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A domain decomposition strategy for solving
time-harmonic Maxwell’s equations discretized

by a discontinuous Galerkin method
Victorita Dolean, Stéphane Lanteri, and Ronan Perrussel

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice,
after which this version may no longer be accessible.

Abstract—The numerical solution of the three-dimensional
time-harmonic Maxwell equations using high order methods such
as discontinuous Galerkin formulations require efficient solvers.
A domain decomposition strategy is introduced for this purpose.
This strategy is based on optimized Schwarz methods applied
to the first order form of the Maxwell system and leads to the
best possible convergence of these algorithms. The principles are
explained for a 2D model problem and numerical simulations
confirm the predicted theoretical behavior. The efficiency is
further demonstrated on more realistic 3D geometries including
a bioelectromagnetism application.

Index Terms—Domain decomposition methods, discontinuous
Galerkin methods, optimized interface conditions.

I. I NTRODUCTION

D ISCONTINUOUS Galerkin (DG) methods are emerging
for the solution of time-harmonic Maxwell’s equations

[1] because of the enhanced flexibility compared to the con-
forming edge element method [2]. For instance, by using a
DG method, dealing with non-conforming meshes is straight-
forward. The formulation of such methods in the case of the
first order elliptic Maxwell system has been fully analyzed in
[3] and an extension to the time-harmonic first order system is
introduced in [4] where a numerical comparison of different
schemes is proposed.

Nonetheless, before taking advantage of the flexibility of
the DG methods, the design of efficient algorithms for the
resulting sparse linear system has to be addressed. Here we
propose a domain decomposition (DD) strategy based on
optimized Schwarz methods [5], [7], [9]. First, the DD strategy
is introduced in the two-domain case for a 2D transverse
electric model problem. Then the discretization of the problem
by a DG method is presented. Finally, numerical results for
a 2D problem confirm the expected theoretical behavior of
the DD method and 3D numerical experiments on simplified
problems pave the way for more realistic applications.

V. Dolean is with J. A. Dieudonné Mathematics Laboratory, UMR CNRS
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II. T HE DOMAIN DECOMPOSITION STRATEGY

For the sake of simplicity we consider the following non-
dimensioned transverse electric model problem in a domain
Ω ⊂ R

2:














Find the electromagnetic field(E, H) satisfying:
iωεE− curl H = 0, in Ω,
iωµH + curlE = 0, in Ω,
n× (E − E

inc) + (H − Hinc) = 0, on ∂Ω.

(1)

The parametersε and µ denote respectively the relative
dielectric permittivity and the relative magnetic permeability,
ω the angular frequency,n the unitary outgoing normal and
(Einc, Hinc) the components of an incident electromagnetic
wave.

For solving (1), the domainΩ is decomposed in two non-
overlapping subdomainsΩ1 andΩ2. The common interface to
Ω1 andΩ2 is denoted byΓ. The DD strategy is then a variant
of the classical Schwarz method:

• We start with an initial electromagnetic field(E0
l , H

0
l ) on

each subdomainΩl, l = 1, 2.
• The (p + 1)-th iterate (Ep+1

l , Hp+1

l ) is the solution of
(1) restricted to the subdomainΩl with an interface
transmission condition onΓ of the form:

{

n× (Ep+1

l − E
p
m) + Sl(H

p+1

l − Hp
m) = 0,

with Sl = αl + βl∂
2
τ ,

(2)

where∂2
τ denotes the second-order derivative along the

interface. The operatorSl ensures the transmission of
the field (Ep

m, Hp
m) computed at the previous iteration

in the neighboring subdomainm with parametersαl,
βl properly chosen to control the convergence of the
algorithm.

• The limit of the sequence(Ep
l , H

p
l )p∈N is the restriction

to Ωl of (E, H) the solution of (1). Thus, we can use a
stopping criterion:

2
∑

l=1

‖(Ep+1

l , Hp+1

l ) − (Ep
l , H

p
l )‖

‖(E1
l , H

1
l ) − (E0

l , H
0
l )‖

< tol, (3)

wheretol is the prescribed accuracy and‖ · ‖ a norm.

Després in [6] was the first to use to use this strategy
for time-harmonic equations with the choiceSl = 1, for
l = 1, 2 which coincides with a first order absorbing boundary
condition. However, the convergence rate of the iterative
process with this boundary condition is strongly dependenton
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the mesh size used for the discretization and the convergence
to the solution can be slow. We refer to this condition as the
classical condition in the following.

Nonetheless, it is possible to greatly improve the con-
vergence rate by optimizing it with respect toαi, βi. This
theoretical study is done in [7] directly on (1) and in [8] for
the second ordercurl curl formulation.

The closed-form expressions obtained for the coefficients
αi, βi are in particular dependent of the mesh size. These
expressions are then used in a DD strategy generalized to more
than two subdomains.

Let us briefly recall the analysis proposed in [7] in order
to deduce a theoretical convergence rateρ for the iterative
algorithm depending on the mesh sizeh. This analysis is done
on the continuous,i.e. without discretization, DD method but
numerical arguments are given in the following for showing
that the results remain valid with a discretization.

The study ofρ is done for a decomposition ofRd into two
infinite domains. A Fourier transform is applied with respect
to the tangential variables to the interface (artificial boundary
separating the two domains). The resulting local equationscan
be solved leading to the formulation of an iterative processap-
plied to the interface variables. Then, we obtain the reduction
factor of the error (ρ) as a function of the Fourier variable
and the parameters involved in the interface conditions. In
order to obtain the best possible convergence rate, one needs
to optimize this quantity with respect to the parameters, for the
range of possible spatial frequencies that can be represented
on a given mesh. In the sequel, we treat the cases of zero
order boundary conditions where we take in (2)βl equal to
zero that is the case of generalized impedance conditions. Two
possibilities are considered:α1 = α2 andα1 6= α2. It has been
proved thatαl are equal to(iω)−1(pl + ipl) wherep1 andp2

are reported in Table I. When the mesh parameterh is small,
the maximum numerical frequency that can be represented on
the mesh is estimated bykmax = C

h
whereC is a constant. We

also definek± such thatk− ≤ ω ≤ k+ in order to exclude the
frequencyω from the optimization process and this frequency
being treated by the Krylov method (see also [9] for details).

TABLE I
CONVERGENCE RATE AND TRANSMISSION CONDITION PARAMETERS.

Case ρ p1 p2

1 1 −

√

2C

1

4
ω

√

π

√

h
√

πC

1

4
ω

√

2

√

h

√

πC

1

4
ω

√

2

√

h

2 1 −
C

1

8
ω

π
1

4

h
1

4
π

1

4 C

1

8
ω

2h
1

4

π
3

4 C

1

8
ω

h
3

4

III. D ISCRETIZATION OF THE PROBLEM

For the discretization of the local problem onΩi, a DG
method is used. The domain is decomposed into a set of
elementsTh such that∪K∈Th

K = Ωi. The approximate
solution(Eh, Hh) of (1) is an element ofV 3

h whereVh is the
finite element space of square-integrable discontinuous scalar
fields whose restriction to an elementK is polynomial of
degreek:

Vh =
{

V ∈ L2(Ω) / ∀K ∈ Th, V|K ∈ Pk(K)
}

. (4)

Thus no particular continuity constraint is enforced at the
interface of each element. The weak formulation of the discrete
problem is then the following:


































Find (Eh, Hh) ∈ V 2
h × Vh such that:

a(Hh, G) + b(G,Eh) =

∫

∂Ω

1

2

(

Hinc − N t
n
E

inc
)

Gds,

b(Hh,F) − c(Eh,F) =

∫

∂Ω

1

2
(NnHinc − NnN t

n
E

inc)t
Fds,

∀F ∈ V 2
h ,G ∈ Vh.

where:

a(Hh, G) =

∫

Ωh

iωµHhGdv +
∑

F∈Γ0

∫

F

αHhGds

+

∫

∂Ω

1

2
HhGds,

b(G,Eh) =
∑

K∈Th

∫

K

G curl(Eh)dv −
∑

F∈Γ0

∫

F

{G}tJEhKT ds

−

∫

∂Ω

1

2
G(N t

n
Eh)ds.

and finally:

c(Eh,F) =

∫

Ωh

iωǫEt
hFdv +

∑

F∈Γ0

∫

F

αJEhKt
T JFKT ds

+

∫

∂Ω

1

2
(N t

n
Eh)(N t

n
F)ds.

The matrixN t
n

denotes
(

−ny nx

)

, for a vectorn of R
2,

{G} and JFKT denotes respectively the mean ofG and the
jump of the tangential component ofF over an interior faceF .
Note that in order to keep the consistency with the continuous
problem, a numerical flux is defined on the interface of each
element enforcing weakly the tangential continuity constraint
for the electric and magnetic field. The proper choice of differ-
ent kind of fluxes has been discussed from the numerical point
of view in [4]. For instance, the choiceα = 0 corresponds to
the case of the centered flux, andα = 1/2 to the choice of
a simplified upwind flux. The former has the advantage to be
easy to implement and requires a lower memory storage. The
latter has better convergence properties.

IV. T WO-DIMENSIONAL NUMERICAL RESULTS

The agreement between the theoretical and numerical con-
vergence rates is demonstrated on a problem withΩ =]0; 1[2,
(Einc, Hinc) = exp(−iωx)(0, 1, 1) andω = 2π discretized by
discontinuous Galerkin methods. Firstly, we study the influ-
ence of the choice of the numerical flux and of the polynomial
order on the theoretical convergence rate. Secondly, we study
the multidomain case.

A. Influence of the element order and of the numerical flux

The first DG discretization is based on a triangular uniform
mesh withP1(K) as the local space in each elementK. On
Figure 1, the number of iterations for achieving a prescribed
accuracy against the mesh size is shown for both boundary
conditions (Case 1 and Case 2). The curves fit nicely the
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Fig. 1. Number of iterations against the mesh sizeh. Logarithmic scale.

dependence inh predicted by the theoryi.e. they behave like
h−0.5 for Case 1 and likeh−0.25 for Case 2.

In order to demonstrate that the theoretical results are
independent of the choice of the DG discretization, we also
approximate numerically this asymptotic convergence rate
using three polynomial orders for the element interpolation
(here quadrilateral elements are considered to simplify the
management of the multi-domain case for this academic prob-
lem) and two different fluxes; these experiments are reported
in Table II. A behavior close toh−0.5 and h−0.25 for the
number of iterations is obtained by the numerical experiments,
independently of the choice of the numerical flux and of the
numerical order.

TABLE II
ESTIMATED VALUE OF δ WHEREρ = 1 − Chδ .

Flux Q0 Q1 Q2

Centered Case 1 0.48 0.46 0.49
Centered Case 2 0.27 0.26 0.23
Upwind Case 1 0.45 0.47 0.47
Upwind Case 2 0.37 0.26 0.25

B. Influence of the number of subdomains

As in practice more than two domains are used, the perfor-
mances of the optimized conditions are evaluated for more
subdomains. The same problem as in Subsection IV-A is
solved.

The numerical experiments are still performed on a struc-
tured grid and then the partition into several subdomains is
made in a regular way: a decomposition inN ×N rectangular
sudomains of the unit square. The results for the centered
case are shown on Figure 2 and the results for the upwind
case on Figure 3; aQ1 polynomial approximation is used for
these figures. Note that for obtaining these results, a Krylov
subspace method is coupled to the Schwarz algorithm. Indeed,
as it is explained in [5], the DD method can be formulated
as a linear system whose unknowns are auxiliary interface
variables. This interface system is usually solved by a Krylov
method which gives more robustness to the DD strategy. Here

we make use of GMRES for solving the interface system. We
observe that, independently of the flux chosen, the number
of iterations grows roughly asN0.3

s whereNs is the number
of subdomains. Thus, the convergence deteriorates with the
number of subdomains and it advocates for the use of a coarse
grid in order to obtain an optimal solver. Nevertheless the
hierarchy of the transmission conditions is maintained andthe
optimized versions enable us to accelerate the convergence
compared to the classical condition [6].

101 102 103

Number of subdomains

102N
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

Classical
Est. exponent: 0.29

Case 1
Est. exponent: 0.26

Case 2
Est. exponent: 0.3

Fig. 2. Number of iterations against the number of subdomains. The number
of dof is constant. Results for the centered flux.
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Fig. 3. Number of iterations against the number of subdomains. The number
of dof is constant. Results for the upwind flux.

V. THREE-DIMENSIONAL PROBLEM

A. Scattering by a sphere

The implementation of optimized interface conditions for
three-dimensional time-harmonic Maxwell’s equations is a
work in progress. Here, we give preliminary results for the DD
strategy based on first order absorbing boundary conditionsas
transmission conditions.

The problem under consideration is the scattering of a plane
wave by a perfectly conducting unit sphere. The incident
wave is given byEinc = (exp(−iωx), 0, 0)t and H

inc =



PAPER SESSION PA2. ID 228. 4

(0, exp(−iωx), 0)t, with ω = 4π. The absorbing boundary
is set to one wavelength from the surface of the perfectly con-
ducting sphere. The mesh is composed of 1,382,400 tetrahedra
and aP0(K) local space is used for the DG method. The total
number of unknowns is 8,294,400.

Numerical experiments are conducted on a cluster of 64
AMD Opteron/2 GHz processors with a Gigabit Ethernet inter-
connection. One subdomain is associated to each processor and
a sparse matrix direct method is used to solve the subdomain
problem. Note that we use a BiCGstab(l) method [10] either
for solving the interface system or as a global solver without
preconditionner.

Performance results are given in Table III where ’DDM’
refers to the DD solution strategy. The per processor time for
performing the factorization is 18.0 sec (min)/102.0 sec (max)
while the associated memory usage is 405 MB (min)/1001 MB
(max). In addition to the gain in computing time, a clear
advantage of the DD strategy is its parallel efficiency that can
be evaluated here as the ratio of ’CPU (max)’ over ’Elapsed’
which is equal to 92% while the corresponding feature for the
global solver is 74%.

TABLE III
PERFORMANCE RESULTS. ’CPU (MIN /MAX )’ ARE PER PROCESSOR

MEASURES OF THECPUTIME . ’ELAPSED’ IS THE ELAPSED TIME.

Solver # iter CPU (min) CPU (max) Elapsed
Global 2031 1940.0 sec 2142.0 sec 2919.0 sec
DDM 14 259.0 sec 413.0 sec 449.0 sec

B. A bioelectromagnetism example

We conclude this section of results with the application of
the proposed numerical methodology to the simulation of a
time-harmonic electromagnetic wave propagation problem in
an irregularly shaped and heterogeneous medium. The problem
under consideration is concerned with the propagation of a
plane wave in realistic geometrical models of head tissues.
Two tetrahedral meshes have been used whose characteristics
are summarized in Table IV. The frequency of the incident

TABLE IV
CHARACTERISTICS OF THE TETRAHEDRAL MESHES.

Mesh # tetraheda Lmin (m) Lmax (m) Lavg (m)
M1 361,848 0.00185 0.04537 0.01165
M2 1,853,832 0.00158 0.02476 0.00693

plane wave is F=1800 MHz and its polarization is such that:

k = (kx, 0, 0)t , E = (0, 0,Ez)
t and H = (0,Hy, 0)t.

The electromagnetic parameters of the materials are set to
artificial values for the purpose of exemplifying the character-
istics of the propagation of the plane wave in the head tissues
(null conductivity,εr = 4.0 for the brain,εr = 6.5 for the
cerebrospinal fluid,εr = 1.5 for the skull andεr = 4.0 for
the skin). For the computations reported here, the DG methods
with P0 andP1 elements and upwind and centered fluxes are
used for the meshes M1 and M2. The mesh M1 and a view
of the solution is proposed on Figure 4.

Performance results are given in Table V. The parallel
efficiency, evaluated using the maximum CPU to REAL ratio,
ranges from 65% to 75%.

TABLE V
COMPUTATION TIMES. U: UPWIND FLUX, C: CENTERED FLUX.

Mesh Method Ns # it CPU (min/max) REAL
M1 DG-P1-c 96 47 346 sec/466 sec 714 sec
- DG-P1-u 96 46 347 sec/547 sec 765 sec

M2 DG-P0-c 96 33 228 sec/322 sec 428 sec
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Fig. 4. View of the mesh M1 and a solution computed on this mesh.

VI. CONCLUSION

In this paper, classical and optimized Schwarz algorithms
have been applied to time-harmonic Maxwell’s equations
discretized by DG methods. Concerning Schwarz algorithms
based on optimized interface conditions, two-dimensionalnu-
merical results show a good agreement with the theory in the
case of the simplest optimized conditions and the behavior
is independent of the choice of the flux and the polynomial
order for the finite element space. Preliminary results in
the three-dimensional case are very promising for classical
interface conditions, opening the way to improvements by
using optimized interface conditions on realistic applications.
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