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Algebraic Domain Decomposition Methods
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Abstract

We consider the solving of linear systems arising from porous media
flow simulations with high heterogeneities. Using a Newton algorithm
to handle the non-linearity leads to the solving of a sequence of linear
systems with different but similar matrices and right hand sides. The
parallel solver is a Schwarz domain decomposition method. The unknowns
are partitioned with a criterion based on the entries of the input matrix.
This leads to substantial gains compared to a partition based only on the
adjacency graph of the matrix. From the information generated during the
solving of the first linear system, it is possible to build a coarse space for
a two-level domain decomposition algorithm that leads to an acceleration
of the convergence of the subsequent linear systems. We compare two
coarse spaces: a classical approach and a new one adapted to parallel
implementation.
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1 Introduction

Multiphase, compositional porous media flow models, used for example in reser-
voir simulations or basin modeling, lead to the solution of complex nonlinear
systems of Partial Differential Equations (PDEs) accounting for the mass con-
servation of each component and the multiphase Darcy law, coupled with ther-
modynamical equilibrium and volume balance closure laws. These PDEs are
typically discretized using a cell-centered finite volume scheme and a fully im-
plicit Euler integration in time in order to allow for large time steps. After
Newton type linearization, one ends up with the solution of a linear system at
each Newton iteration which represents up to 90 percent of the total simulation
elapsed time.

Such linear systems couple an elliptic (or parabolic) unknown, the pres-
sure, and hyperbolic (or degenerate parabolic) unknowns, the volume or mass
fractions. They are nonsymmetric, and ill-conditioned in particular due to the
elliptic part of the system, and the strong heterogeneities and anisotropy of the
media. Their solution using an iterative Krylov method, such as GMRES or
BiCGStab, requires the construction of an efficient preconditioner which should
be scalable with respect to the heterogeneities and anisotropy of the media, the
mesh size, and the number of processors, and should cope with the coupling of
the elliptic and hyperbolic unknowns.

Nested factorization [AC83] and CPR-AMG [LVW01], [SMW03] are the
main state of the art preconditioners currently used in industrial reservoir sim-
ulators. Nevertheless they still suffer from major drawbacks that should be
addressed in response to the evolution of the computing architectures, and the
demand for more complex physics and geology in reservoir and basin simula-
tions. The nested factorization preconditioner is not adapted to distributed
architectures and has a limited scalability with respect to the heterogeneities
and anisotropy of the media. CPR-AMG is a more recent preconditioner which
combines multiplicatively a parallel Algebraic MultiGrid preconditioner for a
pressure block of the linear system, with a parallel incomplete factorization pre-
conditioner (typically ILU0) for the full system. This preconditioner exhibits a
very good robustness with respect to the heterogeneities and anisotropy of the
media. However, its parallel scalability requires a very large number of cells
per processor, say 100000, due to the coarsening step of AMG which is not
strongly scalable. The robustness of the CPR-AMG also requires the definition
of a pressure block which should be close to an M-matrix. This induces a sen-
sitivity to the physics such as complex wells couplings, capillary driven flows or
strong nonlinearities in pressure of the thermodynamical closure laws, and also
a sensitivity to the distorsion of the mesh when multipoint flux approximations
are used for the Darcy fluxes discretization.

Solving these drawbacks motivates our research for an alternative pressure
block preconditioner which should remain scalable with respect to the hetero-
geneities and anisotropy of the media and should exhibit improved strong scal-
ability on massively distributed architectures and improved robustness with
respect to the physics and to the discretization.
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The pressure block matrix is related to the discretization of a Darcy equation
with high contrasts and anisotropy in the coefficients. We work in the context
of overlapping Schwarz type methods on parallel computers. In order to deal
with anisotropy, we force the domain decomposition to respect the strong con-
nections between the nodes as much as possible. This is inspired by coarsening
techniques in algebraic multigrid (AMG) methods. It is also well known that
efficient domain decomposition methods demand a well suited coarse grid cor-
rection. For matrices arising from scalar problems with smooth coefficients, it
is possible to build a priori (i.e. before any linear solve) efficient coarse spaces
based on domain wise constant vectors, see[TW05] and references therein. For
problems with high heterogeneities, the numerical computation of these coarse
spaces is often based on solving generalized eigenvalue problems in subdomains,
see [EGW11] and [NXD10]. The corresponding local matrices are not subma-
trices of the global matrix A and cannot be built at the algebraic level. In
this paper, we introduce a new algebraic coarse space construction based on an
analysis of the Krylov space generated by the linear solve at the first iteration of
a Newton-Ralphson algorithm. We take advantage of a parallel implementation
to build a richer coarse space than the one proposed in[RR00, RR98].

The paper is organized as follows. In section 2, we recall the basis of the
overlapping Schwarz method. In the next section, we show the benefit of an
AMG style partitioning. In section 4 we consider coarse grid corrections. In
§ 4.1 we recall the principles of coarse grid correction in the context of Newton-
Ralphson method, and in § 4.2 we introduce a new domain wise split coarse
space and give numerical results on problems arising from reservoir simulations.

2 Parallel Schwarz method

The discretization of a linear partial differential equation on a domain Ω yields
a linear system of the form

Au = f ∈ Rn (1)

that we solve using a domain decomposition method. Without loss of gener-
ality, we consider here a decomposition of a domain Ω into two overlapping
subdomains Ω1 and Ω2. The overlap is denoted by O := Ω1 ∩Ω2. This yields a

partition of the domain: Ω̄ = Ω̄
(1)
I ∪ Ō ∪ Ω̄

(2)
I where Ω

(i)
I := Ωi\Ō, i = 1, 2. At

the algebraic level this corresponds to a partition of the set of indices N into

three sets: N (1)
I , O and N (2)

I .
After the discretization of the boundary value problem defined in domain Ω,

we obtain a linear system of the following form

A u :=

A
(1)
II A

(1)
IO

A
(1)
OI AOO A

(2)
OI

A
(2)
IO A

(2)
II


u(1)I

uO

u
(2)
I

 =

f (1)I

fO

f
(2)
I

 . (2)

We can also define the extended linear system by duplicating the variables
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Figure 1: Decomposition into two overlapping subdomains.

located in the overlapping region

Ã ũ :=


A

(1)
II A

(1)
IO

A
(1)
OI AOO A

(2)
OI

A
(1)
OI AOO A

(2)
OI

A
(2)
IO A

(2)
II



u
(1)
I

u
(1)
O

u
(2)
O

u
(2)
I

 =


f
(1)
I

fO
fO

f
(2)
I

 , (3)

where the subscript ’O’ stands for ’overlap’, u
(i)
O are the duplicated variables in

the overlapping domain O, u
(i)
I are variables in the subdomain Ωi

I . It is easy
to check that if AOO is invertible, there is an equivalence between problems (2)
and (3).

We introduce now three preconditioners, two for the linear system (2) and
one for the extended linear system (3). A classical preconditioner to problem (2)
is the additive Schwarz method. Let Rj be the rectangular restriction matrix
to subdomain Ωj , j = 1, 2. The additive Schwarz preconditioner is:

M−1ASM := RT
1 A
−1
1 R1 +RT

2 A
−1
2 R2

where Ai := RiAR
T
i , i = 1, 2. If A is SPD, then M−1ASM is SPD as well and the

theory of this preconditioner is very well developped, see[TW05] and references
therein. But in the overlap, corrections are added twice. This somehow delays
the convergence. In order to fix this problem, another classical preconditioner
was designed: the restricted additive Schwarz (RAS) method, see [CS99]. Define
R̃j by setting some ones in Rj to zeros, such that the operators R̃j correspond
to a non-overlapping decomposition,

R̃T
1 R1 + R̃T

2 R2 = I. (4)

Then the restricted additive Schwarz preconditioner reads

M−1RAS := R̃T
1 A
−1
1 R1 + R̃T

2 A
−1
2 R2 . (5)

Note that the RAS avoids extra correction in the overlapping zone but at the
expense of the loss of the symmetry of the preconditioner. As a result, there
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are less theoretical results for RAS than for ASM. In practice, it was noticed
that the RAS preconditioner outperforms the ASM preconditioner. The RAS
preconditioner leads to an iterative method that has equivalences with the dis-
cretization of the original Schwarz method [Sch70], see [EG03].

The third Schwarz type method is called the Jacobi-Schwarz method (JSM).
It corresponds to the discretization of the parallel variant of the original Schwarz
algorithm [Sch70]. It consists of solving the extended problem (3) precondi-
tioned by a block Jacobi method:

MJSM (Ã) :=


A

(1)
II A

(1)
IO

A
(1)
OI AOO

AOO A
(2)
OI

A
(2)
IO A

(2)
II

 . (6)

and one can easily notice that M−1JSM (Ã) can be computed in parallel. Actu-
ally, it is sufficient to factorize the diagonal blocks in parallel. When used in
a Richardson algorithm, it was proved in [EG03] that MJSM (Ã) applied to (3)
and MRAS applied to (2) lead to equivalent algorithms. Since RAS is easier to
implement than JSM, it gives a clear advantage to RAS. But when considering
two level methods, JSM has the advantage that no partition of unity is needed.
It brings some benefit both in terms of implementation and efficiency as it was
noticed in [NXDS11]. Thus, in the sequel, we will only consider the JSM pre-

conditioner M−1JSM (Ã) applied to (3).

In the general case with many subdomains, the set of indices N is decom-
posed into N overlapping subsets

N = ∪Ni=1Ni .

From this decomposition, we define the extended system whose right handside
belongs to RNE where NE :=

∑N
i=1 #Ni > n. For i = 1, . . . , N we denote by

RE,i the boolean matrix corresponding to the restriction operator from RNE 7→
RNi :

RE,i =

1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 0 0 1 0 · · · 0

 (7)

where there is 1 on a column if the corresponding node belongs to i-th sub-
domain. The transpose operator RT

E,i is the extension by zero from the i-th

subdomain to global set of unknowns RNE . In practice, we first perform a
partition of the unknowns using a graph partitioner working on the adjacency
graph of the matrix. Then each partition is extended with the adjacent nodes.

3 Partitioning

Graph partitioning softwares such as METIS [KK99] or SCOTCH [CP08] are
commonly used with the goal to compute a balanced partitioning that mini-
mizes a cost function which for sake of efficiency has to take integer values only.
The default cost function is the number of edge cuts. In order to accommodate
the heterogeneous cases, it is possible to weight the costs of the edgecuts. Here,
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Figure 2: Weighted vs. un-weighted partitions for a problem with a strong
anisotropy (see equation (9))
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Figure 3: Convergence curves for weighted vs. un-weighted partitions for reser-
voir oil simulations
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we want to get a partition that follows the anisotropy of the underlying partial
differential equation (PDE). It is known to have a strong effect on the efficiency
of preconditioners. Since we work at the algebraic level, this partitioning of the
unknowns cannot be made using the underlying mesh and values of the param-
eters in the PDE. The only information on the problem comes from the entries
of the matrix of the linear system. Inspired by algebraic multigrid methods, the
weight of the edge (i, j) which has to be an integer is defined as follows:

weight(i, j) :=

⌊
γ

|ai,j |
|ai,i|+ |aj,j |

⌋
(8)

where γ is a large number. When minimizing the edge-cuts with weights, nodes
that are strongly connected are kept in the same subdomain as much as possible.
In order to choose the value for γ, we have to balance two requirements. On
one hand, γ must be small enough so that the value of the cost function which
is the sum of the weighted edge cuts is smaller than the maximum value of an
integer allowed by the partitioning software. On the other hand, γ must be large
enough so that the weights take as many different values as possible in order
to accurately distinguish between the different values of |ai,j |/(|ai,i|+ |aj,j |).
Typically in our tests γ = 80000.

As an example, we consider the following anisotropic problem:

−div(κ∇u) = f ,

discretized by a finite element method (FreeFem++, see [Hec10]) on 2D unit
square of size Nx ×Ny, where Nx = Ny = 128 so that the number of non zero
entries is 98000. The diffusion tensor κ has a strong anisotropy:

κ =

[
κxx 0
0 κyy

]
=

[
1× 10−6 0

0 1

]
. (9)

In Figure 2, we show on the left picture the partition obtained using the weight
function of formula (8). We see that strongly connected nodes are kept as
much as possible in the same domain. On the right picture, we show the un-
weighted partition. The problem with this partition is that strongly connected
nodes belong to more than one subdomain. As a result, the Jacobi-Schwarz
method converges in only 2 iterations as compared to 106 iterations for the un-
weighted partition. The effect of the weighted partition is now tested against
an un-weighted partition on several test cases coming from “real life” reservoir
simulations with problems of various sizes, see Figure 3. The first figure corre-
sponds to 50.000 nodes whereas the last figure corresponds to the SPE10 test
case with one million unknowns for the pressure block. On Figure 3, we plot
the convergence histories for a weighted partition and an un-weighted one. As
we see, the weighted partitioning yields a better convergence of the Schwarz
method. When the iteration counts are already small (smaller than 20) for the
un-weighted partition, there is no much improvement. But, when iterations
counts are large, the weighted partition brings a substantial benefit. We also
noticed that the cost of one iteration and the time required for partitioning are
about the same in both cases.
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4 Two-level Schwarz method

4.1 Background

In the previous section, we have seen the benefit of using weighted partitions
that take into account the anisotropy of the problem. When the number of
subdomains becomes large, this is not sufficient to prevent stagnation in the
convergence of Schwarz type algorithms. Indeed, any of the three precondition-
ers MASM , MRAS or MJSM removes the very large eigenvalues of the coefficient
matrix, which correspond to high frequency modes. But the small eigenvalues
still exist and hamper the convergence. These small eigenvalues correspond to
low frequency modes and represent certain global information. We need a suit-
able coarse space to efficiently deal with them. This problem is closely related to
deflation techniques, see for instance [TNVE09], [PdSM+06] or [SYEG00] and
references therein. These methods are based on a knowledge of an approxima-
tion to the eigenvectors corresponding to the “bad” (small in our case) eigenval-
ues. Let Z denote the rectangular matrix that stores these vectors columnwise.
The number of columns of Z is the size of the coarse space. It is then classical
(see for instance [TNVE09]) to define the following matrices:

P := I −AQ, Q := ZE−1ZT , E := ZTAZ .

Notice that if A is symmetric, we have QAZ = Z, PTZ = 0 and PT Q = 0.
From these matrices, it is possible to introduce new preconditioners which will
not suffer from plateaus in the convergence. Let M denote a Schwarz method,
the balancing Neumann-Neumann preconditioner

PBNN := PTM−1P +Q

was introduced in[Man93]. In [TNVE09], a related form is introduced:

PA−DEF2 := PTM−1 +Q . (10)

These preconditioners used in any Krylov method have the interesting property
that at any step n the residual rn remains orthogonal to the vector space spanned
by the columns of Z:

ZT rn = 0 .

Compared to the original preconditioner M , the extra cost of the new precondi-
tioner lies in the solving of a linear system with the small matrix E. In domain
decomposition methods, the resulting method is called a two-level method.

The ideal coarse space is the invariant subspace corresponding to the low
part of the spectrum of the preconditioned operator. But, computing the small
eigenvalues of the preconditioned operator M−1A is of course too expensive. It
is thus necessary to find a way to “guess” some good approximations to them:
a priori i.e. before any solve or a posteriori i.e. after a first linear solve with
the matrix A or with a matrix close to A.
The a priori construction demands some analytic knowledge on the problem to
be solved. For instance for Poisson or elasticity type problems, coarse spaces
must contain the kernel of the operators: constant functions or rigid body mo-
tions, see [TW05] and references therein. For domain decomposition methods for

8



problems with high heterogeneities, the numerical computation of these coarse
spaces is often based on solving generalized eigenvalue problems in subdomains,
see [EGW11] and [NXD10]. The corresponding local matrices are not subma-
trices of the global matrix A. They cannot be built at the algebraic level.
Thus, we focus on a posteriori constructions of the coarse space that can be done
at the algebraic level. In order to build suitable coarse spaces, we will reuse in-
formation coming from previous solves in the context of nonlinear problems.
Let F be a nonlinear mapping and suppose we solve

F (U) = G

by a Newton algorithm

For k = 1, . . . , K
F ′(uk) · δuk+1 = G− F (uk)
uk+1 = uk + δuk+1

(11)

where K is the number of iterations to reach convergence. Let us denote by
Ak the matrix F ′(uk). The sequence of linear systems (11) are solved by the
parallel Schwarz method. The idea is to use spectral information from this first
solve with the matrix A1 to build a coarse space Z and thus a coarse correction
that will accelerate the solve of the subsequent linear systems with matrices Ak,
k ≥ 2. Although there are many variants (see for instance [RR98, RR00, GR03],
[PdSM+06] or [SYEG00] and references therein), we can say that the principle
is to proceed in the following way. From the solve of the first linear system
A1 u1 = f1, a spectral analysis of the Krylov subspace enables the selection of
a suitable coarse space denoted Z. More precisely, Ritz eigenvalues associated
with the Krylov subspace generated by the solving of the first linear system
A1 δu

1 = . . . by the Krylov method preconditioned by MJSM are computed.
If it exists, the long plateau in the convergence is due to the presence of a
few small positive eigenvalues close to zero. By computing the Ritz eigenvec-
tors, we get an approximation to the corresponding eigenvectors. We select the
nsmeig small Ritz eigenvectors, denoted (z1, . . . , znsmeig), whose real parts of
the eigenvalues are smaller than a given threshold εeig. A rectangular matrix
Z := |z1|z2| . . . |znsmeig| is formed out of them. Then, it is used to build a
two-level preconditioner for solving the subsequent linear systems Ak uk = fk,
k ≥ 2.

4.1.1 Retrieving approximate eigenvector from GMRES solver

We detail the Ritz eigencomputations after the solve of the first linear system
with matrix Ã1 and preconditioner M1 := M−1JSM (Ã1) into m iterations with
a GMRES algorithm. The final Krylov subspace associated with the precondi-
tioned operators reads

Km(B1, r0) = SPAN
{
r0, B1r0, B

2
1r0, . . . , B

m−1
1 r0

}
(12)

with B1 := M−11 Ã1. The computational kernel of GMRES [SS86] is the Arnoldi
process which computes the orthonormal basis Wm = |w1 |w2 | . . . | wm| for the
Krylov space Km(B1, r0). In the orthogonalisation process the scalars hij are
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computed so that the square upper Hessenberg matrix Hm ∈ Rm×m satisfies
the fundamental relation

B1Wm = WmHm + hm+1,mwm+1e
H
m = Wm+1Hm. (13)

The rectangular upper Hessenberg matrix Hm ∈ R(m+1)×m is the square upper
Hessenberg matrix Hm supplemented with an extra row (0, . . . , 0, hm+1,m).
From (13) we can derive the following expression for Hm:

Hm = WH
mB1Wm. (14)

The eigenvalues of Hm are called Ritz values and they approximate the eigen-
values of B1. We approximate eigenvectors of B1 by first computing eigenpairs
(ti, λi) of matrix Hm and then compute

zi := Wmti (15)

which is close to an eigenvector of B1, for the same eigenvalue λi. Indeed, we
left multiply

WH
mB1Wmti = λiti

by Wm and get

WmW
H
mB1Wmti ' B1Wmti = λiWmti .

4.2 A sparse coarse space and the two-level preconditioner

4.2.1 Two coarse spaces

In this paper, we shall focus on the JSM method since there is no need to build
a discrete partition of unity as in (4). We use spectral information from the
first solve in order to build a coarse space for the subsequent solves. More pre-
cisely, from the first solve we select nsmeig Ritz eigenvectors corresponding to
the smallest Ritz eigenvalues. The rectangular matrix Z := |z1|z2| . . . |znsmeig|
stores these Ritz eigenvectors columnwise. Next, we introduce a larger coarse
space Zs whose columns are defined by:

Zs
i+N(j−1) := RT

E,iRE,i zj , for 1 ≤ i ≤ N, 1 ≤ j ≤ nsmeig . (16)

where RE,i is the restriction operator to the i-th subdomain, see (7) and zj
is the j-th column of Z. The coarse space Zs is N times as large as Z,
dim(Zs) = N × nsmeig. It has a very sparse structure. For instance, for a
three subdomain decomposition and nsmeig = 2, the transformation of Z into
Zs has the following form:

Z =

 z11 z12
z21 z22
z31 z32

 7→ Zs =

 z11 0 0 z12 0 0
0 z21 0 0 z22 0
0 0 z31 0 0 z32

 . (17)

where zij := RE,izj . If the Ritz eigenvectors are orthogonal, this is not nec-
essarily the case for the columns of Zs. In order to improve stability of the
method, we orthogonalize Zs and denote Zs

⊥ the orthogonalized basis of the
coarse space. Due to the sparse structure of Zs

⊥, this process can be performed
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in parallel, see § 4.2.2 for details.

We now define the coarse corrections that will be used to solve the subsequent
linear systems with matrices Ak, k ≥ 2. They are inspired by PA−DEF2 (10) but
different. In order to ease notations in the definition of the two-level method,
we note

M−1k := M−1JSM (Ãk) .

First of all, we build a coarse correction for the preconditioned system

Bk := M−1k Ãk . (18)

Recall that if Ak is symmetric, M−1k is symmetric as well but the extended

system Ãk is not symmetric. As a result Bk is not symmetric and we first
modify formula (10):

Pk := Pk +Qk , (19)

where

Pk := I −QkBk, Qk := Zs
⊥E
−1
k Zs

⊥
T , Ek := Zs

⊥
TBkZ

s
⊥ . (20)

It can easily be checked that we have:

(a) Pk = P 2
k ;

(b) PkZ
s
⊥ = 0, PkQk = 0;

(c) QkBk = I − Pk, QkBkZ
s
⊥ = Zs

⊥, QkBkQk = Qk.

We have

Lemma 4.1 The coarse correction Pk defined by (19) is invertible and has the
following left-filtering property:

Zs
⊥
T Bk = Zs

⊥
T P−1k

Proof. We first prove that Pk is one to one and thus invertible. Let u such
that Pk u = Pk u + Qk u = 0. Then, we left multiply by Pk and use PkQk = 0
and P 2

k = Pk to obtain Pk u = 0 and thus Qku = 0 as well. From Pk u = 0, we
have u = Zs

⊥E
−1
k Zs

⊥
TBku. Let w = E−1k Zs

⊥
TBku, we have u = Zs

⊥w. Then,

from Qku = 0, we get Zs
⊥E
−1
k Zs

⊥
TZs
⊥w = 0. We left multiply by Zs

⊥
TBk to get

Zs
⊥
TZs
⊥w = 0. We take the scalar product with w and get Zs

⊥w = 0 and so
u = 0.
Let us prove now the filtering property. It is equivalent to (PT

k +QT
k )BT

k Z
s
⊥ =

Zs
⊥. Consider first the term PT

k B
T
k Z

s
⊥ and let’s prove it is null:

PT
k B

T
k Z

s
⊥ = BT

k Z
s
⊥ −BT

k Q
T
kB

T
k Z

s
⊥

= BT
k Z

s
⊥ −BT

k Z
s
⊥(Zs

⊥
TBT

k Z
s
⊥)−1Zs

⊥
TBT

k Z
s
⊥ = 0

It remains to prove that QT
kB

T
k Z

s
⊥ = Zs

⊥:

QT
kB

T
k Z

s
⊥ = Zs

⊥(Zs
⊥
TBT

k Z
s
⊥)−1Zs

⊥
TBT

k Z
s
⊥ = Zs

⊥
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A first method would consist in using Pk as a preconditioner to matrix Bk or
equivalently PkM

−1
k as a preconditioner to the extended system Ãk in a Krylov

method. Remark that from the left filtering property, it is easy to check that for
any Krylov method with right preconditioning and at any step m the residual
rm remains orthogonal to the vector space spanned by the columns of Zs

⊥. More
precisely, we have

Lemma 4.2 Let x0 be an initial guess and r0 := b−Bkx0 be the initial residual
such that Zs

⊥
T r0 = 0. Let Km(BkPk, r0) denote the Krylov space of dimension

m, Km(BkPk, r0) := Span{r0, . . . , (BkPk)m−1 r0}.
Then, for any xm ∈ {x0} ⊕ PkKm(BkPk, r0) we have

Zs
⊥
T (b−Bkxm) = 0 .

Proof. First remark that solving Bkx = b with Pk as a right preconditioner in
a Krylov method amounts to solve BkPky = b with a Krylov method and then
apply Pk to the resulting approximation to y. Thus, at step m of the algorithm,
the approximate solution xm ∈ {x0} ⊕ PkKm(BkPk, r0). That is,

xm = x0 + Pk

m−1∑
i=0

αm
i (BkPk)ir0

for some (αm
i )0≤i≤m−1 ∈ Rm. The corresponding residual reads

rm = b−Bkx0 −
m−1∑
i=0

αm
i (BkPk)i+1r0 = r0 −

m−1∑
i=0

αm
i (BkPk)i+1r0 .

It suffices to prove by induction that Zs
⊥
T (BkPk)ir0 for any 0 ≤ i ≤ m. By

assumption, it is true for i = 0. Assume it holds for some i then by using
Lemma 4.1, we have

Zs
⊥
T (BkPk)i+1r0 = Zs

⊥
TBkPk(BkPk)ir0 = Zs

⊥
T (BkPk)ir0 = 0 .

This ends the proof of the lemma. Notice as well that the assumption Zs
⊥
T r0

is not difficult to satisfy. Indeed, let x̃0 be any initial guess, then x0 := Pk(b+
PT
k x̃0) satisfies the assumption of the lemma:

Zs
⊥
T r0 = Zs

⊥
T (b−BkPk(b+ PT

k x̃0)) = Zs
⊥
T b− Zs

⊥
T (b+ PT

k x̃0) = 0 ,

where we have used once again Lemma 4.1 and also that PkZ
s
⊥ = 0.

Formula (19) demands the computation of matrix Ek via formula (20) before

solving each linear system with matrix Ãk, k ≥ 2. With a parallel implemen-
tation as explained in § 4.2.2 the cost is almost the same as nsmeig iterations
of the one-level Schwarz method. When the size of the coarse space is large,
the factorization of the coarse operator Ek can be costly. In order to avoid this
factorization cost, we reuse matrix E2 by simplifying formula (20) :

P2,k := I −Q2Bk, Q2 := Zs
⊥E
−1
2 Zs

⊥
T , E2 := Zs

⊥
TB2Z

s
⊥ . (21)

The new coarse correction that replaces (19) reads

P2,k := P2,k +Q2 . (22)

12



Operator P2,k is a preconditioner to matrix Bk. In practice, we will use

Ck := P2,kM
−1
k = [(Id + Zs

⊥E
−1
2 Zs

⊥
T )− Zs

⊥E
−1
2 Zs

⊥
TM−1k Ãk]M−1k

as a preconditioner to the extended system Ãk. A naive implementation would,
at each iteration, demand that one-level Schwarz preconditioner M−1k be applied
twice so that the cost of the two-level preconditioner would be at least double
that of the one-level method. In order to avoid this, an equivalent definition is
the following:

Ck = [(Id + Zs
⊥E
−1
2 Zs

⊥
T )− Zs

⊥E
−1
2 ST

k Ãk]M−1k (23)

where we precompute
ST
k := Zs

⊥
TM−1k . (24)

As explained in § 4.2.2, the cost of precomputing ST
k is about nsmeig applica-

tions of the one-level Schwarz method.

The corresponding algorithm for solving a series of related linear systems is
summed up as follows:

Algorithm 1 For solving a series of linear systems Akuk = fk, 1 ≤ k ≤ K:

1. Solve system Ã1ũ1 = f̃1 with GMRES method preconditioned by M1.

Compute the Ritz eigenpairs (zi, λi) for |Real(λi)| < εeig, see § 4.1.1.

2. Orthogonalize Zs given by formula (16) into Zs
⊥.

Compute E2 via formula (21)

Gauss factorization of E2

3. For 2 ≤ k ≤ K
Compute ST

k given by formula (24)

Solve system Ãkũk = f̃k with GMRES method preconditioned by Ck,
formula (23).

Numerical results in § 4.2.3 will assert the efficiency of this approach.

4.2.2 Parallel data structure

In this section, we explain that due to a parallel implementation, provided the
number of cores is equal to the number of MPI processes, the construction of
the coarse space has the same cost as in [GR03]. The only difference is in the
size of the matrix E, see § 4.2.1.

The method makes use of three distributed data structures:

• vector

• sparse matrix

• coarse space

13



Without loss of generality, we take examples for three MPI processes and a three
subdomain decomposition. A vector x ∈ RNE is distributed among the three
processes, process i (1 ≤ i ≤ 3) will own RE,i x.

According to this vector distribution, the sparse matrix Ã is stored blockwise,
Ã = (Ãij)1≤i,j≤N , see [BFF+09] for a related data structure. For all 1 ≤ i ≤ N
submatrices (Ãij)1≤j≤N are owned by the i-th process. Note that since Ã is

sparse, the diagonal blocks Ãii, 1 ≤ i ≤ N are sparse as well and the off-
diagonal blocks are hypersparse since they correspond to interactions between
neighboring subdomains. Thus, the diagonal blocks are stored in a classical
CSR format. The off-diagonal blocks are stored in a compressed sparse row
and columns format which means only non zero rows and columns are stored
in a CSR format, see [BG08] for a related data structure. The matrix-vector
product is then naturally parallel.
The implementation of the coarse correction demands a distributed storage for
sparse rectangular matrices such as Zs

⊥ and ST
k (see equation (24)). Without

entering into details, our storage is similar to that of our sparse matrix. We give
some details on the parallel implementation of the coarse space operations. The
first one is to split the Ritz eigenvectors following equation (16). Actually, since
the vectors are already distributed, it is just a matter of pointers management.
The next operation is to orthogonalize the split coarse space Zs into Zs

⊥. Recall
that even if the columns of Z are orthogonal that does not necessarily holds for
Zs. It is easy to confirm (see formula (17)) that it is sufficient to orthogonalize
in parallel for 1 ≤ i ≤ N the sub-vectors zij , 1 ≤ j ≤ nsmeig and that there
is no need for communication. Thus the cost of the parallel orthogonalizing of
the split coarse space Zs equals the sequential cost of orthogonalizing nsmeig
subvectors.

The next step in Algorithm 1 is to compute the matrix

E2 := Zs
⊥
T M−12 Ã2Z

s
⊥ = (M−12 Zs

⊥)T Ã2Z
s
⊥ .

We shall see that the cost to compute F2 := (M−12 Z)T Ã2Z for the classical
coarse space is comparable to that of computing E2, see § 4.2.3 for wall-clock
measurements as well. For simplicity, we consider the example given by for-
mula (17): two Ritz eigenvectors and three subdomains. Remember that M is
a block diagonal preconditioner so that we have:

M−12 Z =

 M
−1
11 z11 M−111 z12

M−122 z21 M−122 z22

M−133 z31 M−133 z32

 ← Proc 1

← Proc 2

← Proc 3

and M−12 Zs
⊥ is given by: M−111 z11⊥ M−111 z12⊥

M−122 z21⊥ M−122 z22⊥

M−133 z31⊥ M−133 z32⊥

 ← Proc 1

← Proc 2

← Proc 3

Clearly computational costs per process are the same, they consist of factorizing
once the local contributions Mii to subdomain 1 ≤ i ≤ N and then perform-
ing several backward-forward substitions. For this we use multithreaded direct
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solvers inside an MPI process,. As for the computation of ÃZ and ÃZs
⊥, we

take the following example

Ã Z =


Ã11 Ã13

Ã21 Ã22

Ã31 Ã33


 z11 z12

z21 z22

z31 z32



=


Ã11z11 + Ã13z31 Ã11z12 + Ã13z32

Ã21z11 + Ã22z21 Ã21z12 + Ã22z22

Ã31z11 + Ã33z31 Ã31z12 + Ã33z32


and

Ã Zs
⊥ =


Ã11 Ã13

Ã21 Ã22

Ã31 Ã33


 z11⊥ z12⊥

z21⊥ z22⊥

z31⊥ z32⊥



=


Ã11z11⊥ Ã13z31⊥ Ã11z12⊥ Ã13z32⊥

Ã21z11⊥ Ã22z21⊥ Ã21z12⊥ Ã22z22⊥

Ã31z11⊥ Ã33z31⊥ Ã31z12⊥ Ã33z32⊥

 .
We see that the local matrix vector products computations are the same. The
difference is that for ÃZ we sum local contributions whereas for ÃZS

⊥ we store
them. The extra memory requirement comes from the contribution of neighbor
subdomains through the non zero off-diagonal blocks Ãij , i 6= j. This extra
storage cost is proportional to the number of neighbors of a subdomain. It is
bounded as the number of subdomains increases. Similar considerations hold for
the other operations like for instance computing ST

k , for k ≤ 2 from formula (24).
Indeed, Mk is a block diagonal matrix per subdomain so that computing ST

k is
an embarrassingly parallel task that can be performed in nsmeig steps. Thus,
the cost is smaller than nsmeig iterations of the Schwarz preconditioner.
The only major difference between the classical and split coarse spaces lies in
the size of matrices E2 and F2. Due to the sparsity of ZS

⊥, matrix E2 is a square
block sparse matrix of size (N × nnsmeig)2 with typically D×N × n2nsmeig non
zero elements where D is the number of neighbours of a subdomain. Whereas
matrix F2 is full and of size n2nsmeig. The application of a direct solver to E2

will be more costly than for matrix F2, see § 4.2.3 for quantitative data. In
practice, each process stores one copy of matrix E2 or F2 even when we have for
more than one subdomain per process. Usually, each process consists of several
cores (four in our experiments) so that we can use multithreaded direct solvers.

4.2.3 Numerical performance

All runs were made on a cluster of nodes interconnected by an Infiniband net-
work. Each node is composed of two AMD “MagnyCours” twelve-core (2.1GHz)
processors. We use the optimal mapping (so called ’sweat spot’) for hybrid
(MPI/OpenMP) codes i.e., 4 MPI processes per node. Each MPI process has
access to 6 cores, therefore we have used 6 OpenMP threads per MPI process.
In practice we map either one or two subdomains per MPI process.

15



We consider matrices coming from oil reservoir simulations. We compare the
one level JSM preconditioner (6) with two two-level methods: the classical one
and the new one where the coarse space is split subdomain wise. For all experi-
ments, the overlapping regions are made of two layers of nodes. The first matrix
is the pressure block extracted from the well known SPE10 benchmark [CB01],
see the convergence curves in Figure 4. This test case is characterised by large
permeability variations, 8–12 orders of magnitude. The discretization is made
on a regular Cartesian grid with 60 × 220 × 85 cells. The two other series of
matrices come from a nonlinear black oil (BO) simulation, see the convergence
curves in Figures 5 and 6. In all convergence curves, No Coarse Space refers
to the one-level JSM preconditioner, (Z) to the classical coarse space and (ZS)
to the subdomain wise split coarse space. Notice that in the black oil simula-
tions, even with the two level preconditioners we have some plateaus at the first
iterations. This is due to the fact that the two level preconditioners are built
using spectral information coming from the first linear system which is different
from the subsequent ones. This is not the case for the SPE10 experiment where
only the right hand side is changed from one solve to the next ones. As for
numerical efficiency they are detailed in table 1 that we comment now giving
more information on the test cases.

The first experiment is on the pressure block of the SPE10 (Society of
Petroleum Engineers) benchmark problem [CB01]. The matrix comes from
three-dimensional reservoir simulation in a highly heterogeneous and anisotropic
medium with one million unknowns. In contrast with the next experiments, we
have only one matrix and two solves with different right hand sides. The first
solve is performed with the one level Jacobi Schwarz preconditioner, see (6) with
a domain decomposition into 256 subdomains. The first solve takes 29.6s using
128 MPI processes, two subdomains per MPI process. From this first solve, we
build coarse spaces for the second solve. In Table 1, we compare the classical
and split coarse spaces. In terms of iterations, the coarse spaces bring huge
improvements, especially for the split coarse space. This can be seen as well
on the convergence curves, see Figure 4. The matrix is very ill-conditioned so
that the coarse space built according to the tolerance εeig = 0.1 is quite large
for the split coarse space: 52× 256 = 13, 312 degrees of freedom. The first row
of Table 1 shows that it affects the cost of building the coarse space as well the
overall speed-up which is close to one in this case. It motivates us to reduce the
number of smallest Ritz eigenvalues (nsmeig) to ten. The results are reported
in the second row of Table 1. Although the iteration counts are not as good as
in the first row, we now have a substantial gain (×5.5) in terms of wall-clock
time.

The two other series of matrices, denoted BO, come from a black oil simu-
lation. This computation implies the solving of large-scale nonlinear problems
arising from the finite-volume discretization in which the non-linearity is handled
by a Newton-Raphson algorithm. Solving these problems leads to a succession
of linear problems the solution to which converges towards the solution to the
considered problem. In our numerical experiment we consider a series of linear
systems extracted at some time step in the simulation. Following the strategy
described in § 4.2, we solve the first linear system with a one-level Schwarz algo-
rithm. Then, we reuse the coarse operator built from eigenvectors approximated
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during the first resolution in the solutions of the linear systems for the remain-
ing Newton-Raphson iterations. To be more precise, we consider two series of
five linear systems. In the first serie we have 60× 60× 32 grid points and in the
second one 120 × 120 × 64. At each linear solve (except for the first one), we
use the solution of the previous linear system as an initial guess.

In Table 2, we report results for the black oil test case with 60× 60× 32 =
115, 200 grid points. Due to the nonlinearity of the problem, the number of non
zero entries is not the same for the various matrices in the series. The average
nnz entries is 791, 550. We compare the classical coarse space made of nsmeig
Ritz eigenvectors corresponding to small eigenvalues of the preconditioned sys-
tem with the coarse space introduced in § 4.2 based on a domain wise splitting
of the previous coarse space. We have 64 subdomains and we use either 32 or 64
MPI processes. The average iteration counts for the one-level Schwarz method
is 54 iterations. The solving time of one system is 2.07s when using 32 MPI
processes (two subdomains per MPI process) and 1.23s with 64 MPI processes
(one subdomain per MPI process). When we solve the next four linear systems
in the Newton-Raphson algorithm by the one-level Schwarz method, the itera-
tion counts (see Figure 5) and solving time slightly decrease due to the use of
the previous solution as an initial guess. Therefore we do not report them in
the table. In the third and fourth columns, we give the average iteration counts
for the next four solves using the classical (denoted by Z) or split (denoted
by ZS) coarse spaces. When using the split coarse space, we gain a factor 2.7
in iteration counts. We automatically selected nsmeig = 7 Ritz eigenvectors
whose eigenvalues are smaller than a given threshold εeig = 0.1. In column 6,
we report the time needed to build and factorize the square matrix E2 of size
448 × 448 for the split coarse space. Recall that this operation is performed
only once for the series of matrices, see Algorithm 1. In the last two columns,
we report the average speedup for the next subsequent four solves taking into
account all extra costs due to the coarse space: the construction of the coarse
space matrix E2 and at each iteration the cost of precomputing matrices ST

k ,
see (24). Since the classical coarse space is much smaller than the split coarse
space if the same threshold εeig is used, we also tried to use larger nsmeig’s.
This yields a classical coarse space which is slightly larger but richer. Results
are reported in Table 3. We see that enlarging nsmeig has a small impact on
both iteration counts and speedup.

Table 4 is organized as Table 2 except that we consider the large black oil
test case with 120× 120× 64 grid points. The average nnz entries is 6, 391, 950.
We have 128 subdomains and we use either 64 or 128 MPI processes. The solve
performed by the one-level Schwarz method require in average 102 iterations.
The solving time is 21.05s when using 64 MPI processes and 11.97s with 128
MPI processes. When using the split coarse space, we gain a factor of almost
four in iteration counts. We automatically selected nsmeig = 14 small Ritz
eigenvectors. The overall speed-up is better than two for the split coarse space
ZS . This speed-up computed from wall-clock times is in agreement with the
iteration counts. Indeed, the one-level solves for the five matrices take 5×102 =
510 iterations. Whereas, the split coarse space solves take 104 iterations for
the first (one-level) solve plus 14 iterations for building the coarse operator
plus 4× 25 iterations for the four subsequent two-level solves which means 218
iterations for the whole process. This is about half the total number of iterations
for the one-level method. As in the previous test case, we also tried to use larger
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SRA Iterations C.S. Speedup
Matrix nsmeig 1-lvl sol. Z ZS ZS Z ZS

SPE10
52TOL 399

165 28 11.19s 2.03 1.37
10FV 192 81 0.97s 2.63 5.54

Table 1: Comparison of the coarse spaces for SPE10 benchmark with 256 sub-
domains

BO Iterations C.S. Speedup
# MPI 1-lvl sol. Z ZS nsmeig ZS Z ZS

32
54 32 20 7

0.46s 1.09 1.40
64 0.25s 1.10 1.44

Table 2: Comparison of the coarse spaces, 60 × 60 × 32 unknowns for a black
oil simulation and 64 subdomains. Speedup refers to wall-clock timings of the
overall process.

nsmeig’s for the classical coarse space. Results are reported in Table 5 which
is organized as Table 3. We see that enlarging nsmeig has a marginal impact
on both the iteration counts and wall-clock times.

5 Conclusion

We studied the solving of linear systems arising from porous media flows simula-
tions with high heterogeneities by Schwarz type methods. We first investigated
the influence of the partition into subdomains. Using an AMG type partitioning
in Metis or Scotch improves the convergence with almost no extra cost. Then,
we introduced two two-level preconditioners based on coarse space corrections.
They are algebraic in the sense that they only make use of information gener-
ated during the solving of the first linear system. Taking advantage of a parallel
implementation, it is possible, at nearly no extra cost, to use larger but sparse
coarse space (ZS) obtained by splitting subdomain wise a classical coarse space.
The iteration counts and convergence curves are then always substantially bet-
ter than with the classical coarse space. As long as the coarse space is not too
large, we also have a gain in wall-clock solving times. But when the coarse space
is too large, the direct solver used to invert E2 in (23) takes too much time,
see Table 1. Our current solution is to reduce the size of the coarse space by
limiting the number of Ritz eigenvectors that span the classical coarse space.
Another way to bypass this limitation would be to design iterative methods for
this specific type of problem. This requires further investigation.

BO Iterations Speedup
# MPI Z(12) Z(24) Z(12) Z(24)

32
31 30

1.10 1.10
64 1.10 1.09

Table 3: Effect of the size of the classical coarse space, 60× 60× 32 unknowns
for a black oil simulation and 64 subdomains.
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large BO Iterations C.S. Speedup
# MPI 1-lvl sol. Z ZS nsmeig ZS Z ZS

64
103 80 25 14

2.52s 1.04 2.22
128 1.27s 1.05 2.25

Table 4: Comparison of the coarse spaces, 120× 120× 64 unknowns for a black
oil simulation and 128 subdomains. Speedup refers to wall-clock timings of the
overall process.

BO Iterations Speedup
# MPI Z(28) Z(56) Z(28) Z(56)

64
80 79

1.05 1.05
128 1.05 1.06

Table 5: Effect of the size of the classical coarse space and 128 subdomains,
120× 120× 64 unknowns for a black oil simulation
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Figure 6: Convergence curves for the large BO matrices. 120×120×64 unknowns
decomposed into 128 subdomains.
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