545 research outputs found

    Distributed Infrastructure for Multi-Energy-Systems Modelling and Co-simulation in Urban Districts

    Get PDF
    In recent years, many governments are promoting a widespread deployment of Renewable Energy Sources (RES) together with an optimization of energy consumption. The main purpose consists on decarbonizing the energy production and reducing the CO2 footprints. However, RES imply uncertain energy production. To foster this transition, we need novel tools to model and simulate Multi-Energy-Systems combining together different technologies and analysing heterogeneous information, often in (near-) real-time. In this paper, first we present the main challenges identified after a literature review and the motivation that drove this research in developing MESsi. Then, we propose MESsi, a novel distributed infrastructure for modelling and cosimulating Multi-Energy-Systems. This infrastructure is a framework suitable for general purpose energy simulations in cities. Finally, we introduce possible simulation scenarios that have different spatio-temporal resolutions. Space resolution ranges from the single dwelling up to districts and cities. Whilst, time resolution ranges from microseconds, to simulate the operational status of distribution networks, up to years, for planning and refurbishment activities

    A GIS Open-Data Co-Simulation Platform for Photovoltaic Integration in Residential Urban Areas

    Get PDF
    The rising awareness of environmental issues and the increase of renewable energy sources (RES) has led to a shift in energy production toward RES, such as photovoltaic (PV) systems, and toward a distributed generation (DG) model of energy production that requires systems in which energy is generated, stored, and consumed locally. In this work, we present a methodology that integrates geographic information system (GIS)-based PV potential assessment procedures with models for the estimation of both energy generation and consumption profiles. In particular, we have created an innovative infrastructure that co-simulates PV integration on building rooftops together with an analysis of households’ electricity demand. Our model relies on high spatiotemporal resolution and considers both shadowing effects and real-sky conditions for solar radiation estimation. It integrates methodologies to estimate energy demand with a high temporal resolution, accounting for realistic populations with realistic consumption profiles. Such a solution enables concrete recommendations to be drawn in order to promote an understanding of urban energy systems and the integration of RES in the context of future smart cities. The proposed methodology is tested and validated within the municipality of Turin, Italy. For the whole municipality, we estimate both the electricity absorbed from the residential sector (simulating a realistic population) and the electrical energy that could be produced by installing PV systems on buildings’ rooftops (considering two different scenarios, with the former using only the rooftops of residential buildings and the latter using all available rooftops). The capabilities of the platform are explored through an in-depth analysis of the obtained results. Generated power and energy profiles are presented, emphasizing the flexibility of the resolution of the spatial and temporal results. Additional energy indicators are presented for the self-consumption of produced energy and the avoidance of CO2 emission

    Enhancement of Charging Resource Utilization of Electric Vehicle Fast Charging Station with Heterogeneous EV Users

    Get PDF
    This thesis presents innovative charging resource allocation and coordination strategies that maximize the limited charging resources at FCS with heterogeneous EV users. It allows opportunistic EV users (OEVs) to exploit available charging resources with dynamic event-driven charging resource allocation and coordination strategies apart from primary EV users (PEVs) (registered or scheduled EV users). Moreover, developed strategies focus on the limited charging resources that are allocated for primary/ registered EV users (PEVs) of the FCS who access the FCS with specific privileges according to prior agreements. But the available resources are not optimally utilized due to various uncertainties associated with the EV charging process such as EV mobility-related uncertainties, EVSE failures, energy price uncertainties, etc. Developed strategies consider that idle chargers and vacant space for EVs at the FCS is an opportunity for further utilizing them with OEVs using innovative charging resource coordination strategies. This thesis develops an FCS-centric performance assessment framework that evaluates the performance of developed strategies in terms of charging resource utilization, charging completion and the quality of service (QoS) aspects of EV users. To evaluate QoS of EV charging process, various parameters such as EV blockage, charging process preemptage, mean waiting time, mean charging time, availability of FCS, charging reliability, etc are derived and analyzed. In addition, the developed innovative charging resource allocation and coordination strategies with resource aggregation and demand elasticity further enhance the charging resource utilization while providing a high QoS in EV charging for both PEVs and OEVs.publishedVersio

    Scaling energy management in buildings with artificial intelligence

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Datacenter management for on-site intermittent and uncertain renewable energy sources

    Get PDF
    Les technologies de l'information et de la communication sont devenues, au cours des dernières années, un pôle majeur de consommation énergétique avec les conséquences environnementales associées. Dans le même temps, l'émergence du Cloud computing et des grandes plateformes en ligne a causé une augmentation en taille et en nombre des centres de données. Pour réduire leur impact écologique, alimenter ces centres avec des sources d'énergies renouvelables (EnR) apparaît comme une piste de solution. Cependant, certaines EnR telles que les énergies solaires et éoliennes sont liées aux conditions météorologiques, et sont par conséquent intermittentes et incertaines. L'utilisation de batteries ou d'autres dispositifs de stockage est souvent envisagée pour compenser ces variabilités de production. De par leur coût important, économique comme écologique, ainsi que les pertes énergétiques engendrées, l'utilisation de ces dispositifs sans intégration supplémentaire est insuffisante. La consommation électrique d'un centre de données dépend principalement de l'utilisation des ressources de calcul et de communication, qui est déterminée par la charge de travail et les algorithmes d'ordonnancement utilisés. Pour utiliser les EnR efficacement tout en préservant la qualité de service du centre, une gestion coordonnée des ressources informatiques, des sources électriques et du stockage est nécessaire. Il existe une grande diversité de centres de données, ayant différents types de matériel, de charge de travail et d'utilisation. De la même manière, suivant les EnR, les technologies de stockage et les objectifs en termes économiques ou environnementaux, chaque infrastructure électrique est modélisée et gérée différemment des autres. Des travaux existants proposent des méthodes de gestion d'EnR pour des couples bien spécifiques de modèles électriques et informatiques. Cependant, les multiples combinaisons de ces deux parties rendent difficile l'extrapolation de ces approches et de leurs résultats à des infrastructures différentes. Cette thèse explore de nouvelles méthodes pour résoudre ce problème de coordination. Une première contribution reprend un problème d'ordonnancement de tâches en introduisant une abstraction des sources électriques. Un algorithme d'ordonnancement est proposé, prenant les préférences des sources en compte, tout en étant conçu pour être indépendant de leur nature et des objectifs de l'infrastructure électrique. Une seconde contribution étudie le problème de planification de l'énergie d'une manière totalement agnostique des infrastructures considérées. Les ressources informatiques et la gestion de la charge de travail sont encapsulées dans une boîte noire implémentant un ordonnancement sous contrainte de puissance. La même chose s'applique pour le système de gestion des EnR et du stockage, qui agit comme un algorithme d'optimisation d'engagement de sources pour répondre à une demande. Une optimisation coopérative et multiobjectif, basée sur un algorithme évolutionnaire, utilise ces deux boîtes noires afin de trouver les meilleurs compromis entre les objectifs électriques et informatiques. Enfin, une troisième contribution vise les incertitudes de production des EnR pour une infrastructure plus spécifique. En utilisant une formulation en processus de décision markovien (MDP), la structure du problème de décision sous-jacent est étudiée. Pour plusieurs variantes du problème, des méthodes sont proposées afin de trouver les politiques optimales ou des approximations de celles-ci avec une complexité raisonnable.In recent years, information and communication technologies (ICT) became a major energy consumer, with the associated harmful ecological consequences. Indeed, the emergence of Cloud computing and massive Internet companies increased the importance and number of datacenters around the world. In order to mitigate economical and ecological cost, powering datacenters with renewable energy sources (RES) began to appear as a sustainable solution. Some of the commonly used RES, such as solar and wind energies, directly depends on weather conditions. Hence they are both intermittent and partly uncertain. Batteries or other energy storage devices (ESD) are often considered to relieve these issues, but they result in additional energy losses and are too costly to be used alone without more integration. The power consumption of a datacenter is closely tied to the computing resource usage, which in turn depends on its workload and on the algorithms that schedule it. To use RES as efficiently as possible while preserving the quality of service of a datacenter, a coordinated management of computing resources, electrical sources and storage is required. A wide variety of datacenters exists, each with different hardware, workload and purpose. Similarly, each electrical infrastructure is modeled and managed uniquely, depending on the kind of RES used, ESD technologies and operating objectives (cost or environmental impact). Some existing works successfully address this problem by considering a specific couple of electrical and computing models. However, because of this combined diversity, the existing approaches cannot be extrapolated to other infrastructures. This thesis explores novel ways to deal with this coordination problem. A first contribution revisits batch tasks scheduling problem by introducing an abstraction of the power sources. A scheduling algorithm is proposed, taking preferences of electrical sources into account, though designed to be independent from the type of sources and from the goal of the electrical infrastructure (cost, environmental impact, or a mix of both). A second contribution addresses the joint power planning coordination problem in a totally infrastructure-agnostic way. The datacenter computing resources and workload management is considered as a black-box implementing a scheduling under variable power constraint algorithm. The same goes for the electrical sources and storage management system, which acts as a source commitment optimization algorithm. A cooperative multiobjective power planning optimization, based on a multi-objective evolutionary algorithm (MOEA), dialogues with the two black-boxes to find the best trade-offs between electrical and computing internal objectives. Finally, a third contribution focuses on RES production uncertainties in a more specific infrastructure. Based on a Markov Decision Process (MDP) formulation, the structure of the underlying decision problem is studied. For several variants of the problem, tractable methods are proposed to find optimal policies or a bounded approximation

    Renewable Energy Resource Assessment and Forecasting

    Get PDF
    In recent years, several projects and studies have been launched towards the development and use of new methodologies, in order to assess, monitor, and support clean forms of energy. Accurate estimation of the available energy potential is of primary importance, but is not always easy to achieve. The present Special Issue on ‘Renewable Energy Resource Assessment and Forecasting’ aims to provide a holistic approach to the above issues, by presenting multidisciplinary methodologies and tools that are able to support research projects and meet today’s technical, socio-economic, and decision-making needs. In particular, research papers, reviews, and case studies on the following subjects are presented: wind, wave and solar energy; biofuels; resource assessment of combined renewable energy forms; numerical models for renewable energy forecasting; integrated forecasted systems; energy for buildings; sustainable development; resource analysis tools and statistical models; extreme value analysis and forecasting for renewable energy resources

    Green Mobile Networks: from self-sustainability to enhanced interaction with the Smart Grid

    Get PDF
    Nowadays, the staggering increase of the mobile traffic is leading to the deployment of denser and denser cellular access networks, hence Mobile Operators are facing huge operational cost due to power supply. Therefore, several research efforts are devoted to make mobile networks more energy efficient, with the twofold objective of reducing costs and improving sustainability. To this aim, Resource on Demand (RoD) strategies are often implemented in Mobile Networks to reduce the energy consumption, by dynamically adapting the available radio resources to the varying user demand. In addition, renewable energy sources are widely adopted to power base stations (BSs), making the mobile network more independent from the electric grid. At the same time, the Smart Grid (SG) paradigm is deeply changing the energy market, envisioning an active interaction between the grid and its customers. Demand Response (DR) policies are extensively deployed by the utility operator, with the purpose of coping with the mismatches between electricity demand and supply. The SG operator may enforce its users to shift their demand from high peak to low peak periods, by providing monetary incentives, in order to leverage the energy demand profiles. In this scenario, Mobile Operators can play a central role, since they can significantly contribute to DR objectives by dynamically modulating their demand in accordance with the SG requests, thus obtaining important electricity cost reductions. The contribution of this thesis consists in investigating various critical issues raised by the introduction of photovoltaic (PV) panels to power the BSs and to enhance the interaction with the Smart Grid, with the main objectives of making the mobile access network more independent from the grid and reducing the energy bill. When PV panels are employed to power mobile networks, simple and reliable Renewable Energy (RE) production models are needed to facilitate the system design and dimensioning, also in view of the intermittent nature of solar energy production. A simple stochastic model is hence proposed, where RE production is represented by a shape function multiplied by a random variable, characterized by a location dependent mean value and a variance. Our model results representative of RE production in locations with low intra-day weather variability. Simulations reveal also the relevance of RE production variability: for fixed mean production, higher values of the variance imply a reduced BS self-sufficiency, and larger PV panels are hence required. Moreover, properly designed models are required to accurately represent the complex operation of a mobile access network powered by renewable energy sources and equipped with some storage to harvest energy for future usage, where electric loads vary with the traffic demand, and some interaction with the Smart Grid can be envisioned. In this work various stochastic models based on discrete time Markov chains are designed, each featuring different characteristics, which depend on the various aspects of the system operation they aim to examine. We also analyze the effects of quantization of the parameters defined in these models, i.e. time, weather, and energy storage, when they are applied for power system dimensioning. Proper settings allowing to build an accurate model are derived for time granularity, discretization of the weather conditions, and energy storage quantization. Clearly, the introduction of RE to power mobile networks entails a proper system dimensioning, in order to balance the solar energy intermittent production, the traffic demand variability and the need for service continuity. This study investigates via simulation the RE system dimensioning in a mobile access network, trading off energy self-sufficiency targets and cost and feasibility constraints. In addition, to overcome the computational complexity and long computational time of simulation or optimization methods typically used to dimension the system, a simple analytical formula is derived, based on a Markovian model, for properly sizing a renewable system in a green mobile network, based on the local RE production average profile and variability, in order to guarantee the satisfaction of a target maximum value of the storage depletion probability. Furthermore, in a green mobile network scenario, Mobile Operators are encouraged to deploy strategies allowing to further increase the energy efficiency and reduce costs. This study aims at analyzing the impact of RoD strategies on energy saving and cost reduction in green mobile networks. Up to almost 40% of energy can be saved when RoD is applied under proper configuration settings, with a higher impact observed in traffic scenarios in which there is a better match between communication service demand and RE production. While a feasible PV panel and storage dimensioning can be achieved only with high costs and large powering systems, by slightly relaxing the constraint on self-sustainability it is possible to significantly reduce the size of the required PV panels, up to more than 40%, along with a reduction in the corresponding capital and operational expenditures. Finally, the introduction of RE in mobile networks contributes to give mobile operators the opportunity of becoming prominent stakeholders in the Smart Grid environment. In relation to the integration of the green network in a DR framework, this study proposes different energy management policies aiming at enhancing the interaction of the mobile network with the SG, both in terms of energy bill reduction and increased capability of providing ancillary services. Besides combining the possible presence of a local RE system with the application of RoD strategies, the proposed energy management strategies envision the implementation of WiFi offloading (WO) techniques in order to better react to the SG requests. Indeed, some of the mobile traffic can be migrated to neighbor Access Points (APs), in order to accomplish the requests of decreasing the consumption from the grid. The scenario is investigated either through a Markovian model or via simulation. Our results show that these energy management policies are highly effective in reducing the operational cost by up to more than 100% under proper setting of operational parameters, even providing positive revenues. In addition, WO alone results more effective than RoD in enhancing the capability to provide ancillary services even in absence of RE, raising the probability of accomplishing requests of increasing the grid consumption up to almost 75% in our scenario, twice the value obtained under RoD. Our results confirm that a good (in terms of energy bill reduction) energy management strategy does not operate by reducing the total grid consumption, but by timely increasing or decreasing the grid consumption when required by the SG. This work shows that the introduction of RE sources is an effective and feasible solution to power mobile networks, and it opens the way to new interesting scenarios, where Mobile Network Operators can profitably interact with the Smart Grid to obtain mutual benefits, although this definitely requires the integration of suitable energy management strategies into the communication infrastructure management

    Three Essays on Energy Economics

    Get PDF
    This dissertation focuses on the economics of electricity generation. I aim to answer three main questions: After controlling for outside market forces, how did acid rain regulation impact Eastern coal production? How have the fundamental relationships in the natural gas market changed since deregulation, especially given the rise of production from shale resources? And how have sub-state policies affected the adoption of residential solar generation installations? For each question, I use economic tools to provide empirical answers which will contribute both to the academic literature as well as energy policy.;My first essay looks at the coal production in the Eastern US from 1983-2012. It is widely understood that the quantity of coal produced in this region declined during this time period, though its causes are debated. While some have identified the cause to be outside economic forces, the prevailing view is that federal regulation was the main driver. By controlling for outside market forces, this paper is able to estimate the effect that the differing regulatory periods have had on coal production. Results demonstrate how in general the regulatory phases of the Acid Rain Program are associated with decreases in production in the Illinois and Appalachian basins, however with varying magnitudes. Further, there are some areas that saw some increases. The essay also measure the mitigating impact that the installation of \u27scrubber\u27 units had on production. Overall, this essay provides a more nuanced look at the relationship between coal production and regulation during this time period.;The second essay in this dissertation models the natural gas market. Since the complete deregulation of the market in 1993, there have been significant changes. Most notably, the rapid rise of production from shale resources has greatly increased the supply and decreased the price of the commodity. Where for many years a net importer, the US is now predicted to be a net exporter of natural gas within the next year. This massive change has altered the fundamental relationships in the market. This essay utilizes recently developed methodology to estimate how these relationships have changed over time. Further, given our research design we are able to estimate how the supply and demand elasticities have been influenced in the new era of abundant and cheap natural gas. Results provide a more nuanced view of the natural gas market, and allow for a better understanding of its drivers.;My third essay measures the impact that certain policies have had in the residential solar market. Specifically, I estimate the impact on residential solar adoption associated with sub-state policies, enacted at the municipal, county, or utility level. To capture the clustering and peer effects in the adoption of residential solar that have been described in the literature, I utilize spatial econometric methods. To better model the nested nature of state and county renewable policies, a Bayesian hierarchical model is used. Results suggest that sub-state policies are associated with positive and significant increases in per-capita residential solar installations and capacity additions
    • …
    corecore