Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems
Abstract
How do humans and animals learn to recognize objects and events? Two classical views are that exemplars or prototypes are learned. A hybrid view is that a mixture, called rule-plus-exceptions, is learned. None of these models learn their categories. A distributed ARTMAP neural network with self-supervised learning incrementally learns categories that match human learning data on a class of thirty diagnostic experiments called the 5-4 category structure. Key predictions of ART models have received behavioral, neurophysiological, and anatomical support. The ART prediction about what goes wrong during amnesic learning has also been supported: A lesion in its orienting system causes a low vigilance parameter.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-01-1-0624), the National Geospatial Intelligence
Agency (NMA 201-01-1-2016); National Science Foundation (EIA-01-30851, IIS-97-20333, SBE-0354378); Office of Naval Research (N00014-95-1-0657, N00014-01-1-0624