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Measuring facial traits by quantitative means is a prerequisite to investigate

epidemiological, clinical, and forensic questions. This measurement process has received

intense attention in recent years. We divided this process into the registration of the face,

landmarking, morphometric quantification, and dimension reduction. Face registration

is the process of standardizing pose and landmarking annotates positions in the face

with anatomic description or mathematically defined properties (pseudolandmarks).

Morphometric quantification computes pre-specified transformations such as distances.

Landmarking: We review face registration methods which are required by some

landmarking methods. Although similar, face registration and landmarking are distinct

problems. The registration phase can be seen as a pre-processing step and

can be combined independently with a landmarking solution. Existing approaches

for landmarking differ in their data requirements, modeling approach, and training

complexity. In this review, we focus on 3D surface data as captured by commercial

surface scanners but also cover methods for 2D facial pictures, when methodology

overlaps. We discuss the broad categories of active shape models, template based

approaches, recent deep-learning algorithms, and variations thereof such as hybrid

algorithms. The type of algorithm chosen depends on the availability of pre-trained

models for the data at hand, availability of an appropriate landmark set, accuracy

characteristics, and training complexity. Quantification: Landmarking of anatomical

landmarks is usually augmented by pseudo-landmarks, i.e., indirectly defined landmarks

that densely cover the scan surface. Such a rich data set is not amenable to direct

analysis but is reduced in dimensionality for downstream analysis. We review classic

dimension reduction techniques used for facial data and face specific measures, such as

geometric measurements and manifold learning. Finally, we review symmetry registration

and discuss reliability.

Keywords: face, quantification, registration, 3D surface, photogrammetry, reliability, dimension reduction,

landmark

1. INTRODUCTION

The face plays an important role in human interaction and is scientifically researched with respect
to many disciplines including genetic control (Boehringer et al., 2011b; Liu et al., 2012; Paternoster
et al., 2012; Adhikari et al., 2016; Cole et al., 2016; Shaffer et al., 2016; Lee et al., 2017; Claes et al.,
2018), psycho-social impact (Scheib et al., 1999; Leyvand et al., 2008), archaeology (Stenton et al.,
2016), forensic reconstruction (Short et al., 2014), relation with medical conditions (Hammond
et al., 2005; Boehringer et al., 2006, 2011a; Vollmar et al., 2008; Wilamowska et al., 2012), and facial
identification (Wiskott and Von Der Malsburg, 1996; Schroff et al., 2015; Sun et al., 2015).
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Facial identification or face recognition is the process of
determining whether a face as represented by a single or a few
images is present on a given target image. We do not cover face
recognition in this review and only provide a brief discussion.
In this review, we cover automatic methods that can derive
quantitative values, such as distances, from given facial raw data
as represented by 2D photographs or 3D surface scans. Such
quantities are of interest in genome wide association studies
(GWASs), syndrome classification, and other prediction settings.

Early applications of facial genetics focused on Mendelian
patterns (Lebow and Sawin, 1941; Vandenberg and Strandskov,
1964) of rough facial measurements such as length or heritability
of measurements derived from lateral skull radiographs(Hunter
et al., 1970; Nakata et al., 1976). A first statistical quantification
proposed a harmonic analysis of cephalometric data by
considering the outer rim of the skull (Lu, 1965). In the following
papers, quantitative facial analyses were applied to determine
syndrome diagnoses (Hammond et al., 2005; Boehringer et al.,
2006, 2011a; Vollmar et al., 2008; Wilamowska et al., 2012),
and to identify faces (Wiskott and Von Der Malsburg, 1996;
Schroff et al., 2015; Sun et al., 2015). Many syndromes can be
well-classified due to distinct facial characteristics between the
affected group and healthy controls. The syndrome groups were
relatively small in number (100’s of individuals) allowing manual
annotation of faces. The introduction of GWASs (Liu et al.,
2012; Paternoster et al., 2012; Adhikari et al., 2016; Cole et al.,
2016; Shaffer et al., 2016; Lee et al., 2017; Claes et al., 2018)
required large cohort sizes to attain sufficient statistical power.
While a limited number of landmarks have been placed manually
(Paternoster et al., 2012), (semi)automatic procedures have also
been utilized (Liu et al., 2012; Adhikari et al., 2016; Lee et al.,
2017; Claes et al., 2018). As cohort sizes increase further, reliable
automatic quantification becomes more important.

In this review, facial quantification is divided into three
steps: pre-processing (face registration), landmarking (facial
alignment), and deriving outcome measures based on these
landmarks (morphometric quantification, dimension reduction).
While, in principle, landmarks are not necessary to derive
quantities from faces, they help in interpreting results and
to remove important sources of variation from the data. We
define face registration as the process of bringing a face into
a well-defined pose. By facial alignment we mean that some
or all points of a given face can be transformed to points on
another face while retaining theirmeaning in terms of landmarks,
thereby establishing correspondence between landmarks. This is
intuitively obvious for anatomic landmarks (Swennen, 2006) but
can be extended to a full facial surface through dense surface
models or pseudo-landmarks. Finally, aligned landmark data is
rarely analyzed directly. Rather they are processed further using
either pre-specified transformations or dimension reduction
techniques. Important examples are morphometric quantities
such as distances. Other transformations are derived from the
data, which we call global quantification because they operate
on the full data set. Principal component analysis (PCA) is an
example of such a technique. These quantities are then used in
ensuing analyses such as classification, heritability estimation, or
genetic association.

As a final aspect, symmetry is quickly discussed as a face
specific application and some open problems are mentioned.

2. FACE REGISTRATION

Face registration is the process of aligning the face into a
standard pose. In general, the definition of the standard pose
is method specific. For example, nose, eyes, and mouth all offer
possibilities for such definitions by aligning them to pre-specified
locations. In principle, all landmarking methods can be trained
to use non-registered faces, yet almost all methods are likely
to profit when faces are pre-registered. The degree by which
landmarking efforts depend on face registration certainly differs
between methods. For example, template based methods use
average image patches derived from training samples to represent
landmarks (described in more detail in section 3.1), which can
be used to locate landmarks in new data. Arguably, template
based methods depend more on face registration than some
other landmarks registration methods as the templates have been
derived under a specific pose in the training data.

Viola and Jones (2004) proposed a 2D algorithm that turned
out to be very robust for defining regions containing faces
under greater variation of facial poses. This is important as
in 2D, it is difficult to correct pose, as such a correction is
a three-dimensional rotation which requires to estimate depth
information first.

In 3D, available registration methods are heuristic, i.e.,
based on ad-hoc rules. They focus on characteristics of facial
3D models that are pre-selected based on plausible geometric
assumptions. For example, a cylinder fitting approach with a
2D symmetry plane detection that iteratively converges toward
symmetry between the left and right hand sides of the face
was proposed (Spreeuwers, 2011). Other popular registration
methods are based on curvatures. Using mean curvatures and
relative positions to locate the nose tip and both inner eye corners
(Sun and Yin, 2008) has been a successful approach.

After face registration, the surface models can be brought into
the standard pose and can be automatically landmarked without
taking into account pose. This contrasts with the application
of deep neural networks (DNN). In such models, pose is
learned as part of the landmarking model and helps to improve
landmarking by generating features that represent pose (Bulat
and Tzimiropoulos, 2017) (section 3.3).

3. LANDMARKING

Landmarking is the process of searching for locations on a
given representation of a face corresponding to locations on
a second such representation, or alternatively to those on an
idealized face. Anatomical landmarks are defined anatomically
(Swennen, 2006), and pseudo-landmarks are locations with a
mathematical definition relative to anatomical landmarks. Often
pseudo-landmarks are defined by themovement required to align
anatomical landmarks that involve a correspondingmovement of
pseudo-landmarks in between, which is discussed in section 5.4.
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Finding corresponding landmarks allows for a statistical analysis
with respect to genetics or other traits.

Most importantly, the availability of anatomical landmarks
is the pre-requisite for further landmarking efforts. In many
studies, anatomical landmarks are placed manually (Boehringer
et al., 2011b; Paternoster et al., 2012), with a minimum of
two required to define pseudo-landmarks. In the following,
we discuss automated landmarking procedures for anatomical
landmarks. Reliability of manual landmarking is discussed in
section 6 and pseudo-landmarks in section 5.4.

3.1. Template Based Methods
3.1.1. 2D Methods

A template for a landmark is defined as an image patch around
a landmark that later can be used for comparison in a target
image. Templates can be averages of image patches across a set
of training images or the full set of image patches as extracted
from training images.

Early attempts used image patches directly without
transformations, and correlations of a template with a patch
of a target image was used to locate either the total face or
sub-features like eyes, nose, or mouth (Samal and Iyengar,
1992). Many modifications were developed such as weighted
correlation (Kalina, 2010) or making templates adaptive to
varying conditions as reviewed elsewhere (Yang et al., 2002).
The review discusses methods for templates that can adapt
to different lighting and pose conditions using parameters
(parametrized templates) and also broadly discusses face
identification methods.

Apart from using raw image intensities, templates can be
represented after being transformed. In many cases, a wavelet
decomposition is applied to the image and the resulting
representation is stored instead (wavelet coefficients). Roughly
speaking, in a simple case, a square image is subdivided into
four smaller squares and a difference between average pixel
intensities of these sub-squares is stored (wavelet coefficient).
The wavelet itself is a function that allows and defines this
computation. This process is repeated for the four squares,
implying wavelet size shrinks by a factor of two with every step.
Wavelet coefficients again represent how different the smaller
sub-squares are within their embedding square. This process
can be repeated until the squares contain only a single pixel
or after a number of predefined steps. The original image can
be reconstructed from this representation. Intuitively, the global
average of pixel intensities and also differences between sub-
squares for the first steps are usually uninformative for face or
landmark detection. Only when the wavelet size is close to a patch
size that spans useful facial features ( e.g., a patch spanning the
edge of the nose but not the whole nose) they become useful for
landmarking purposes. In this sense, a wavelet decomposition
is more informative than the raw image as information is
represented on different spatial scales. For example, smaller
wavelets can be used to represent sharp edges whereas larger
wavelets coefficients correlate with softer gradients. In this way,
relevant information is encoded in fewer numbers as compared
to the pixel values of the raw image patch. In computer vision
applications, this process usually does not start with pre-defined

patches (squares) but is centered around points of interest
(e.g., potential landmarks). The same properties are used in
image compression such as the JPEG standard (Wallace, 1991),
when coefficients represent different levels of detail and can be
omitted when they only minimally affect image appearance. The
ability of wavelet coefficients to sparsely describe image patches
makes them attractive for computer vision applications. Details
describing wavelet decompositions are given elsewhere (Gomes
and Velho, 2015).

Haar-wavelets (Papageorgiou et al., 1998), which are
computed as described in the previous paragraph (with details
omitted), were introduced for the purpose of general object
detection. For a particular type of object, a supervised learning
step is used to identify which Wavelet coefficients are needed for
detection. The original paper (Papageorgiou et al., 1998) already
considers face detection, and was extended in several ways to
allow for scale invariant detection and to improve computational
efficiency (Viola and Jones, 2004). This became the Viola-Jones
algorithm mentioned previously. The algorithm is implemented
in the OpenCV library (Bradski, 2000) and has become an
important tool for real-time applications and as a pre-processing
step in other algorithms.

Gabor-Wavelet are a smooth variant of Haar-wavelets that also
allow for overlap between wavelets and are used by the so-called
elastic bunchgraph method (Wiskott and Von Der Malsburg,
1996; Wiskott et al., 1997). An additional modification was that
templates are not averaged across training samples but are stored
as a collection in the so-called bunch graph. When searching
for a maximum correlation match in a target image, the whole
set of templates is iterated and the maximum across all training
examples is chosen, which allows to represent heterogeneity
across samples. Also template based methods usually take
into account some geometric information. Usually, the relative
landmark positions are not allowed to deviate strongly from
an average graph as expressed by a distance or deformation
energy (Wiskott et al., 1997; Viola and Jones, 2004). For this
reason, template based methods handle texture information very
flexibly but are less flexible geometrically as compared to, for
example, active shape models described in the next section. The
methods described above have been shown in the corresponding
papers to perform well when few training images are used.
This was demonstrated by either showing qualitative examples
(Kalina, 2010), face recognition rates (Wiskott et al., 1997), or by
reporting landmarking accuracy (de Jong et al., 2018b). For many
landmarks, 1–2 mm of accuracy can be achieved as compared to
human raters.

3.1.2. 3D Methods

Template based 2D based methods can be applied to 3D surface
scans by first projecting scans to 2D. In an extension, the height of
projected points can be stored in an elevation map as well. In this
case, full information is retained as the projection can be reverted
by using the elevation map. Using both sources of information
can improve landmarking accuracy (de Jong et al., 2016). It is
also possible to combine several landmarking algorithms into a
combined method (ensemble) (de Jong et al., 2018b) which can
increase flexibility (de Jong et al., 2018a).
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3.2. Active Shape Models
Active contour models (ACMs) place a graph on an image and try
to align it with existing edges. The graph that requires minimal
movement and deformation while matching image edges is the
solution of the alignment process. An example is shown in
Figure 1. More formally, the solution is a trade-off between fit
to edges (measured by a distance) and the needed deformation
(measured by an energy) (Kass et al., 1988). Active shape models
(ASMs) use information from a training sample to improve the
procedure. The sample is used to define deformations of the
initial graph that have actually been seen in training samples
(possible shapes). For example, in the case of faces, the ratio of
height to width is constrained and ASMs would not consider
a deformed graph violating this constraint, i.e., only the set of
possible shapes is used in the search. The initial work assumed
that all landmarks can be connected by edges that correspond
to edges in the image (Cootes et al., 1995). Procrustes alignment
is performed on the landmarks (see section 5) and a principal
component analysis (PCA; see section 7) is performed on the
aligned landmarks to define shapes. This is called the point
distributionmodel (PDM). The PCA can be used to define shapes
that are likely to be seen in new data by assuming that the training
sample represents the true distribution. The landmarking process
is iterative in trying tomove landmarks toward edges in the image
while constraining the combined set of proposed movements for
all landmarks to a shape that is “likely enough” under the PDM.

When a proposed shape is too unlikely, it is moved back to
the closest point in the acceptable region. The ASM approach
has been extended to 3D, in the volumetric sense, i.e., voxel (Hill
et al., 1993), and to 3D data as represented by multiple views
(Milborrow et al., 2013; Montúfar et al., 2018).

One of the early applications of ASMs was landmarking of
faces (Lanitis et al., 1997). The approach has been adapted

FIGURE 1 | ASM alignment of a connected graph to a face. Source: wikipedia.

to improve performance on faces where edges are not always
appropriate to describe landmarks. The edge search has been
modified to include the 2D profile around the edge (Milborrow
and Nicolls, 2008) and outright templates (Milborrow and
Nicolls, 2014) which have been chosen to be scale and rotation
invariant (Lowe, 2004).

When ASMs are implemented for 2D images, a projection step
from 3D to 2D can be used to apply these models on surface
data. This has recently been performed when STASM (Zhou et al.,
2009; Milborrow and Nicolls, 2014), an implementation of an
ASM, has been compared to a template based approach (de Jong
et al., 2016). In this comparison, STASM showed a landmarking
accuracy of 1–2 mm. In contrast to ASMs, Active appearance
models (AAMs) is not only based on edge information but
also takes into account gray scale information of the full image
(Edwards et al., 1998).

An attractive feature of ASMs is that facial expression is
implicitly captured in the PDM. Based on a classification of facial
expression by human raters, facial expression can be predicted
from images. As facial expression has not yet been analyzed
genetically, we only suggest two reviews (Fasel and Luettin, 2003;
Oh et al., 2018) and note that other landmarking methods can
also be used to learn facial expression.

3.3. Deep Learning
Deep learning and deep neural networks (DNN) are terms for
learning algorithms involving many stacked layers of functions
(or regressions) for which parameters are estimated to optimize
a final learning objective (LeCun et al., 2015). For example,
similar to the application of standard regression models, this
can be used to classify a pixel in an image to be either a given
landmark or not, or to predict a certain landmark coordinate.
Statistically, deep learning can be best compared to stacking
(Breiman, 1996), where several base models are built to predict
an outcome. Then, a secondmodel is built to predict the outcome
again based on output from the base models thereby generating
a two-layer prediction. Deep learning similarly uses the output
of regressions (or more generally parametrized functions) on a
lower level as input for higher levels to predict a final output.
Usually more than two layers are used in DNNs. So-called
convolutional networks (CNNs) are a variant of DNNs that is
applied on image or voxel data. They make use of functions that
only look at smaller image patches within an input image instead
of the full image. In a sliding-window approach the same function
is applied to every possible patch placement and the result is
summarized in a new picture (each new pixel is the value of the
function for the patch around the pixel from the input). This
is similar to a template search where at each pixel the function
would indicate how well the template matches at the current
position. Higher layers repeat this procedure. As each layer looks
at a patch from the previous input layer, higher level outputs
depend on increasingly larger patches of the initial input image
(Figure 2A). Intuitively, this is an important aspect, as features
can be combined into increasingly larger units, say edges (first
layer) are combined into structures like mouth and nose (second
layer) and these are composed into faces (third layer). This
concept is illustrated in Figure 2B. Every layer represents features
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needed to detect faces/landmarks at different levels of complexity.
Which functions are needed to achieve these representations
is learned during model training. This allows to use raw pixel
data as input without pre-processing. For landmarking purposes,
CNNs are trained on manually labeled input images so that
the resulting model can predict landmark coordinates for new
input data.

Disadvantages of CNNS are that the flexibility of the models
also requires large training samples, the design of the network
architecture is largely empirical, and the fitting of the models
requires careful tuning (Goodfellow et al., 2016).

Deep networks for landmarking have been well established. A
CNN using raw pixel information of 2D images was augmented
by components estimating pose, sex, and other aspects using a
so-called multi-tasking approach (Zhang et al., 2016). The input
was reduced to 40 × 40 gray scale images and four layers were
used. Still the method had to rely on 10,000 training images.
A similar approach using residual learning was proposed for
2D data (Ranjan et al., 2017). Residual learning is a strategy to
mitigate the cost in terms of training sample size with respect
to the depth of the network. Instead of using only outputs of a
lower layer, residual networks copy the input of the previous layer
as well (He et al., 2016). This is analogous to statistical models
when main effects, i.e., the raw data should always be included

in the model. This strategy was used to combine 2D and 3D data
(Bulat and Tzimiropoulos, 2017) in an effort to further alleviate
the limitation in the availability of 3D surface data. Augmenting
training data by synthetic training data is another typical strategy
to increase available training data.

When only scarce training data is available and data
combination strategies are not an option, so-called transfer
learning is yet another way to train deep networks. In this
case, a pre-trained network is used and the last or last few
layers are removed (Burlina et al., 2017). This latter application
involves image classification using GoogleNet (Szegedy et al.,
2015) as the source network. A new classifier can then be trained
on few training examples by re-adding a final classification
layer. The intuition behind this approach is that the source
network has learned relevant features that can also be used for
the classification problem at hand. A non-standard approach
combines convolutional networks with a PDM (Zadeh et al.,
2017). Landmarking of volumetric data has also been addressed
(Zheng et al., 2015).

3.4. Other Models
In this section, we give a brief overview of some alternative
approaches. An interesting approach is represented by generative
models. Conceptually, a model is used to render the image

FIGURE 2 | (A) For three example responses, each cone represents an image patch on a lower level on which the response of the level above depends. Through the

middle layer, the upper layer depends on a wider input field in the lower level than the middle level. (B) Cartoons of input image patches that would create maximal

responses in layers of CNNs (first layer at the bottom, last at the top). The first layer responds to edges, plain areas or point elevations in all cases. The second layer is

specific to the learning objective, e.g., facial anatomical features such as eyes, noses, or mouths. The final layer recognizes objects as a whole. With permission from

Lee et al. (2009).
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of a face. This model is controlled by few parameters. Each
set of parameters can be rendered into a face for which the
landmark coordinates are known. These models therefore have
a one-by-one correspondence between parameters and landmark
coordinates. By generating an image that best resembles a
given face in 2D or 3D, all landmarks are directly identified
by reading them off of the model (Blanz and Vetter, 1999,
2003). Such models have not received much attention recently.
Deep networks can also be used generatively to produce facial
renderings but do not produce landmarks in a standard setting
(Goodfellow et al., 2016).

Agent based models consider landmarking as a task of finding
the correct path to a landmark from a starting position where
reinforcement learning can be used in combination with deep
networks (Ghesu et al., 2018; Alansary et al., 2019). The
search strategy as opposed to the landmarking accuracy itself is
optimized and landmarking is a by-product.

Many heuristic methods have been proposed focusing on
specific properties of the data set at hand (for example He et al.,
2012; Wilamowska et al., 2012; Guo et al., 2013; Peng et al.,
2013). A heuristic step for detecting anatomical landmarks can be
combined with dense surface registration (Guo et al., 2013; Peng
et al., 2013). Such methods are characterized by the fact that the
introduction of new landmarks would require changes to feature
representations or the underlying model.

Atlas-based methods define a single or a few instances of
faces (or geometric objects in general) which are annotated
with additional information such as landmarks. If the atlas
is transformed to match the target instance, the annotations
transfer as well and establish landmarks in the target image
(Li et al., 2017).

4. SYMMETRY REGISTRATION

Symmetry (or asymmetry) estimation addresses an important
aspect of facial data. The degree of symmetry is an important
property of a face having a connection with attractiveness
(Scheib et al., 1999; Leyvand et al., 2008) and an impression
of dysmorphia which in turn is linked with genetic syndromes
(Winter, 1996; Thornhill and Møller, 1997).

The process of symmetry registration is to establish left-
right correspondence between either anatomic landmarks,
pseudolandmarks, or pixels.

A first approach uses localized, weighted correlation of image
patches in 2D to find corresponding pixels (Kalina, 2012). In this
approach, every image patch on one side forms a template for
the other side. This approach can be applied to 3D but needs
face registration to avoid distortions when 3D surface models are
projected to 2D.

A second approach is to see symmetry registration as a
landmarking problem. Instead of establishing correspondence
across scans, correspondence between halves of the face is sought.
To this end, one approach is to first mirror the scan with respect
to the x-coordinate (first axis) after registering the face and then
to find landmarks being close to each other when comparing the
original and mirrored scan (Claes et al., 2011; Taylor et al., 2014).

Having registered symmetry of a face results in a multivariate
data sets with up to 105 dimensions. Perception of asymmetry
by humans, however, is likely to rely on only a few dimensions.
Some results are available to connect raw asymmetry as calculated
from registration with perceived asymmetry. Facial symmetry
perception may vary from observer to observer (Scheib et al.,
1999). Also different parts of the face contribute differently to the
perception of symmetry (Hwang et al., 2012; Storms et al., 2017).

5. MORPHOMETRIC ANALYSIS AND
RELIABILITY

5.1. Procrustes Alignment
After landmarks have been placed in a given image, landmark
coordinates have to be standardized across the sample. Each set
of landmarks is represented by a graph. The standard approach
is to use a generalized Procrustes analysis which chooses the
so-called Procrustes mean shape as a graph (Kendall, 1989) so
that distance to the graphs in the sample are minimized after
they have been translated, scaled, and rotated in an optimal
way (Gower, 1975) (generalized Procrustes analysis; GPA). The
distance is measured for corresponding landmarks. Procrustes
residuals—the difference of the standardized graph of a sample
and the Procrustes mean shape—have the advantage of being
independent (Dryden and Mardia, 1998). This is in contrast with
other methods of standardization such as Bookstein coordinates,
where a pair of landmarks is used to define translation, scaling,
and rotation to bring this pair of coordinates into a standard
position (Dryden and Mardia, 1998).

5.2. Transformations
Coordinates of landmarks and pseudo-landmarks offer a raw
quantification of the face. Often coordinates are transformed
to enter statistical analyses. Most studies investigate pair-wise
distances, fewer look at angles and areas of triangles as derived
from a triangulation. The variance of the transformed values
is usually larger than the variance of the coordinates. If, for
example, two coordinates are subtracted D = X2 − X1, the
variance of D is Var(D) = Var(X1) + Var(X2) + 2Cov(X1,X2).
For independent coordinates, the variances add up, positively
correlated coordinates are resulting in a bigger variance.
Applying transformations is therefore a tradeoff between
generating useful features and introducing more variance. The
variance can be decomposed in a part due to true, biological
variation, and in measurement error. If the transformation is
meaningful, the signal is not necessarily attenuated and the
resulting features might better correlate with the outcome.
In syndrome classification problems transformations seem to
provide useful information (Balliu et al., 2014; Kraemer et al.,
2018). Many GWASs and candidate gene studies use these
transformations as outcomes (Boehringer et al., 2011b; Liu
et al., 2012; Paternoster et al., 2012; Adhikari et al., 2016; Cole
et al., 2016; Shaffer et al., 2016; Lee et al., 2017). In these
settings, the transformations are fixed, i.e., independent of the
data. The case when transformations are estimated is discussed
in section 7.
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5.3. Dense Surface Models
3D surface data as produced by commercial scanners (Boehnen
and Flynn, 2005), 2016 is exported as a triangulated 3D-
graph plus an accompanying texture that can be used to
re-render the surface. For data analysis it is desirable to
interpret the vertices of the graph as (dense) landmarks
and establish correspondence between scans. This can
dramatically augment the data set in that 104–105 landmarks
are produced.

One approach is based on first aligning faces, followed by a
step that identifies close vertices by a nearest neighbor approach
(Hutton et al., 2001). The alignment first uses a GPA to align faces
using a linear transformation based on anatomical landmarks. In
a second step, anatomical landmarks are aligned exactly using a
warping technique (Bookstein, 1996). Intuitively, the one graph
of anatomical landmarks has to be bent into the shape of the
second graph. This movement can be quantified, for example
by a bending energy (Bookstein, 1996), and the movement
minimizing the criteria is chosen (thin-plate splines, TPS). This
movement on the anatomical landmarks drags along the pseudo-
landmarks in between. After this alignment, the correspondence
can be established as described above using the nearest neighbors.
As always when two faces are aligned, a common reference has
to be chosen to align all samples, a common choice being one
of the samples. The number of aligned dense landmarks varies
depending on how many vertices are available from the initial
scans which can be a disadvantage. Sub-sampling vertices from
samples is one strategy to make the number of dense landmarks
comparable across samples.

5.4. Pseudo-Landmarks
Pseudo-landmarks are mathematically defined landmarks,
for example a landmark halfway between two anatomical
landmarks (Dryden and Mardia, 1998). This can be used
to control the number of landmarks in a dense model.
When the surface of the face is described with mathematical
functions, an arbitrary number of landmarks can be derived
from such a representation (Gilani et al., 2015). Similar
approaches are based on mathematical functions that
interpolate the surface between anatomical landmarks.
For example, the functions may be chosen to make the
curvature of these functions similar across samples (or
a reference template). In a second step, one can sample
landmarks from the resulting functional representation
(Litke et al., 2005; Grewe and Zachow, 2016).

So called variational implicit functions have been used
in pseudo-landmark alignment (Claes et al., 2005). In
this approach, again a continuous function is found
that interpolates the graph representing the scan for all
in-between points. The approach allows to control the
smoothness of the interpolation. To align faces, one starts
by transforming anatomical landmarks between the faces.
The functions that interpolate the in-between points have
to be analogously transformed. Once this transformation
is found, correspondence between all points is established
(Turk and O’brien, 1999a,b).

6. RELIABILITY AND HERITABILITY

Reliability denotes the agreement of several measurements.
Reliability can be further distinguished into repeatability, the
agreement of repeated measurements with the same method,
and reproducibility, the agreement of different methods (Petrie
and Sabin, 2013) when measurements are taken under similar
conditions. Replication efforts in genetic studies of facial traits
therefore require reproducibility of quantification. Reliability
of manual landmarking efforts have been evaluated in some
studies (Fagertun et al., 2014; Katina et al., 2015; de Jong
et al., 2018a). The agreement between raters was consistently
reported to be between 1 and 2 mm across landmarks.
The most detailed of the above studies (Katina et al., 2015)
performed multiple repeats (within/across days/raters) and
could show that repeatability (i.e., the consistency of a single
rater) is lower than 1 mm for 18 out of 21 landmarks but
also that the combined error across raters, time points and
image presentations falls into the range mentioned above.
Systematic evaluation with many—i.e., more than 30—human
raters is missing. Also, the absolute calibration of landmarking
positions has mostly been insufficiently described, which makes
generalizations difficult.

Heritability estimation has been an early interest in
facial research (Hunter et al., 1970; Nakata et al., 1976;
Hoskens et al., 2018; Richmond et al., 2018). Heritability
denotes the proportion of variation in an outcome that
is attributable to genetic variation. Heritabilities can be
calculated for additive genotype contribution (narrow sense)
and a general genotypic model (broad sense). Narrow
sense heritability can be estimated in families when only
phenotype data is available. Heritability can be used to
evaluate the reliability of a landmarking method by comparing
heritability as estimated from landmarks attained with one
method to that of a benchmark method which might be
another landmarking method or a previous version of
the same method. When measurement error is reduced,
total variation should be reduced and the proportion
explained by genetic contributions should increase. This
approach has been used to evaluate landmarking methods
(de Jong et al., 2018a; de Jong et al., 2018b).

Reproducibility determines the chance of study replication.
It can be measured by the correlation between measurements
of different methods. Although measurement agreement, i.e.,
reliability, is often evaluated using Bland-Altman plots (Bland
and Altman, 1986), correlation has an important statistical
implication. Statistically, R2, i.e., the squared correlation can
be seen as the (percentage) loss in sample size when one
measurement method is used instead of another one. An
R2 can be defined for general likelihood models, for binary,
linear, survival and count outcomes, among others (Orchard
and Woodbury, 1972; Louis, 1982) which is known as the
missing information principle. The “other” measurement can
be seen as missing data that has to be inferred from the
measurement at hand. This relationship is also known from
the design of SNP panels as the omission of a particular
SNP can be seen as missing data (Pritchard and Przeworski,
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2001). For example, the consequences of a correlation of ∼

0.7 means that effective sample size is reduced to a half,
when a particular measurement is replicated in an independent
cohort. Figure 3, shows correlations of coordinates of an
informal comparison as conducted on a data set as used in
a previous study involving the Visigen consortium (de Jong
et al., 2016), comparing two automatic and one manual
landmarking approach on an identical set of individuals. In
this comparison, landmark positions were standardized using
Procrustes analysis within each study. On this data, pairwise
correlations between all landmark coordinates (x, y, z) were
computed and used as a measure to judge inter-method
variability, i.e., reproducibility. The maximal correlation was
around ∼ 0.6. While informal, these results indicate high
variability between landmarking efforts. Regarding heritability,
the best automatic methods performed similar to manual
landmarking (h2 ≈ 0.6).

6.1. Implications of Landmark Definition
As more cohorts are phenotyped for facial traits and data sets are
aggregated either throughmeta- or joint analysis, it is worthwhile
to consider reproducibility a bit further. The measurement error
of one method as compared to another has two components:
bias and variance. The bias can be seen as the differences in
landmark definitions. While anatomical landmarks are defined
descriptively, the actual definition used in a study depends on
human raters. A large majority of studies relies on human raters
either directly through complete manual labeling (Boehringer
et al., 2011b; Paternoster et al., 2012) or indirectly in the sense
that an automated method is trained on human labeled training
images (Liu et al., 2012). The bias due to implicitly varying
landmark definitions can be evaluated by comparing sets of
landmarks defined in a different way. It has been suggested
that definitions based on curvatures(Bowman et al., 2015; Katina
et al., 2015) might have less variability and might therefore
induce less inter-study bias. Curvatures have also been used
in heritability evaluation (Tsagkrasoulis et al., 2017) and seem
promising. We return to the problem of landmark definitions in
the discussion.

7. GLOBAL QUANTIFICATION

Using local or morphometric descriptors in genetic analyses
has the disadvantage of leading to a combinatorial expansion
of features. An attractive alternative is to employ dimension
reduction to make the analysis more straightforward and
potentially more meaningful. We discuss classic linear, non-
linear, and generative approaches in addition to principal
components of heritability.

7.1. Variance Based Approaches
Principal component analysis (PCA) is one of the most widely
used dimension reduction technique (Jolliffe, 2005) and has
been employed in many facial studies (Hutton et al., 2001;
Hammond et al., 2005, 2012; Boehringer et al., 2006; Vollmar
et al., 2008). The first principal component (PC) is defined
as a linear combination of raw data xij, with individual i and
feature j (for example a coordinate). The PC score of individual
i is zi =

∑p
j=1 wjxij. The weights, called loadings, wj form

a unit length vector and are chosen to maximize the variance
of the scores zi. Higher order PCs are again unit length linear
weight vectors maximizing variance subject to the constraint
that they are orthogonal to all lower order PCs. One important
difference to the transformations discussed in section 5 is that the
transformation is also random as the loadings are estimated from
the data. Both empirical (Molinaro et al., 2005; Boehringer et al.,
2011a) and theoretical (Bai and Silverstein, 2010) considerations
imply that PCA has the largest influence on reproducibility
by contributing variability into the analysis that is larger than
that induced by measurement error. This relationship can be
evaluated using cross-validation (CV) (Hastie et al., 2001), i.e., a
form of data splitting where one part of the data is used for model
fitting and the left out part is used for evaluation (test data). This
data-splitting mimics a replication experiment. In a study where
syndromes were predicted from 2D facial data (Boehringer et al.,
2011a), the difference in prediction accuracy when first PCA was
performed on the whole data before data splitting and second
when PCAwas performed on the training data and loadings were
carried over to the test data was 60% compared to 21%.

FIGURE 3 | Correlation heatmap comparing 3d-coordinates of three landmarking methods on an identical data set (Twins UK). The lower left block corresponds to

(x, y, z)-coordintes of the first methods, the upper right block to those of the second method. Off-diagonal blocks correspond to correlations between methods.

Method 1 (29 landmarks) and method 3 (21 landmarks) are automatic methods. Method 2 is manual (22 landmarks).
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There are more generic multivariate techniques that have
been employed in facial analysis. Among them are partial
least squares (PLS) (Garthwaite, 1994), canonical correlation
(Hotelling, 1936), and discriminant analysis (Fisher, 1936).
To address the problem of high variability due to loadings
estimation, so-called sparse methods have been introduced.
Instead of using all input features, the scores are only computed
on a subset of input features by setting many loadings (weights
wi) to zero. Technically, penalization is used (Tibshirani, 1996)
and sparse PCA (Zou et al., 2006), sparse PLS (Witten et al., 2009),
sparse canonical correlation (Witten et al., 2009) and other sparse
methods have received attention. Their effect on reproducibility
has not yet been systematically evaluated on facial data.

Historically, one of the early facial analysis applied PCA on
the pixel data of an image, interpreted as a single long vector of
gray values (Turk and Pentland, 1991). This approach has been
used for face recognition but has not been employed in genetic
association studies as the variability inherent in the estimation of
a PCA make replication difficult.

7.2. Manifold Learning
The methods mentioned in the previous section are all based
on linear combinations of input and/or outcome data. It is
possible to employ non-linear methods. When an outcome is
to be predicted from facial input features, non-linear regression
techniques can be used. These include generalized additive—
spline based—models (Hastie and Tibshirani, 1990) and support
vector regression (SVR). SVR has been used to predict facial
attractiveness, and subsequently “beautify” a given face (Leyvand
et al., 2008).

It is also possible to perform dimension reduction on
facial data alone using non-linear transformations. In three
dimensions, the reduction would not lead to a flat plane
or straight line but rather to a curved 2D-surface or 1D-
curve, winding through three-dimensional space. The estimation
of these transformations is known as generalized PCA or
manifold learning (Vidal et al., 2016). Recently, local embedding
techniques have received attention. The motivation for these
techniques is given by the sinusoid data in Figure 4. The proper
description of a data point would be a single number: the length
along the curve that a given point is closest to. PCA on the
other hand would not “understand” the data. The data has the
biggest extent along the x-direction, leaving the data almost
unchanged after PCA, except for a small rotation. If only a single
PC were chosen much of the information in the data would
be discarded. t-SNE (van der Maaten and Hinton, 2008) is one
such method and has been used for facial analysis (Booth et al.,
2016). A disadvantage of t-SNE is that is does not allow to
embed new images into the same coordinate system which is
due to the algorithm used. t-SNE can therefore only be used for
visualization. Local linear embedding (Roweis and Saul, 2000)
and local multidimensional scaling (Tenenbaum et al., 2000) are
alternatives without this limitation. The latter study contains an
application to synthetic facial data.

The DNN approach to manifold learning is called
autoencoding (Goodfellow et al., 2016). In this case, the
network is used in two directions. When values are available at

the output layer, they are run down the network again to produce
potential input data, compatible with values at the output layer.
The actual input can be compared with the potential input and
the network will be trained to minimize these discrepancies.
Deep autoencoders have been employed in the landmarking
problem but it is unclear whether they can outperform more
tailor-made models (Zhang et al., 2014).

7.3. Principal Components of Heritability
An attractive way to perform dimension reduction in a genetic
application is to take into account heritability. This approach
requires family data and is based on the fact that variation in any
outcome can be decomposed into intra-family and inter-family
variation which add up to the total variation of the variable,
say a distance. By rescaling the variable such that the intra-
family variation is 1, the total variation becomes a measure
for heritability, i.e. inter-family variation. In a multivariate
setting, this rescaling becomes a matrix multiplication (Ott and
Rabinowitz, 1999). Finding the largest variation in the rescaled
data becomes an application of PCA. The resulting component
is called principal component of heritability (PCH). The initial
approach can only deal with families of identical structure,
for example sibships. Another problem is the variability of
the required estimations, the rescaling and the PCA which
become unstable for high-dimensional data. The dimensionality
problem can be addressed by penalization (Wang et al., 2007;
Oualkacha et al., 2012). The method has also been generalized
to heterogenous families (Oualkacha et al., 2012). PCHs only
represent narrow sense heritability, i.e., explained variance due
to additive genetic effects. PCHs have not been systematically
applied to facial data.

8. DISCUSSION

Automatic quantification of facial traits is in a state of rapid
development. Many state-of-the-art methods are competitive
with human raters for many anatomical landmarks. Still methods
differ in important properties which we summarize in Table 1.
Template based methods work with very small training efforts
(de Jong et al., 2018b) but require more intense pre-processing
than ASMs (Milborrow and Nicolls, 2014) or DNNs (Bulat and
Tzimiropoulos, 2017). Pre-trained ASMs and DNNs are available
but a recent comparison showed that re-training a template
based method for a data set at hand outperforms the pre-trained
model (de Jong et al., 2016). As pre-trained models are based
on larger and larger samples, this situation might change and
it will be important to keep evaluating the gain achieved by re-
training. One advantage of using pre-trained models would be
the availability of more homogeneous data across studies, which
would help replication efforts.

Face recognition plays an important role in social media,
biometric access control, and increasingly in law enforcement
(Lynch, 2018) and is therefore also a field in rapid development.
It needs to detect the general shape of a face on an image
and needs to learn unique features identifying an individual
independently of confounding factors such as lighting, pose,
and camera properties. This application has been pursued by
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FIGURE 4 | Example of global (PCA) and local (self-organizing map; SOM) dimension reduction (2018). PCA approximates the data along the blue line, whereas SOM

estimates the red curve. Source: wikipedia.

TABLE 1 | Comparison of landmarking methods.

Method class Training complexity Robustness Specific advantages Example implementation

Template based Low Low without pre-processing Quick to deploy https://opencv.org

Active shape Moderate to high Good to high Facial expression analysis http://www.milbo.users.sonic.net/stasm

Deep learning High High No pre-processing required https://www.adrianbulat.com/face-alignment

Generative Moderate – Rendering of potential faces –

Low, moderage, high complexity correspond to <100, 100-1,000, >1,000 training samples, respectively. Robustness refers to performance under varying image conditions such as

lighting and pose and assumes such variation is represented in the training sample.

commercial entities such as Google and is subject to intense
research. The most promising implementations make use of
deep neural networks (DNN) and learn face representations
implicitly through parameters of the network (Schroff et al.,
2015). These models predate DNNmodels used for landmarking.
Landmarking models share large portions of their architecture
with pure face recognition models and developments in either
class of models will influence the other.

All models discussed that provide anatomical landmarks rely
on human raters at some point. This implies that there is
an implicit difference in landmark definitions between studies,
as human raters do only agree on landmark definitions to
some degree (section 6.1). An open question is the automatic
definition of landmarks. One possible approach is to usemanifold
learning that needs to describe the sample sparsely, for example
through an information criterion (Cover and Thomas, 2012). As
experiments on alternative landmark definitions show (Katina
et al., 2015), it seems promising to look for better definitions to
improve replication efforts.

As pointed out elsewhere (Evans, 2018) it is desirable to
quantify a face globally. Individual morphometric features, say

distances, are unlikely to be important in face perception. More
global patterns determine the importance of facial appearance
and are therefore arguably also likely to be under common
genetic control. An interesting strategy is to analyze features
at the global and local level simultaneously. Using hierarchical
spectral clustering, a recent study could demonstrate effects of
genetic loci on different levels (Claes et al., 2018). The idea
is to start with an aggregation of the full facial landmark
data and analyze genetic association with respect to this
summary. In following steps, landmark data is partitioned
into subsets and analyzed in an analogous manner within the
subsets. This subsetting can be repeated to demonstrate genetic
effects on specific facial sub-regions and thereby gives a more
comprehensive view of genetic associations as compared to other
GWAS analyses.

Intuitively, facial appearance follows a local pattern: there
is a smooth transition between all possible pairs of faces and
local embedding techniques should therefore be well suited to
cover biological variation. With very large sample sizes, the
randomness of the transformation into the manifold can be
reduced and models based on large external data sets could
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be used. Non-genetic facial databases reach more than 100,000
individuals (Bulat and Tzimiropoulos, 2017) and are a potential
source for such models. However, apart from biological variation
there is also technical variation that might not follow a local
pattern (Gagnon-Bartsch and Speed, 2012). It is therefore likely
that manifold learning has to take into account both local and
global structure (McInnes and Healy, 2018). Both empirical and
theoretical work is needed to solve this issue

For the technological measurement process, rapid
developments are expected. Lensless imaging or multiple
cameras on a mobile phone are likely to create new data sources
for facial 3D scans (Ozcan and McLeod, 2016) which will require
adaptations in quantification. Combination with volumetric data
such as CT or MRI data might help to improve quantification.

We would also like to point out the importance of applications
in the development of quantification methodology. Before
GWASs were performed, applications in syndrome classification
were introduced. First, these covered more common syndromes
as single classes, such as Microdeletion 22q11.2, Fragile X,
Noonan, Smith-Lemli-Opitz, Cornelia de Lange, and others
(Loos et al., 2003; Hammond et al., 2005; Boehringer et al., 2006).
The focus of this field has now shifted to identifying mutations
within syndrome classes (Gurovich et al., 2019). GWASs
could make use of landmarking techniques used for syndrome
classification but needed adaptations. More automation was
necessary and as landmarking accuracy directly affects statistical
power, accuracy became a new focus. This was not necessarily
the case in syndrome classification as facial appearance might

be different enough across groups to tolerate noise. A similar
situation exists with respect to asymmetry, which has been shown
to be important in conditions like fetal alcohol syndrome and
autism (Hammond et al., 2008; Klingenberg, 2008; Klingenberg
et al., 2010). A first GWAS on facial asymmetry has been
published and shows some overlap with disease associated genes
(Rolfe et al., 2018).

In conclusion, accuracy of facial quantification is of critical
importance for both power and reproducibility of genetic
studies with respect to facial traits. Power loss can be dramatic
in replication efforts even when heritabilities estimated from
quantification methods are similar on average (section 6).
Standardizing the analysis could help and would open the door
for easy re-analyses once improvements in quantification have
been found. It is biologically plausible that facial appearance has
a similar or larger genetic complexity as compared to body height
(Allen et al., 2010). With appropriate quantification, it should be
possible to find the corresponding genes.
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