research

Brain Categorization: Learning, Attention, and Consciousness

Abstract

How do humans and animals learn to recognize objects and events? Two classical views are that exemplars or prototypes are learned. A hybrid view is that a mixture, called rule-plus-exceptions, is learned. None of these models learn their categories. A distributed ARTMAP neural network with self-supervised learning incrementally learns categories that match human learning data on a class of thirty diagnostic experiments called the 5-4 category structure. Key predictions of ART models have received behavioral, neurophysiological, and anatomical support. The ART prediction about what goes wrong during amnesic learning has also been supported: A lesion in its orienting system causes a low vigilance parameter.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-01-1-0624), the National Geospatial Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (EIA-01-30851, IIS-97-20333, SBE-0354378); Office of Naval Research (N00014-95-1-0657, N00014-01-1-0624

    Similar works