97,606 research outputs found

    Adaptive Aggregation Based Domain Decomposition Multigrid for the Lattice Wilson Dirac Operator

    Get PDF
    In lattice QCD computations a substantial amount of work is spent in solving discretized versions of the Dirac equation. Conventional Krylov solvers show critical slowing down for large system sizes and physically interesting parameter regions. We present a domain decomposition adaptive algebraic multigrid method used as a precondtioner to solve the "clover improved" Wilson discretization of the Dirac equation. This approach combines and improves two approaches, namely domain decomposition and adaptive algebraic multigrid, that have been used seperately in lattice QCD before. We show in extensive numerical test conducted with a parallel production code implementation that considerable speed-up over conventional Krylov subspace methods, domain decomposition methods and other hierarchical approaches for realistic system sizes can be achieved.Comment: Additional comparison to method of arXiv:1011.2775 and to mixed-precision odd-even preconditioned BiCGStab. Results of numerical experiments changed slightly due to more systematic use of odd-even preconditionin

    A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods

    Get PDF
    We present here a domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by a discontinuous Galerkin method. In order to allow the treatment of irregularly shaped geometries, the discontinuous Galerkin method is formulated on unstructured tetrahedral meshes. The domain decomposition strategy takes the form of a Schwarz-type algorithm where a continuity condition on the incoming characteristic variables is imposed at the interfaces between neighboring subdomains. A multifrontal sparse direct solver is used at the subdomain level. The resulting domain decomposition strategy can be viewed as a hybrid iterative/direct solution method for the large, sparse and complex coefficients algebraic system resulting from the discretization of the time-harmonic Maxwell equations by a discontinuous Galerkin method

    Constraint interface preconditioning for topology optimization problems

    Get PDF
    The discretization of constrained nonlinear optimization problems arising in the field of topology optimization yields algebraic systems which are challenging to solve in practice, due to pathological ill-conditioning, strong nonlinearity and size. In this work we propose a methodology which brings together existing fast algorithms, namely, interior-point for the optimization problem and a novel substructuring domain decomposition method for the ensuing large-scale linear systems. The main contribution is the choice of interface preconditioner which allows for the acceleration of the domain decomposition method, leading to performance independent of problem size.Comment: To be published in SIAM J. Sci. Com

    Iterative methods for elliptic finite element equations on general meshes

    Get PDF
    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included

    Isogeometric Simulation and Shape Optimization with Applications to Electrical Machines

    Get PDF
    Future e-mobility calls for efficient electrical machines. For different areas of operation, these machines have to satisfy certain desired properties that often depend on their design. Here we investigate the use of multipatch Isogeometric Analysis (IgA) for the simulation and shape optimization of the electrical machines. In order to get fast simulation and optimization results, we use non-overlapping domain decomposition (DD) methods to solve the large systems of algebraic equations arising from the IgA discretization of underlying partial differential equations. The DD is naturally related to the multipatch representation of the computational domain, and provides the framework for the parallelization of the DD solvers

    Algebraic Domain Decomposition Methods for Highly Heterogeneous Problems

    Get PDF
    International audienceWe consider the solving of linear systems arising from porous media flow simulations with high heterogeneities. Using a Newton algorithm to handle the non-linearity leads to the solving of a sequence of linear systems with different but similar matrices and right hand sides. The parallel solver is a Schwarz domain decomposition method. The unknowns are partitioned with a criterion based on the entries of the input matrix. This leads to substantial gains compared to a partition based only on the adjacency graph of the matrix. From the information generated during the solving of the first linear system, it is possible to build a coarse space for a two-level domain decomposition algorithm that leads to an acceleration of the convergence of the subsequent linear systems. We compare two coarse spaces: a classical approach and a new one adapted to parallel implementation
    corecore