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A domain decomposition strategy for solving
time-harmonic Maxwell's equations discretized
by a discontinuous Galerkin method
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This work has been submitted to the IEEE for possible pulitinaCopyright may be transferred without notice,
after which this version may no longer be accessible.

Abstract—The numerical solution of the three-dimensional II. THE DOMAIN DECOMPOSITION STRATEGY

time-harmonic Maxwell equations using high order methods sch For the sake of simplicity we consider the following non-
as discontinuous Galerkin formulations require efficient ®lvers. plicity g

A domain decomposition strategy is introduced for this purmse. dimensioned transverse electric model problem in a domain
This strategy is based on optimized Schwarz methods applied 2 C R?:

to the first order form of the Maxwell system and leads to the . o PR
best possible convergence of these algorithms. The prindgs are Find the electromagnetic fieldE, H) satisfying:

explained for a 2D model problem and numerical simulations iweE — curlH = 0, i.n Q, 1)
confirm the predicted theoretical behavior. The efficiency $ iwpH + curl E =0, in £,
further demonstrated on more realistic 3D geometries inclding nx (E— EinC) +(H— HinC) =0, on oN.

a bioelectromagnetism application. ) .
The parameters and p denote respectively the relative

dielectric permittivity and the relative magnetic permiégh
w the angular frequency) the unitary outgoing normal and
(E'»¢, H®¢) the components of an incident electromagnetic
wave.

. INTRODUCTION For solving (1), the domaif is decomposed in two non-

, __overlapping subdomaird; and2;. The common interface to
D 'SCONTINU,OUS Gglerkm (DG)_methods are emerging, . andQ, is denoted by". The DD strategy is then a variant
for the solution of time-harmonic Maxwell’s equationsyf the classical Schwarz method:

[1] because of the enhanced flexibility compared to the con-
forming edge element method [2]. For instance, by using a
DG method, dealing with non-conforming meshes is straight-
forward. The formulation of such methods in the case of the
first order elliptic Maxwell system has been fully analyzad i
[3] and an extension to the time-harmonic first order system i

Index Terms—Domain decomposition methods, discontinuous
Galerkin methods, optimized interface conditions.

« We start with an initial electromagnetic fie{®?, H)) on
each subdomaify;, I =1, 2.

« The (p + 1)-th iterate (EP™', HP*") is the solution of
(1) restricted to the subdomaift; with an interface
transmission condition ofi of the form:

introduced in [4] where a numerical comparison of different n x (Eﬁ”+1 —EP)+ Sl(Hfl”+1 —HP) =0, @)
schemes is proposed. with S; = a; + 5,02,

Nonetheless, before taking advantage of the flexibility of
the DG methods, the design of efficient algorithms for the
resulting sparse linear system has to be addressed. Here w
propose a domain decomposition (DD) strategy based on
optimized Schwarz methods [5], [7], [9]. First, the DD stgy
is introduced in the two-domain case for a 2D transverse
electric model problem. Then the discretization of the prob
by a DG method is presented. Finally, numerical results for
a 2D problem confirm the expected theoretical behavior of
the DD method and 3D numerical experiments on simplified
problems pave the way for more realistic applications. 22: ||(E§’+1, Hf“) — (EV,HD)||

=1

whered? denotes the second-order derivative along the
interface. The operatof; ensures the transmission of
€ the field (EP, HP ) computed at the previous iteration
in the neighboring subdomaim with parametersy,
0, properly chosen to control the convergence of the
algorithm.
« The limit of the sequencéE}, HY),cn is the restriction
to ; of (E,H) the solution of (1). Thus, we can use a
stopping criterion:

< tol, 3)
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the mesh size used for the discretization and the conveegeitius no particular continuity constraint is enforced at the
to the solution can be slow. We refer to this condition as theterface of each element. The weak formulation of the éiscr
classical condition in the following. problem is then the following:

Nonetheless, it is possible to greatly improve the con; _. 9 )
vergence rate by optimizing it with respect tg, 3;. This Find (Ep, Hy) € Vi’ x Vi sulch that:
theoretical study is done in [7] d!rectly on (1) and in [8] for| 4(H, G) + b(G, E,) = / = (Hi"® — NLE™) Gds,
the second ordeturl curl formulation. o0 2

. i i i 1 . o

The closgd form expressions obtained for the goefﬂmen Sb(Hh,F) — ¢(E,F) :/ (N HI™ — N, NEE™)Fds,
a;, B; are in particular dependent of the mesh size. Thede 90 2
expressions are then used in a DD strategy generalized ® mQrvr c V2, G € Vj,.
than two subdomains.

Let us briefly recall the analysis proposed in [7] in ord
to deduce a theoretical convergence ratéor the iterative / . =

. : : o Hp,G) = H;Gd

algorithm depending on the mesh sfzeThis analysis is done o ) Q, Wwptndv + Z
on the continuousie. without discretization, DD method but o
numerical arguments are given in the following for showing+/ §Hths,
that the results remain valid with a discretization. 09

The study ofp is done for a decomposition @ into two (G, E;,) = Z / G curl(Ey)dv — Z / {G}[En]rds

K F

e\p/here:

aH;, Gds
rero”’ F

infinite domains. A Fourier transform is applied with respec KeT, Fero
to the tangential variables to the interface (artificial hdary 1 i

separating the two domains). The resulting local equattans 20 §G(NnEh)d5'

be solved leading to the formulation of an iterative procgss and finally:

plied to the interface variables. Then, we obtain the rdduoct

factor of the error ) as a function of the Fourier variable ¢(E;, F) :/ iweE,Fdv + > / o[En];[Flrds

and the parameters involved in the interface conditions. In Qn Fero” F

order to obtain the best possible convergence rate, onesneed 1, =

to optimize this quantity with respect to the parametensttfe + /m §(NnEh>(NnF)ds'

range of possible spatial frequencies that can be repezsent )

on a given mesh. In the sequel, we treat the cases of z&fef Matrix Ny, denotes(—n, n,), for a vectorn of R?,
order boundary conditions where we take in (@)equal to 1G} and [F]r denotes respectively the mean @fand the

zero that is the case of generalized impedance conditiovs, IUMP Of the tangential component Bfover an interior face”.
possibilities are considered; = a» anda; # as. It has been Note that in order to keep the consistency with the contisuou

proved that, are equal t(iw) = (p; + ip;) wherep; andp, problem, a nurr_1erica| flux is defined on the ir_1terface qf each
are reported in Table I. When the mesh parameater small, element enfc_)rcmg weakly _the_ tangential continuity caaistr

the maximum numerical frequency that can be represented’8hthe electric and magnetic field. The proper choice ofeaiff -
the mesh is estimated by, — % whereC is a constant. We €nt !qnd_of fluxes h_as been dlscusse_d from the numerical point
also defind. such that_ < w < k. in order to exclude the of view in [4]. For instance, the choice = 0 correspopds to
frequencyw from the optimization process and this frequenci® case of the centered flux, and= 1/2 to the choice of

being treated by the Krylov method (see also [9] for details? simplified upwind flux. Thg former has the advantage to be
easy to implement and requires a lower memory storage. The

TABLE | latter has better convergence properties.
CONVERGENCE RATE AND TRANSMISSION CONDITION PARAMETERS

IV. TWO-DIMENSIONAL NUMERICAL RESULTS

Case p P1 p2
I 1 I . .
1 1— ff/fiﬁ Vh ﬁf‘/i ﬁ\c/é The agreement between the theoretical and numerical con-
C% ) gcg %202 vergence rates is demonstrated on a problem Rith]0; 1[2,
2 L= —ght | e | g (Eine, H") = exp(—iwz)(0,1,1) andw = 27 discretized by

discontinuous Galerkin methods. Firstly, we study the influ
ence of the choice of the numerical flux and of the polynomial
I11. DISCRETIZATION OF THE PROBLEM order on the theoretical convergence rate. Secondly, wby stu

For the discretization of the local problem &k, a DG the multidomain case.
method is used. The domain is decomposed into a set of
elementsT}, such thatUker, K = ;. The approximate A. Influence of the element order and of the numerical flux
solution (E,, Hy) of (1) is an element of/;> whereV;, is the
finite element space of square-integrable discontinuoalsisc
fields whose restriction to an eleme#ht is polynomial of
degreek:

The first DG discretization is based on a triangular uniform
mesh with P; (K) as the local space in each eleméat On
Figure 1, the number of iterations for achieving a presctibe
accuracy against the mesh size is shown for both boundary
Vi ={VelL*Q)/VK €T, VieP(K)}. (4 conditions (Case 1 and Case 2). The curves fit nicely the
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Number of iterations against the mesh size.w=2 1
T

we make use of GMRES for solving the interface system. We
observe that, independently of the flux chosen, the number
of iterations grows roughly ad’?-3 where N, is the number

of subdomains. Thus, the convergence deteriorates with the
1 number of subdomains and it advocates for the use of a coarse
grid in order to obtain an optimal solver. Nevertheless the
| hierarchy of the transmission conditions is maintained ttued
optimized versions enable us to accelerate the convergence
compared to the classical condition [6].

L 05
=+ Parameters Case 1 |-
g 025

—— Parameters Case 2

iterations
.
o

B T T

+—+ Classical

+ -+ Est. exponent: 0.29
e—e Case 1 >
e -e Est. exponent: 0.26 P
=—a Case 2
= -m Est. exponent: 0.3 -

Fig. 1. Number of iterations against the mesh sizé ogarithmic scale.

dependence ih predicted by the theorye. they behave like
h~93 for Case 1 and likes=?-2% for Case 2.

In order to demonstrate that the theoretical results are
independent of the choice of the DG discretization, we also
approximate numerically this asymptotic convergence rate ‘
using three polynomial orders for the element interpotatio 10! Number of subdmains 10
(here quadrilateral elements are considered to simpligy th
management of the multi-domain case for this academic prafy. 2. Number of iterations against the number of subdosdihe number
lem) and two different fluxes; these experiments are regortef dof is constant. Results for the centered flux.
in Table Il. A behavior close th=°% and h=0-2% for the
number of iterations is obtained by the numerical experigien
independently of the choice of the numerical flux and of the

Number of iterations

numerical order. . Cloeeical
+ -+ Est. exponent: 0.31
TABLE I o—e Case 1 ) >
ESTIMATED VALUE OF § WHERE p = 1 — Ch?®. o (E:Zts‘:gponent‘ 028 ,x”

g = -m Est. exponent: 0.31 2 A
Flux Qo | Q1 | @ g
Centered Case 1 0.48 | 0.46 | 0.49 =
Centered Case 2 0.27 | 0.26 | 0.23 .
Upwind Case 1| 0.45 | 0.47 | 0.47 £
Upwind Case 2| 0.37 | 0.26 | 0.25 E

B. Influence of the number of subdomains . . A,
Number of subdomains

As in practice more than two domains are used, the perfor-
mances of the optimized conditions are evaluated for more
subdomains. The same problem as in Subsection IV-A cj'g%‘,
solved.

The numerical experiments are still performed on a struc-
tured grid and then the partition into several subdomains is
made in a regular way: a decomposition¥hx N rectangular )
sudomains of the unit square. The results for the centerd Scattering by a sphere
case are shown on Figure 2 and the results for the upwindThe implementation of optimized interface conditions for
case on Figure 3; @; polynomial approximation is used forthree-dimensional time-harmonic Maxwell's equations is a
these figures. Note that for obtaining these results, a Krylavork in progress. Here, we give preliminary results for tHa D
subspace method is coupled to the Schwarz algorithm. Indestlategy based on first order absorbing boundary condiiens
as it is explained in [5], the DD method can be formulatetlansmission conditions.
as a linear system whose unknowns are auxiliary interfaceThe problem under consideration is the scattering of a plane
variables. This interface system is usually solved by a ¢éryl wave by a perfectly conducting unit sphere. The incident
method which gives more robustness to the DD strategy. Havave is given byE"® = (exp(—iwz),0,0)" and H"® =

3. Number of iterations against the number of subdosaihe number
of is constant. Results for the upwind flux.

V. THREE-DIMENSIONAL PROBLEM
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(0, exp(—iwz),0)!, with w = 47. The absorbing boundary Performance results are given in Table V. The parallel
is set to one wavelength from the surface of the perfectly coefficiency, evaluated using the maximum CPU to REAL ratio,
ducting sphere. The mesh is composed of 1,382,400 tetrmhedinges from 65% to 75%.
and aPy(K) local space is used for the DG method. The total
number of unknowns is 8,294,400.

Numerical experiments are conducted on a cluster of 64
AMD Opteron/2 GHz processors with a Gigabit Ethernet inter-

TABLE V
COMPUTATION TIMES. U: UPWIND FLUX, C: CENTERED FLUX.

] 7 ' Mesh | Method | Ny | #it | CPU (min/max)| REAL
connection. One subdomain is associated to each procesbora ~ M1 | DG-Pi-c | 96 | 47 | 346 sec/466 sed¢ 714 sec
a sparse matrix direct method is used to solve the subdomain__-__| DG-Pi-u | 96 | 46 | 347 sec/547 seq 765 sec

DG-Fy-c | 96 33 | 228 sec/322 se¢ 428 sec

problem. Note that we use a BiCGstdbmethod [10] either
for solving the interface system or as a global solver withou
preconditionner.

Performance results are given in Table Ill where 'DDM
refers to the DD solution strategy. The per processor tinne f
performing the factorization is 18.0 sec (min)/102.0 seaxX)n
while the associated memory usage is 405 MB (min)/1001 M
(max). In addition to the gain in computing time, a cleq
advantage of the DD strategy is its parallel efficiency ttet c
be evaluated here as the ratio of 'CPU (max)’ over 'Elapse
which is equal to 92% while the corresponding feature for th
global solver is 74%.

TABLE Il Fig. 4. View of the mesh M1 and a solution computed on this mesh

PERFORMANCE RESULTS'CPU (MIN/MAX)' ARE PER PROCESSOR
MEASURES OF THECPUTIME. 'ELAPSED' IS THE ELAPSED TIME

Solver | #iter | CPU (min) | CPU (max) | Elapsed VI. CONCLUSION
Global | 2031 | 1940.0 sec| 2142.0 sec| 2919.0 sec In thi | ical d imized Sch | ith
DDM 14 259.0 sec| 413.0 sec | 449.0 sec n this paper, classical and optimized Schwarz algorithms

have been applied to time-harmonic Maxwell's equations
discretized by DG methods. Concerning Schwarz algorithms
based on optimized interface conditions, two-dimensiowal

merical results show a good agreement with the theory in the
§@se of the simplest optimized conditions and the behavior

the proposed numerical methodology to the simulation of'd independent .Of. the choice of the flux a.nd. the polynoml_al
time-harmonic electromagnetic wave propagation problem ?rder for the f|n_|te element space. Prellmlpary results.m
an irregularly shaped and heterogeneous medium. The pnobfge three-dmep_smnal case are very promising for claksica
under consideration is concerned with the propagation 0f|rg_erface _co_ndlthns, opening _the way to |_mprovem_ents by
plane wave in realistic geometrical models of head tissuet'"9 optimized interface conditions on realistic appimas.

Two tetrahedral meshes have been used whose characseristic
are summarized in Table IV. The frequency of the incident
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B. A bioelectromagnetism example
We conclude this section of results with the application
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