12 research outputs found

    Spatially dense 3D facial heritability and modules of co-heritability in a father-offspring design

    Get PDF
    Introduction: The human face is a complex trait displaying a strong genetic component as illustrated by various studies on facial heritability. Most of these start from sparse descriptions of facial shape using a limited set of landmarks. Subsequently, facial features are preselected as univariate measurements or principal components and the heritability is estimated for each of these features separately. However, none of these studies investigated multivariate facial features, nor the co-heritability between different facial features. Here we report a spatially dense multivariate analysis of facial heritability and co-heritability starting from data from fathers and their children available within ALSPAC. Additionally, we provide an elaborate overview of related craniofacial heritability studies. Methods: In total, 3D facial images of 762 father-offspring pairs were retained after quality control. An anthropometric mask was applied to these images to establish spatially dense quasi-landmark configurations. Partial least squares regression was performed and the (co-)heritability for all quasi-landmarks (∼7160) was computed as twice the regression coefficient. Subsequently, these were used as input to a hierarchical facial segmentation, resulting in the definition of facial modules that are internally integrated through the biological mechanisms of inheritance. Finally, multivariate heritability estimates were obtained for each of the resulting modules. Results: Nearly all modular estimates reached statistical significance under 1,000,000 permutations and after multiple testing correction (p ≤ 1.3889 × 10-3), displaying low to high heritability scores. Particular facial areas showing the greatest heritability were similar for both sons and daughters. However, higher estimates were obtained in the former. These areas included the global face, upper facial part (encompassing the nasion, zygomas and forehead) and nose, with values reaching 82% in boys and 72% in girls. The lower parts of the face only showed low to moderate levels of heritability. Conclusion: In this work, we refrain from reducing facial variation to a series of individual measurements and analyze the heritability and co-heritability from spatially dense landmark configurations at multiple levels of organization. Finally, a multivariate estimation of heritability for global-to-local facial segments is reported. Knowledge of the genetic determination of facial shape is useful in the identification of genetic variants that underlie normal-range facial variation

    Spatially Dense 3D Facial Heritability and Modules of Co-heritability in a Father-Offspring Design

    Get PDF
    Introduction: The human face is a complex trait displaying a strong genetic component as illustrated by various studies on facial heritability. Most of these start from sparse descriptions of facial shape using a limited set of landmarks. Subsequently, facial features are preselected as univariate measurements or principal components and the heritability is estimated for each of these features separately. However, none of these studies investigated multivariate facial features, nor the co-heritability between different facial features. Here we report a spatially dense multivariate analysis of facial heritability and co-heritability starting from data from fathers and their children available within ALSPAC. Additionally, we provide an elaborate overview of related craniofacial heritability studies.Methods: In total, 3D facial images of 762 father-offspring pairs were retained after quality control. An anthropometric mask was applied to these images to establish spatially dense quasi-landmark configurations. Partial least squares regression was performed and the (co-)heritability for all quasi-landmarks (∼7160) was computed as twice the regression coefficient. Subsequently, these were used as input to a hierarchical facial segmentation, resulting in the definition of facial modules that are internally integrated through the biological mechanisms of inheritance. Finally, multivariate heritability estimates were obtained for each of the resulting modules.Results: Nearly all modular estimates reached statistical significance under 1,000,000 permutations and after multiple testing correction (p ≤ 1.3889 × 10-3), displaying low to high heritability scores. Particular facial areas showing the greatest heritability were similar for both sons and daughters. However, higher estimates were obtained in the former. These areas included the global face, upper facial part (encompassing the nasion, zygomas and forehead) and nose, with values reaching 82% in boys and 72% in girls. The lower parts of the face only showed low to moderate levels of heritability.Conclusion: In this work, we refrain from reducing facial variation to a series of individual measurements and analyze the heritability and co-heritability from spatially dense landmark configurations at multiple levels of organization. Finally, a multivariate estimation of heritability for global-to-local facial segments is reported. Knowledge of the genetic determination of facial shape is useful in the identification of genetic variants that underlie normal-range facial variation

    Three-dimensional and clinical aspects of BiMaxillary Expansion

    Get PDF

    Three-dimensional and clinical aspects of BiMaxillary Expansion

    Get PDF

    Quantification of Facial Traits

    Get PDF
    Measuring facial traits by quantitative means is a prerequisite to investigate epidemiological, clinical, and forensic questions. This measurement process has received intense attention in recent years. We divided this process into the registration of the face, landmarking, morphometric quantification, and dimension reduction. Face registration is the process of standardizing pose and landmarking annotates positions in the face with anatomic description or mathematically defined properties (pseudolandmarks). Morphometric quantification computes pre-specified transformations such as distances. Landmarking: We review face registration methods which are required by some landmarking methods. Although similar, face registration and landmarking are distinct problems. The registration phase can be seen as a pre-processing step and can be combined independently with a landmarking solution. Existing approaches for landmarking differ in their data requirements, modeling approach, and training complexity. In this review, we focus on 3D surface data as captured by commercial surface scanners but also cover methods for 2D facial pictures, when methodology overlaps. We discuss the broad categories of active shape models, template based approaches, recent deep-learning algorithms, and variations thereof such as hybrid algorithms. The type of algorithm chosen depends on the availability of pre-trained models for the data at hand, availability of an appropriate landmark set, accuracy characteristics, and training complexity. Quantification: Landmarking of anatomical landmarks is usually augmented by pseudo-landmarks, i.e., indirectly defined landmarks that densely cover the scan surface. Such a rich data set is not amenable to direct analysis but is reduced in dimensionality for downstream analysis. We review classic dimension reduction techniques used for facial data and face specific measures, such as geometric measurements and manifold learning. Finally, we review symmetry registration and discuss reliability

    Novel genetic loci affecting facial shape variation in humans

    Get PDF
    The human face represents a combined set of highly heritable phenotypes, but knowledge on its genetic architecture remains limited, despite the relevance for various fields. A series of genome-wide association studies on 78 facial shape phenotypes quantified from 3-dimensional facial images of 10,115 Europeans identified 24 genetic loci reaching study-wide suggestive association (p-8), among which 17 were previously unreported. A follow-up multi-ethnic study in additional 7,917 individuals confirmed 10 loci including 6 unreported ones (padjusted-3). A global map of derived polygenic face scores assembled facial features in major continental groups consistent with anthropological knowledge. Analyses of epigenomic datasets from cranial neural crest cells revealed abundant cis-regulatory activities at the face-associated genetic loci. Luciferase reporter assays in neural crest progenitor cells highlighted enhancer activities of several face-associated DNA variants. These results substantially advance our understanding of the genetic basis underlying human facial variation and provide candidates for future in-vivo functional studies

    An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets

    No full text
    In this paper, we present a novel approach to automatic 3D facial landmarking using 2D Gabor wavelets. Our algorithm considers the face to be a surface and uses map projections to derive 2D features from raw data. Extracted features include texture, relief map, and transformations thereof. We extend an established 2D landmarking method for simultaneous evaluation of these data. The method is validated by performing landmarking experiments on two data sets using 21 landmarks and compared with an active shape model implementation. On average, landmarking error for our method was 1.9 mm, whereas the active shape model resulted in an average landmarking error of 2.3 mm. A second study investigating facial shape heritability in related individuals concludes that automatic landmarking is on par with manual landmarking for some landmarks. Our algorithm can be trained in 30 min to automatically landmark 3D facial data sets of any size, and allows for fast and robust landmarking of 3D faces
    corecore