48,682 research outputs found

    Brain Categorization: Learning, Attention, and Consciousness

    Full text link
    How do humans and animals learn to recognize objects and events? Two classical views are that exemplars or prototypes are learned. A hybrid view is that a mixture, called rule-plus-exceptions, is learned. None of these models learn their categories. A distributed ARTMAP neural network with self-supervised learning incrementally learns categories that match human learning data on a class of thirty diagnostic experiments called the 5-4 category structure. Key predictions of ART models have received behavioral, neurophysiological, and anatomical support. The ART prediction about what goes wrong during amnesic learning has also been supported: A lesion in its orienting system causes a low vigilance parameter.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-01-1-0624), the National Geospatial Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (EIA-01-30851, IIS-97-20333, SBE-0354378); Office of Naval Research (N00014-95-1-0657, N00014-01-1-0624

    Cracking the code of oscillatory activity

    Get PDF
    Neural oscillations are ubiquitous measurements of cognitive processes and dynamic routing and gating of information. The fundamental and so far unresolved problem for neuroscience remains to understand how oscillatory activity in the brain codes information for human cognition. In a biologically relevant cognitive task, we instructed six human observers to categorize facial expressions of emotion while we measured the observers' EEG. We combined state-of-the-art stimulus control with statistical information theory analysis to quantify how the three parameters of oscillations (i.e., power, phase, and frequency) code the visual information relevant for behavior in a cognitive task. We make three points: First, we demonstrate that phase codes considerably more information (2.4 times) relating to the cognitive task than power. Second, we show that the conjunction of power and phase coding reflects detailed visual features relevant for behavioral response-that is, features of facial expressions predicted by behavior. Third, we demonstrate, in analogy to communication technology, that oscillatory frequencies in the brain multiplex the coding of visual features, increasing coding capacity. Together, our findings about the fundamental coding properties of neural oscillations will redirect the research agenda in neuroscience by establishing the differential role of frequency, phase, and amplitude in coding behaviorally relevant information in the brai

    Visual attributes of subliminal priming images impact conscious perception of facial expressions

    Get PDF
    We investigated, in young healthy participants, how the affective content of subliminally presented priming images and their specific visual attributes impacted conscious perception of facial expressions. The priming images were broadly categorized as aggressive, pleasant, or neutral and further subcategorized by the presence of a face and by the centricity (egocentric or allocentric vantage-point) of the image content. Participants responded to the emotion portrayed in a pixelated target-face by indicating via key-press if the expression was angry or neutral. Response time to the neutral target face was significantly slower when preceded by face primes, compared to non-face primes (p < 0.05, Bonferroni corrected). In contrast, faster RTs were observed when angry target faces were preceded by face compared to non-face primes. In addition, participants’ performance was worse when a priming image contained an egocentric face compared to when it contained either an allocentric face or an egocentric non-face. The results suggest a significant impact of the visual features of the priming image on conscious perception of face expression.Published versio

    Cooperation of different neuronal systems during hand sign recognition.

    Get PDF
    Hand signs with symbolic meaning can often be utilized more successfully than words to communicate an intention; however, the underlying brain mechanisms are undefined. The present study using magnetoencephalography (MEG) demonstrates that the primary visual, mirror neuron, social recognition and object recognition systems are involved in hand sign recognition. MEG detected well-orchestrated multiple brain regional electrical activity among these neuronal systems. During the assessment of the meaning of hand signs, the inferior parietal, superior temporal sulcus (STS) and inferior occipitotemporal regions were simultaneously activated. These three regions showed similar time courses in their electrical activity, suggesting that they work together during hand sign recognition by integrating information in the ventral and dorsal pathways through the STS. The results also demonstrated marked right hemispheric predominance, suggesting that hand expression is processed in a manner similar to that in which social signs, such as facial expressions, are processed

    Cortical Learning of Recognition Categories: A Resolution of the Exemplar Vs. Prototype Debate

    Full text link
    Do humans and animals learn exemplars or prototypes when they categorize objects and events in the world? How are different degrees of abstraction realized through learning by neurons in inferotemporal and prefrontal cortex? How do top-down expectations influence the course of learning? Thirty related human cognitive experiments (the 5-4 category structure) have been used to test competing views in the prototype-exemplar debate. In these experiments, during the test phase, subjects unlearn in a characteristic way items that they had learned to categorize perfectly in the training phase. Many cognitive models do not describe how an individual learns or forgets such categories through time. Adaptive Resonance Theory (ART) neural models provide such a description, and also clarify both psychological and neurobiological data. Matching of bottom-up signals with learned top-down expectations plays a key role in ART model learning. Here, an ART model is used to learn incrementally in response to 5-4 category structure stimuli. Simulation results agree with experimental data, achieving perfect categorization in training and a good match to the pattern of errors exhibited by human subjects in the testing phase. These results show how the model learns both prototypes and certain exemplars in the training phase. ART prototypes are, however, unlike the ones posited in the traditional prototype-exemplar debate. Rather, they are critical patterns of features to which a subject learns to pay attention based on past predictive success and the order in which exemplars are experienced. Perturbations of old memories by newly arriving test items generate a performance curve that closely matches the performance pattern of human subjects. The model also clarifies exemplar-based accounts of data concerning amnesia.Defense Advanced Projects Research Agency SyNaPSE program (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC #801881-BS under HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (NSF SBE-0354378

    Are Face and Object Recognition Independent? A Neurocomputational Modeling Exploration

    Full text link
    Are face and object recognition abilities independent? Although it is commonly believed that they are, Gauthier et al.(2014) recently showed that these abilities become more correlated as experience with nonface categories increases. They argued that there is a single underlying visual ability, v, that is expressed in performance with both face and nonface categories as experience grows. Using the Cambridge Face Memory Test and the Vanderbilt Expertise Test, they showed that the shared variance between Cambridge Face Memory Test and Vanderbilt Expertise Test performance increases monotonically as experience increases. Here, we address why a shared resource across different visual domains does not lead to competition and to an inverse correlation in abilities? We explain this conundrum using our neurocomputational model of face and object processing (The Model, TM). Our results show that, as in the behavioral data, the correlation between subordinate level face and object recognition accuracy increases as experience grows. We suggest that different domains do not compete for resources because the relevant features are shared between faces and objects. The essential power of experience is to generate a "spreading transform" for faces that generalizes to objects that must be individuated. Interestingly, when the task of the network is basic level categorization, no increase in the correlation between domains is observed. Hence, our model predicts that it is the type of experience that matters and that the source of the correlation is in the fusiform face area, rather than in cortical areas that subserve basic level categorization. This result is consistent with our previous modeling elucidating why the FFA is recruited for novel domains of expertise (Tong et al., 2008)

    Angry expressions strengthen the encoding and maintenance of face identity representations in visual working memory

    Get PDF
    This work was funded by a BBSRC grant (BB/G021538/2) to all authors.Peer reviewedPreprin

    Methodological Artefacts in Consciousness Science

    Get PDF
    Consciousness is scientifically challenging to study because of its subjective aspect. This leads researchers to rely on report-based experimental paradigms in order to discover neural correlates of consciousness (NCCs). I argue that the reliance on reports has biased the search for NCCs, thus creating what I call 'methodological artefacts'. This paper has three main goals: first, describe the measurement problem in consciousness science and argue that this problem led to the emergence of methodological artefacts. Second, provide a critical assessment of the NCCs put forward by the global neuronal workspace theory. Third, provide the means of dissociating genuine NCCs from methodological artefacts
    corecore