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CONSTRAINT INTERFACE PRECONDITIONING FOR TOPOLOGY
OPTIMIZATION PROBLEMS*

M. KOCVARAT, D. LOGHIN%, AND J. TURNER}

Abstract. The discretization of constrained nonlinear optimization problems arising in the field
of topology optimization yields algebraic systems which are challenging to solve in practice, due to
pathological ill-conditioning, strong nonlinearity, and size. In this work we propose a methodology
which brings together existing fast algorithms, namely, interior point for the optimization problem
and a novel substructuring domain decomposition method for the ensuing large-scale linear systems.
The main contribution is the choice of interface preconditioner which allows for the acceleration of
the domain decomposition method, leading to performance independent of problem size.

Key words. topology optimization, domain decomposition, Newton—Krylov, preconditioning,
interior point

AMS subject classifications. 65K10, 65N55, 65F10, 90C51, 49N90
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1. Introduction. The aim of topology optimization is to determine the optimal
distribution of a certain amount of material within a prescribed value in order to
minimize the strain energy (or compliance) of a given structure. The distinguishing
feature separating this approach from shape optimization involves the introduction of
new boundaries, allowing for the consideration of a broader range of feasible solutions.
The main problem when pursuing such an approach is that a large number of design
variables are required in the discrete formulation in order to maintain the quality of
the contours in the final design. Solutions are typically obtained through the use
of iterative optimization techniques, requiring repeated discretizations via the finite
element method, corresponding to a sequence of linearized problems. As a result,
even problems resulting from using relatively coarse discretization parameters can be
computationally demanding. Our aim in this paper is to introduce solution methods
adapted to the complex nature of this class of problems.

Attempts to alleviate such difficulties can involve the application of a faster fi-
nite element solver, or the use of efficient discretization techniques [9]. Standard
approaches based around Picard iterations target the ill-conditioned equilibrium equa-
tions, from which the bulk of computational effort resides. In [31], MINRES coupled
with recycling is explored based on the observation that the densities are only ex-
pected to undergo minor changes after a relatively small number of iterative steps.
The ill-conditioning is dealt with through a preconditioning strategy involving both
rescaling and an incomplete Cholesky decomposition.
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In terms of parallel computing, the application of the preconditioned conjugate
gradient method coupled with Jacobi preconditioning has been considered in a number
of references, including [7, 11, 18, 22, 30]. Two additional approaches are considered
in [30], namely, preconditioning based on an ILU factorization, as well as condensa-
tion through substructuring coupled with a diagonal preconditioner for the resulting
interface problem.

Alternatively, primal-dual Newton methods can be considered, with particular
focus on interior point approaches. Examples illustrating the application of such
approaches for solving large scale topology optimization problems can be found in
[3, 14, 21]. The KKT conditions from the resulting nonlinear equality constrained
optimization problem are then solved using Newton’s method. Evidently, for large
scale problems, obtaining solutions to the resulting system of equations will become
expensive and even prohibitive in certain cases. In [21], Maar and Schulz applied
multigrid to the resulting system, and from their results were able to witness an
approximately linear overall complexity with respect to the number of unknowns
used in the problem.

In this paper, we propose to apply domain decomposition to the resulting New-
ton system described above, which will then be solved using GMRES coupled with an
appropriate preconditioning strategy. An important component within our precondi-
tioner is based on targeting the resulting interface problem, which will be achieved
through the consideration of an appropriate fractional Sobolev norm. Our paper
will conclude by illustrating that results can be obtained without dependence on the
chosen mesh parameter.

2. Problem description. Consider a material occupying an open and con-
nected domain 2 C R? with Lipschitz boundary 9Q = 0Qp U 9Qy. We assume
that the elasticity tensor for the material can be modeled as F(x) = p(x)*E, where
p(x) is the density, u € [1,3], and E is a prescribed constant tensor. This expres-
sion describes a common approximation of the material properties known as the solid
isotropic material with penalization (SIMP) model. In this paper we will be interested
in the variable thickness sheet (VTS) problem, corresponding to the choice p = 1,
for which existence of solutions holds (see, e.g., [4, pp. 272-274]). We assume that
the material is clamped (i.e., we assume Dirichlet conditions) along the subset 9Qp
of the boundary and that both body forces f : @ — R? and boundary tractions
g : 00x — R? act on the material, resulting in a displacement u which satisfies the
following equilibrium equations in €2:

—dive(u) = f,

where, by Hooke’s law, the stress tensor is o(u) = E : e(u).

We employ next a weak formulation in order to define our topology optimiza-
tion problem. The natural spaces arising in this context are the standard spaces
L2(Q), H'(Q2), and

Hp(Q) = {ve H'(Q) 1 vjpa, =0}.

For the description of the preconditioners associated with a domain decomposition
approach with corresponding interface I' between subdomains, we will require the
fractional Sobolev space

A= [HEL(T), L*(D)]1 /2,

which is an interpolation space of index 1/2 (see [19] for details).
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2.1. Weak formulation. Let V = [H}(Q2)]*> and let a,(-,-) : V x V — R and
F(-) : V — R be defined below,

a,(w,v) = /Qp(x) (e(w) : E : e(v)) dx,

where £(v) is the strain tensor corresponding to a displacement v and

F(v) ::/Qf-vdx—k/amvg-vds.

We seek u € V such that for all v € V
ay(u,v) = F(v).

In order to formulate our topology optimization problem, we define the following
admissible set for our design variable p:

Qc:{peQELOO(Q)‘0<£§p(x)§ﬁa.e.in§2,/p(x)dx:./\/lg},
Q

where Mg denotes the amount of material available, and p and p denote upper and
lower limits on the density function, respectively.
Consider now the following nonlinear minimization problem

. 1 1
(2.1) L sen [= 3]
(2.2) subject to:  a,(u,v) = F(v) Yv e V.

The state variable corresponds to the displacement of the material u, while the design
variable is the density function p(x) : Q — R,.

Let now V4, Qf denote finite-dimensional subspaces of V and Q€ respectively,
and consider the following discrete weak formulation of our minimization problem:

1 1
2.3 min —a,(up,u =—F(u
23) o Sa i) |= 5 FG)
(2.4) subject to: apy(un,v) = F(vp) Yoy, € V.

Using finite element bases for Vj, and Q, the minimization problem (2.3)-(2.4) yields
the following discrete constrained minimization problem:

. 1, 1,
(25) (uwp)glﬂé};lx]]{m 5“ A(P)u |:_ 2f u:|
(2.6) subject to: Alp)u =f,
o a’p=q'1,
(2.8) pl < p <7pl,

where ¢; := [q]; =|T;|. Working with a piecewise constant approximation pp, we can
write the assembly process of the stiffness matrix as follows:

Alp) = Zp’iAiv
i—1

where A; is global representation of the elemental matrix corresponding to simplex
T;. This will allow for a certain simplified expression for the Jacobian matrix when
considering the first-order conditions for our minimization problem.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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3. Interior point method. Traditional and popular approaches for solving op-
timization problems such as (2.5)—(2.8) involve separate treatment of both the design
objective and the equilibrium equations. Typically, for an initial given design the
stiffness matrix is assembled and used to solve the equilibrium equations for the dis-
placement u. This u is then used to obtain an appropriate update to the design
variables, which is then checked for suitability based on previous values. If an ap-
propriate solution has yet to be found, the process is repeated. Typical approaches
used to obtain an update to the design variables include both the optimality criteria
method [4, p. 308] and the method of moving asymptotes [26], usually followed by
both sensitivity and filtering analyses to cater for the general SIMP setting [25].

More recently, fully coupled approaches have been receiving considerable atten-
tion within the PDE constrained optimization community. In these approaches, all
constraints are included and no subproblems are being solved separately. An impor-
tant feature within these methods is that the equilibrium equations are embedded
within the optimization routine, allowing for the simultaneous treatment of all con-
straints within the problem. Examples highlighting the benefits, and in particular the
savings in computational time for such methods, can be found in a number of sources,
including [5, 6, 14]. We describe below an interior point method as applied to the
topology optimization problem introduced in (2.5)—(2.8).

Interior point methods are used to solve both convex linear and nonlinear opti-
mization problems iteratively by considering updates confined to the feasible region
(cf. [8, 10, 33]). As well as obtaining solutions in polynomial time, these methods
have been used to determine solutions to previously intractable problems, meaning
that they are useful from both a theoretical as well as a practical viewpoint. We begin
by rewriting the formulation (2.5) slightly to incorporate the inequality constraints
within the objective function. This will be achieved through the use of logarithmic
barrier terms as illustrated below:

(3.1) i o gutAlpu—r ; log(pi — p) — s ; log(? — p:)
(3.2) subject to:  A(p)u =1,
(3.3) ap=4q"1

with 7, s > 0 and where [p]; = p;.
The Lagrangian associated with the problem (3.1)—(3.3) is
1 m m B
(3.4) L) (v, \u, p) == guTA(p)u - rz log(pi — p) — s Z log(p — pi)
i=1 i=1
+vT (f = A(p)u) + A (a"1—q"p).

The stationary points are defined by setting to zero the relevant partial derivatives
of the Lagrangian (3.4):

VoL =f—A(p)u=0,
VaL=q'p—q'1=0,
Vol = A(p)u— A(p)v =0,

1 ~
V,L = 5B(u)Tu - Bu)lv-A-rX'1+sX'1=0.
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In the above, B(u) := [A1u7 Asu, .. .’Amu] c R»*™ and

X = diag(p — p1), X := diag(pl — p).

It is important to note that the condition number of the Hessian of the Lagrangian
may pose an issue for densities close to either p or p as both r and s tend to zero.
To alleviate this issue, auxiliary nonnegative variables ¢ and 1 are introduced in the
following way:

(3.9) p=0¢" =rXx "1  and Y=o :=sX 1.
Using (3.9), we see that
PX1=r1 and UX1=sl,
where ¢ := diag(¢) and ¥ := diag(t). Through this substitution, and the elimination

of the Lagrange multiplier v (which, by (3.5) and (3.7), is equal to —u), the first-order
optimality conditions can be written as

R (w,\, p, ) := VL™ (u, \, p, ¢, 9)

f— A(p)u 0
q’p—q"1 0
=| iBwu+xq+op—vy |=| 0
rl—®X1 0
s1—UX1 0

By setting y = (u,\, p, ¢, ¥)T, Newton’s method applied to the above nonlinear
optimality conditions has the following form,

(3.10) J(y"h Ayt =Ry,

where the Jacobian matrix J (y) is given below:

A(p) B(u)
qT
(3.11) J(y)=|Bw" q Ly —In
» X
— X

Remark 3.1. In the following, we will assume that problems of the form (3.1)—
(3.3) yield Jacobian matrices J(y) of the form (3.11), which are nonsingular for y in a
neighborhood of the solution. This property will be assumed to hold for both Dirichlet
and mixed boundary conditions, due to the well-posedness of problem (2.1)—(2.2) for
both mixed Dirichlet—-Neumann and Dirichlet-only boundary conditions.

Despite J being both nonsymmetric and indefinite, its condition number is ex-
pected to be bounded under reduction of the barrier parameters r and s. Therefore,
it is important to consider appropriate strategies for obtaining an accurate update
through (3.10). Work by Forsgren, Gill, and Shinnerl [12] uses the diagonal struc-
ture of both ® and ¥ to transform .J into a symmetric matrix. Another possibility

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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is to consider appropriate techniques to condense the matrix J via block elimina-
tion or using a Schur complement approach. This approach is known to lead to
ill-conditioning; however, the effect on the accuracy of the resulting solution can be
benign, as discussed by Wright in [32]. Therefore, block elimination techniques re-
main a practical option, particularly for the situation where the original matrix J is
large. The drawback in this case is the loss of sparsity and the lack of obvious (and
efficient) preconditioners. For this reason, we look to exploit the sparsity present in
the original unreduced system by using an iterative method coupled with an appro-
priate preconditioning strategy, with the original matrix shown to exhibit favorable
spectral properties as shown in recent work by Greif, Moulding, and Orban [13]. The
preconditioner employed for this work will be based on a decomposition of the domain
) into subdomains, described in detail from the next section onwards. In particular,
we provide a description of an interface preconditioning technique which was first
introduced in [2] for solving scalar elliptic problems, and which is now adapted to the
case of our constrained PDE problem.

4. Domain decomposition. In order to formulate a decomposition of our prob-
lem that is suitable for a parallel environment, we need to ensure that aside from the
physical decomposition of the domain, the resulting subproblems are well-posed. It
turns out that we can achieve this through a simple reformulation of our minimization
problem, which targets the mass constraint (3.3).

4.1. Standard definitions and notation. Consider a subdivision of €2 into N
nonoverlapping subdomains € with boundaries 92, such that

N
Q=% w%nQ=0 (k).
k=1
We denote the resulting interface by I':
N
Ti=JTh  Thi=00\00
k=1

For each k, we define the nodal index set vy to be the set of nodes strictly contained
in Q. and the simplex index set T, to be the set of indices of all simplices contained
in Q. We further define my, :=|7;|.

4.2. Problem reformulation. One of the obstacles in decomposing the VTS
problem (2.5)—(2.8), or equivalently the interior point formulation (3.1)—(3.3), is the
global mass constraint (2.7), or (3.3), respectively. A suitable way to “decompose”
this constraint is provided by the following equivalent formulation:

N
q{pk:,uk (/{JZI,...,N), Z,uk:qu,
k=1

where q; and p;, represent the respective subvectors of q and p corresponding to the
index set 7. We note here that this approach introduces N additional unknowns
{pr,k =1,..., N}, together with N additional constraints. Note also that given the
definition of q, uj represents the mass of subdomain .

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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The modified formulation corresponding to (3.1)—(3.3) is included below:

]. m m
4.1 3 - TA _ 1 . _ 1 _ i
(0 (um)?ﬂéngm 2u (p)u T; og(p B) S; og(p — pi)
(4.2) subject to:  A(p)u = f,

N
(4.4) Zuk —q"1.

k=1

The above problem is equivalent to minimization problem (2.5)—(2.8) and hence is
well-posed.

Following the same procedure of differentiating the corresponding Lagrangian
function, one can derive the first-order optimality conditions and set up Newton’s
iteration in the form (3.10). The resulting Jacobian matrix, also denoted by J, now
has the form

BT QT

—IN 1N

where @ € RVY*™ is described below:

q; if jETk,
ij = { ’

0 otherwise.

Using a node ordering comprising nodes interior to the subdomains €2 followed by
nodes on the interface I', the Jacobian will have the following permuted block form
(with subscripts I and T" indicating this ordering)

Arr By CAr
Q —1Iy
BT QT I, —I, BY
J]] 3 J]F ¢m Xm |
4.6 AR = ~
( ) |:JFI JFF:| _\Ijm Xm
AFI BF AFF
—In 15y,
I ]

Under a further permutation which lists all the unknowns corresponding to subdo-
mains , foreach k = 1,..., N, it can be seen that it has the block-diagonal structure
Jrr = @gzl J¥,. Each block J¥, represents the instance of the Jacobian for a min-
imization problem posed over the subdomain € with Dirichlet boundary conditions

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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on 08 and which has the familiar algebraic form (3.11):

Ay, By,
A,
J;CI = Bg Amy, Imk _Imk
D
U, Xom,

Here, Ay, By, are the counterparts of A, B assembled on the interior of £ and with
Dirichlet boundary conditions applied. By the well-posedness of problems of the
form (3.1)—(3.3) for the case 90n = 0, we conclude that the associated first-order
optimality conditions are well-posed and yield a Jacobian matrix which is nonsingular
(cf. Remark 3.1).

The direct-sum structure of Jr; was achieved through the reformulation of the
mass constraint and clearly allows for a parallel implementation of the inverse of
Jrr, which will be a key building block in the solution algorithm described in the next
section. It is also an interesting feature in itself to be able to decompose the global Ja-
cobian into local Jacobians associated with similar local minimization problems. One
consequence is that the local problems inherit the well-posedness associated with the
global problem; the resulting decomposition is hence useful, with the local problems
invertible independently of each other.

4.3. A Dirichlet—Dirichlet approach. At each step of the Newton iteration
we need to solve linear systems of the form

Jz =r,

where J is the Jacobian matrix (4.6) corresponding to the first-order conditions for
the reformulated problem (4.1)—(4.4). Due to the size and structure of J, we seek
to solve such systems using an iterative solver with a suitable preconditioner. A
proven candidate is the block upper-triangular matrix below employed as a right
preconditioner,

(4.7) P= [J” Jg] :

where S is an approximation to the Schur complement matrix
S = Jrr — Jord gt i

Due to the direct-sum property of Jyy, this block approach can be classified in domain
decomposition terminology as a nonoverlapping Dirichlet—Dirichlet procedure, where
each subdomain block represents a Jacobian matrix arising in some topology opti-
mization subproblem posed on 2, where the material is clamped on I'y,. Moreover, at
each Newton iteration, the Schur complement S can be seen as the finite element dis-
cretization of a generalized Steklov—Poincaré operator corresponding to the interface
problem generated by the decomposition. We remark here again that this approach
is only available via the reformulation described above.
The preconditioner inverse can be written as the product of three matrices:

o [Jt 0l [ —Jie] [lir 0O
(48) P _{0 Irr||O Irr | |0 S7°
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The application of P~! would initially involve the action of S~! on the skeleton
problem corresponding to the interface I'. Next, a boundary-to-domain update would
be applied through Jjp, before applying the inversion in parallel of J;; on subdomains.
With the exception of S, the potential for parallelism in (4.7), or equivalently in (4.8),
is evident. Therefore, the task is to seek an appropriate representation of S so that
the preconditioner can be assembled, stored, and applied in an efficient manner. This
is discussed in detail in the next section.

5. Constraint interface preconditioners. The Schur complement has the
following block 3 x 3 structure

Sii Si2 0
(5.1) S=|81, S 1n|,
of 1L 0

where the matrices S;; € R™X"r G5 € R*"™*N and Sey € RVXN. The matrix
Sos is negative definite and has a nearly diagonal structure with reducing entries as
the Newton iteration progresses, while S1s can be computed cheaply in parallel. The
main focus will therefore be the matrix S;7; which is associated with the interface
displacement nodes. This block dominates the Schur complement for the Jacobian,
and so the aim is to design a preconditioning procedure based on the structure of S
above and in a manner that provides a suitable approximation 5'11 of S11. We note
here that one can view the block structure (5.1) as the discretization of an operator
corresponding to S7; and constrained by conditions incorporated in the remaining
blocks.

Remark 5.1. The Schur complement is symmetric and indefinite, with a negative
inertia equal to i = N + 1, where N is the number of subdomains. Standard
optimization approaches, such as the projected conjugate gradient method, cannot
be used in this case. Similarly, we expect positive definite preconditioners to be
less effective. Consequently, we devised a novel approach which incorporates the
indefiniteness (and the constraints) into our preconditioner. The resulting method
can be loosely described as being of constrained type (cf. [17]).

Given the structure of S we propose a preconditioner with a similar block form
but with Sy replaced by a suitable approximation. A direct calculation using the
block form (4.6) of the Jacobian matrix yields

(5.2) S11 = Srr + FE,
where
(53) Srr := Arr — AFIA;;A[F

is the Schur complement arising in a Dirichlet—Dirichlet nonoverlapping domain de-
composition method for the elasticity equations. The above splitting of S1; suggests
the following candidate for a preconditioner:

Srr S12 0
(5.4) So= ST, Sy 1y
o 1% 0

This choice is computationally expensive due to the dense matrix Spp and Sy can
only be seen as an ideal preconditioner, very much like the Schur complement itself.
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However, the (1-1)-block can afford approximations which make the application of
So efficient. In the following, we restrict our attention to Spp. This matrix is the
finite element representation of the Steklov—Poincaré operator corresponding to the
interface problem for the elasticity equations, which is known to be continuous and
coercive on A2. The above properties can be shown using the continuity and coercivity
of the bilinear form a,(-,-) on V; for details, see [24]. The restriction to V, in the
context of the finite element discretization of our problem, preserves these properties;
in turn, Spr can be shown to be spectrally equivalent to the matrix representation of
a norm on A,QL. We describe this discrete norm below.

5.1. Discrete fractional Sobolev norms. In order to describe the relevant
norms further, we first describe the relevant function spaces defined on the interface
I". Let Vr represent the tangential gradient of a scalar function v(x) such that

Vrv(x) = Vo(x) —n(n- Vo(x)),

corresponding to the projection of the gradient of v onto the plane tangent to I' at
the point x € I'. We now define

HYT) := {v e L*(I) ‘ /F|VF’U|2dS(F) < oo}.

Let v := I'N 0Qp denote the set of points on the Dirichlet boundary of the domain
which are also on the interface I'; when this set is nonempty, we define the space

Hp(T) :=={ve H'(T) | v, =0}.

We recall here that the space A introduced above is the fractional Sobolev space of
index 1/2. More generally, we define the scale of spaces Ay as the interpolation spaces
of index 6 € (0,1) corresponding to the pair of spaces { H}(I"), L?(I")} in the sense of
Lions and Magenes [19]:

Ag := [H}(T), L*(T)]o.

Using a formulation involving discrete interpolation spaces with application to finite
element spaces, one can define a finite-dimensional space Ag, C Ap, together with
the following matrix representation of a discrete interpolation norm [1]:

(5.5) Hp := [Lp, Mrlg := Mp(Mp 'Lr)' =%,

where Mr and Lr are the mass and Laplacian matrices assembled on I' using the
restriction of the finite element basis for Vj, to the interface. Using this norm repre-
sentation, the continuity and coercivity properties of the elasticity Schur complement
Srr translate into the following spectral equivalence [27, p. 129]

cllulla < lfullsee < coflulla,

where H := Hy;; & Hy/,. This equivalence is the basis of our candidate for the
approximation of the Schur complement S.

The matrix Hy is in general full and expensive to compute. However, an imple-
mentation of the action of the inverse of Hy on a given vector can be achieved cheaply
using a Krylov subspace approximation constructed via a generalized inverse Lanczos
iteration which only requires the application of the inverse of the sparse matrix Lp
for a small number of steps [1]. In the following section we indicate how to extend
this procedure to the case of our proposed preconditioner.
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5.2. Constraint preconditioners. Given the constraint form (5.1) of the in-
terface Schur complement, we propose the following choice of preconditioner which
preserves the constraining blocks while replacing the (1,1)-block by a spectrally equiv-
alent matrix:

H S5 0
(5.6) Sl = 5?2 522 ]-N
o 1% o

The notion of constraint preconditioning has been extensively analyzed in the context

of saddle-point problems [17, 20]. In our case, the matrix structure is of a different

nature; however, given the spectral equivalence between S1; and H, we hope to achieve

a useful similarity between S and S. Our motivation is the following result.
ProprosiTION 5.1. Consider the generalized eigenvalue problem

Kz = \Gz,
where
K D 0 G D 0
K=|DT F 1y|, G=|DT F 1y]|,
of 1% o0 ol 1% 0

with K,G € Rrxnr B e RVNXN nonsingular. Let Z be a basis for the nullspace of
1x. Then

1. A =1 with multiplicity N + 1;

2. the remaining nr eigenvalues satisfy the eigenvalue problem

(K —Q)z = \G - Q)z,

where Q = DZ(ZTFZ)~Y(D2)T.

Proof. The proof is similar to that given in [17] (see also [27, pp. 180-181]). O

Remark 5.2. The above result indicates that the increase in size by N due to our
problem reformulation (4.1)—(4.4) is automatically taken care of by our constraint in-
terface preconditioner, which maps N + 1 eigenvalues to 1. The remaining eigenvalues
will depend on the closeness of our preconditioner H to Si;. As described above, we
tried to incorporate this property by a choice of H that is spectrally equivalent to the
dominant part of Sy1, namely Srr.

The main issue with the definition of Sy is the full matrix H arising in the (1,1)-
block. This matrix needs to be computed via an expensive matrix square-root cal-
culation; moreover, it needs to be employed in order to implement the action of the
inverse of S; on a given vector. A practical alternative can be derived from the
following constrained Lanczos decomposition of S;.

Let

V' LoV = Ty, V¥ MrVp = Ir

denote the generalized Lanczos decomposition of the pencil [Lr, Mp] in exact arith-
metic, where Vr is an orthogonal matrix and Tt is a tridiagonal, symmetric, and
positive-definite matrix. Define T' = Tt @& Tt,V = Vr @ Vp. Then H = VT/2y T (see
also [1]). Consider the QR-factorization

UR=[S12 0]V,
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where U is orthogonal and define

D:=UT E‘L’TQ ﬂ U.

We obtain the following orthogonal factorization of Sy,

Vv T1/2 ™ [yT
S [ e

We will refer to the above representation of S1, seen as a two-by-two block matrix, as
the constrained Lanczos factorization of S.
Given our preconditioning task, consider now the product

z=S"'v=wT Wy,
An approximation to z can be constructed using a partial factorization:
7 Xz = W;ﬂ;lW,?v,

where we define

o Vk L Tkl/2 RE T 522 1
Wk L |: Uk:| ) 776 T |:Rk Dk ’ Dk - Uk 1T 0 Uk

The preconditioning operator implicit in the definition of z; will be denoted by Sa:
zZ =~ Sy v.

Its implementation requires
i. a partial Lanczos factorization of the (1,1)-block of Sp; this yields a matrix
Vi of Lanczos vectors and a block tridiagonal matrix T;
ii. a QR-factorization of the (1,2)-block of S7 multiplied by Vj; this yields the
factors Uy, Ry arising in W), and T, respectively.
The number of Lanczos vectors in Vj, is expected to be small; correspondingly, the sizes
of Ry, Dy, will also be small and the resulting matrix 7 will be easy to invert. The
overall complexity for the above procedure is of order O(knr). Thus, the application of
the interface preconditioner will not dominate the cost of a subdomain solve provided
we work with subdivisions for which knr = O(ni), where we assumed that the cost
of inverting a subdomain Jacobian matrix is the cost that a direct method requires
to invert a banded matrix of size ny, with bandwidth ,/n7;.

6. Numerical experiments. In order to illustrate the performance of the so-
lution method described in section 6.1, we consider a model test problem based on
compliance design. The problem involves a cantilever beam posed on a rectangular
design domain as illustrated in Figure 1, with clamping applied along the left edge
and a force applied in the middle of the right edge. The density contour plot cor-
responding to the optimal design is displayed in Figure 2. Symmetry is a feature
which may be exploited computationally; however in this paper we chose to retain
the original design domain in order to test the performance of our solution method
on the full problem.
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HHHEHARHA

Fic. 1. Illustration of the cantilever beam problem.

50 100 150 200

Fia. 2. Contour plots of optimal density distribution for the model problem.

6.1. Implementation details.

6.1.1. Finite element method. We use a subdivsion 7} of € into square ele-
ments of size h. We seek approximations

up € Vi ={v e (HHQ)) :vyr €PoT)}, pn € Qn={a€ L) :qr € Po(T)}

for all T' € Ty, where Py (U) denotes the space of degree k polynomials defined on U.
We employ uniform refinement, in order to exhibit the behavior of our preconditioning
technique with respect to the mesh parameter h. We note here that the space Qf
is not constructed explicitly, and that it was only introduced in order to provide the
mathematical description of our problem.

6.1.2. Interior point algorithm. We use a textbook interior point algorithm;
the key details are included below; for full details see [23, Chap. 19].
We repeat the following steps until convergence:
1. Solve a sequence of Newton systems (3.10) to get Ay”.
2. Find the step length « (see below).
3. Update the solution

y'=y" +anyr.

4. Update the penalty parameters via
ri=r/4, s:=s/4.

We start with » = s = 1 and continue until they are brought below a tolerance
of 1076, A more sophisticated version of the code, with an adaptive choice of the
penalty parameters r and s can be found in [15]. However, we have never observed
any difficulties with this simple update of r and s.

Step length. In the interior point method we cannot take a full Newton step
resulting from the solution of (3.10), as this would lead to an infeasible point. We
propose a technique that will effectively involve finding oy, such that p; + Ap; > p
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for ¢ such that Ap; < 0 and oy such that p; + Ap; < p for i such that Ap; > 0.
Therefore, we consider obtaining o, and agy as follows:

. P = Pi
ar =0.9- i:inpligo{ Ap; } ’

. P —pi
=0.9- )
au i;ﬂgo { Ap; }

The constant 0.9 represents an appropriate shortening of the Newton step to the
interior of the feasible region. In the event that both «j and oy are greater than 1,
the step will be shortened appropriately:

a=min{ar,ay,1}.

This procedure is relatively simple and straightforward to implement. A more so-
phisticated line search procedure is described in [15] and could potentially be used
here. However, it will be illustrated later that the current technique was able to yield
desirable results.

Initial approximation. We start the interior point algorithm with a uniform
distribution of the design variable p chosen with respect to the mass constraint (3.3)

Pini = 1.
The initial displacements uj,; are then computed from the equilibrium equation
A (pini) wini = .

6.1.3. Domain decomposition. We used only regular subdivisions into rect-
angular subdomains. The corresponding sizes of the resulting interfaces are illustrated
in Table 1. It is evident (and well known) that in order to balance the complexities
of the interface and subdomain problems, the increase in the number of subdomains
should be paralleled by a decrease in h. Aside from regular decompositions, one could
also decompose the domain in an adaptive fashion based on the changing nature of
the design. This could be carried out either at each outer iteration, or alternatively
once after a fixed number of outer iterations based on the (previously mentioned)
observation that the density will only be subject to minor changes after a relatively
small number of iterative steps. In terms of a nonregular subdivision, the graph par-
titioning tool METIS [16] may be used in order to partition the finite element mesh
into nonregular subdomains.

6.1.4. GMRES. We used an inexact Newton-GMRES method preconditioned
by either Sy, S1; flexible GMRES was used for the case of S3. The GMRES stopping
criterion was the reduction of the norm of the initial residual by a factor of 106.

TABLE 1
Mesh information for cantilever beam experiment.

nr
h n N=4| N=16 | N=64
1/64 41,355 384 1,140 2,604

1/128 | 164,619 | 768 2,292 5,202
1/256 | 657,027 | 1,536 | 4,584 | 10,668
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TABLE 2
GMRES (Newton) iterations required for solving (3.1) using preconditioners So, S1, S2.

Avg GMRES (Newton) Total GMRES its.

No. subdomains: 4 16 64 4 16 64
Preconditioner W 0 0.5 0.6 0.7 0.5 0.6 0.7
1/64 7.29 (14)  10.57 (14) 13.86 (14) | 102 148 194

So 1/128 5.93 (15) 8.13 (15) 8.93 (15) 89 122 134
1/256 5.25 (16) 6.81 (16) 7.50 (16) 84 109 120

1/64 11.36 (14) 25.64 (14) 35.00 (13) | 159 359 455

S1 1/128 10.60 (15) 21.80 (15) 33.12 (16) | 159 327 530
1/256 10.25 (16)  19.94 (16) 29.82 (17) | 164 319 507

1/64 12.21 (14) 3136 (14) 50.46 (13) | 171 439 656

S5 1/128 12.00 (15)  27.47 (15) 43.47 (15) | 180 412 652
1/256 11.00(16)  26.41 (17) 40.06 (17) | 176 449 681

6.1.5. Constrained Lanczos factorization. The implementation of the action
of S5 ! requires us first to generate the matrices Si2 and Soo. This is achieved as an
additional preprocessing step involving one set of subdomain solves. The number of
Lanczos vectors is taken to be k = O(y/nr), so that the overall complexity of using

the preconditioner is of order O(n?f/ %).

6.2. Numerical results. Table 2 displays the results for our test case for a
range of mesh and subdomain sizes. The results were obtained using a Linux machine
with an Intele Core™ i7 CPU 870 @ 2.93 GHz with 8 cores. The upper and lower
limits on the density p were set at 1 and 1072, respectively, with the permissible
volume in each test case defined to be Mgq /2.

The first observation arising from our numerical experiments is that Sy has per-
formance independent of mesh size and almost independent of the number of sub-
domains; moreover, the number of iterations is low (averages between 5-8 iterations
on the largest problem), with only a small departure from the optimal count of 2
iterations corresponding to the case where the exact Schur complement is used. This
confirms the earlier assumption that the matrix E in (5.2) is negligible and that the
preconditioner Sy is optimal in the same sense as the Schur complement.

With regard to parameter dependence, we note that the number of iterations
decreases with h in all experiments. This is somewhat expected, given that Sy is es-
sentially an approximate implementation of Sy, which incorporates in the (1-1) block
the finite element discretization of the continuous Steklov—Poincaré operator for the
elasticity equations. An interesting fact is that the preconditioning technique Sy
appears to occasionally outperform the preconditioner S7; however, different precon-
ditioners lead to different Newton convergence histories given the adaptive stopping
criterion employed, which may result in overall complexities more favorable for the
constrained preconditioning approach.

The table also indicates what appears to be a logarithmic dependence on the
number of subdomains. We found this difficult to analyze, but this behavior is not
unlike that exhibited by similar substructuring preconditioning techniques in [1]. This
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suggests that the preconditioner S5 has the ability to match the properties of the
discrete fractional Sobolev norm in a constrained setting. This represents a novel
approach which could be useful in other constrained optimization settings and for
other PDE models.

The values of @ listed in Table 2 were chosen by experimentation based on similar
observations for the linear elasticity problem reported in [28], where it is noted that
different values of § may be able to provide a closer approximation to the decay of
the associated Steklov—Poincaré operator. Similar findings were found numerically in
this work also, with the best values of 6 used in order to produce the results reported
in the table.

Despite the fact that a logarithmic dependence is noted for an increasing number
of subdomains, the computational benefits gained as a result of distributing calcula-
tions amongst an increasing number of processors can lead to a significant speedup
when compared to solving the original problem on the global domain €. Exact calcu-
lations displaying this behavior are not included here, however, the interested reader
is referred to [28], where notable speedup was observed under the preconditioner de-
scribed in (5.5) for the optimality criteria method for topology optimization, which,
unlike the interior point approach in this paper, requires the solution of a linear elas-
ticity problem at each step.

7. Conclusions. We described a novel domain decomposition approach coupled
with an interior point method for compliance minimization problems arising in the
field of topology optimization. The problem was reformulated in order to allow for
well-posed subdomain problems which could be viewed as local Jacobian solves. This
was an important step which allowed for the domain decomposition method to be
well-defined. The resulting interface Schur complement problem yielded an indefinite
matrix which included a global volume constraint; consequently, an indefinite pre-
conditioner was devised in order to incorporate the properties and the structure of
the interface Schur complement matrix. This resulted in a technique requiring the
inversion of a so-called constrained discrete fractional Sobolev norm, the application
of which was performed via a certain constrained Lanczos procedure. We tested the
resulting method on a standard test problem of topology optimization, with exper-
iments indicating independence from the mesh parameter, although a depedence on
the number of subdomains was noticed.

Some of our current investigations include nonregular decompositions, as well as
adaptive decompositions based on current iterates. The constrained Lanczos factor-
ization, which allowed the sparse implementation of our interface preconditioner, will
be the subject of further study. The precise role played by the parameter 6 also re-
quires more analysis and experimentation in order to quantify the most appropriate
value of 6 for a decomposition into any given number of subdomains. Finally, the
reformulation of the problem resulting in Jacobian subproblems on subdomains is
also worthy of further investigation as it points to nonlinear domain decomposition
approaches, such as that described in [29].

REFERENCES

[1] M. Ariori, D. KOUROUNIS, AND D. LOGHIN, Discrete fractional Sobolev norms for domain
decomposition preconditioning, IMA J. Numer. Anal., 33 (2013), pp. 318-342.

[2] M. ARrioLl AND D. LOGHIN, Discrete interpolation norms with applications, SIAM J. Numer.
Anal., 47 (2009), pp. 2924-2951.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/11/17 to 147.188.108.81. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Al44 M. KOCVARA, D. LOGHIN, AND J. TURNER

3]

[4]

[5]

[6]

(7]
(8]
[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
18]
[19]

[20]

21]

22]

A. BEN-TAL, M. KOCVARA, A. NEMIROVSKI, AND J. ZOWE, Free material design via semidefinite
programmang: The multiload case with contact conditions, SIAM Rev., 42 (2000), pp. 695—
715.

M. P. BENDSQE AND O. SIGMUND, Topology Optimization: Theory, Methods, and Applications,
Springer Verlag, Berlin, 2003.

G. BIROs AND O. GHATTAS, Parallel Lagrange—Newton—Krylov-Schur methods for PDE-
constrained optimization. Part 1. The Krylov—-Schur solver, SIAM J. Sci. Comput., 27
(2005), pp. 687-713.

G. BIrRos AND O. GHATTAS, Parallel Lagrange—Newton—Krylov—Schur methods for PDE-
constrained optimization. Part 1I: The Lagrange—Newton solver and its application to
optimal control of steady viscous flows, STAM J. Sci. Comput., 27 (2005), pp. 714-739.

T. BORRVALL AND J. PETERSSON, Large-scale topology optimization in 3D using parallel com-
puting, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 6201-6229.

R. H. ByrDp, M. E. HRIBAR, AND J. NOCEDAL, An interior point algorithm for large-scale
nonlinear programming, SIAM J. Optim., 9 (1999), pp. 877-900.

G. C. A. DEROSE JRr. AND A. R. DiAz, Solving three-dimensional layout optimization problems
using fized scale wavelets, Comput. Mech., 25 (2000), pp. 274-285.

A. S. EL-BAKRY, R. A. TApria, T. TSUCHIYA, AND Y. ZHANG, On the formulation and theory
of the Newton interior-point method for nonlinear programming, J. Optim. Theory Appl.,
89 (1996), pp. 507-541.

A. Evararov, C. J. Rupp, K. MAUTE, AND M. L. DUNN, Large-scale parallel topology opti-
mization using a dual-primal substructuring solver, Struct. Multidiscip. Optim., 36 (2008),
pp- 329-345.

A. FORSGREN, P. E. GILL, AND J. R. SHINNERL, Stability of symmetric ill-conditioned systems
arising in interior methods for constrained optimization, SIAM J. Matrix Anal. Appl., 17
(1996), pp. 187-211.

C. GREIF, E. MOULDING, AND D. ORBAN, Bounds on eigenvalues of matrices arising from
interior-point methods, SIAM J. Optim., 24 (2014), pp. 49-83.

R. H. W. HorpPE AND S. I. PETROVA, Primal-dual Newton interior point methods in shape and
topology optimization, Numer. Linear Algebra Appl., 11 (2004), pp. 413-429.

F. JARRE, M. KOCVARA, AND J. ZOWE, Optimal truss design by interior-point methods, SIAM
J. Optim., 8 (1998), pp. 1084-1107.

G. KARYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359-392.

C. KELLER, N. I. M. GouLDp, AND A. J. WATHEN, Constraint preconditioning for indefinite
linear systems, STAM J. Matrix Anal. Appl., 21 (2000), pp. 1300-1317.

T. S. Kim, J. E. Kim, AND Y. Y. KiM, Parallelized structural topology optimization for eigen-
value problems, Int. J. Solids Structures, 41 (2004), pp. 2623-2641.

J. L. L1oNS AND E. MAGENES, Problémes aux Limites Non Homogénes et Applications. I, Vol. 3,
Dunod, Paris, 1968.

L. LUKSAN AND J. VLCEK, Indefinitely preconditioned inexact Newton method for large sparse
equality constrained non-linear programming problems, Numer. Linear Algebra Appl., 5
(1998), pp. 219-247.

B. MAAR AND V. SCHULZ, Interior point multigrid methods for topology optimization, Struct.
Multidiscip. Optim., 19 (2000), pp. 214-224.

A. MaAHDAVI, R. BALAJI, M. FRECKER, AND E. M. MOCKENSTURM, Topology optimization of 2D
continua for minimum compliance using parallel computing, Struct. Multidiscip. Optim.,
32 (2006), pp. 121-132.

J. NOCEDAL AND S. WRIGHT, Numerical Optimization, 2nd ed., Springer, Berlin, 2006.

A. QUARTERONI AND A. VALLI, Domain Decomposition Methods for Partial Differential Equa-
tions, Numer. Math. Sci. Comput., Clarendon Press, New York, 1999.

O. SIGMUND, A 99 line topology optimization code written in MATLAB, Struct. Multidiscip.
Optim., 21 (2001), pp. 120-127.

K. SVANBERG, A class of globally convergent optimization methods based on conservative convex
separable approzimations, STAM J. Optim., 12 (2002), pp. 555-573.

J. TURNER, Application of Domain Decomposition to Problems in Topology Optimization,
Ph.D. thesis, University of Birmingham, Birmingham, England, 2014.

J. TURNER, M. KOCVARA, AND D. LOGHIN, Parallel solution of the linear elasticity problem
with applications in topology optimization, in Proceedings of the 4th Annual BEAR PGR
Conference, University of Birmingham, UK, arXiv:1501.06211v2 [math.OC], 2013.

J. TURNER, M. KOCVARA, AND D. LOGHIN, A nonlinear domain decomposition technique for
scalar elliptic PDFEs, in Domain Decomposition Methods in Science and Engineering XXI,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/11/17 to 147.188.108.81. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INTERFACE PRECONDITIONING FOR TOPOLOGY OPT. A145

J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund, eds., Lecture
Notes in Comput. Sci. Eng. 98, Springer, Cham, 2014.

[30] K. VEMAGANTI AND W. E. LAWRENCE, Parallel methods for optimality criteria-based topology
optimization, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 3637-3667.

[31] S. WaNG, E. DE STURLER, AND G. H. PAULINO, Large-scale topology optimization using pre-
conditioned Krylov subspace methods with recycling, Internat. J. Numer. Methods Engrg.,
69 (2007), pp. 2441-2468.

[32] M. H. WRIGHT, Ill-conditioning and computational error in interior methods for nonlinear
programmang, SIAM J. Optim., 9 (1998), pp. 84-111.

[33] S. J. WRIGHT, Primal-Dual Interior-Point Methods, STAM, Philadelphia, 1997.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


