543 research outputs found

    Smart Technology for Telerehabilitation: A Smart Device Inertial-sensing Method for Gait Analysis

    Get PDF
    The aim of this work was to develop and validate an iPod Touch (4th generation) as a potential ambulatory monitoring system for clinical and non-clinical gait analysis. This thesis comprises four interrelated studies, the first overviews the current available literature on wearable accelerometry-based technology (AT) able to assess mobility-related functional activities in subjects with neurological conditions in home and community settings. The second study focuses on the detection of time-accurate and robust gait features from a single inertial measurement unit (IMU) on the lower back, establishing a reference framework in the process. The third study presents a simple step length algorithm for straight-line walking and the fourth and final study addresses the accuracy of an iPod’s inertial-sensing capabilities, more specifically, the validity of an inertial-sensing method (integrated in an iPod) to obtain time-accurate vertical lower trunk displacement measures. The systematic review revealed that present research primarily focuses on the development of accurate methods able to identify and distinguish different functional activities. While these are important aims, much of the conducted work remains in laboratory environments, with relatively little research moving from the “bench to the bedside.” This review only identified a few studies that explored AT’s potential outside of laboratory settings, indicating that clinical and real-world research significantly lags behind its engineering counterpart. In addition, AT methods are largely based on machine-learning algorithms that rely on a feature selection process. However, extracted features depend on the signal output being measured, which is seldom described. It is, therefore, difficult to determine the accuracy of AT methods without characterizing gait signals first. Furthermore, much variability exists among approaches (including the numbers of body-fixed sensors and sensor locations) to obtain useful data to analyze human movement. From an end-user’s perspective, reducing the amount of sensors to one instrument that is attached to a single location on the body would greatly simplify the design and use of the system. With this in mind, the accuracy of formerly identified or gait events from a single IMU attached to the lower trunk was explored. The study’s analysis of the trunk’s vertical and anterior-posterior acceleration pattern (and of their integrands) demonstrates, that a combination of both signals may provide more nuanced information regarding a person’s gait cycle, ultimately permitting more clinically relevant gait features to be extracted. Going one step further, a modified step length algorithm based on a pendulum model of the swing leg was proposed. By incorporating the trunk’s anterior-posterior displacement, more accurate predictions of mean step length can be made in healthy subjects at self-selected walking speeds. Experimental results indicate that the proposed algorithm estimates step length with errors less than 3% (mean error of 0.80 ± 2.01cm). The performance of this algorithm, however, still needs to be verified for those suffering from gait disturbances. Having established a referential framework for the extraction of temporal gait parameters as well as an algorithm for step length estimations from one instrument attached to the lower trunk, the fourth and final study explored the inertial-sensing capabilities of an iPod Touch. With the help of Dr. Ian Sheret and Oxford Brookes’ spin-off company ‘Wildknowledge’, a smart application for the iPod Touch was developed. The study results demonstrate that the proposed inertial-sensing method can reliably derive lower trunk vertical displacement (intraclass correlations ranging from .80 to .96) with similar agreement measurement levels to those gathered by a conventional inertial sensor (small systematic error of 2.2mm and a typical error of 3mm). By incorporating the aforementioned methods, an iPod Touch can potentially serve as a novel ambulatory monitor system capable of assessing gait in clinical and non-clinical environments

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Parkinson\u27s Symptoms quantification using wearable sensors

    Get PDF
    Parkinson’s disease (PD) is a common neurodegenerative disorder affecting more than one million people in the United States and seven million people worldwide. Motor symptoms such as tremor, slowness of movements, rigidity, postural instability, and gait impairment are commonly observed in PD patients. Currently, Parkinsonian symptoms are usually assessed in clinical settings, where a patient has to complete some predefined motor tasks. Then a physician assigns a score based on the United Parkinson’s Disease Rating Scale (UPDRS) after observing the motor task. However, this procedure suffers from inter subject variability. Also, patients tend to show fewer symptoms during clinical visit, which leads to false assumption of the disease severity. The objective of this study is to overcome this limitations by building a system using Inertial Measurement Unit (IMU) that can be used at clinics and in home to collect PD symptoms data and build algorithms that can quantify PD symptoms more effectively. Data was acquired from patients seen at movement disorders Clinic at Sanford Health in Fargo, ND. Subjects wore Physilog IMUs and performed tasks for tremor, bradykinesia and gait according to the protocol approved by Sanford IRB. The data was analyzed using modified algorithm that was initially developed using data from normal subjects emulating PD symptoms. For tremor measurement, the study showed that sensor signals collected from the index finger more accurately predict tremor severity compared to signals from a sensor placed on the wrist. For finger tapping, a task measuring bradykinesia, the algorithm could predict with more than 80% accuracy when a set of features were selected to train the prediction model. Regarding gait, three different analysis were done to find the effective parameters indicative of severity of PD. Gait speed measurement algorithm was first developed using treadmill as a reference. Then, it was shown that the features selected could predict PD gait with 85.5% accuracy

    A Kinematic Sensor and Algorithm to Detect Motor Fluctuations in Parkinson Disease : Validation Study Under Real Conditions of Use

    Get PDF
    A new algorithm has been developed, which combines information on gait bradykinesia and dyskinesia provided by a single kinematic sensor located on the waist of Parkinson disease (PD) patients to detect motor fluctuations (On- and Off-periods). The goal of this study was to analyze the accuracy of this algorithm under real conditions of use. This validation study of a motor-fluctuation detection algorithm was conducted on a sample of 23 patients with advanced PD. Patients were asked to wear the kinematic sensor for 1 to 3 days at home, while simultaneously keeping a diary of their On- and Off-periods. During this testing, researchers were not present, and patients continued to carry on their usual daily activities in their natural environment. The algorithm's outputs were compared with the patients' records, which were used as the gold standard. The algorithm produced 37% more results than the patients' records (671 vs 489). The positive predictive value of the algorithm to detect Off-periods, as compared with the patients' records, was 92% (95% CI 87.33%-97.3%) and the negative predictive value was 94% (95% CI 90.71%-97.1%); the overall classification accuracy was 92.20%. The kinematic sensor and the algorithm for detection of motor-fluctuations validated in this study are an accurate and useful tool for monitoring PD patients with difficult-to-control motor fluctuations in the outpatient setting

    Instrumented shoes for daily activity monitoring in healthy and at risk populations

    Get PDF
    Daily activity reflects the health status of an individual. Ageing and disease drastically affect all dimensions of mobility, from the number of active bouts to their duration and intensity. Performing less activity leads to muscle deterioration and further weakness that could lead to increased fall risk. Gait performance is also affected by ageing and could be detrimental for daily mobility. Therefore, activity monitoring in older adults and at risk persons is crucial to obtain relevant quantitative information about daily life performance. Activity evaluation has mainly been established through questionnaires or daily logs. These methods are simple but not sufficiently accurate and are prone to errors. With the advent of microelectromechanical systems (MEMS), the availability of wearable sensors has shifted activity analysis towards ambulatory monitoring. In particular, inertial measurement units consisting of accelerometers and gyroscopes have shown to be extremely relevant for characterizing human movement. However, monitoring daily activity requires comfortable and easy to use systems that are strategically placed on the body or integrated in clothing to avoid movement hindrance. Several research based systems have employed multiple sensors placed at different locations, capable of recognizing activity types with high accuracy, but not comfortable for daily use. Single sensor systems have also been used but revealed inaccuracies in activity recognition. To this end, we propose an instrumented shoe system consisting of an inertial measurement unit and a pressure sensing insole with all the sensors placed at the shoe/foot level. By measuring the foot movement and loading, the recognition of locomotion and load bearing activities would be appropriate for activity classification. Furthermore, inertial measurement units placed on the foot can perform detailed gait analysis, providing the possibility of characterizing locomotion. The system and dedicated activity classification algorithms were first designed, tested and validated during the first part of the thesis. Their application to clinical rehabilitation of at risk persons was demonstrated over the second part. In the first part of the thesis, the designed instrumented shoes system was tested in standardized conditions with healthy elderly subjects performing a sequence of structured activities. An algorithm based on movement biomechanics was built to identify each activity, namely sitting, standing, level walking, stairs, ramps, and elevators. The rich array of sensors present in the system included a 3D accelerometer, 3D gyroscope, 8 force sensors, and a barometer allowing the algorithm to reach a high accuracy in classifying different activity types. The tuning parameters of the algorithm were shown to be robust to small changes, demonstrating the suitability of the algorithm to activity classification in older adults. Next, the system was tested in daily life conditions on the same elderly participants. Using a wearable reference system, the concurrent validity of the instrumented shoes in classifying daily activity was shown. Additionally, daily gait metrics were obtained and compared to the literature. Further insight into the relationship between some gait parameters as well as a global activity metric, the activity ĂącomplexityĂą, was discussed. Participants positively rated their comfort while using the system... (Please refer to thesis for full abstract

    Inertial Measurement Unit-Based Gait Event Detection in Healthy and Neurological Cohorts: A Walk in the Dark

    Get PDF
    A deep learning (DL)-based network is developed to determine gait events from IMU data from a shank- or foot-worn device. The DL network takes as input the raw IMU data and predicts for each time step the probability that it corresponds to an initial or final contact. The algorithm is validated for walking at different self-selected speeds across multiple neurological diseases and both in clinical research settings and the habitual environment. The algorithms shows a high detection rate for initial and final contacts, and a small time error when compared to reference events obtained with an optical motion capture system or pressure insoles. Based on the excellent performance, it is concluded that the DL algorithm is well suited for continuous long-term monitoring of gait in the habitual environment

    Gait rehabilitation monitor

    Get PDF
    This work presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation, by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), Bluetooth compatible from Shimmer, an Android smartphone for collecting and primary processing of data and persistence in a local database. Low computational load algorithms based on Euler angles and accelerometer, gyroscope and magnetometer signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms to help segmentation of the remotely collected signals by the System app to identify gait strides and extract relevant features to feed, train and test a classifier to predict gait abnormalities in gait sessions. A set of drivers from Shimmer manufacturer is used to make the connection between the app and the set of IMUs using Bluetooth. The developed app allows users to collect data and train a classification model for identifying abnormal and normal gait types. The system provides a REST API available in a backend server along with Java and Python libraries and a PostgreSQL database. The machine-learning type is Supervised using Extremely Randomized Trees method. Frequency, time and time-frequency domain features were extracted from the collected and processed signals to train the classifier. To test the framework a set of gait abnormalities and normal gait were used to train a model and test the classifier.Este trabalho apresenta uma estrutura mĂłvel acessĂ­vel, simples e nĂŁo intrusiva, que permite a monitorização e a assistĂȘncia remota de pacientes durante a reabilitação da marcha, por mĂ©dicos e fisioterapeutas que monitorizam a reabilitação da marcha do paciente. O sistema inclui um conjunto de 2 IMUs (Inertial Mesaurement Units) Shimmer3 da marca Shimmer, compatĂ­veĂ­s com Bluetooth, um smartphone Android para recolha, e prĂ©-processamento de dados e armazenamento numa base de dados local. Algoritmos de baixa carga computacional baseados em Ăąngulos Euler e sinais de acelerĂłmetros, giroscĂłpios e magnetĂłmetros foram desenvolvidos e utilizados para a classificação e identificação de diversas perturbaçÔes da marcha. Estes algoritmos incluem o alinhamento e sincronização dos dados dos sensores IMUs usando uma referĂȘncia temporal comum, alĂ©m de algoritmos de detecção de passos e strides para auxiliar a segmentação dos sinais recolhidos remotamente pelaappdestaframeworke identificar os passos da marcha extraindo as caracterĂ­sticas relevantes para treinar e testar um classificador que faça a predição de deficiĂȘncias na marcha durante as sessĂ”es de monitorização. Um conjunto de drivers do fabricante Shimmer Ă© usado para fazer a conexĂŁo entre a app e o conjunto de IMUs atravĂ©s de Bluetooth. A app desenvolvida permite aos utilizadores recolher dados e treinar um modelo de classificação para identificar os tipos de marcha normais e patolĂłgicos. O sistema fornece uma REST API disponĂ­vel num servidor backend recorrendo a bibliotecas Java e Python e a uma base de dados PostgreSQL. O tipo de machine-learning Ă© Supervisionado usando Extremely Randomized Trees. Features no domĂ­nio do tempo, da frequĂȘncia e do tempo-frequĂȘncia foram extraĂ­das dos sinais recolhidos e processados para treinar o classificador. Para testar a estrutura, um conjunto de marchas patolĂłgicas e normais foram utilizadas para treinar um modelo e testar o classificador

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes

    An Overview of Smart Shoes in the Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring

    Get PDF
    New smart technologies and the internet of things increasingly play a key role in healthcare and wellness, contributing to the development of novel healthcare concepts. These technologies enable a comprehensive view of an individual’s movement and mobility, potentially supporting healthy living as well as complementing medical diagnostics and the monitoring of therapeutic outcomes. This overview article specifically addresses smart shoes, which are becoming one such smart technology within the future internet of health things, since the ability to walk defines large aspects of quality of life in a wide range of health and disease conditions. Smart shoes offer the possibility to support prevention, diagnostic work-up, therapeutic decisions, and individual disease monitoring with a continuous assessment of gait and mobility. This overview article provides the technological as well as medical aspects of smart shoes within this rising area of digital health applications, and is designed especially for the novel reader in this specific field. It also stresses the need for closer interdisciplinary interactions between technological and medical experts to bridge the gap between research and practice. Smart shoes can be envisioned to serve as pervasive wearable computing systems that enable innovative solutions and services for the promotion of healthy living and the transformation of health care
    • 

    corecore