold slope = 2). The proposed design increases the 

device area 3~4 times larger than minimum so local random variation is suppressed by 

approximately 2 times, leaving global/process variation to dominate. Fingered unit transistors are 

used for stacked devices in two and three input gates to avoid the loss of drive caused by INWE. 

The PMOS body is tied to VSS to reduce the PMOS threshold (~60 mV) in order to compensate 

for its lower mobility compared with NMOS in this process. Last, the multiple-finger design 
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causes asymmetry in the layout of multiple-input gates, so additional drain-source-tied transistors 

of equal finger size are placed at rail side to serve as a de-coupling capacitor and layout dummies. 

Thus the proposed cell design not only provides not only greater current density, but also better 

layout regularity and reduced variability as a result of uniform finger suage.  
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Figure 3.6 Optimum Finger Cell Library Design Flow 
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In the OF Library, the unit device has the unit finger which is sized to be minimum geometry to 

produce the best energy-delay-product and at least 2 fingers to provide sufficient area to suppress 

local variation.  The proposed design compared with conventional design is shown in Figure 3.8. 

Table 3.2 shows the performance comparison.  

In this work, LVT cell library is used for early stage tapeout of the digital core with all three 

recording modes but without ADC Calibration capability. OF cell library is used for final tapeout 

with full functionality including ADC Calibration Mode. Section 3.6 presents the standard cell 

library development flow. 
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Figure 3.7 LVT Cell Schematic 
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Figure 3.8 OF Cell Schematic 

The FO4 delay measurement is performed to validate our design. The testbench is built with a 

gate-under-test (GUT) driven by itself for input slew shaping and loaded by 4 replicas of itself 

under 400mV power supply and 2 MHz stimuli. Comparison of the FO4 delay and energy 

consumption measurement of the three most common gates (INVX1, NAND2X1 and NOR2X1) 

using three different sizing can be seen in Table 3.2. In Group A, the EDP-optimized design has 

the worst-case FO4 delay being reduced by at least 72%, which translates to 3.6X speed-up, and 

its EDP is reduced by at least 76%, as compared with the conventionally sized design. In Group 

B, the EDP & SNM-optimized design has the worst-case FO4 delay being reduced by at least 

44% (1.8X Speed-up), and EDP being reduced by at least 31% as compared with the 

conventional design. 
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Table 3.2 OF cell library performance comparison with conventional design 

Sizing 

Method 

Logic Gate Sizing Performance @ VDD = 400mV 

Gate NMOS(nm/nm)      PMOS(nm/nm)      -PBDY tphl(ns) tplh(ns) E(fJ) EDP(fJ·ns) 
Delay 

Reduction 
Speed-up 

EDP 

Reduction 

Group A: 

Optimum  

EDP 

& 
LN=LP 

INVX1 (220/180)   2 (220/180)   2-VSS 1.77 1.88 0.97 3.67 72% 3.6 76% 

NAND2X1 (220/180)   4 (220/180)   2-VSS 1.77 2.93 2.16 21.23 94% 15.5 90% 

NOR2X1 (220/180)   2 (220/180)   4-VSS 3.02 4.51 2.64 20.67 74% 3.9 77% 

Group B: 

Optimum  
EDP&SNM 

& 

LN=LP 

INVX1 (220/360)   2 (220/360)   2-VSS 2.54 3.63 1.34 11.85 47% 1.9 22% 

NAND2X1 (220/360)   4 (220/360)   2-VSS 5.37 5.09 3.34 62.07 80% 5.1 70% 

NOR2X1 (220/360)   2 (220/360)   4-VSS 4.60 9.82 3.76 56.76 44% 1.8 38% 

Group C: 

Conventional 

Sizing 
& 

LN=LP 

INVX1 400/180 700/180-VDD 6.46 6.81 1.11 15.17 N/A N/A N/A 

NAND2X1 800/180 700/180-VDD 27.36 15.89 2.15 205.18 N/A N/A N/A 

NOR2X1 400/180 1400/180-VDD 11.61 17.47 3.06 91.08 N/A N/A N/A 

 

3.6 Standard Cell Library Development 

Standard cell based design methodology is the solution for large scale and complex application 

specific implementations that dictates the success of modern silicon industry. A standard cell is a 

basic cell that is designed for a dedicated function. A standard cell can be used to perform a logic 

function such as NAND (combinational), store state (sequential), filling N-well gap or decouple 

supply noise to maintain local power density (physical). Standard cells are often designed by 

using schematic and layout abstraction. A standard cell library, as shown in Figure 3.9, is a 

collection of such reusable cells with different basic logic functions and drive-strengths, 

abstracted by a set of models which represent functional, timing, power and physical information. 

These models are used by EDA tools with high level design description and constraint files to 

generate the physical layout for fabrication. The functional model, often in a file with extension 

“.v” and “.vhd” in Verilog and VHDL respectively, models the functionality and timing of logic 

gates in the cell library, and is often used for functional verification (simulation) in early design 

stage and final design stage if parasitic RCs of the whole design are extracted for back-annotated 

simulation. The functional/timing/power model, often in files with extension “.lib”, “.alf”, or 
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“.ddc”, models the timing and power for a gate in different arc, load and operating conditions and 

is used as a basis for technology mapping during synthesis. The physical model, often in files 

with “.lef” or “.def” extensions, models the metal shapes within a cell and creates routing 

blockage during physical design phase. Most of the time, the “.lef” file also contains technology 

specific layout design rules that a place/route tool must follow to ensure a DRC clean layout. A 

file with “.gds” extension is a stream out of a cell library used for transfer the cell library among 

different design environments. 
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Figure 3.9: Cell Library Abstraction 
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3.6.1 Cell Library Layout 

Unit Transistor and Fixed Cell Height 

Using the proposed finger optimization algorithm, a close-to-optimum finger size can be obtained 

and it is used as a base unit in cell layout. Every cell in the cell library uses the unit transistor to 

construct more complex structures using multiple unit transistors extended horizontally. This 

regularity reduces the layout design time significantly and also makes the N-well height as well 

as the N Pull-down network physical height constant, resulting in the reduction of N-well related 

DRC violations during physical implementation. 

Within Cell Layout Style 

Within a cell, only Metal 1 and Metal 2 are used and routed orthogonally with Metal 1 direction 

to be horizontal and Metal 2 Vertical. Pins are placed on grid so that when interconnect are routed 

by the EDA router they can be accessed without DRC violations. Multiple pins are staggered to 

give more access flexibility to reduce routing congestions. The horizontal and vertical grid are 

both determined to be 0.6 μm instead of minimum design rule 0.56 μm for relaxing the 

manufacturing stress so defects can be reduced as well as to ease future technology migration. 

Figure 3.10 shows the within-cell layout style and Table 3.3 summarizes the parameters used for 

the cell layout. The layout styles that were followed are listed here: 

 Follow all technology mandatory rules such as DRC and Antenna rules. 

 Gate are built using unit transistors, which has a dog-bone shape with two contacts on the 

diffusion regions for more reliability and less via resistance (Note this increases parasitics) 

 Horizontal and vertical routing grid are both 0.6 μm with no offset 

 Metal 1 and Metal 2 for horizontal and vertical routing respectively, HVHVHV for all levels 

 Fixed cell height as 6 μm with variable cell width, cell height is determined by the most 

complex gate in the library and in our case: DFFNEGNSNRX1  
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 Cell boundary is defined such that cells can be abutted but not overlapped, and within cell 

layout should be at half minimum distance towards the boundary 

 Pins should be placed on the grid intersection, pins of multi-input gates are staggered 

 When cells are abutted horizontally, there should be no gap between N-Wells 

 In multiple input gates such as NAND2X1, NMOS transistors use 4-finger unit devices to 

overcome INWE and maintain drive strength while PMOS transistors use 2-finger unit 

devices. This creates asymmetry in the cell layout and increases the cell area. Drain-Source 

tied transistors of multiple unit transistors are introduced here and used as a local decoupling 

capacitor and a dummy to make all the transistors symmetric and regular. Figure 3.11 shows 

the NAND2X1 layout style. An improvement for reducing layout-dependent stress effects is 

to place dummy transistors of the same finger size at the boundary of each cell at the 

expense of area and performance [145]. 

gx

gy

Metal 1 Metal 2

Pin 1

Pin 2

 

Figure 3.10 Cell Library Layout Pitch and Grid 

 

Table 3.3 Cell library grid and pitch 

Parameter Value(um) Comment 

pitch 0.6 Relaxed from minimum DRC rule (0.56) 

gx 0.6 Horizontal grid spacing 

gy 0.6 Vertical grid spacing 

ss 0.14 Safety zone when abutting cells 

wp 0.3 Power rail width 

h 6.0 Height of a cell, 10 grid 
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Figure 3.11 NAND2X layout style 

 

 

3.6.2 Cell Library Characterization 

The three cell libraries are all characterized using Cadence ELC (Encounter Library 

Characterizer) with standard characterization flow described in [146, 147]. The input slew and 

loading capacitance value are obtained from initial spectre simulation to mimic actual different 

scenarios with respect to slew and loading to provide best modeling accuracy. The smallest slew 

is 2ns which is the delay for a 1X inverter driving itself and the smallest loading capacitance is 

1fF which is the gate capacitance of a 1X inverter. The characterization covers all SS, TT and FF 

corners, with power supply voltage of 350mV, 400mV, 435mV, 450mV, 485mV, 500mV, 

600mV and etc. to produce ECSM-Timing and ECSM-Power model of the library cells. 

3.6.3 Cell Library Abstraction 

The libraries are also abstracted using Cadence Abstract Generator with standard abstract flow. 

Cell library layout gds and technology information which contains DRC and antenna rules are 

imported into the tool to produce the LEF file needed for place and route. Both power net and 

signal net are extracted so the physical design tool can route to anywhere of the net as long as the 

access point is on grid without any DRC violation.  
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3.6.4 Cell Library Summary 

The developed cell library is summarized in Table 3.4. 

Table 3.4 Standard cell library cell list 

Cell Type No. Cell Name Function 

Comb 

Cells 

1 ~ 3 AND2X1, 2, 3 Y = A · B 

4 ~ 6 AND3X1, 2, 3 Y = A · B · C 

7 AOI21X1 Y =           

8 AOI22X1 Y =              

9 ~ 17 BUFX1, 2, 3, 4, 5, 6, 7, 8, 9 Y = A 

18 HAX1 
S = A  B 

C = A · B 

19 ~ 40 
INVX1, 1_5, 2, 2_5, 3, 3_5, 4, 4_5, 5, 5_5, 

6, 6_5, 7, 7_5, 8, 8_5, 9, 9_5, 10, 18, 27 
Y =    

41 MUX21X1 Y = S · A1 +    · A0 

42 NAND2X1 Y =       

43 NAND3X1 Y =          

44 NOR2X1 Y =      

45 NOR3X1 Y =          

46 OAI21X1 Y = (    )     

47 OAI22X1 Y = (    )   (    ) 

48 ~ 50 OR2X1, 2, 3 Y = A + B 

51 ~ 53 OR3X1, 2, 3 Y = A+ B + C 

54 XNOR2X1 Y =      

55 XOR2X1 Y = A  B 

Sequential 

Cells 

56 DFFNEGNRX1 Negative reset D Flip-Flop, negative edge triggered 

57 DFFNEGSRX1 Negative set and reset D Flip-Flop, negative edge triggered 

58 DFFNEGX1 D Flip-Flop, negative edge triggered 

59 DFFPOSNRX1 Negative reset D Flip-Flop, positive edge triggered 

60 DFFPOSSRX1 Negative set and reset D Flip-Flop, positive edge triggered 

61 DFFPOSX1 D Flip-Flop, positive edge triggered 

62 LATCHNEGX1 Latch, negative clock level transparent 

63 LATCHPOSX1 Latch, positive clock level transparent 

Physical 

Cells 

64 DCAP1 Local decoupling Capacitor and N-well Gap Filler 

65 ~ 67 FILL1, 2, 3, 4 Physical Filler for N-Well Gap 
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3.7 Design Flow 

EDA automated design flow is essential for accomplishing large scale complex ASIC physical 

implementation and reducing design time with cell library based methodology through synthesis 

and place & route. In our work, the logic synthesis and physical design of the digital core use 

Cadence RC (RTL Compiler) and SoC Encounter respectively with a digital design flow 

optimized for Sub/Near-Threshold timing closure. Before and after each step, NC Launch, ETS 

(Encounter Timing System) and LEC (Encounter Conformal Logic Equivalence Checker) are 

used for functional verification, static timing analysis and formal verification respectively. Sign-

off verification uses a SDF (Standard Delay Format) file to back-annotate delay timing in 

functional simulation and SPEF (Standard Parasitic Exchange Format) file to model interconnect 

parasitic RCs for post-PR static timing analysis. The design flow is shown in Figure 3.12.  

As shown in Table 3.5, a set of timing constraints is created to define the master and derived 

clocks, account for clock latency and clock uncertainty caused by skew and jitter, as well as 

define design rules such as max fan-out for the synthesis engine to follow. After synthesis, the 

constraint file is used as a design input to SoC Encounter for constraining place & route. 

In the place & route phase, attention has to be paid on the timing closure since the reduced 

transistor drive current and ION/IOFF ratio in Sub/Near-threshold operation significantly increased 

cell delay thus making it difficult for the design to meet timing. This is exacerbated by threshold 

variation due to its exponential effect on the current. Although it is showed that the log-normal 

distribution of subthreshold delay indicates hold violation could be a primary concern for its 

higher likelihood to occur[148], in Sub/Near-threshold region our design with 1.28MHz system 

clock and half cycle register to register paths faces both challenges in meeting setup and hold 

check under the impact of PVT variation. In floorplanning and cell placement phase, 90% of cell 

placement density is mandated to allow buffers with larger footprint for later ECO and 
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decoupling capacitor cells that can be added without disrupting existing cell placement and 

causing routing congestion. After standard cells are placed and design routed, extensive timing 

analysis is done to evaluate critical paths. Netlist (verilog) and extracted RCs (SPEF) are exported 

so that STA can be done using ETS with library timing at multiple corners and multiple VDDs 

with accurate delay calculation. Violated paths are analyzed and then either cleared if identified 

as a false path or fixed by ECOs (inserting repeaters or swapping cells), all in SoC Encounter.  

The ECOed paths are guarded with 10%+ safety margins to allow for more tolerance across PVT 

corners. After some iteration, the design meets all timing checks and if there are no DRC and 

antenna rule violations, it can be streamed out as a GDS file for DRC & LVS in Cadence 

Virtuoso with Assura.  

Table 3.5 Timing constraints summary 

Parameter Value 

Master Clock 1.28MHz 

Derived Clock 640KHz, 128KHz, 80KHz, and 16KHz 

Source Latency 100ps 

Network Latency 100ps 

Setup Jitter 100ps 

Hold Jitter 50ps 

External Delay at Input 1000ps 

External Delay at Output 1000ps 

External Driver 1X Inverter 

False Path RESET pin related path 

Max_fanout 5 

Max_transition 120ns 
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Figure 3.12 Design Flow 
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3.8 Design Verification 

Design verification ensures that the final implementation behaves as intended. In our work, 

thorough design verification at every point during the design process is carried out to confirm 

circuit correctness, from high level simulation to post-silicon testing. This section describes the 

verification techniques used in our work. 

Functional Verification 

Only behavioral functional simulation is required before netlist synthesis when developing the 

high level Verilog code for the digital core. Hierarchical design/verification methodology is 

adopted such that each unit module defined in the early partitioning (“Txbb_mni_rder”, 

“RXbbp5_mni”, “Txbb_fm0crc16_mni” and “controller_mni”) is designed, verified and then 

integrated as the digital core. A testbench is then developed so that the digital core could walk 

through all states so the state coverage can achieve 100% with the predefined test vectors. Any 

deficiencies that may violate functional specification will be rectified through an iterative 

debugging process. A golden Verilog file is obtained upon completion of the RTL design when 

all specifications are met in the functional simulation and will be used for synthesis. The top level 

testbench Verilog is used throughout the design procedure for later functional verification.  

After synthesis, the synthesized Verilog netlist with the library timing is used for functional 

simulation with the same golden testbench. Thorough examination of the simulation result 

ensures that the behavioral function of the synthesized netlist is the same as expected. 

After place & route, again the same golden testbench Verilog is used for functional simulation 

along with the post-PR netlist and SDF file with extracted RC interconnect delay information so 

the simulation is back-annotated. Thorough examination of the simulation result ensures that the 

behavioral function of the post-PR netlist is the same as expected. Otherwise iterations have to be 
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taken to correct possible coding bugs in the RTL design. A screenshot of the top-level functional 

simulation waveform is shown in Figure 3.13.  

 

Figure 3.13 Top level functional simulation of the digital core 

Timing Verification 

STA (Static Timing Analysis) is conducted for post-synthesis and post-PR Verilog netlist. The 

post-synthesis STA uses the synthesized netlist, library timing at TT corner and timing constraint 

file while the post-PR STA uses the post-PR netlist, library timing at multiple corners and 

multiple VDDs with timing constraint file. 

STA is used to exhaustively verify that the design meets all timing constraints with all paths. The 

primary two checks performed are the setup and the hold check, in order to verify the timing 

relationship between the clock and the data of concerned paths satisfies the setup and hold 

requirements.  

The setup check can be expressed as: 

                                                               (3.10) 
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where          is the delay from the clock tree to the launching flip-flop,        is the clock-to-q 

delay of the launching flip-flop,     is the propogation delay of the combinational path between 

the launching flip-flop and capturing flip-flop,          is the delay from the clock tree to the 

capturing flip-flop,                      is the allowable cycle time and        is the setup time of 

the capturing flip-flop. This check places a max constraint for the time required for data to arrive 

at the data input of the capturing flip-flop with setup time and various clock conditions[149]. 

The hold check can be expressed as: 

                                        (3.11) 

Where          is the delay from the clock tree to the launching flip-flop,        is the clock-to-q 

delay of the launching flip-flop,     is the propogation delay of the combinational path between 

the launching flip-flop and capturing flip-flop,          is the delay from the clock tree to the 

capturing flip-flop, and       is the hold time of the capturing flip-flop. This places a min 

constraint for the time required for the data to be stable before changing at the data input of the 

capturing flip-flop with hold time and various clock conditions. Other timing checks are clock 

gating setup/hold check, early/late external delay check, pulse width check, recovery and removal 

checks[149].  

Formal Verification 

Formal verification in our design flow systematically and exhaustively compares the 

mathematical model of the post-synthesis or post-PR netlist with that of the golden Verilog. 

During synthesis and place & route, EDA processes such as technology mapping and ECOs have 

the potential to change the functional behavior of the design, resulting in unexpected system 

failure. It is essential to make sure that these unwanted changes do not exist by having formal 

verification after each change of the netlist during physical implementation. By doing this, all 
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states and transitions are verified and the netlist is said to be logically or mathematically equal to 

the golden Verilog. This ensures the physical design correctness and the implementation is 

logically equal to the high level design. 

Probe Station Test 

The probe station testing verifies the functional correctness of the fabricated circuit by using the 

test vector from the golden testbench Verilog in VCD format so that the post-silicon functional 

verification is identical to pre-silicon and design correctness can be easily verified. Power 

measurement with different supply voltage and frequency will be taken to produce performance 

report. Stress test can also be conducted to find out the functioning points throughout different 

working conditions.  

3.9 Low Power Sense-Amp-Less 8T Memory with Read Boost 

In our work, a Sense-Amp-Less 8T SRAM memory cell with read boost is designed to work with 

a low power supply (400mV ~ 600mV) at moderate speed (16 KHz write and 80 KHz read), 

which is shown in Figure 3.14. An 8T cell topology[150] is chosen for robust read operation 

during burst uplink packet transmission which requires the neural data to be dumped at the a 

frequency 640 KHz which is specified by our custom MNI protocol. Two improvements were 

made to the current 8T cell. First, the same sizing methodology of the cell library gate design is 

used to consider INWE, RSCE and device variation comprehensively. The transistors in the read 

path have two unit fingers to achieve sufficient drivability and suppress local variation for higher 

yield in term of stressed read operation. Second, a Sense-Amp is not utilized here due to its added 

area and power overhead for a 32X8 size memory with small bitline capacitance. To further 

improve the memory read timing without Sense-Amp, the read path is boosted with a level shifter 

to increase the read transistor’s overdrive by more than 4X with second power supply at 700mV, 
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ensuring sufficient current to meet timing constrains. The functional simulated result is shown in 

Figure 3.15.   
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Figure 3.14 8T SRAM Memory Cell Schematic 

 

 

Figure 3.15 8T SRAM Memory Simulation Waveform 
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3.10 Conclusion 

With reduced supply voltage, non-ideal behavior of device parameters such as threshold voltage 

variation, INWE and RSCE become non-negligible due to their exponential effect on device 

current. These effects should be considered comprehensively during the design process. Since the 

conventional analytical and simulation based approaches do not yield optimum design, we re-

investigated the threshold voltage’s behavior w.r.t. different geometries and studied the impact to 

device current and current efficiency (I/C). By observing VTH, I and I/C with respect to different 

transistor width and length for both fingered and non-fingered devices, we found it intuitive for a 

unit device to use minimum geometry for optimum energy efficiency (EDPmin) and two fingers 

for suppressing local random variation. We also proposed to use multiple fingers for stacked 

transistors in multiple input gates. A design methodology has been developed, considering both 

INWE & RSCE by using a fitted and modified INWE-aware, RSCE-aware and variation-aware 

model and sizing transistor’s width and length accordingly to achieve close-to-most energy-

efficient design. Using this method, EDP-optimized cell library with 67 cells including Decap and 

filler cells is developed with FO4 Delay and EDP to be reduced by 44%~72% and 31%~76% 

respectively compared with a conventional cell library gates. Sub/Nearth-Threshold cell libraries 

of 67 cells have been developed with custom layout effort at gate level and fully characterized 

and abstracted. A design flow using the developed cell library is developed to automate the MNI 

digital core implementation with ECOs for timing closure and extensive verification for design 

correctness. Custom sense-amp-less SRAM with 8T bitcell and read boost is designed as the 

temporal data storage for neural data in MNI. 
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CHAPTER IV 
 

 

SILICON IMPLEMENTATION AND MEASUREMENTS 

4.1 Introduction 

To validate our proposed custom MNI protocol and optimum finger design methodology, several 

designs were taped-out for testbench measurement. This chapter presents the silicon 

implementation and measurement result of each design. Section 4.2 presents the test result of the 

SRAM memory used for on-chip neural data storage. Section 4.3 presents the baseband digital 

core version 1 without calibration capability implemented using LVT library based on small 

width and long channel unit finger transistors. Section 4.4 presents the final version of the 

baseband digital core with full functionality implemented with optimum finger cell library which 

uses the optimum finger methodology proposed in this work.  

4.2 SRAM  

In the early stage of this work, the 32X8 SRAM memory block as part of the MNI digital core, 

was designed and fabricated with IBM Corporation’s 180nm CMOS process (CMRF7SF) with an 

area of 0.04 mm². The block diagram of the SRAM memory is shown in Figure 4.1 and consists 

of a 32X8 SRAM cell array, two separate row decoders for write and read operation and bitline 

signal conditioning circuit for dynamic read. Bound by limited probing sites in the pad frame, a 

test vector set derived from March-C [151] is applied to validate functionality and evaluate
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performance. The memory is to write alternating 0xFF, 0x00, 0xAA and 0x55 into each row and 

then read them out. 
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Read

Address
Decoder

WL Driver

Bitline PreCharge
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Figure 4.1 Block diagram of 32X8 SRAM Memory 

 

This procedure is repeated for every row with the address being incremented in the testing process. 

All dies under test are clocked at 16 KHz and 80 KHz, which is the write rate and read rate 

respectively. The level shifters on the read path are powered at 700 mV and the rest, which 

constitute the majority of the circuit, are powered at 400 mV. Since the I/O pad driver circuit 

works at 1.2V to drive the pad capacitance and instrumentation wire capacitance, two level shifters 

are used on chip to bring signals from 400 mV to 1.2V to interface with the logic analyzer. A 

screenshot from the logic analyzer is shown in Figure 4.2. 

Figure 4.3 plots the measured power consumption of different dies while the power supply is 

swept from 0.38 V to 0.6 V while keeping both the read and write clock constant at 80 KHz. 

Current is measured while the memory is stimulated with the same vector for functional test, 
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which enables the memory to write and read continuously with the address being incremented and 

looped. It can be seen that the core current is an exponential function of the supply voltage, which 

conforms to the EKV model. The lowest supply level for proper function is 380 mV with average 

power of 68.4nW. The measured power does not vary much across the 5 dies; The measurement 

has a 𝜎/μ of 0.0696. 

Figure 4.4 shows the power measurement when the power supply is kept constant at 400mV and 

the clock frequency is swept from 1 KHz to 10 MHz logarithmetically.  The same vector is applied 

as previously discussed for functional testing. It can be seen that the memory power consumption 

is leakage dominant below 10 KHz (roughly DC) and becomes a linear function of frequency 

beyond that. At low frequency, e.g. 1 KHz, the power measured represents static leakage power 

and is 28 nW. At 400mV, The memory can function properly at a maximum frequency of 1 MHz 

and fail at 10 MHz in this test.  

In summary, the memory functions correctly at 400 mV and 16 KHz/80 KHz with an average 

active power consumption of 81.4 nW. A summary of the SRAM memory measurement result is 

shown in Table 4.1.  

 

 

Figure 4.2 SRAM Memory Functional Testing Waveform 
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Figure 4.3SRAM Memory Power Sweeping Measurement Result 

 

Figure 4.4 SRAM Memory Frequency Sweeping Measurement Result 

Table 4.1 SRAM result summary 

Technology 180nm 6-metal CMOS with RVT Device 

Bit Cell 8T cell, read path isolated and boosted 

SRAM Size 32   8 

SRAM Area 0.17mm   0.25mm ≈ 0.04 mm
2
 

 Power 
81.4nW @ 400mV, 80KHz, 27˚C 

28nW @ 400mV, 1 KHz, 27˚C  

Performance 
VDDmin = 0.36V @ 1KHz, 27˚C 

fmax = 1MHz @ 400mV, 27˚C 
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4.3 Digital Core LVT Implementation (Early Stage) 

In the early stage, the design of digital core which implements MNI protocol without calibration 

capability is implemented with our LVT library and fabricated with IBM Corporation’s 180nm 

CMOS process (CMRF7SF) with an area of 0.34mm². In the physical design, a manual ECO 

(Engineering Change Order) optimization flow is used instead of using the automatic tool 

optimization to push the power as low as possible while meeting the timing constrains. The 

microphotograph of the die is shown in Figure 4.5.  

 

Figure 4.5 Die microphotograph of LVT implementation 

Probe Station testing of unbounded die was carried out with Tektronix TLA-720 Logic Analyzer 

and HP-4155 Source Measurement Kit. The test-bench setup is shown in Figure 4.6. 
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Figure 4.6 digital core testbench (LVT implementation) 



78 
 

Functionality verification is done by injecting stimuli from the TLA720 logic analyzer to the 

DUT (Design-Under-Test) and viewing its output. A screen shot of logic analyzer is shown in 

Figure 4.7. The testbench sends out the same test vector as in design stage, which covers all 

system operating modes and FSM states. The logic analyzer’s pattern generator works as the 

reader which sends downlink packets to the digital core. The downlink packets, with predefined 

command, sequence and timing, trigger the digital core to enter/leave each state in the order of 

Do Stamp, Respond Stamp, Do Streaming, Respond Streaming, Do Snippet, Respond Snippet, 

Standby, ACK, and last BIST and to send uplink packets with either short or long preamble. 

Design correctness is validated through running repeated loops of the testbench and observing the 

available output signals with the logic analyzer. The proposed design works at the system clock 

of 1.28 MHz with 640 Kbps communication data rate.  

 

Figure 4.7 digital core functional validation (LVT implementation) 

Power measurement is done by sweeping the core voltage and system clock and recording the 

average current, as is shown in Figure 4.8 and Figure 4.9.  Two observations are made from the 

measurement results: 1) Average consumed current is an exponential function of the power 
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supply voltage, this is the result of digital circuits working in weak/moderate inversion[123] 

where current is an exponential function of the overdrive voltage. This also emphasizes the 

significance of down scaling the digital power supply in order to reduce the power. 2) The 

average current increases linearly with the increase in clock frequency, indicating that the system 

is working in the dynamic power dominate mode. This confirms our initial cell library gate design 

methodology which reduces device threshold voltage for more over-drive voltage. The baseband 

digital core consumes 4.5μA of average current under 450mV resulting in 2μW of power, with 

system clock at 1.28MHz. The measurement has a 𝜎/μ of 0.1126. 

Finally, stress testing is accomplished by sweeping the core power supply voltage and system 

clock frequency simultaneously and observing the failure of the system operation. A shmoo plot 

is shown in Figure 4.10. The plot demonstrates that the lowest VDD under which the baseband 

core functions properly is 300mV at 1 KHz, and the highest functioning frequency is 1.718MHz 

at 500mV. A summary of the baseband digital core version 1 measurement result is shown in 

Table 4.2.  

 

Figure 4.8 Power Sweeping Measurement Result (LVT implementation) 
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Figure 4.9 Frequency Sweeping Measurement Result (LVT implementation) 
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2000KHz 0 0 0 0 0 0 0 0 0 0 0 1

1333KHz 0 0 0 0 0 0 0 0 0 1 1 1
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100KHz 0 0 0 1 1 1 1 1 1 1 1 1

10KHz 0 0 0 1 1 1 1 1 1 1 1 1

1KHz 0 0 1 1 1 1 1 1 1 1 1 1

fail:0 pass:1  

Figure 4.10 Shmoo Plot (LVT implementation) 

 

Table 4.2 Digital core LVT implementation result summary 

Technology 180nm 6-metal CMOS with RVT Device 

Cell Library LVT Library with 67 cells 

MNI Protocol YES 

MNI ADC Calibration No 

Gate Count 5353 

Area 0.82mm   0.41mm ≈ 0.34 mm
2
 

 Power 
2 μW @ 450mV, 1.28 MHz, 27˚C 

346.5 nW @ 450mV, 1 KHz, 27˚C  

Performance 
VDDmin = 300 mV @ 1 KHz, 27˚C 

fmax = 1.33MHz @ 450mV, 27˚C 

 

 

10
3

10
4

10
5

10
6

0

1

2

3

4

5
x 10

-6

freq(Hz)

I D
D

(A
)

 

 

V
DD

 at 400mV

V
DD

 at 450mV

800KHz 1.3MHz

Power Vs Frequency



81 
 

4.4 Digital Core Implementation with Optimum Finger Library (Final Version) 

In the final stage, the system with full functionality is implemented with the proposed optimum 

finger cell library and fabricated with IBM Corporation’s 180nm CMOS process (CMRF7SF) with 

an area of 0.48mm². In the physical design, ECO effort and number of iterations is significantly 

reduced due to the highly optimized cell library design at transistor level. The microphotograph of 

the die is shown in Figure 4.11. 

 

Figure 4.11 Digital Core OF Implementation Die Microphotograph 

 

Probe Station testing of unbounded die was carried out with Tektronix TLA-720 Logic Analyzer 

and HP-4155 Source Measurement Kit. The test-bench setup is similar to the above one and is 

shown in Figure 4.12. 
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Figure 4.12 digital core testbench (OF implementation) 
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Functionality verification is done by injecting stimuli from the TLA720 logic analyzer to the 

DUT (Design-Under-Test) and viewing its output. The testbench sends out the same test vector as 

in the design stage when developing the digital core with full functionality, which covers all 

system operating modes and FSM states including the capability of enabling ADC calibration. 

The logic analyzer’s pattern generator works as the reader which sends downlink packets to the 

digital core. The downlink packets, with predefined command, sequence and timing, trigger the 

digital core to enter/leave each state in the order of Do Calibration, Respond Calibration Do 

Stamp, Respond Stamp, Do Streaming, Respond Streaming, Do Snippet, Respond Snippet, 

Standby, ACK, and then BIST and to send uplink packet with either short or long preamble. 

Design correctness is then validated through running repeated loops of the testbench and 

observing the available output signals with the logic analyzer. Figure 4.13 shows the screenshot 

of the downlink and uplink communication from oscilloscope, and Figure 4.14 shows the 

screenshot of the logic analyzer. Functional testing indicates circuits on die working correctly.  

 

Figure 4.13 Downlink and Uplink Communication Waveform (OF implementation) 

Downlink 
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Figure 4.14 Digital Core Functional Testing Waveform (OF implementation) 

 

Power measurement is done by sweeping the core voltage and system clock and recording the 

average current, as shown in Figure 4.15 and Figure 4.16.  Two observations similar to the 

previous test are made from these measurement results: 1) Average consumed current is an 

exponential function of the power supply voltage, this is the result of digital circuits working in 

weak/moderate inversion where current is an exponential function of the overdrive voltage. This 

emphasizes the significance of down scaling the digital power supply in order to reduce the 

power. 2) The average current increases linearly with the increase of the clock frequency, 

indicating the system is working in the dynamic power dominate mode. The final version 

baseband digital core implemented using the optimum finger library consumes 5.6 μA of average 

current with 400mV supply and 1.28MHz system clock, resulting in 2.2μW of power. The 

measurement has a 𝜎/μ of 0.0565, which has 50% reduction compared with the LVT version. 
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Figure 4.15 Power Sweeping Measurement Result (OF implementation) 

 

 

Figure 4.16 Frequency Sweeping Measurement Result (OF implementation) 

 

Finally, stress testing is done by sweeping the core power supply voltage and system clock 

frequency simultaneously and observing the failure of the system operation. A shmoo plot is 

shown in Figure 4.17. The plot demonstrates that the lowest VDD under which the baseband core 

functions properly is 385 mV at 1 KHz, with the highest functioning frequency being 3 MHz at 

450mV, which is 2.3X faster than the previous design even the final version has even more 

complicated functionality. A summary of the baseband digital core of final version measurement 

result is shown in Table 4.3. 
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f\VDD(V) 0.38 0.385 0.39 0.395 0.4 0.405 0.41 0.415 0.42 0.425 0.43 0.45 
5MHz 0 0 0 0 0 0 0 0 0 0 0 0 
4MHz 0 0 0 0 0 0 0 0 0 0 0 0 
3MHz 0 0 0 0 0 0 0 0 0 1 1 1 
2MHz 0 0 0 0 0 0 1 1 1 1 1 1 
1MHz 0 0 1 1 1 1 1 1 1 1 1 1 
100KHz 0 0 1 1 1 1 1 1 1 1 1 1 
10KHz 0 0 1 1 1 1 1 1 1 1 1 1 
1KHz 0 1 1 1 1 1 1 1 1 1 1 1 

             

   
fail: 0 

   

pass: 
1 

      

Figure 4.17 Shmoo Plot (OF implementation) 

 
 

Table 4.3 Digital core OF implementation result summary 

Technology 180nm 6-metal CMOS with RVT Device 

Cell Library Optimum Finger Library with 67 cells 

MNI Protocol YES 

MNI ADC Calibration YES 

Gate Count 8386 

Area 0.95mm   0.51mm ≈ 0.48 mm
2
 

 Power 
2.24 μW @ 400mV, 1.28 MHz, 27˚C 

1.18 μW @ 400mV, 1 KHz, 27˚C  

Performance 
VDDmin = 385 mV @ 1 KHz, 27˚C 

fmax = 1.69MHz @ 400mV, 27˚C 

 

Table 4.4 shows the comparison of aperformance of our work with that of others. It is shown that 

our design which utilizes custom protocol, optimum finger cell library and LVT SRAM memory, 

as well as low power design flow has the lowest power performance (290Kbps/μW) with 1.2X 

improvement over the current state-of-the-art [107].  
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Table 4.4 Performance comparisons with existing neural interface’s digital blocks 

  This Work [70] [107] [98] [152] [100] [64] [153] 

Sensors Neural Neural Neural Temperature Temperature Image Neural Neural 

process 0.18 μm 0.5 μm 0.18 μm 0.13 μm 0.13 μm 0.18 μm 1.5 μm 1.5 μm 

Power Supply 0.45 V 3V 1.8 V 1 V 0.7 V 0.95 V 3 V 3V 

Power 2.2 μW 1 mW 42 μW 3.5 μW 4 μW 1.3 mW 516 μW 450 μW 

System Clock 1.28 MHz 24 MHz N/A 1.92 MHz 3 MHz 20~24 MHz 70 KHz 154 KHz 

Data Rate 640 Kbps N/A 10 Mbps 640 Kbps 640 Kbps 25 Kbps N/A 154 Kbps 

Kbps/μW 290 N/A 238 182 160 0.02 N/A 0.34 

Year 2013 2012 2011 2011 2010 2009 2005 2005 
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CHAPTER V 
 

CONCLUSION 

5.1 Summary of Work 

The complex nature of the nervous system and bio-compatibility of human/animal body require 

that integrated circuit and system designers to push devices to the limit with low cost and short 

design time, while still satisfying many kinds of sophisticated communication and control 

operations. This work investigates the design of a low power digital baseband core with a custom 

tailored protocol for a wirelessly powered Micro-Neural-Interface used for neural signal 

extraction. The communication protocol incorporates PIE encoding & CRC-5 and FM0 encoding 

& CRC-16 for downlink and uplink data transmission, respectively, as defined in Gen-2 Standard. 

Packet format is custom defined as to minimize the communication time.   

On the circuit level, it is intuitive to have the digital system work in Sub/Near-Threshold region to 

reduce the power consumption. However, with reduced supply voltage, non-ideal behavior of 

device parameters such as threshold voltage variation, INWE and RSCE become non-negligible 

due to their exponential effect on device current. These effects should be considered 

comprehensively during the design process. Since conventional analytical and simulation based 

approaches do not yield optimal design solution, we re-investigated the threshold voltage’s 

behavior w.r.t. different geometries and studied the impact to device current and current efficiency 

(I/C). A design methodology was developed, considering both INWE & RSCE by using a fitted 

and modified INWE-aware, RSCE-aware and variation-aware model and sizing the transistor’s 

width and length accordingly to achieve close-to- most energy-efficient design.
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Using such method, HVT for reducing leakage, LVT for robustness and EDP-optimized Optimum 

Finger cell libraries with 67 cells including decoupling and filler cells in IBM Corporation’s 

180nm CMOS process (CMRF7SF) are developed. The Optimum Finger cell library has its FO4 

Delay and EDP reduced by 44%~72% and 31%~76% respectively as compared with a 

conventional cell library gates.  

The design of MNI digital core using the optimum finger library was taped-out and measured. It 

exhibits functionality and robustness with ultra-low-power performance of 2.2 μW of average 

power at 400mV power supply and 1.28MHz system clock. With three custom data collecting 

mode: Stamp, Streaming and Snippet for efficient neural data recording, it supports a data rate of 

640Kbps, resulting in a power communication effeiciency of 290 Kbps/μW. This design validates 

our low power digital design methodology which considers INWE, RSCE and device variation 

and demonstrates robustness to stresses such as frequency as high as 1.69 MHz at 400mV and 

supply voltages as low as 385mV at DC. The cell library has been made open source which can 

be obtained by contacting MSVLSI design group at Oklahoma State University[154].  

 

5.2 Future Work 

To further improve the digital aspect of Neural Interface systems, researchers are encouraged to 

explore what has not been investigated in this work. One obvious point is to utilize advanced low 

power design techniques such as DFVS (Dynamic Frequency and Voltage Scaling) or 

simultaneous clock and power gating to further strive for the low power limit. If financially 

feasible, it is also encouraged that processes with multi-VT devices be used to provide more 

flexibility in the physical design. Another thing to note is that this work is to serve Neural Interface 

that is targeted to understand motor neurological patterns in Central Nervous System such as 

cortex area in the brain, so the concept may not necessarily be able to be directly applied to other 

needs. Since the nervous system varies so much in different behaving subjects, subject states, 
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recording areas, it is desired that specific interfacing task must require application specific protocol 

for control and communication for best results. Nevertheless, further research is encouraged to 

invent universal control and processing system for more variations of the nervous system with 

which the Neural Interface will work. Finally, besides the digital aspect, Neural Interface as an 

interdisciplinary research topic, require much more work to improve all other aspects such as bio-

compatible packaging, probe fabrication, new way of energy harvesting and communication, low 

power analog and mixed-signal circuit design, post-processing software and elegant user interface. 

It is at the best wishes that one day, neural interface can end the suffering of people by helping 

them restore neurological functions and improve the life quality of human beings. 



90 
 

REFERENCES 
 

[1] M. H. N. L. L. Rauch, Radio Telemetry, Second Edition ed. New York: John Wiley & 

Sons, INC, 1956. 

[2] P. A. B. W. J. Mayo-Wells, Telemetering Systems. New York: Reinhold Publishing 

Corporation, 1959. 

[3] A. B. Perry, et al., Telemetering Systems. New York: Reinhold Publishing Corporation, 

1959. 

[4] W. J. Mayo-wells. (1963). The Oringins of Space Telemetry. 4.  

[5] E. V. Evarts, "Pyramidal tract activity associated with a conditioned hand movement in 

the monkey," Journal of Neurophysiology, vol. 29, pp. 1011-1027, 1968. 

[6] A. A. Langer, et al., "Circuit for monitoring a heart and for effecting cardioversion of a 

needy heart," ed: Google Patents, 1980. 

[7] P. R. KENNEDY, et al., "The cone electrode : ultrastructural studies following long-term 

recording in rat and monkey cortex," Neuroscience letters, vol. 142, pp. 89-94, 1992. 

[8] B. Qing, et al., "A high-yield microassembly structure for three-dimensional 

microelectrode arrays," Biomedical Engineering, IEEE Transactions on 

vol. 47, pp. 281-289, 2000. 

[9] K. Warwick. Available: http://www.kevinwarwick.com/ 

[10] A. D. Krahn, et al., "Final results from a pilot study with an implantable loop recorder to 

determine the etiology of syncope in patients with negative noninvasive and invasive 

testing," The American journal of cardiology, vol. 82, p. 117, 1998. 

 

http://www.kevinwarwick.com/


91 
 

[11] K. Akert, "Walter Rudolf Hess (1881-1973) and His Contribution to Neuroscience," 

Journal of the History of the Neurosciences, vol. 8, pp. 248-263, 1999. 

[12] J. M. DELGADO, "Radio Stimulation of the Brain in Primates and Man Fourth Becton, 

Dickinson and Company Oscar Schwidetzky Memorial Lecture," Anesthesia & 

Analgesia, vol. 48, pp. 529-542, 1969. 

[13] J. M. R. Delgado, Physical control of the mind: Toward a psychocivilized society vol. 41: 

Harpercollins, 1969. 

[14] G. S. Brindley and W. Lewin, "The sensations produced by electrical stimulation of the 

visual cortex," The Journal of physiology, vol. 196, pp. 479-493, 1968. 

[15] W. Dobelle and M. Mladejovsky, "Phosphenes produced by electrical stimulation of 

human occipital cortex, and their application to the development of a prosthesis for the 

blind," The Journal of physiology, vol. 243, pp. 553-576, 1974. 

[16] E. Schmidt, et al., "Feasibility of a visual prosthesis for the blind based on intracortical 

micro stimulation of the visual cortex," Brain, vol. 119, pp. 507-522, 1996. 

[17] R. A. Normann, et al., "A neural interface for a cortical vision prosthesis," Vision 

Research, vol. 39, pp. 2577-2587, 1999. 

[18] W. H. Dobelle, "Artificial vision for the blind by connecting a television camera to the 

visual cortex," ASAIO journal, vol. 46, pp. 3-9, 2000. 

[19] D. Chen, et al., "Advances in neural interfaces: report from the 2006 NIH Neural 

Interfaces Workshop," Journal of Neural Engineering, vol. 4, p. 137, 2007. 

[20] D. M. Durand, "Focus on the neural interface," Journal of Neural Engineering, vol. 6, p. 

050202, 2009. 

[21] D. Schmorrow and A. A. Kruse, "DARPA's Augmented Cognition Program-tomorrow's 

human computer interaction from vision to reality: building cognitively aware 

computational systems," in Human Factors and Power Plants, 2002. Proceedings of the 

2002 IEEE 7th Conference on, 2002, pp. 7-1-7-4. 



92 
 

[22] W. Thies and L. Bleiler, "2011 Alzheimer's disease facts and figures," Alzheimer's & 

dementia: the journal of the Alzheimer's Association, vol. 7, p. 208, 2011. 

[23] D. Kell, "Towards a unifying, systems biology understanding of large-scale cellular death 

and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, 

prions, bactericides, chemical toxicology and others as examples," Archives of 

Toxicology, vol. 84, pp. 825-889, 2010/11/01 2010. 

[24] Lain. (2008, A Brief Introduction to Parkinson's, Alzheimers, Huntington's and MS. 

Available: http://voices.yahoo.com/a-brief-introduction-parkinsons-alzheimers-

huntingtons-1362653.html 

[25] F. O. Walker, "Huntington's disease," The Lancet, vol. 369, pp. 218-228, 2007. 

[26] J. Jankovic, et al., Parkinson's disease and movement disorders: Lippincott Williams & 

Wilkins, 2007. 

[27] G. E. Loeb, "Neural prosthetic interfaces with the nervous system," Trends in 

Neurosciences, vol. 12, pp. 195-201, 1989. 

[28] J. Nolte, The Human Brain: An Introduction to Its Functional Anatomy: Mosby, 2002. 

[29] E. R. Kandel, et al., Principles of neural science vol. 4: McGraw-Hill New York, 2000. 

[30] J. K. Chapin and K. A. Moxon, Neural prostheses for restoration of sensory and motor 

function: CRC Press, 2010. 

[31] R. B. Stein, et al., Neural prostheses: replacing motor function after disease or disability: 

Oxford University Press, 1992. 

[32] J. G. Beaumont, Introduction to neuropsychology: Guilford Press, 2008. 

[33] S. D. Coates, "Neural Interfacing: Forging the Human-Machine Connection," Synthesis 

Lectures on Biomedical Engineering, vol. 3, pp. 1-112, 2008. 

[34] G. Schalk, et al., "BCI2000: a general-purpose brain-computer interface (BCI) system," 

Biomedical Engineering, IEEE Transactions on, vol. 51, pp. 1034-1043, 2004. 

http://voices.yahoo.com/a-brief-introduction-parkinsons-alzheimers-huntingtons-1362653.html
http://voices.yahoo.com/a-brief-introduction-parkinsons-alzheimers-huntingtons-1362653.html


93 
 

[35] B. Blankertz, et al., "The non-invasive Berlin Brain-Computer Interface: Fast acquisition 

of effective performance in untrained subjects," NeuroImage, vol. 37, pp. 539-550, 2007. 

[36] S. Waldert, et al., "Hand movement direction decoded from MEG and EEG," The Journal 

of neuroscience, vol. 28, pp. 1000-1008, 2008. 

[37] J. R. Millan, et al., "Noninvasive brain-actuated control of a mobile robot by human 

EEG," Biomedical Engineering, IEEE Transactions on, vol. 51, pp. 1026-1033, 2004. 

[38] S. M. Sukthankar and N. P. Reddy, "Virtual reality of'squeezing' using hand EMG 

controlled finite element models," in PROC ANNU CONF ENG MED BIOL, IEEE, 

PISCATAWAY, NJ,(USA), 1993, 1993. 

[39] Y. Barniv, et al., "Using EMG to anticipate head motion for virtual-environment 

applications," Biomedical Engineering, IEEE Transactions on, vol. 52, pp. 1078-1093, 

2005. 

[40] V. Prabhakaran, et al., "Neural substrates of fluid reasoning: an fMRI study of neocortical 

activation during performance of the Raven's Progressive Matrices Test," Cognitive 

psychology, vol. 33, pp. 43-63, 1997. 

[41] K. L. Phan, et al., "Neural correlates of individual ratings of emotional salience: a trial-

related fMRI study," NeuroImage, vol. 21, p. 768, 2004. 

[42] D. J. Heeger and D. Ress, "What does fMRI tell us about neuronal activity?," Nature 

Reviews Neuroscience, vol. 3, pp. 142-151, 2002. 

[43] T. D. Coates, A Neural Network Based Cybernetic Interface for Identification of Simple 

Stimuli Based on Electrical Activity in an Intact Whole Nerve: Pennsylvania State 

University, 2001. 

[44] D. J. Tyler and D. M. Durand, "Functionally selective peripheral nerve stimulation with a 

flat interface nerve electrode," Neural Systems and Rehabilitation Engineering, IEEE 

Transactions on, vol. 10, pp. 294-303, 2002. 



94 
 

[45] G. T. Kovacs, et al., "Regeneration microelectrode array for peripheral nerve recording 

and stimulation," Biomedical Engineering, IEEE Transactions on, vol. 39, pp. 893-902, 

1992. 

[46] A. Branner, et al., "Selective stimulation of cat sciatic nerve using an array of varying-

length microelectrodes," Journal of Neurophysiology, vol. 85, pp. 1585-1594, 2001. 

[47] P. K. Campbell, et al., "A 100 electrode intracortical array: structural variability," 

Biomedical sciences instrumentation, vol. 26, p. 161, 1990. 

[48] R. R. Harrison, et al., "A Low-Power Integrated Circuit for a Wireless 100-Electrode 

Neural Recording System," Solid-State Circuits, IEEE Journal of, vol. 42, pp. 123-133, 

2007. 

[49] C. Pang, et al., "Electrolysis-based diaphragm actuators," Nanotechnology, vol. 17, p. 

S64, 2006. 

[50] J. P. Seymour and D. R. Kipke, "Fabrication of polymer neural probes with sub-cellular 

features for reduced tissue encapsulation," in Engineering in Medicine and Biology 

Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE, 2006, pp. 

4606-4609. 

[51] Y. Kato, et al., "Preliminary study of multichannel flexible neural probes coated with 

hybrid biodegradable polymer," in Engineering in Medicine and Biology Society, 2006. 

EMBS'06. 28th Annual International Conference of the IEEE, 2006, pp. 660-663. 

[52] S. Kisban, et al., "Microprobe array with low impedance electrodes and highly flexible 

polyimide cables for acute neural recording," in Engineering in Medicine and Biology 

Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 

175-178. 

[53] E. Patrick, et al., "Design and fabrication of a flexible substrate microelectrode array for 

brain machine interfaces," in Engineering in Medicine and Biology Society, 2006. 

EMBS'06. 28th Annual International Conference of the IEEE, 2006, pp. 2966-2969. 



95 
 

[54] J. A. Stamford and J. B. Justice, "Peer Reviewed: Probing Brain Chemistry: Voltammetry 

Comes of Age," Analytical chemistry, vol. 68, pp. 359-363, 1996. 

[55] G. E. Loeb, et al., "BION™ system for distributed neural prosthetic interfaces," Medical 

Engineering & Physics, vol. 23, pp. 9-18, 2001. 

[56] S. M. Rao, et al., "Distributed neural systems underlying the timing of movements," The 

Journal of Neuroscience, vol. 17, pp. 5528-5535, 1997. 

[57] K. Ohnishi, et al., "Neural machine interfaces for controlling multifunctional powered 

upper-limb prostheses," 2007. 

[58] R. A. Normann, "Technology insight: future neuroprosthetic therapies for disorders of the 

nervous system," Nature Clinical Practice Neurology, vol. 3, pp. 444-452, 2007. 

[59] G. Buzsáki, "Large-scale recording of neuronal ensembles," nature neuroscience, vol. 7, 

pp. 446-451, 2004. 

[60] J. P. Donoghue, "Connecting cortex to machines: recent advances in brain interfaces," 

nature neuroscience, vol. 5, pp. 1085-1088, 2002. 

[61] B. Gosselin, "Recent advances in neural recording microsystems," Sensors, vol. 11, pp. 

4572-4597, 2011. 

[62] R. H. Olsson and K. D. Wise, "A three-dimensional neural recording microsystem with 

implantable data compression circuitry," Solid-State Circuits, IEEE Journal of, vol. 40, 

pp. 2796-2804, 2005. 

[63] A. M. Sodagar, et al., "An Implantable 64-Channel Wireless Microsystem for Single-Unit 

Neural Recording," Solid-State Circuits, IEEE Journal of, vol. 44, pp. 2591-2604, 2009. 

[64] P. Mohseni, et al., "Wireless multichannel biopotential recording using an integrated FM 

telemetry circuit," Neural Systems and Rehabilitation Engineering, IEEE Transactions 

on, vol. 13, pp. 263-271, 2005. 

[65] S. Farshchi, et al., "A TinyOS-enabled MICA2-BasedWireless neural interface," 

Biomedical Engineering, IEEE Transactions on, vol. 53, pp. 1416-1424, 2006. 



96 
 

[66] C. A. Chestek, et al., "HermesC: Low-Power Wireless Neural Recording System for 

Freely Moving Primates," Neural Systems and Rehabilitation Engineering, IEEE 

Transactions on, vol. 17, pp. 330-338, 2009. 

[67] D. J. Yeager, et al., "NeuralWISP: A Wirelessly Powered Neural Interface With 1-m 

Range," Biomedical Circuits and Systems, IEEE Transactions on, vol. 3, pp. 379-387, 

2009. 

[68] H. Miranda, et al., "HermesD: A High-Rate Long-Range Wireless Transmission System 

for Simultaneous Multichannel Neural Recording Applications," Biomedical Circuits and 

Systems, IEEE Transactions on, vol. 4, pp. 181-191, 2010. 

[69] D. Borton, et al., "Developing implantable neuroprosthetics: A new model in pig," in 

Engineering in Medicine and Biology Society,EMBC, 2011 Annual International 

Conference of the IEEE, 2011, pp. 3024-3030. 

[70] C. Kuang-Wei, et al., "100-Channel wireless neural recording system with 54-Mb/s data 

link and 40%-efficiency power link," in Solid State Circuits Conference (A-SSCC), 2012 

IEEE Asian, 2012, pp. 185-188. 

[71] A. Rodriguez-Perez, et al., "A 64-channel inductively-powered neural recording sensor 

array," in Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE, 2012, pp. 

228-231. 

[72] Y. Ming, et al., "A 100-channel hermetically sealed implantable device for wireless 

neurosensing applications," in Circuits and Systems (ISCAS), 2012 IEEE International 

Symposium on, 2012, pp. 2629-2632. 

[73] Z. Xiaodan, et al., "A 100-Channel 1-mW Implantable Neural Recording IC," Circuits 

and Systems I: Regular Papers, IEEE Transactions on, vol. 60, pp. 2584-2596, 2013. 

[74] A. H. Marblestone, et al., "Physical principles for scalable neural recording," Frontiers in 

computational neuroscience, vol. 7, 2013. 



97 
 

[75] D. Seo, et al., "Neural dust: An ultrasonic, low power solution for chronic brain-machine 

interfaces," arXiv preprint arXiv:1307.2196, 2013. 

[76] T. Ibrahim, et al., "Electromagnetic Power Absorption and Temperature Changes due to 

Brain Machine Interface Operation," Annals of Biomedical Engineering, vol. 35, pp. 825-

834, 2007/05/01 2007. 

[77] Y. Zhao, et al., "Studies in RF Power Communication, SAR, and Temperature Elevation 

in Wireless Implantable Neural Interfaces," PLoS ONE, vol. 8, p. e77759, 2013. 

[78] R. L. Rennaker, et al., "Spatial and temporal distribution of odorant-evoked activity in the 

piriform cortex," The Journal of neuroscience, vol. 27, pp. 1534-1542, 2007. 

[79] T. Ware, et al., "Smart Polymers for Neural Interfaces," Polymer Reviews, vol. 53, pp. 

108-129, 2013/01/01 2013. 

[80] U.-K. Moon and B.-S. Song, "Background digital calibration techniques for pipelined 

ADCs," Circuits and Systems II: Analog and Digital Signal Processing, IEEE 

Transactions on, vol. 44, pp. 102-109, 1997. 

[81] S.-H. Lee and B.-S. Song, "Digital-domain calibration of multistep analog-to-digital 

converters," Solid-State Circuits, IEEE Journal of, vol. 27, pp. 1679-1688, 1992. 

[82] D. C. Daly and A. P. Chandrakasan, "A 6-bit, 0.2 V to 0.9 V highly digital flash ADC 

with comparator redundancy," Solid-State Circuits, IEEE Journal of, vol. 44, pp. 3030-

3038, 2009. 

[83] C. Hutchens, et al., "Implantable radio frequency identification sensors: Wireless power 

and communication," in Engineering in Medicine and Biology Society, EMBC, 2011 

Annual International Conference of the IEEE, 2011, pp. 2886-2892. 

[84] R. Liao, et al., "Enabling Energy Efficient Protocol Processing for Passive RFID Sensors 

Using Sub/Near-Threshold 

Circuit," presented at the IEEE SOI-3D-Subthreshold Microelectronics Technology Unified 

Conference, Monterey, CA, 2013. 



98 
 

[85] A. Guanglei, et al., "A 700mV low power pipeline ADC using a novel common mode 

feedback circuit and offset cancellation technique," in Circuits and Systems (MWSCAS), 

2012 IEEE 55th International Midwest Symposium on, 2012, pp. 210-213. 

[86] A. B. Rumiana Krasteva, Vesselin Georchev, Ivilin Stoianov. (2005, Application of 

Wireless Protocols Bluetooth and ZigBee in Telemetry System Development. Available: 

http://www.iit.bas.bg/PECR/55/30-38.pdf 

[87] Wikipedia. (2009). Bluetooth. Available: http://en.wikipedia.org/wiki/Bluetooth 

[88] Atmel. The Bluetooth Wireless Technolgy White Paper. Available: 

http://www.atmel.com/dyn/resources/prod_documents/DOC1991.PDF 

[89] L. P. Galeottei, M. ; Marchesi, C., "Development of a low cost wearable prototype for 

long-term vital signs monitoring based on embedded integrated wireless module," 

Computers in Cardiology, pp. 905-908, 2008. 

[90] L. S. S. K. S. G. J. Weinmann, "Research challenges in wireless networks of biomedical 

sensors," presented at the International Conference on Mobile Computing and 

Networking, 2001. 

[91] E. EPCglobal, "Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID 

Protocol for Communications at 860 MHz–960 MHz Version 1.0. 9," K. Chiew et al./On 

False Authenticationsfor C1G2 Passive RFID Tags, vol. 65, 2004. 

[92] R. Barnett, et al., "A Passive UHF RFID Transponder for EPC Gen 2 with -14dBm 

Sensitivity in 0.13&#x003BC;m CMOS," in Solid-State Circuits Conference, 2007. 

ISSCC 2007. Digest of Technical Papers. IEEE International, 2007, pp. 582-623. 

[93] K. V. S. Rao, "An overview of backscattered radio frequency identification system 

(RFID)," in Microwave Conference, 1999 Asia Pacific, 1999, pp. 746-749 vol.3. 

[94] H. Stockman, "Communication by Means of Reflected Power," Proceedings of the IRE, 

vol. 36, pp. 1196-1204, 1948. 

http://www.iit.bas.bg/PECR/55/30-38.pdf
http://en.wikipedia.org/wiki/Bluetooth
http://www.atmel.com/dyn/resources/prod_documents/DOC1991.PDF


99 
 

[95] J. Polastre, et al., "Versatile low power media access for wireless sensor networks," in 

Proceedings of the 2nd international conference on Embedded networked sensor systems, 

2004, pp. 95-107. 

[96] T. Camilo, et al., "An energy-efficient ant-based routing algorithm for wireless sensor 

networks," in Ant Colony Optimization and Swarm Intelligence, ed: Springer, 2006, pp. 

49-59. 

[97] A. Kailas, Ingram, M. A., "Wireless communications technology in telehealth systems," 

presented at the Wireless Communication, Vehicular Technology, Information Theory 

and Aerospace & Electronic Systems Technology, 2009. Wireless VITAE 2009. 1st 

International Conference on, 2009. 

[98] H. Reinisch, et al., "A Multifrequency Passive Sensing Tag With On-Chip Temperature 

Sensor and Off-Chip Sensor Interface Using EPC HF and UHF RFID Technology," 

Solid-State Circuits, IEEE Journal of, vol. 46, pp. 3075-3088, 2011. 

[99] J. Kwong and A. P. Chandrakasan, "An Energy-Efficient Biomedical Signal Processing 

Platform," Solid-State Circuits, IEEE Journal of, vol. 46, pp. 1742-1753, 2011. 

[100] C. Xinkai, et al., "A Wireless Capsule Endoscope System With Low-Power Controlling 

and Processing ASIC," Biomedical Circuits and Systems, IEEE Transactions on, vol. 3, 

pp. 11-22, 2009. 

[101] A. Ricci, et al., "Improved Pervasive Sensing With RFID: An Ultra-Low Power 

Baseband Processor for UHF Tags," Very Large Scale Integration (VLSI) Systems, IEEE 

Transactions on, vol. 17, pp. 1719-1729, 2009. 

[102] L. Shuenn-Yuh, et al., "A Low-Power RFID Integrated Circuits for Intelligent Healthcare 

Systems," Information Technology in Biomedicine, IEEE Transactions on, vol. 14, pp. 

1387-1396, 2010. 



100 
 

[103] J. Constantin, et al., "TamaRISC-CS: An ultra-low-power application-specific processor 

for compressed sensing," in VLSI and System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP 

20th International Conference on, 2012, pp. 159-164. 

[104] Z. Bo, et al., "A 2.60pJ/Inst Subthreshold Sensor Processor for Optimal Energy 

Efficiency," in VLSI Circuits, 2006. Digest of Technical Papers. 2006 Symposium on, 

2006, pp. 154-155. 

[105] S. Hanson, et al., "A Low-Voltage Processor for Sensing Applications With Picowatt 

Standby Mode," Solid-State Circuits, IEEE Journal of, vol. 44, pp. 1145-1155, 2009. 

[106] J. Yoo, et al., "An 8-Channel Scalable EEG Acquisition SoC With Patient-Specific 

Seizure Classification and Recording Processor," Solid-State Circuits, IEEE Journal of, 

vol. 48, pp. 214-228, 2013. 

[107] W. Wattanapanitch and R. Sarpeshkar, "A Low-Power 32-Channel Digitally 

Programmable Neural Recording Integrated Circuit," Biomedical Circuits and Systems, 

IEEE Transactions on, vol. 5, pp. 592-602, 2011. 

[108] C.-C. Yuan, et al., "The design of encoding architecture for UHF RFID applications," in 

Microwave Conference, 2008. APMC 2008. Asia-Pacific, 2008, pp. 1-4. 

[109] S. Tung and A. K. Jones, "Physical layer design automation for RFID systems," in 

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium 

on, 2008, pp. 1-8. 

[110] S. E. Sarma, et al., "RFID systems and security and privacy implications," in 

Cryptographic Hardware and Embedded Systems-CHES 2002, ed: Springer, 2003, pp. 

454-469. 

[111] P. Sorrells, "Passive RFID basics," Microchip Technology Inc, pp. 40-49, 1998. 

[112] A. P. Chandrakasan, et al., Low power digital CMOS design vol. 3: Kluwer academic 

publishers Norwell, MA, 1995. 



101 
 

[113] P. Yu, "On the road towards robust and ultra low energy CMOS digital circuits using 

sub/near threshold power supply," 2009. 

[114] N. H. Weste and D. Harris, CMOS VLSI Design: Pearson/Addison Wesley, 2005. 

[115] A. Wang and S. Naffziger, Adaptive techniques for dynamic processor optimization: 

theory and practice: Springer, 2008. 

[116] A. Hokazono, et al., "MOSFET design for forward body biasing scheme," Electron 

Device Letters, IEEE, vol. 27, pp. 387-389, 2006. 

[117] J. Kwong and A. P. Chandrakasan, "Variation-Driven Device Sizing for Minimum 

Energy Sub-threshold Circuits," in Low Power Electronics and Design, 2006. 

ISLPED'06. Proceedings of the 2006 International Symposium on, 2006, pp. 8-13. 

[118] A. Wang, et al., Sub-threshold design for ultra low-power systems: Springer, 2006. 

[119] K. Tae-Hyoung, et al., "Utilizing Reverse Short-Channel Effect for Optimal Subthreshold 

Circuit Design," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 

vol. 15, pp. 821-829, 2007. 

[120] N. Verma, et al., "Nanometer MOSFET variation in minimum energy subthreshold 

circuits," Electron Devices, IEEE Transactions on, vol. 55, pp. 163-174, 2008. 

[121] Z. Bo, et al., "Energy-Efficient Subthreshold Processor Design," Very Large Scale 

Integration (VLSI) Systems, IEEE Transactions on, vol. 17, pp. 1127-1137, 2009. 

[122] P. Yu, et al., "An Ultra-Low-Energy Multi-Standard JPEG Co-Processor in 65 nm CMOS 

With Sub/Near Threshold Supply Voltage," Solid-State Circuits, IEEE Journal of, vol. 

45, pp. 668-680, 2010. 

[123] Z. Jun, et al., "The impact of inverse narrow width effect on sub-threshold device sizing," 

in Design Automation Conference (ASP-DAC), 2011 16th Asia and South Pacific, 2011, 

pp. 267-272. 

[124] J. P. Noel, et al., "Multi-VT UTBB FDSOI Device Architectures for Low-Power CMOS 

Circuit," Electron Devices, IEEE Transactions on, vol. 58, pp. 2473-2482, 2011. 



102 
 

[125] W. Bo, et al., "Maximization of SRAM energy efficiency utilizing MTCMOS 

technology," in Quality Electronic Design (ASQED), 2012 4th Asia Symposium on, 

2012, pp. 35-40. 

[126] T. Gemmeke and M. Ashouei, "Variability aware cell library optimization for reliable 

sub-threshold operation," in ESSCIRC (ESSCIRC), 2012 Proceedings of the, 2012, pp. 

42-45. 

[127] N. Ickes, et al., "A 28 nm 0.6 V Low Power DSP for Mobile Applications," Solid-State 

Circuits, IEEE Journal of, vol. 47, pp. 35-46, 2012. 

[128] Z. Jun, et al., "A 40 nm Dual-Width Standard Cell Library for Near/Sub-Threshold 

Operation," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59, pp. 

2569-2577, 2012. 

[129] S. Mingoo, et al., "Sleep Mode Analysis and Optimization With Minimal-Sized Power 

Gating Switch for Ultra-Low <formula formulatype="inline"> <img 

src="/images/tex/19659.gif" alt="{V}_{\rm dd}"> </formula> Operation," Very Large 

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 20, pp. 605-615, 2012. 

[130] B. Mohammadi, et al., "Sizing of dual-VT gates for sub-V<inf>T</inf> circuits," in 

Subthreshold Microelectronics Conference (SubVT), 2012 IEEE, 2012, pp. 1-3. 

[131] R. V. Joshi, et al., "FinFET SRAM for high-performance low-power applications," in 

Solid-State Device Research conference, 2004. ESSDERC 2004. Proceeding of the 34th 

European, 2004, pp. 69-72. 

[132] T. Sakurai, et al., Fully-depleted SOI CMOS circuits and technology for ultralow-power 

applications: Springer Publishing Company, Incorporated, 2010. 

[133] R. G. Dreslinski, et al., "Near-threshold computing: Reclaiming moore's law through 

energy efficient integrated circuits," Proceedings of the IEEE, vol. 98, pp. 253-266, 2010. 



103 
 

[134] A. Wang and A. Chandrakasan, "A 180-mV subthreshold FFT processor using a 

minimum energy design methodology," Solid-State Circuits, IEEE Journal of, vol. 40, pp. 

310-319, 2005. 

[135] L. A. Akers, "The inverse-narrow-width effect," Electron Device Letters, IEEE, vol. 7, 

pp. 419-421, 1986. 

[136] H. Jacobs, et al., "MOSFET reverse short channel effect due to silicon interstitial capture 

in gate oxide," in Electron Devices Meeting, 1993. IEDM '93. Technical Digest., 

International, 1993, pp. 307-310. 

[137] N. A. Drego, "Characterization and mitigation of process variation in digital circuits and 

systems," PhD, Massachusetts Institute of Technology, 2009. 

[138] Y. Ping and P. K. Chatterjee, "SPICE Modeling for Small Geometry MOSFET Circuits," 

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 

1, pp. 169-182, 1982. 

[139] Y. Bin, et al., "Short-channel effect improved by lateral channel-engineering in deep-

submicronmeter MOSFET's," Electron Devices, IEEE Transactions on, vol. 44, pp. 627-

634, 1997. 

[140] N. Anne, "Design and characterization of a standard cell library for the FREEPDK45 

process," 1488813 M.S., Oklahoma State University, Ann Arbor, 2010. 

[141] R. Ahmed, "Design of 3.3V digital standard cells libraries for LEON3," 1474081 M.S., 

Oklahoma State University, Ann Arbor, 2009. 

[142] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical 

Approach: Springer Publishing Company, Incorporated, 2009. 

[143] N. Verma and A. P. Chandrakasan, "A 256 kb 65 nm 8T Subthreshold SRAM Employing 

Sense-Amplifier Redundancy," Solid-State Circuits, IEEE Journal of, vol. 43, pp. 141-

149, 2008. 



104 
 

[144] M. Parvathi, et al., "Modified March C Algorithm for Embedded Memory Testing," 

International Journal of Electrical and Computer Engineering (IJECE), vol. 2, pp. 571-

576, 2012. 

[145] D. Yeager, et al., "A 9 uA, Addressable Gen2 Sensor Tag for Biosignal Acquisition," 

Solid-State Circuits, IEEE Journal of, vol. 45, pp. 2198-2209, 2010. 

[146] P. Mohseni and K. Najafi, "A battery-powered 8-channel wireless FM IC for biopotential 

recording applications," in Solid-State Circuits Conference, 2005. Digest of Technical 

Papers. ISSCC. 2005 IEEE International, 2005, pp. 560-617 Vol. 1. 

[147] L. Ran and C. Hutchens, "Digital circuit design for robust ultra-low-power cell library 

using optimum fingers," in Circuits and Systems (MWSCAS), 2012 IEEE 55th 

International Midwest Symposium on, 2012, pp. 446-449. 

  



105 
 

APPENDICES 
 

 Appendix A Cell Library 

 A.1 elccfg file 

 A.2 Footprint.def 

 A.3 Setup.ss 

 A.4 NAND2X1 Characterization Result 

 A.5 NOR2X1 Characterization Result 

 A.6 INVX1 Characterization Result 

 A.7 DFFPOSSRX1 Characterization Result 

 Appendix B Digital Flow Script 

 B.1 RTL Compiler Synthesis Script 

 B.2 SoC Encounter Script and Runtime Command Log 

 B.3 ETS Script for Static Timing Analysis  

 



106 
 

Appendix A.1: elccfg file 

#Specify the environment variable setting. 

EC_SIM_USE_LSF=1;  

EC_SIM_LSF_CMD=" ";  

EC_SIM_LSF_PARALLEL=10; 

 

EC_SIM_TYPE="spectre"; 

EC_SIM_NAME="spectre"; 

EC_CHAR="ECSM-TIMING ECSM-POWER";  

 

EC_SPICE_SIMPLIFY=1; 

EC_SPICE_SUPPLY1_NAMES="VDDD"; 

EC_SPICE_SUPPLY0_NAMES="VSSD"; 

 

EC_CASE_SENSITIVITY=1; 

EC_HALF_WIDTH_HOLD_FLAG=1; 

 

#Specify the characterization input. 

SUBCKT = "osulib_i018lvt_char_112011.scs"; 

MODEL  = "model_tt.scs"; 

DESIGNS = "AND2FX1 AND2FX2 AND3FX1 AND3FX2 AND4FX1 AOI21FX1 AOI22FX1 

BUFFX1 BUFFX2 BUFFX3 BUFFX4 BUFFX6 BUFFX8 BUFFX9 HAFX1 INVFX1 INVFX2 

INVFX3 INVFX4 INVFX6 INVFX8 INVFX9 INVFX18 INVFX27 MUX21FX1 NAND2FX1 

NAND3FX1 NAND4FX1 NAND4FX2 NAND4FX3 NOR2FX1 NOR3FX1 NOR4FX1 

NOR4FX2 NOR4FX3 OAI21FX1 OAI22FX1 OR2FX1 OR2FX2 OR3FX1 OR3FX2 

XNOR2FX1 XOR2FX1 DFFNEGFX1 DFFNEGNRFX1 DFFNEGSRFX1 DFFPOSSRFX1 

DFFPOSFX1 DFFPOSNRFX1 LATCHNEGFX1 LATCHPOSFX1"; 

SETUP  = "setup_typical.ss"; 

PROCESS= "typical"; 
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Appendix A.2: Footprint.def 

 

cell INVX*{ 

footprint inv; 

} 

 

cell INVFX*{ 

footprint inv; 

}; 

 

cell INVSX*{ 

footprint inv; 

}; 

 

cell BUFX*{ 

footprint buf; 

}; 

 

cell BUFFX*{ 

footprint buf; 

}; 

 

cell BUFSX*{ 

footprint buf; 

} 
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Appendix A.3: setup.ss 

Process typical{ 

 voltage = 0.4 ; 

 Temp = 27 ; 

 Corner = "typical" ; 

        vtn = 0.3633 ; 

        vtp = 0.2901 ; 

 

}; 

 

Signal std_cell { 

 unit = REL; 

 Vh=1.0 1.0; 

 Vl=0.0 0.0; 

 Vth=0.5 0.5; 

 Vsh=0.9 0.9; 

 Vsl=0.1 0.1; 

 tsmax=2.0n; 

}; 

 

Simulation std_cell{ 

 transient  = 0.01n 1000n 100p; 

 bisec      = 500n 500n 100p; 

 resistance = 10MEG; 

}; 

 

Index DEFAULT_INDEX{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.001p 0.002p 0.003p 0.004p 0.006p 0.008p; 

  

}; 

 

Index X1{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.001p 0.002p 0.003p 0.004p 0.006p 0.008p; 

  

}; 

 

Index X2{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.002p 0.003p 0.004p 0.006p 0.008p 0.016p; 

  

}; 

 

Index X3{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.003p 0.004p 0.006p 0.008p 0.016p 0.032p; 

  

}; 
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Index X4{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.004p 0.006p 0.008p 0.016p 0.032p 0.064p; 

  

}; 

 

Index X6{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.006p 0.008p 0.016p 0.032p 0.064p 0.128p; 

}; 

 

Index X8{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.008p 0.016p 0.032p 0.064p 0.128p 0.256p; 

  

}; 

 

Index X9{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.009p 0.018p 0.036p 0.072p 0.148p 0.296p; 

  

}; 

 

Index X18{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.018p 0.036p 0.072p 0.148p 0.296p 0.592p; 

  

}; 

 

Index X27{ 

 Slew = 2.500n 5.000n 10.00n 20.00n 40.00n 80.00n; 

 Load = 0.027p 0.054p 0.108p 0.216p 0.432p 0.864p; 

  

}; 

 

Index Clk_Slew{ 

      bslew =2.5n 12.5n 25n; 

}; 

 

 

Group X1{ 

 CELL = *X1; 

}; 

 

Group X2{ 

 CELL = *X2; 

}; 

 

Group X3{ 

 CELL = *X3; 
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}; 

 

Group X4{ 

 CELL = *X4; 

}; 

 

Group X6{ 

 CELL = *X6; 

}; 

 

Group X8{ 

 CELL = *X8; 

}; 

 

Group X9{ 

 CELL = *X9; 

}; 

 

Group X18{ 

 CELL = *X18; 

}; 

 

Group X27{ 

 CELL = *X27; 

}; 

 

Group Clk_Slew{ 

 PIN = *.CLK ; 

}; 

 

Margin m0 { 

  cap    = 1.0 0.0 ;  // gate cap  

 wcap    = 1.0 0.0 ;  // wire cap 

 wresist = 1.0 0.0 ;  // wire resistance  

        setup  = 1.0 0.0 ;  // cell delay  

 hold  = 1.0 0.0 ; 

 release = 1.0 0.0 ; 

 removal = 1.0 0.0 ; 

 recovery = 1.0 0.0 ; 

 width = 1.0 0.0 ; 

 delay  = 1.0 0.0 ; 

 power  = 1.0 0.0 ; 

} ; 

 

Nominal n0 { 

 delay = 0.5 0.5 ; 

 power = 0.5 0.5 ; 

 cap   = 0.5 0.5 ; 

} ; 

 

set process(typical){ 
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 simulation = std_cell; 

 signal     = std_cell; 

 margin     = m0; 

 nominal    = n0; 

}; 

 

set index(typical){ 

 Group(X1) = X1; 

 Group(X2) = X2; 

 Group(X3) = X3; 

 Group(X4) = X4; 

 Group(X6) = X6; 

 Group(X8) = X8; 

 Group(X9) = X9; 

        Group(X18) = X18; 

        Group(X27) = X27; 

 Group(Clk_Slew)  = Clk_Slew; 

}; 
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Appendix A.4: Cell Library Characterization Result: NAND2X1 

NAND2X1 (value: delay=typ, power=typ, check=typ, 

cap=typ)  

  

Function 

Y=!(A&B) 
 

 

  

Static Power: 

When Static Power [nW] 

- 0.71849 
 

  

Port: 

Name Direction 

A INPUT 

B INPUT 

Y OUTPUT 
 

  

Name 
Pin Capacitance [pF] Internal Power [pJ] 

Rise Fall Rise Fall 

A 0.003571 0.0035511 6.4e-05 7.1e-05 

B 0.0035021 0.0035779 0.000454 0.000105 
 

  

Output Driving Strength 

Name 
Rise Fall 

Strength (sec/F) Limit (pF) Strength (sec/F) Limit (pF) 

Y 4.1245e+05 0.00371 2.851e+05 0.00371 
 

   

  

Link To Path 

PATH WHEN 

(01A=>10Y) - 
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(10A=>01Y) - 

(01B=>10Y) - 

(10B=>01Y) - 
  

  

(01A=>10Y) 

DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 4.5866 5.5278 7.4184 11.151 18.068 28.985 

0.002 4.8748 5.8163 7.7075 11.44 18.454 29.677 

0.003 5.1621 6.104 7.9957 11.728 18.815 30.329 

0.004 5.4488 6.3912 8.2833 12.016 19.155 30.941 

0.006 6.021 6.9646 8.8574 12.591 19.793 32.063 

0.008 6.5926 7.5368 9.4298 13.164 20.39 33.077 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 3.5e-05 3.7e-05 4e-05 4.4e-05 4.6e-05 4.6e-05 

0.002 3.5e-05 3.7e-05 4e-05 4.3e-05 4.5e-05 4.6e-05 

0.003 3.4e-05 3.6e-05 3.9e-05 4.3e-05 4.5e-05 4.6e-05 

0.004 3.4e-05 3.6e-05 3.9e-05 4.2e-05 4.5e-05 4.6e-05 

0.006 3.4e-05 3.6e-05 3.8e-05 4.1e-05 4.4e-05 4.5e-05 

0.008 3.4e-05 3.5e-05 3.7e-05 4.1e-05 4.4e-05 4.5e-05 

 
Back To Path Index 

 

  

(10A=>01Y) 
DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 5.4504 6.3341 8.1146 11.676 18.954 31.146 

0.002 5.8969 6.7835 8.5625 12.104 19.387 32.082 

0.003 6.3391 7.2263 8.9535 12.543 19.867 32.829 

0.004 6.7825 7.6605 9.4295 12.974 20.27 33.541 

0.006 7.565 8.5307 10.293 13.832 21.126 34.767 

0.008 8.4255 9.3917 11.085 14.683 21.975 36.06 

POWER [pW] 

ts[ns] 2 4 8 16 32 64 
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cl[pF] 

0.001 0.001793 0.00179 0.001785 0.00178 0.001776 0.001778 

0.002 0.001793 0.00179 0.001786 0.00178 0.001777 0.001777 

0.003 0.001793 0.00179 0.001778 0.001781 0.001777 0.001779 

0.004 0.001794 0.001791 0.001786 0.001782 0.001777 0.001778 

0.006 0.001794 0.001791 0.001787 0.001782 0.001777 0.001781 

0.008 0.001793 0.001791 0.001787 0.001782 0.001778 0.001776 

 
Back To Path Index 

 

  

(01B=>10Y) 

DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 2.9652 3.7926 5.4377 8.6404 13.689 21.133 

0.002 3.2543 4.0784 5.7178 8.9922 14.268 22.204 

0.003 3.5424 4.3642 6.0001 9.3157 14.813 23.156 

0.004 3.8297 4.6509 6.2655 9.6145 15.304 24.028 

0.006 4.4065 5.2172 6.8323 10.16 16.205 25.457 

0.008 4.9753 5.7933 7.3957 10.701 16.998 26.885 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 3.8e-05 4.2e-05 4.7e-05 5e-05 4.7e-05 2.8e-05 

0.002 3.7e-05 4.1e-05 4.6e-05 4.9e-05 4.6e-05 2.9e-05 

0.003 3.7e-05 4e-05 4.5e-05 4.8e-05 4.6e-05 3e-05 

0.004 3.6e-05 4e-05 4.4e-05 4.8e-05 4.6e-05 3.1e-05 

0.006 3.6e-05 3.9e-05 4.3e-05 4.7e-05 4.6e-05 2.9e-05 

0.008 3.5e-05 3.8e-05 4.2e-05 4.6e-05 4.6e-05 3.1e-05 

 
Back To Path Index 

 

  

(10B=>01Y) 
DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 4.1207 5.0027 6.7862 10.353 16.977 27.145 

0.002 4.5299 5.4156 7.1891 10.783 17.568 28.388 

0.003 4.9378 5.8276 7.5976 11.184 18.16 29.431 
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0.004 5.345 6.2389 8.0092 11.588 18.719 30.283 

0.006 6.1574 7.06 8.8372 12.394 19.64 32.073 

0.008 6.9683 7.8794 9.6083 13.2 20.461 33.507 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 0.0011 0.001095 0.00109 0.001086 0.00109 0.001097 

0.002 0.0011 0.001096 0.001091 0.001087 0.001087 0.001096 

0.003 0.001101 0.001097 0.001092 0.001088 0.001087 0.001095 

0.004 0.001102 0.001098 0.001093 0.001088 0.001087 0.001095 

0.006 0.001103 0.001099 0.001095 0.001089 0.001088 0.001097 

0.008 0.001103 0.0011 0.001091 0.001091 0.001088 0.001094 

 
Back To Path Index 
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Appendix A.5: Cell Library Characterization Result: NOR2X1 

 

NOR2X1 (value: delay=typ, power=typ, check=typ, cap=typ) 
 

  

Function 

Y=!(A|B) 
 

 

  

Static Power: 

When Static Power [nW] 

- 0.93855 
 

  

Port: 

Name Direction 

A INPUT 

B INPUT 

Y OUTPUT 
 

  

Name 
Pin Capacitance [pF] Internal Power [pJ] 

Rise Fall Rise Fall 

A 0.0037973 0.0036924 0 0 

B 0.0035402 0.0035953 8e-05 0.000391 
 

  

Output Driving Strength 

Name 
Rise Fall 

Strength (sec/F) Limit (pF) Strength (sec/F) Limit (pF) 

Y 3.6791e+05 0.0031212 2.4398e+05 0.0031212 
 

   

  

Link To Path 

PATH WHEN 

(01A=>10Y) - 
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(10A=>01Y) - 

(01B=>10Y) - 

(10B=>01Y) - 
  

  

(01A=>10Y) 

DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 2.8454 3.8001 5.6958 9.4741 15.905 26.089 

0.002 3.0832 4.0337 5.9309 9.7486 16.444 27.022 

0.003 3.3202 4.2463 6.1842 9.9904 16.896 27.956 

0.004 3.5566 4.4961 6.4206 10.247 17.29 28.763 

0.006 4.0283 4.9691 6.8703 10.717 18.059 30.139 

0.008 4.4988 5.4408 7.3463 11.186 18.712 31.329 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 7.2e-05 7.9e-05 8.7e-05 9.2e-05 9e-05 7.1e-05 

0.002 7e-05 7.7e-05 8.5e-05 9.1e-05 9e-05 7.3e-05 

0.003 6.9e-05 7.5e-05 8.4e-05 9e-05 8.9e-05 7.4e-05 

0.004 6.8e-05 7.4e-05 8.2e-05 8.9e-05 8.9e-05 7.5e-05 

0.006 6.7e-05 7.2e-05 8e-05 8.7e-05 8.9e-05 7.6e-05 

0.008 6.6e-05 7e-05 7.8e-05 8.6e-05 8.8e-05 7.7e-05 

 
Back To Path Index 

 

  

(10A=>01Y) 
DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 3.7299 4.5345 6.0988 9.3208 14.553 21.976 

0.002 4.1135 4.9161 6.4773 9.7252 15.204 23.148 

0.003 4.4956 5.2736 6.8551 10.105 15.854 24.101 

0.004 4.8503 5.6703 7.2684 10.448 16.433 25.231 

0.006 5.6124 6.4337 8.0299 11.196 17.435 26.922 

0.008 6.3737 7.1959 8.7926 11.951 18.289 28.52 

POWER [pW] 

ts[ns] 2 4 8 16 32 64 
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cl[pF] 

0.001 0.001155 0.001152 0.001147 0.001144 0.001146 0.001155 

0.002 0.001155 0.001152 0.001148 0.001145 0.001147 0.001154 

0.003 0.001156 0.001151 0.001149 0.001145 0.001145 0.001153 

0.004 0.001156 0.001154 0.00115 0.001146 0.001146 0.001153 

0.006 0.001157 0.001154 0.001151 0.001147 0.001145 0.001152 

0.008 0.001157 0.001155 0.001152 0.001148 0.001145 0.001152 

 
Back To Path Index 

 

  

(01B=>10Y) 

DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 3.7053 4.6478 6.5392 10.433 17.867 30.208 

0.002 3.9697 4.915 6.7995 10.68 18.221 30.849 

0.003 4.2328 5.1769 7.0586 10.927 18.551 31.459 

0.004 4.4922 5.386 7.3154 11.177 18.856 32.016 

0.006 5.0108 5.9484 7.8182 11.675 19.449 33.077 

0.008 5.5162 6.4637 8.3227 12.166 19.946 33.993 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 7.2e-05 7.7e-05 8.4e-05 9e-05 9.1e-05 7.7e-05 

0.002 7.2e-05 7.7e-05 8.3e-05 8.9e-05 9e-05 7.7e-05 

0.003 7.2e-05 7.7e-05 8.3e-05 8.8e-05 9e-05 7.8e-05 

0.004 7.2e-05 7.7e-05 8.2e-05 8.8e-05 9e-05 7.8e-05 

0.006 7.2e-05 7.6e-05 8.2e-05 8.7e-05 9e-05 7.9e-05 

0.008 7.2e-05 7.6e-05 8.1e-05 8.7e-05 8.9e-05 8e-05 

 
Back To Path Index 

 

  

(10B=>01Y) 
DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 6.3935 7.2827 9.0523 12.656 19.354 30.18 

0.002 6.7745 7.6643 9.434 13.038 19.762 30.809 

0.003 7.1559 8.0452 9.8154 13.419 20.155 31.402 
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0.004 7.5363 8.426 10.197 13.8 20.542 31.979 

0.006 8.2967 9.1869 10.958 14.561 21.289 33.057 

0.008 9.0566 9.9474 11.719 15.322 22.046 34.068 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 0.002254 0.002253 0.002252 0.002251 0.002249 0.002246 

0.002 0.002255 0.002254 0.002252 0.002252 0.002249 0.002247 

0.003 0.002255 0.002254 0.002252 0.002252 0.002248 0.002247 

0.004 0.002255 0.002254 0.002253 0.002253 0.002249 0.002248 

0.006 0.002255 0.002254 0.002253 0.002253 0.00225 0.002249 

0.008 0.002255 0.002255 0.002254 0.002254 0.00225 0.002246 
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Appendix A.6: Cell Library Characterization Result: INVX1 

 

INVX1 (value: delay=typ, power=typ, check=typ, cap=typ) 
 

  

Function 

Y=!A 
 

 

  

Static Power: 

When Static Power [nW] 

- 0.55089 
 

  

Port: 

Name Direction 

A INPUT 

Y OUTPUT 
 

  

Name 
Pin Capacitance [pF] 

Rise Fall 

A 0.0025908 0.0025918 
 

  

Output Driving Strength 

Name 
Rise Fall 

Strength (sec/F) Limit (pF) Strength (sec/F) Limit (pF) 

Y 4.0797e+05 0.0017562 2.3576e+05 0.0017562 
 

   

  

Link To Path 

PATH WHEN 

(01A=>10Y) - 

(10A=>01Y) - 
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(01A=>10Y) 
DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 2.4779 3.4247 5.3396 9.0017 14.927 24.152 

0.002 2.714 3.6613 5.5637 9.3007 15.573 25.45 

0.003 2.9499 3.8933 5.8153 9.6063 16.162 26.377 

0.004 3.1608 4.1155 6.0469 9.8523 16.649 27.413 

0.006 3.6347 4.5699 6.5153 10.337 17.473 29.024 

0.008 4.1062 5.0535 6.984 10.8 18.219 30.331 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 3.7e-05 4.1e-05 4.5e-05 4.7e-05 4.5e-05 3.2e-05 

0.002 3.7e-05 4e-05 4.4e-05 4.7e-05 4.5e-05 3.3e-05 

0.003 3.6e-05 3.9e-05 4.3e-05 4.6e-05 4.5e-05 3.4e-05 

0.004 3.6e-05 3.9e-05 4.2e-05 4.6e-05 4.5e-05 3.5e-05 

0.006 3.5e-05 3.8e-05 4.1e-05 4.5e-05 4.5e-05 3.6e-05 

0.008 3.5e-05 3.7e-05 4e-05 4.4e-05 4.4e-05 3.7e-05 

 
Back To Path Index 

 

  

(10A=>01Y) 

DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 3.525 4.4169 6.21 9.7748 16.002 25.335 

0.002 3.9385 4.8275 6.6186 10.2 16.734 26.587 

0.003 4.3504 5.2375 7.0232 10.605 17.348 27.934 

0.004 4.7599 5.647 7.429 11.012 17.925 28.88 

0.006 5.5768 6.4648 8.2509 11.862 19.012 30.836 

0.008 6.3928 7.2816 9.0723 12.675 19.898 32.522 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 0.000883 0.000879 0.000877 0.000875 0.000878 0.000882 

0.002 0.000883 0.000881 0.000878 0.000876 0.000877 0.000882 

0.003 0.000883 0.000881 0.000879 0.000876 0.000877 0.000881 

0.004 0.000884 0.000882 0.000879 0.000877 0.000876 0.000881 
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0.006 0.000884 0.000882 0.00088 0.000878 0.000876 0.000881 

0.008 0.000884 0.000883 0.000881 0.000878 0.000877 0.000879 

 
Back To Path Index 
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Appendix A.7: Cell Library Characterization Result: DFFPOSSRX1 

DFFPOSSRX1 (value: delay=typ, power=typ, check=typ, cap=typ)  
  

Function 

FLIPFLOP{ 

  DATA=D 

  CLOCK=CLK 

  PRESET=!SET 

  CLEAR=!RESET 

  Q=N34 

  QN=N4 

} 

Q=N34 
 

 

  

Static Power: 

When Static Power [nW] 

- 2.8166 
 

  

Port: 

Pin Direction Signaltype Polarity 

CLK INPUT CLOCK RISING_EDGE 

D INPUT DATA - 

Q OUTPUT - - 

RESET INPUT SET LOW 

SET INPUT SET LOW 
 

  

Name 
Pin Capacitance [pF] Internal Power [pJ] 

Rise Fall Rise Fall 

CLK 0.0041139 0.0041155 0.001846 0.00443 

D 0.0035737 0.0035756 0.001715 0.003019 

RESET 0.011434 0.011547 0.000581 0.000157 

SET 0.0051974 0.0057735 0.00059 0.000158 
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Output Driving Strength 

Name 
Rise Fall 

Strength (sec/F) Limit (pF) Strength (sec/F) Limit (pF) 

Q 4.0975e+05 0.0042036 2.6896e+05 0.0042036 
 

  

Link To Path 

PATH WHEN 

(01CLK=>01Q) - 

(01CLK=>10Q) - 

(01RESET=>01Q) - 

(10RESET=>10Q) - 

(10SET=>01Q) - 
 

    

Link To Constraint 

Type Path 

RECOVERY (01SET=>01RESET) 

RECOVERY (01SET=>01CLK) 

REMOVAL (01CLK=>01SET) 

RECOVERY (01RESET=>01SET) 

RECOVERY (01RESET=>01CLK) 

REMOVAL (01CLK=>01RESET) 

SETUP (01D=>01CLK) 

SETUP (10D=>01CLK) 

HOLD (01CLK=>01D) 

HOLD (01CLK=>10D) 

PULSEWIDTH (01CLK=>10CLK) 

PULSEWIDTH (10CLK=>01CLK) 

PULSEWIDTH (10RESET=>01RESET) 

PULSEWIDTH (10SET=>01SET) 

  

   

  

(01CLK=>01Q) 

DELAY [ns] 

ts[ns] 
0.08 0.32 0.64 1.2 1.6 2.4 

cl[pF] 

0.001 30.898 30.979 31.124 31.402 31.572 31.959 

0.002 31.341 31.422 31.569 31.846 32.013 32.405 

0.003 31.776 31.857 32.002 32.278 32.445 32.833 

0.004 32.197 32.278 32.429 32.702 32.87 33.258 

0.006 33.036 33.117 33.266 33.54 33.708 34.097 

0.008 33.865 33.946 34.094 34.375 34.545 34.933 

POWER [pW] 

ts[ns] 0.08 0.32 0.64 1.2 1.6 2.4 
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cl[pF] 

0.001 0.006083 0.006082 0.006082 0.006081 0.006079 0.006077 

0.002 0.006084 0.006083 0.006082 0.006081 0.00608 0.006078 

0.003 0.006084 0.006084 0.006083 0.006081 0.00608 0.006079 

0.004 0.006085 0.006084 0.006083 0.006082 0.006081 0.006079 

0.006 0.006086 0.006085 0.006084 0.006083 0.006082 0.00608 

0.008 0.006086 0.006085 0.006085 0.006083 0.006082 0.00608 

 
Back To Path Index 

 

  

(01CLK=>10Q) 

DELAY [ns] 

ts[ns] 
0.08 0.32 0.64 1.2 1.6 2.4 

cl[pF] 

0.001 36.387 36.493 36.648 36.899 37.076 37.449 

0.002 36.724 36.832 36.985 37.234 37.414 37.787 

0.003 37.042 37.151 37.303 37.553 37.736 38.108 

0.004 37.35 37.455 37.61 37.861 38.04 38.415 

0.006 37.928 38.036 38.188 38.439 38.621 38.992 

0.008 38.481 38.586 38.741 38.991 39.173 39.543 

POWER [pW] 

ts[ns] 
0.08 0.32 0.64 1.2 1.6 2.4 

cl[pF] 

0.001 0.004793 0.004792 0.004791 0.00479 0.004788 0.004786 

0.002 0.004794 0.004793 0.004792 0.00479 0.004789 0.004787 

0.003 0.004794 0.004793 0.004792 0.004791 0.004789 0.004787 

0.004 0.004794 0.004794 0.004793 0.004792 0.00479 0.004788 

0.006 0.004796 0.004795 0.004794 0.004793 0.004791 0.004789 

0.008 0.004796 0.004795 0.004795 0.004794 0.004792 0.00479 
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(01RESET=>01Q) 
DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 11.179 12.005 13.612 16.911 23.518 35.729 

0.002 11.619 12.44 14.048 17.349 23.957 36.21 

0.003 12.043 12.869 14.477 17.779 24.384 36.659 
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0.004 12.466 13.292 14.905 18.2 24.806 37.095 

0.006 13.299 14.124 15.733 19.034 25.638 37.944 

0.008 14.124 14.948 16.546 19.856 26.46 38.783 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 0.000959 0.000954 0.000947 0.00094 0.000937 0.00096 

0.002 0.00096 0.000955 0.000948 0.000941 0.000938 0.00096 

0.003 0.00096 0.000956 0.000949 0.000941 0.000938 0.000959 

0.004 0.000961 0.000956 0.000949 0.000942 0.000939 0.00096 

0.006 0.000962 0.000957 0.00095 0.000942 0.00094 0.00096 

0.008 0.000962 0.000957 0.00095 0.000943 0.00094 0.00096 
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(10RESET=>10Q) 

DELAY [ns] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 13.032 13.92 15.68 19.239 26.488 40.781 

0.002 13.352 14.24 16 19.559 26.806 41.112 

0.003 13.653 14.539 16.301 19.863 27.112 41.416 

0.004 13.941 14.829 16.589 20.152 27.395 41.711 

0.006 14.49 15.379 17.137 20.701 27.944 42.271 

0.008 15.016 15.904 17.664 21.229 28.47 42.801 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 0.003713 0.00371 0.003704 0.003698 0.003694 0.003699 

0.002 0.003714 0.003711 0.003705 0.003699 0.003694 0.003699 

0.003 0.003715 0.003711 0.003706 0.003699 0.003695 0.003699 

0.004 0.003716 0.003712 0.003707 0.0037 0.003695 0.0037 

0.006 0.003717 0.003713 0.003708 0.003701 0.003696 0.0037 

0.008 0.003718 0.003714 0.003709 0.003702 0.003697 0.0037 
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(10SET=>01Q) 
DELAY [ns] 
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ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 54.833 55.725 57.457 61 68.139 82.268 

0.002 55.287 56.178 57.907 61.439 68.595 82.712 

0.003 55.727 56.618 58.352 61.876 69.033 83.152 

0.004 56.159 57.048 58.778 62.308 69.466 83.586 

0.006 57.001 57.891 59.62 63.156 70.31 84.431 

0.008 57.83 58.717 60.446 63.987 71.142 85.259 

POWER [pW] 

ts[ns] 
2 4 8 16 32 64 

cl[pF] 

0.001 0.005344 0.005341 0.005338 0.005334 0.00533 0.005332 

0.002 0.005344 0.005342 0.005339 0.005334 0.005331 0.005333 

0.003 0.005345 0.005343 0.005339 0.005335 0.005331 0.005333 

0.004 0.005345 0.005343 0.00534 0.005335 0.005332 0.005334 

0.006 0.005346 0.005344 0.00534 0.005336 0.005333 0.005334 

0.008 0.005346 0.005344 0.005341 0.005337 0.005333 0.005335 
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Timing Constraints    

  

RECOVERY(01SET=>01RESET) 

re [ns] 
2 4 8 16 32 64 

co [ns] 

2 2.637 1.836 0.52702 -1.992 -6.445 -13.789 

4 3.437 2.734 1.328 -1.289 -5.645 -12.988 

8 4.941 4.238 2.832 0.313 -4.141 -11.68 

16 8.047 7.344 6.035 3.32 -1.23 -8.77 

32 13.281 12.676 11.367 8.848 4.199 -3.633 

64 21.992 21.387 20.078 17.656 13.301 5.469 
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Timing Constraints    

  

RECOVERY(01SET=>01CLK) 

re [ns] 2 4 8 16 32 64 
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co [ns] 

2 6.445 7.246 8.848 12.148 18.75 31.758 

10 2.363 3.164 4.766 8.066 14.766 27.676 

20 -2.813 -2.012 -0.41 2.891 9.492 22.598 
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Timing Constraints    

  

REMOVAL(01CLK=>01SET) 

re [ns] 
2 4 8 16 32 64 

co [ns] 

2 6.543 5.84 4.336 1.426 -4.004 -13.398 

10 10.332 9.629 8.223 5.215 -0.313 -9.609 

20 15.117 14.414 12.91 10 4.473 -4.922 
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Timing Constraints    

  

RECOVERY(01RESET=>01SET) 

re [ns] 
2 4 8 16 32 64 

co [ns] 

2 7.52 6.914 5.703 3.77 0.977 -2.949 

4 8.32 7.715 6.504 4.57 1.68 -2.246 

8 9.922 9.219 8.203 6.172 3.281 -0.74199 

16 13.027 12.422 11.211 9.375 6.484 2.168 

32 19.336 18.73 17.617 15.781 12.695 8.184 

64 30.977 30.469 29.355 27.422 24.141 19.141 
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Timing Constraints    

  

RECOVERY(01RESET=>01CLK) 

re [ns] 
2 4 8 16 32 64 

co [ns] 
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2 -6.055 -5.547 -4.434 -2.305 1.562 11.25 

10 -9.941 -9.434 -8.32 -6.191 -2.422 7.168 

20 -14.922 -14.512 -13.301 -11.367 -7.598 1.797 
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Timing Constraints    

  

REMOVAL(01CLK=>01RESET) 

re [ns] 
2 4 8 16 32 64 

co [ns] 

2 29.687 29.961 30.898 33.066 38.281 49.785 

10 33.379 33.75 34.687 36.855 41.973 53.574 

20 38.164 38.535 39.473 41.641 46.855 58.359 
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Timing Constraints    

  

SETUP(01D=>01CLK) 

re [ns] 
2 4 8 16 32 64 

co [ns] 

2 29.785 30.684 32.578 36.367 43.848 58.613 

10 25.801 26.797 28.594 32.383 39.863 54.629 

20 20.82 21.719 23.516 27.305 34.687 49.551 
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Timing Constraints    

  

SETUP(10D=>01CLK) 

re [ns] 
2 4 8 16 32 64 

co [ns] 

2 30.176 31.074 32.773 36.367 43.457 57.637 

10 26.094 26.895 28.789 32.285 39.375 53.652 

20 20.918 21.816 23.516 27.012 34.297 48.379 
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Timing Constraints    

  

HOLD(01CLK=>01D) 

re [ns] 
2 4 8 16 32 64 

co [ns] 

2 -0.684 -1.68 -3.672 -6.875 -13.281 -23.457 

10 2.617 1.719 -0.176 -3.965 -10.273 -20.254 

20 6.523 5.527 3.73 0.137 -6.367 -16.934 
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Timing Constraints    

  

HOLD(01CLK=>10D) 

re [ns] 
2 4 8 16 32 64 

co [ns] 

2 0.097999 -0.70298 -2.207 -5.02 -8.887 -13.008 

10 3.887 2.988 1.289 -1.621 -6.367 -11.074 

20 8.184 7.48 5.684 2.578 -2.852 -8.633 
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Timing Constraints    

  

PULSEWIDTH(01CLK=>10CLK) 

 
8e-11 3.2e-10 6.4e-10 1.2e-09 1.6e-09 2.4e-09 

  39.413 39.517 39.673 39.924 40.105 40.474 
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Timing Constraints    

  

PULSEWIDTH(10CLK=>01CLK) 

 
8e-11 3.2e-10 6.4e-10 1.2e-09 1.6e-09 2.4e-09 
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  44.636 44.69 44.861 45.125 45.276 45.649 
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Timing Constraints    

  

PULSEWIDTH(10RESET=>01RESET) 

 
2e-09 4e-09 8e-09 1.6e-08 3.2e-08 6.4e-08 

  46.77 47.663 49.429 52.969 60.118 74.302 
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Timing Constraints    

  

PULSEWIDTH(10SET=>01SET) 

 
2e-09 4e-09 8e-09 1.6e-08 3.2e-08 6.4e-08 

  54.847 55.734 57.487 61.013 68.151 82.322 
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Appendix B.1: RTL Compiler Synthesis Script 

#*************************************************/ 

#* Ran Liao                                       */ 

#* Compile Script for Cadence RTL Compiler       */ 

#*                                                */ 

#* rc_shell                                       */ 

#*                                                */ 

#* Ran Liao                                       */ 

#* Mixed-Signal VLSI Design Group                 */ 

#* Oklahoma State University                      */ 

#* Stillwater, OK 74078                           */  

#* ran.liao@okstate.edu                           */ 

#**************************************************/  

 

#*************************************************** 

#Step 0: clear previous synthesis data and prepare environment 

#*************************************************** 

 

# specify diplaying info level to highest 

  set_attribute information_level 9 / 

# specify search path 

  set_attribute lib_search_path ./file_path  

  set_attribute hdl_search_path ./file_path 

# Specify target working frequency in term of Period , here is 500ns = 500,000ps => 2MHz 

  set CLK_FREQUENCY_1280KHZ [expr 1280000] 

  set CLK_CYCLE_1280KHZ [expr 1000000000000/($CLK_FREQUENCY_1280KHZ)] 

#  set CLK_CYCLE_640KHZ [expr 2*$CLK_CYCLE_1280KHZ] 

#  set CLK_CYCLE_128KHZ [expr 10*$CLK_CYCLE_1280KHZ] 

#  set CLK_CYCLE_80KHZ [expr 8*$CLK_CYCLE_640KHZ] 

#  set CLK_CYCLE_16KHZ [expr 5*$CLK_CYCLE_80KHZ] 

 

# Specify the top module name here 

  set DESIGN digital_core_120611 

# Specify the verilog files to read in 

  set file_list {digital_core_120611.v clk_div_120611.v rxbb_p5_mni_120611.v 

controller_mni_120611.v txbb_fm0crc16_mni_120611.v} 

# Specify the typical library file 

  set std_lib osui018lvt_50tt.lib 

 

#*************************************************** 

# Step 1: Read Library 

#*************************************************** 

 

# Setting target technology library 

  set_attribute library $std_lib 

# Setting systhesis mode to wireload or ple(physical layout estimator):  

# wireload by default, but ple will be set when read in lef file 
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# So this step is negelected by whether read in lef file 

# set_attribute interconnect_mode wireload / 

# set_attribute interconnect_mode ple / 

 

#*************************************************** 

#*************************************************** 

# Step 2: Read Design (verilog file) 

#*************************************************** 

#*************************************************** 

# space between .v files 

 

  read_hdl $file_list 

 

# a top level design needs elaboration which automatically elaborate the top-level design an dall 

of its references. 

# elaboration builds data structures and links cells, after this step, we can apply constraints and 

other operations. 

  elaborate ${DESIGN} 

 

 

#*************************************************** 

#*************************************************** 

# Step 3: Setting Constraints:operating condition, clock waveform, I/O timing, Timing DRC 

#*************************************************** 

#*************************************************** 

#  

######################################### 

#Step 3.1  

#Define Clock Timing 

 

 

# Define Master/Souce clock 

# clock waveform: freq=1.28MHz, rise time=20% of periods, fall time= after 80% periods -

period in picosecond 

  define_clock -period $CLK_CYCLE_1280KHZ -domain "core" -name inpin_CLK_PLL [find 

/des* -port ports_in/inpin_CLK_PLL] 

 

# set_attribute ideal_driver true [find /des* -port inpin_CLK_PLL] 

 

  set_attribute clock_source_early_latency 100 inpin_CLK_PLL 

  set_attribute clock_network_late_latency 100 inpin_CLK_PLL 

 

# Specify Clock transition 

# dc::set_clock_transition 100 inpin_CLK_PLL 

 

# Specifying Clock Skew: 0 0 {R F} picoseconds, set_clock_uncertainty 

# uncertainty = PLL jitter + clock skew 

  clock_uncertainty -setup -clock inpin_CLK_PLL 100 [find /des* -port 

ports_in/inpin_CLK_PLL] 

  clock_uncertainty -hold -clock inpin_CLK_PLL 50 [find /des* -port ports_in/inpin_CLK_PLL] 
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############################### 

##define generated clocks: 

#640KHz: 

dc::create_generated_clock -name CLK_640KHZ -add -master inpin_CLK_PLL -source 

[dc::get_ports inpin_CLK_PLL] [dc::get_pin -hsc @ 

ins_clk_div_120611@CLK_640KHZ_reg@Q] -divide_by 2  

#128KHz: 

dc::create_generated_clock -name CLK_128KHZ -add -master inpin_CLK_PLL -source 

[dc::get_ports inpin_CLK_PLL] [dc::get_pin -hsc @ 

ins_clk_div_120611@CLK_128KHZ_reg@Q] -divide_by 10  

#80KHz: 

dc::create_generated_clock -name CLK_80KHZ -add -master inpin_CLK_PLL -source 

[dc::get_ports inpin_CLK_PLL] [dc::get_pin -hsc @ 

ins_clk_div_120611@CLK_80KHZ_reg@Q] -divide_by 16  

#16KHz: 

dc::create_generated_clock -name CLK_16KHZ -add -master inpin_CLK_PLL -source 

[dc::get_ports inpin_CLK_PLL] [dc::get_pin -hsc @ 

ins_clk_div_120611@CLK_16KHZ_reg@Q] -divide_by 80  

#CLK_WR in txbb_fm0crc16_mni_120611 for stamp_data_length_reg 

dc::create_generated_clock -name CLK_WR -add -master CLK_640KHZ -source [dc::get_pin -

hsc @ ins_clk_div_120611@CLK_128KHZ_reg@Q] [dc::get_pin -hsc @ 

ins_txbb_fm0crc16_mni_120611@CLK_WR_reg@Q] -divide_by 40 

#  define_clock -period $CLK_CYCLE_1280KHZ -domain "core" -name inpin_CLK_PLL [find 

/des* -pin pins_in/CLK_128KHZ] 

#  define_clock -period $CLK_CYCLE_1280KHZ -domain "core" -name inpin_CLK_PLL [find 

/des* -pin pins_in/CLK_PLL] 

#  define_clock -period $CLK_CYCLE_640KHZ -domain "core" -name CLK_640KHZ [find 

/des* -pin pins_in/CLK_640KHZ] 

#  define_clock -period $CLK_CYCLE_640KHZ -domain "core" -name CLK_640KHZ [find 

/des* -pin pins_in/SCLK] 

#  define_clock -period $CLK_CYCLE_640KHZ -domain "core" -name CLK_640KHZ [find 

/des* -pin CLK_WR_reg/pins_in/CLK] 

#  define_clock -period $CLK_CYCLE_128KHZ -domain "core" -name CLK_128KHZ [find 

/des* -pin pins_in/CLK_128KHZ] 

#  define_clock -period $CLK_CYCLE_80KHZ -domain "core" -name CLK_80KHZ [find /des* 

-pin pins_in/CLK_80KHZ] 

#  define_clock -period $CLK_CYCLE_16KHZ -domain "core" -name CLK_16KHZ [find /des* 

-pin pins_in/CLK_16KHZ] 

 

 

  report clocks > clocks.rep 

######################################### 

#Step 3.2  

#Define IO Timing 

 

# 1st: External Delay 

# set 1ns, they all come from and go to the logic analyzer. 

  external_delay -input  1000 -clock [find / -clock inpin_CLK_PLL]  [find / -port ports_in/*] 

  external_delay -output 1000 -clock [find / -clock inpin_CLK_PLL]  [find / -port ports_out/*] 
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# 2nd: External Driver and Load 

  set_attribute external_driver [find [find / -libcell INVFX1] -libpin Y] 

/designs/digital_core_120611/ports_in/* 

# dc::set_units -capacitance fF 

# dc::set_fanout_load 2 [find / -port ports_out/*] 

 

######################################### 

#Step 3.3  

#Define Path Exceptions 

 

  path_disable -from [find /* -port inpin_RESET]  

 

######################################### 

#Step 3.4  

#Define Design Rule and Operation Mode 

 

#  set_attribute max_capacitance 40 /designs/* 

  set_attribute max_fanout 5 /des*/* 

  set_attribute max_transition 120000 /designs/* 

  report design_rules 

 

#*************************************************** 

# Step 4: optimization 

#*************************************************** 

  set_attribute tns_opto true 

# set_attribute lp_insert_clock_gating true / 

#  set_attribute lp_clock_gating_max_flops 16 /des*/* 

   report clock_gating -summary > clock_gating.rep 

#*************************************************** 

# Step 5: Synthesis 

#*************************************************** 

 

# superthreading first to reduce synthesis turn-around time 

   

# 1st compile synthesize to generic 

  synthesize -to_generic -effort medium 

#  write -m ./gate/${DESIGN}_1st.v 

# 2nd compile synthesize by mapping the design to cells in the technology library 

  synthesize -to_mapped -effort high 

# predict_qos command is not licensed, so this step is skipped. 

# predict_qos cpu_if -reference_config_file rc_enc_des/config.conf -parasitic_output_file 

para.spef 

# synthesize -incremental 

 

#*************************************************** 

# Step 6: Finilizing and Generating Reports 

#*************************************************** 

  cd designs/digital_core_120611 

 

  report timing > timing.rep 
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  report timing -lint > timing_lint.rep 

  report gates > gates.rep 

  report area > area.rep 

  report power > power.rep 

  report yield > yield.rep 

  #report noise > noise.rep 

   

  check_design 

# writing technology dependent gate level netlist for place and route 

  write_hdl > rcnetlist_digital_core_120611_50tt.v 

# writing SDC(Standard Design Constraints) file 

  write_sdc > rcnetlist_digital_core_120611_50tt.sdc 

# writing SDF(Standard Delay Format) file 

  write_sdf > rcnetlist_digital_core_120611_50tt.sdf 

 

gui_show 
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Appendix B.2: SoC Encounter Script and Runtime Command Log 

setCheckMode -vcellnetlist off 

loadConfig digital_core_120611.conf 0 

commitConfig 

floorPlan -site CORE -d 828 420 36 36 36 36 

setObjFPlanPolygon Cell digital_core_120611 0.0000 0.0000 0.0000 420.0000 840.0000 

420.0000 840.0000 228.0000 552.0000 228.0000 552.0000 0.0000 0.0000 0.0000 

clearGlobalNets 

globalNetConnect VDDD -type pgpin -pin VDDD -inst * -override -verbose 

globalNetConnect VSSD -type pgpin -pin VSSD -inst * -override -verbose 

globalNetConnect VDDD -type tiehi -pin * -inst * -override -verbose 

globalNetConnect VSSD -type tielo -pin * -inst * -override -verbose 

addRing -spacing_bottom 6 -width_left 12 -width_bottom 12 -width_top 12 -spacing_top 6 -

layer_bottom M3 -center 1 -stacked_via_top_layer ML -width_right 12 -around core -

jog_distance 0.3 -offset_bottom 0.3 -layer_top M3 -threshold 0.3 -offset_left 0.3 -spacing_right 6 

-spacing_left 6 -offset_right 0.3 -offset_top 0.3 -layer_right M4 -nets {VSSD VDDD } -

stacked_via_bottom_layer M1 -layer_left M4 

addStripe -block_ring_top_layer_limit MT -max_same_layer_jog_length 4.8 -

snap_wire_center_to_grid Half_Grid -padcore_ring_bottom_layer_limit M3 -number_of_sets 3 -

stacked_via_top_layer ML -padcore_ring_top_layer_limit MT -spacing 6 -xleft_offset 120 -

xright_offset 120 -merge_stripes_value 0.3 -layer ML -block_ring_bottom_layer_limit M3 -width 

6 -nets {VSSD VDDD } -stacked_via_bottom_layer M1 

sroute -connect { corePin floatingStripe } -layerChangeRange { M1 ML } -blockPinTarget 

{ nearestTarget } -checkAlignedSecondaryPin 1 -allowJogging 1 -crossoverViaBottomLayer M1 

-allowLayerChange 1 -targetViaTopLayer ML -crossoverViaTopLayer ML -

targetViaBottomLayer M1 -nets { VSSD VDDD } 

loadIoFile digital_core_120611_final.save.io 

getMultiCpuUsage -localCpu 

setFillerMode -reset 

setFillerMode -corePrefix FILLER -createRows 1 -doDRC 1 -deleteFixed 1 -ecoMode 0 

setPlaceMode -reset 

setPlaceMode -congEffort medium -timingDriven 1 -modulePlan 1 -doCongOpt 1 -clkGateAware 

1 -powerDriven 1 -ignoreScan 1 -reorderScan 1 -ignoreSpare 1 -placeIOPins 0 -

moduleAwareSpare 0 -checkPinLayerForAccess {  1 } -preserveRouting 0 -rmAffectedRouting 0 

-checkRoute 0 -swapEEQ 0 

setPlaceMode -fp false 

placeDesign -prePlaceOpt 

trialRoute -maxRouteLayer 6 -highEffort 
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extractRC -outfile digital_core_120611.cap 

rcOut -spef digital_core_120611.spef 

clearClockDomains 

setClockDomains -all 

timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -numPaths 50 -prefix 

digital_core_120611_preCTS -outDir timingReports 

clearClockDomains 

setClockDomains -all 

timeDesign -preCTS -hold -idealClock -pathReports -slackReports -numPaths 50 -prefix 

digital_core_120611_preCTS -outDir timingReports 

setAnalysisMode -checkType hold 

report_timing 

set_false_path -from ins_controller_mni_120611/EN_TX_reg -to 

ins_txbb_fm0crc16_mni_120611/g23348 

report_timing 

setAnalysisMode -checkType setup 

report_timing 

addCTSCellList {BUFFX1 BUFFX2 BUFFX3 BUFFX4} 

clockDesign -genSpecOnly Clock.ctstch 

setCTSMode -traceDPinAsLeaf true -traceIoPinAsLeaf true -routeClkNet false -routeGuide true -

routeTopPreferredLayer M4 -routeBottomPreferredLayer M3 -routeNonDefaultRule {} -

routeLeafTopPreferredLayer M4 -routeLeafBottomPreferredLayer M3 -

routeLeafNonDefaultRule {} -useLefACLimit false -routePreferredExtraSpace 1 -

routeLeafPreferredExtraSpace 1 -opt true -optAddBuffer false -moveGate true -useHVRC true -

fixLeafInst true -fixNonLeafInst true -verbose false -reportHTML false -addClockRootProp false 

-nameSingleDelim false -honorFence false -useLibMaxFanout false -useLibMaxCap false 

clockDesign -specFile Clock.ctstch -outDir clock_report -fixedInstBeforeCTS 

getFillerMode -quiet 

addFiller -cell DCAP1 -prefix FILLER 

setNanoRouteMode -quiet -routeWithTimingDriven 1 

setNanoRouteMode -quiet -routeWithLithoDriven 1 

setNanoRouteMode -quiet -droutePostRouteLithoRepair 1 

setNanoRouteMode -quiet -routeWithSiDriven 1 

setNanoRouteMode -quiet -routeTdrEffort 9 

setNanoRouteMode -quiet -drouteStartIteration default 

setNanoRouteMode -quiet -routeTopRoutingLayer default 

setNanoRouteMode -quiet -routeBottomRoutingLayer default 
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setNanoRouteMode -quiet -drouteEndIteration default 

setNanoRouteMode -quiet -routeWithTimingDriven true 

setNanoRouteMode -quiet -routeWithSiDriven true 

routeDesign -globalDetail 

verifyConnectivity -type all -error 1000 -warning 50 

setExtractRCMode -engine postRoute -effortLevel low -coupled false 

extractRC -outfile digital_core_120611.cap 

rcOut -spef digital_core_120611.spef 

clearClockDomains 

setClockDomains -all 

timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 255 -prefix 

digital_core_120611_postRoute -outDir timingReports 

clearClockDomains 

setClockDomains -all 

timeDesign -postRoute -hold -pathReports -slackReports -numPaths 255 -prefix 

digital_core_120611_postRoute -outDir timingReports 

report_timing -machine_readable -max_points 10000 -max_slack 0.75 -path_exceptions all > 

top.mtarpt 

extractRC -outfile digital_core_120611.cap 

rcOut -spef digital_core_120611.spef 

clearClockDomains 

setClockDomains -all 

timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 250 -prefix 

digital_core_120611_postRoute -outDir timingReports 

report_timing -max_path 100 > timing_paths.rep 

verifyConnectivity -type all -error 1000 -warning 50 

verifyGeometry 

extractRC -outfile digital_core_120611.cap 

rcOut -spef digital_core_120611.spef 

timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 1000 -prefix 

digital_core_120611_postRoute -outDir timingReports 

saveNetlist digital_core_120611_postpr_simulation.v 

saveNetlist -lineLength 250 -includePhysicalCell DCAP1 digital_core_120611_postpr_lvs.v 

streamOut digital_core_120611.gds -

mapFile ../../../../../2009/uva_stdcells/uva_stdcells/lib/ibm018/map/encounter_ibm_vRan.map -

libName DesignLib_021412 -structureName digital_core_120611 -merge 

{ ../../../../IBMPDK_IC610/i018lvt_v3.gds } -units 1000 -mode ALL 
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Appendix B.3: Ecounter Timing System Script for Static Timing Analysis 

read_lib -typ osui018lvt_50ss.lib 

read_verilog digital_core_120611_ets.v 

set_top_module digital_core_120611 

read_sdc forets2.sdc 

read_spef digital_core_120611.spef 

set_analysis_mode -single -setup 

 

#report all timing: 

 

###########Applied Constrain############ 

#####CLK##### 

report_clocks -source_insertion -insertion -uncertainty_table -arrival_points >  report_clock.rep 

report_clock_timing -type skew -verbose >  report_clock_timing_skew.rep 

report_clock_timing -type interclock_skew -verbose >  report_clock_timing_interclock_skew.rep 

#report_clock_timing -type jitter -verbose >  report_clock_timing_jitter.rep    # this argument can 

only be used in OCV mode 

report_clock_timing -type summary >  report_clock_timing_summary.rep 

report_clock_timing -type latency -verbose >  report_clock_timing_latency.rep 

#report_clock_gating_check >  report_clock_gating.rep 

#####Exceptions##### 

report_path_exceptions -both >  timing_exceptions.rep 

#####Inactive Arcs##### 

report_inactive_arcs >  inactive_arc.rep 

#####Constrain coverage##### 

report_analysis_coverage -verbose {violated untested} >  constrain_coverage.rep 

 

 

###########About the Design############# 

 

#####Slack Distribution##### 

report_slack_histogram -outfile  slack_distribution.rep 

#####Critical Instances##### 

report_critical_instance >  critical_instances.rep 

#####Constrains Violators##### 

report_constraint -verbose > constrain_violators.rep 

 

 

############Possible Bad Things############# 

#####min pulse width##### 

report_min_pulse_width -verbose > min_pulse_width.rep 

#####Unconstrained##### 

report_timing -unconstrained >  unconstrained_path.rep 

 

 

report_timing -format {instance cell arc load slew delay arrival required} > 

general_timing_report.rep 
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