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Abstract

In recent years, information and communication technologies (ICT) became a major energy
consumer, with the associated harmful ecological consequences. Indeed, the emergence of
Cloud computing and massive Internet companies increased the importance and number
of datacenters around the world. In order to mitigate economical and ecological cost, pow-
ering datacenters with renewable energy sources (RES) began to appear as a sustainable
solution.

Some of the commonly used RES, such as solar and wind energies, directly depends
on weather conditions. Hence they are both intermittent and partly uncertain. Batteries
or other energy storage devices (ESD) are often considered to relieve these issues, but
they result in additional energy losses and are too costly to be used alone without more
integration. The power consumption of a datacenter is closely tied to the computing re-
source usage, which in turn depends on its workload and on the algorithms that schedule
it. To use RES as efficiently as possible while preserving the quality of service of a data-
center, a coordinated management of computing resources, electrical sources and storage
is required.

A wide variety of datacenters exists, each with different hardware, workload and pur-
pose. Similarly, each electrical infrastructure is modeled and managed uniquely, depending
on the kind of RES used, ESD technologies and operating objectives (cost or environmental
impact). Some existing works successfully address this problem by considering a specific
couple of electrical and computing models. However, because of this combined diversity,
the existing approaches cannot be extrapolated to other infrastructures.

This thesis explores novel ways to deal with this coordination problem. A first contri-
bution revisits batch tasks scheduling problem by introducing an abstraction of the power
sources. A scheduling algorithm is proposed, taking preferences of electrical sources into
account, though designed to be independent from the type of sources and from the goal
of the electrical infrastructure (cost, environmental impact, or a mix of both).

A second contribution addresses the joint power planning coordination problem in a
totally infrastructure-agnostic way. The datacenter computing resources and workload
management is considered as a black-box implementing a scheduling under variable power
constraint algorithm. The same goes for the electrical sources and storage management
system, which acts as a source commitment optimization algorithm. A cooperative multi-
objective power planning optimization, based on a multi-objective evolutionary algorithm
(MOEA), dialogues with the two black-boxes to find the best trade-offs between electrical
and computing internal objectives.

Finally, a third contribution focuses on RES production uncertainties in a more specific
infrastructure. Based on a Markov Decision Process (MDP) formulation, the structure of
the underlying decision problem is studied. For several variants of the problem, tractable
methods are proposed to find optimal policies or a bounded approximation.
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Résumé

Les technologies de l’information et de la communication sont devenues, au cours des
dernières années, un pôle majeur de consommation énergétique avec les conséquences
environnementales associées. Dans le même temps, l’émergence du Cloud computing et
des grandes plateformes en ligne a causé une augmentation en taille et en nombre des
centres de données. Pour réduire leur impact écologique, alimenter ces centres avec des
sources d’énergies renouvelables (EnR) apparaît comme une piste de solution.

Cependant, certaines EnR telles que les énergies solaires et éoliennes sont liées aux
conditions météorologiques, et sont par conséquent intermittentes et incertaines. L’utilisa-
tion de batteries ou d’autres dispositifs de stockage est souvent envisagée pour compenser
ces variabilités de production. De par leur coût important, économique comme écologique,
ainsi que les pertes énergétiques engendrées, l’utilisation de ces dispositifs sans intégra-
tion supplémentaire est insuffisante. La consommation électrique d’un centre de données
dépend principalement de l’utilisation des ressources de calcul et de communication, qui
est déterminée par la charge de travail et les algorithmes d’ordonnancement utilisés. Pour
utiliser les EnR efficacement tout en préservant la qualité de service du centre, une ges-
tion coordonnée des ressources informatiques, des sources électriques et du stockage est
nécessaire.

Il existe une grande diversité de centres de données, ayant différents types de matériel,
de charge de travail et d’utilisation. De la même manière, suivant les EnR, les technologies
de stockage et les objectifs en termes économiques ou environnementaux, chaque infra-
structure électrique est modélisée et gérée différemment des autres. Des travaux existants
proposent des méthodes de gestion d’EnR pour des couples bien spécifiques de modèles
électriques et informatiques. Cependant, les multiples combinaisons de ces deux parties
rendent difficile l’extrapolation de ces approches et de leurs résultats à des infrastructures
différentes.

Cette thèse explore de nouvelles méthodes pour résoudre ce problème de coordination.
Une première contribution reprend un problème d’ordonnancement de tâches en introdui-
sant une abstraction des sources électriques. Un algorithme d’ordonnancement est proposé,
prenant les préférences des sources en compte, tout en étant conçu pour être indépendant
de leur nature et des objectifs de l’infrastructure électrique.

Une seconde contribution étudie le problème de planification de l’énergie d’une ma-
nière totalement agnostique des infrastructures considérées. Les ressources informatiques
et la gestion de la charge de travail sont encapsulées dans une boîte noire implémentant
un ordonnancement sous contrainte de puissance. La même chose s’applique pour le sys-
tème de gestion des EnR et du stockage, qui agit comme un algorithme d’optimisation
d’engagement de sources pour répondre à une demande. Une optimisation coopérative et
multiobjectif, basée sur un algorithme évolutionnaire, utilise ces deux boîtes noires afin de
trouver les meilleurs compromis entre les objectifs électriques et informatiques.

Enfin, une troisième contribution vise les incertitudes de production des EnR pour

v



une infrastructure plus spécifique. En utilisant une formulation en processus de décision
markovien (MDP), la structure du problème de décision sous-jacent est étudiée. Pour
plusieurs variantes du problème, des méthodes sont proposées afin de trouver les politiques
optimales ou des approximations de celles-ci avec une complexité raisonnable.
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Chapter 1

Introduction

If knowledge can create problems, it is not through ignorance that
we can solve them.

— Isaac Asimov

1.1 Context

Today more than ever, the energy consumption generated by the growing use of infor-
mation and communication technologies (ICT) is a major issue, from both economical
and ecological points of view. The emergence and development of grid computing and
cloud computing paradigms, during the last decade, caused an increase in the number and
size of datacenters. Datacenters are becoming a significant part of the global electrical
consumption. Their total consumption in 2012 was estimated to almost 270 TWh [187].
This was roughly equivalent to 1.4% of the worldwide electrical consumption, while the
complete ICT sector (excluding manufacturing) accounts for 4.7% of it. According to the
same study, the datacenter power needs increased annually by 5% between 2006 and 2012.
The projections for the next decade suggest higher growth rate in the near future. In year
2030, the datacenters alone may use between 3% (best case) and 13% (worst scenario) of
the global electricity production [8].

Because of the current energy consumption of the ICT sector and its growing require-
ment, the responsibility of big companies in terms of greenhouse gas emission and pollution
in general is often pointed out. However, ICT firms seem more involved in reducing their
ecological impact than other industry sectors. Several companies such as Intel or Adobe
buy enough renewable energy to cover all their consumption in United States [141]. This
is also pointed out by Greenpeace, in their Click Clean report1 claiming that, between
2011 and 2016, 16 of the major internet companies made “a meaningful long-term com-
mitment to be 100% renewably powered”. There are many reasons for this recent change
in companies behaviors. Radu [156] studied the determinants of Green ICT adoption in
general, pointing out economic, ethical and regulatory-related reasons, such as long term
cost reduction, pro-environment grants, organization strategy and image.

The transition toward global sustainable energy is one of the important topic of this
century. Krakowski et al. [107] study several scenarios for increased penetration of renew-
able energies in the French electrical mix. Multiple scenarios target 100% penetration in
2050, showing feasibility, cost and limitations of each. The authors also compare their

1«Clicking Clean: Who is winning the race to build a green internet?», http://www.clickclean.org/
downloads/ClickClean2016%20HiRes.pdf
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1.1. Context

results to a previous prospective study from the french environment and energy man-
agement agency (ADEME)2 with similar objectives but using different methods. Several
agencies and researchers published similar studies for other regions, such as Elliston et al.
for Australia [62]. These studies show that renewable energy at a large scale is technically
and economically realistic for the next decades. However, more work should be done in
order to reach this goal as soon as possible, by studying not only how to produce this
energy, but also how to build systems interacting well with such renewable sources.

There are two ways to increase the renewable energy usage of a facility such as a data-
center: off-site or on-site integration. In the off-site scheme, the datacenter relies entirely
on the electrical grid, therefore consuming energy from the energy mix of the area where it
is installed. However, for every kW h consumed, the same amount of renewable energy is
eventually bought from renewable energy sources (RES) installed in other locations, often
hundreds or thousands of kilometers away and injected in the grid at different places and
times. Hence the datacenter relies indistinctly on local renewable/non-renewable energies,
but the operator uses the electrical grid market to somehow compensate its consumption
with renewable production.

Oppositely, the on-site integration consists in building RES physically tied to the
electrical network of the datacenter. Several operators have already built datacenters at
least partially powered with on-site renewable energies. For instance AISO.net, a small
cloud service provider, uses on-site solar panels to run its datacenter. More recently, in
2018, Google announced the construction of a massive solar power plant producing 2.9
GWh annually on the Saint-Ghislain datacenter facility site, in Belgium. The integration
of on-site RES, to be really effective in terms of operating ecological impact and cost,
requires major changes in the design of a datacenter management.

Most of the commonly used RES, like solar and wind, depends of weather conditions.
Hence they are intermittent and the available power is difficult to predict due to the
uncertainties in weather forecasting. A naive approach to use on-site RES to power a
datacenter connected to the electrical grid is to simply buy the grid power when renewable
is lower than the consumption and resell any excess of renewable on the grid. In this
case, no modifications are required in the datacenter management. Two main issues are
raised however. The transmission and distribution of the sold energy induces some energy
losses, which count between 8% in Europe and North America but up to 17% in Latin
America [92]. It is therefore more efficient to consume the power directly instead of
injecting it in the electrical grid. The second issue is more serious, as it becomes more
and more important with the growth of RES power plants. In a given region, much of the
solar and wind sources tends to have their production peaks and dips close in time, and
with their increasing share of the total electricity generation these fluctuations are causing
general over- and under-production in the whole grid. This has, in turn, a direct effect on
the price of the electricity [178]. Therefore, in case of excess of renewable production, the
energy will be sold cheaper to the grid, and inversely the cost of the energy required when
on-site RES does not produce enough will be higher.

In order to use renewable energy efficiently, a deeper integration is required. Adding
energy storage devices (ESD), such as batteries or fuel cells allows to absorb some of the
production peaks to use the energy latter, effectively smoothing the renewable power.
But all ESD have a finite capacity, an imperfect efficiency, additional cost and are often
subject to aging depending on their usage. They additionally require a more advanced
management system to take care of their charge and discharge conditions, making the

2«A 100% renewable electricity mix? Analyses and optimisations», http://www.ademe.fr/en/
a-100-renewable-electricity-mix-analyses-and-optimisations
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overall electrical infrastructure more complex. Being able to adapt the consumption to
make it as close as possible to the effective renewable production is therefore beneficial
even with ESD. The presence of ESD makes it even more important to plan how and when
the energy will be used. Such schedule allows, by taking into account the capacity, aging
and efficiency of the ESD, to decide how to use the available power in order to minimize
the ecological impact or the total cost.

1.2 Problem statement and research challenges

A lot of researches are currently done on RES and ESD integration in datacenters [105]
and several research projects investigates this area. The ANR project Datazero3 [152],
started in 2015, targets medium scale datacenters (up to 1 MW peak consumption) pow-
ered solely with on-site RES, batteries and fuel cells. By mixing researchers in computer
science, working on datacenter energy management, together with researchers in electrical
engineering, it aims to address finely both sides of the overall problem. However, con-
trary to existing works, the project looks at optimizing computing resources and electrical
resources separately, using a negotiation process between them to find a compromise.

This thesis is focused on a similar scope, with some contributions being related to the
research questions explored by the Datazero project. A single datacenter is considered,
powered by a rich electrical infrastructure potentially including ESD along with intermit-
tent and uncertain RES. The underlying management problem consists in optimizing the
functional behavior of the datacenter itself (i.e. running the workload accordingly the
user expectations) while minimizing the ecological impact caused by its energy consump-
tion. Instead of trying to solve the overall monolithic problem, it is possible to address
it through the coordination of two partially independent parts, in charge of electrical and
computing infrastructure respectively, as it is proposed in the Datazero project.

The primary goal of this thesis is to investigate how to handle intermittent RES in
such coordination problem, in a way that is as much agnostic as possible of the underlying
infrastructures and objectives of each part. A secondary goal is to study how the unavoid-
able uncertainties of RES power production affect the overall optimization problem and
to find methods to take them into account. These questions are addressed by different
contributions detailed along this manuscript.

1.3 Main contributions

Analysis and synthetic generation of large-scale workload

In order to perform any optimization on a datacenter management, characterizing its the
workload is a crucial step. Several traces of real datacenter workloads are publicly avail-
able. Some scheduling approaches in the literature pick one of them for their performance
evaluation depending on their models, the scale and the kind of datacenter they target.
Others use private data sources, or generate a workload using custom characteristics. This
state makes the comparison of approaches difficult, even with similar workload models, as
their results are very dependent of the considered workload. It also leads to reproducibility
issues, or in some cases to a low confidence on the results of approaches evaluated with
unavailable data sources. By analyzing one of the largest publicly available trace, from a
Google production cluster, we extracted its main characteristics. Based on the identified

3ANR Datazero: http://datazero.org
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features, a synthetic workload generator is proposed in section 3.2. It is controlled by a
few meaningful parameters. Hence it enables scheduling approaches to be evaluated either
with a workload similar to the one of this cluster, or with different hypothesis translated
in custom but comprehensive parameter values.

Scheduling algorithm for batch tasks with limited knowledge of electrical
model

Several scheduling algorithms were designed recently for managing datacenters with on-
site RES. It is achieved by including a part of the electrical sources model in the scheduling
problem considered by these algorithms. Therefore the resulting approaches are tied to
a specific electrical infrastructure. A new scheduling algorithm, detailed in chapter 4, is
proposed to handle this problem in a different way. The electrical infrastructure is con-
sidered as a black box which gives indications of its preferences using an aggregated and
normalized metric. The proposed scheduling algorithm is agnostic of the type of sources,
of possible energy storage devices and internal objectives of the electrical part. An exper-
imental study shows that despite the limited information it reaches similar performances
compared to an approach from the literature with full knowledge of the electrical model.
This opens the way for flexible scheduling approaches, that adapts easily to new electrical
infrastructure or to advances in the sources and storage management methods.

Cooperative and multi-objective power planning with black-box models

The management of datacenter with rich electrical infrastructure is often viewed as a
scheduling problem. An alternative vision is proposed, where two different decision mod-
ules manage respectively the IT and the electrical infrastructure. Each is solving a distinct
scheduling problem under constraint with its own objectives, for a given distribution of
power in a time window. The IT part aims to schedule the workload and manage the
machines in order to keep the quality of service of the datacenter high, while respecting a
power consumption envelope. The electrical system looks at minimizing either the overall
cost or environmental impact for providing the given power over time, by scheduling when
and how to use each source or energy storage device. Hence the overall problem becomes to
find power envelopes leading to acceptable trade-offs between the different objectives. The
problem is studied from a purely multi-objective point of view, by trying to find the set of
Pareto-optimal trade-offs. Multi-objective evolutionary algorithms (MOEA) are usually
well suited for this kind of problem, with the power envelope being the possible solutions
and each decision module being used as an objective function. However, due to the costly
nature of the associated scheduling problems and the limited time to take a decision, a
classical MOEA would lead to poor results. To tackle this issue, a new surrogate method
is proposed together with an adapted variant of an existing MOEA. Both are evaluated
using a simplified linear model and a realistic IT model with a task scheduling algorithm
from the literature.

Optimal policies for datacenter management with uncertain renewable
sources

The uncertainty of solar and wind energy production forecasts is a known problem for
planning the usage of the energy in a future time window. In datacenter management,
inaccurate forecast can affect the quality of a decision or even make impossible to imple-
ment a solution if no electrical grid connection is available as a rescue power supply. This

8



Chapter 1. Introduction

uncertainty is intrinsically tied to the quality of weather forecasting, hence likely impos-
sible to fully avoid. We propose therefore to study a model in which probabilistic aspect
of RES production is fully accounted for. A datacenter with RES and ESD as the only
electrical sources is considered, using simplified workload and machine model to focus on
the uncertain power production aspect. A Markov Decision Process (MDP) formalization
of several variants of the problem is used to provide a detailed analysis of their optimal
policies and exhibiting their structure. By leveraging these structural properties, a method
for computing a bounded approximation of an optimal policy is described and evaluated.

1.4 Plan of the manuscript
The rest of this manuscript is organized as follows.

Chapter 2 starts by introducing some background in optimization methods, datacenter
energy management and electrical sources models. The related works are then detailed,
along with a taxonomy of existing approaches.

Chapter 3 presents the challenges related to simulation environment for evaluating
renewable-aware datacenter management approaches. Existing public data sources for
both RES power production and workload traces are discussed. Finally, an analysis of
large scale workload traces from a Google cluster is presented along with a synthetic
generation method of traces with similar characteristics.

Chapter 4 presents a scheduling algorithm for batch tasks agnostic of the electrical
infrastructure. It is evaluated and compared to an existing renewable-aware scheduling
approach from the literature with full knowledge of electrical model.

Chapter 5 presents a multi-objective optimization method for finding power planning
trade-offs between independent datacenter and an electrical decision modules.

Chapter 6 details a study of datacenter workload management with uncertain RES
power forecast. Using MDP framework, an analysis of structural properties of the problem
is conducted leading to efficient methods for finding optimal policies.

Chapter 7 finally concludes this thesis and proposes perspectives.
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Chapter 2

Background and related works

The three rules of the Librarians of Time and Space are: 1)
Silence; 2) Books must be returned no later than the last date
shown; and 3) Do not interfere with the nature of causality.

— Terry Pratchett, Guards! Guards!
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The works presented in this thesis explore different aspects of the interactions between
a datacenter and a rich electrical infrastructure, including renewable energy sources (RES)
and energy storage devices (ESD). Figure 2.1 illustrates the different components of such
setup. An ideal management should optimize the ecological impact, the operating cost,
revenues and the user satisfaction at the same time. To do so, it may act by means of many
leverages, from the operating state of the ESD to machine-level energy management mech-
anisms and workload scheduling. It also requires to take into account the characteristics
of the electrical sources, ESD, machines and workload, along with the many uncertainty
sources such as the power sources production or user activities. While no work achieves,
or even targets this perfect optimization, it gives a good overview of the challenges of this
research area.

This chapter provides some background on multi-objective optimization and Markov
decision processes, introducing tools and notations used in the related works and along
the next chapters. Models related to both energy-efficient datacenter management and
electrical sources are then presented. Then, a detailed review of the literature on data-
centers management with RES is presented, followed by a conclusion which highlight the
positioning of this thesis.

2.1 Mathematical background and considerations

This section aims to present two areas of optimization theory which are heavily used
along the works developed in this thesis. Multi-objective optimization is at the core of the
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Figure 2.1 – Infrastructure of datacenter powered with renewable energy sources, energy
storage devices and electrical grid.

approach detailed in chapter 5 and some concepts are also used along chapter 4 and in
most existing works, even when it is not explicitly highlighted by the authors. Chapter 6 is
focused on tackling uncertainties and is entirely built on Markov Decision Process (MDP)
theory.

The following presentation and discussion about these research areas do not attempt
to be exhaustive or to substitute to the rich existing literature. It is instead a summary
oriented towards the needs of this thesis, with some references for a reader interested to
dig deeper into these fields.

2.1.1 Multi-objective optimization

In many real-life optimization problems, there are several criteria to minimize or maximize
simultaneously, some being conflicting with the others. Buying a product is an everyday
example of multi-objective optimization problem. When considering a new laptop, a buyer
generally wants to minimize the price while maximizing the performances and battery life.
It is likely that the cheapest laptop will not have the best hardware for performances.
Similarly, high performance hardware is expected to be more power-hungry, leading to
lower battery life. Hence, the usual situation in this example is that no product is optimum
for all the criteria and the buyer needs to consider the different options subjectively to
decide a good trade-off to choose.

The theory of multi-objective optimization is about formalizing what are the good
trade-offs in such problem and providing methods to implement the subjective choice
among them. Using a simplified notation of Deb [45], maximization problems with M
objectives can be generically written as:

Maximize fm(x), ∀m ∈ {1, . . . ,M} (2.1)
subject to gj(x) ≥ 0, ∀j ∈ {1, . . . , J} (2.2)

A value of x ∈ Rn satisfying all the constraints gj is a feasible solution of the problem.
The set of all the feasible solutions is named the solution space S ⊆ Rn. Each of the
M objectives is characterized by an arbitrary objective function fm : S → R. Hence any
feasible solution x can be associated to its objective vector f(x) = (f1(x), · · · , fM (x)).
The space of the objective vectors is named objective space here, denoted Z ⊆ RM .
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Figure 2.2 – Pareto frontier in a continuous bi-objective maximization problem.

All the ambiguity of multi-objective optimization lies in the ordering of the objective
space Z. Without more information on the problem, total ordering is impossible. A partial
ordering ≺Z is however easily defined. Let two objective vectors z, z′ ∈ Z. We say that z
is dominated by z′, denoted z ≺ z′ if and only if:

∀m ∈ {1, . . . ,M}, z′m ≥ zm (2.3)
∃m ∈ {1, . . . ,M}, z′m > zm (2.4)

This ordering may be interpreted as the fact that a solution x′ may be better than
another solution x on at least one objective, while being at least as good as all the others:
f(x) ≺ f(x′). It is therefore possible to claim that x is clearly inferior to x′. The ordering
being partial, some sets of solutions lead to objective vectors that are not dominated by
any others, i.e. f(x) ⊀ f(x′) ∧ f(x′) ⊀ f(x). The set of all existing non-dominated
solutions form the Pareto frontier of the problem, denoted PF? and also referred as the
true Pareto front later. It is illustrated in the fig. 2.2 for a continuous Pareto front.

When a solution must be chosen in a multi-objective optimization problem, picking
one from the Pareto front is preferable. The decision on which one to choose, i.e. which
of the non-dominated trade-off is subjectively the best for the decision maker, requires to
articulate its preferences about each objective. Existing methods are often classified in a
priori articulation (before to solve the problem) and a posteriori articulation (after some
or all the trade-offs are known) [137]. For sake of completeness, it should be noted that a
few other methods aim to select a solution without articulating the preferences [137] but
are not discussed here.

A priori methods are often used to solve multi-objective problem. The main reason is
that some of them involves transforming the multi-objective problem into a single-objective
one. This avoids the complexity of finding the Pareto front of the problem and additionally
allows to use many traditional heuristics designed for single-objective problems. Several
a priori methods are commonly used, which are extensively detailed and commented by
Ehrgott [60]. One of them is the linearization of the objective vector using a weighted
sum, such as the objective becomes:

Maximize
M∑
m=1

λmfm(x) (2.5)

With λm ≥ 0 being the weight associated to themth objective. While very common and
leading to a solution on the Pareto front, this method has many deficiencies [136] such as
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Figure 2.3 – Bi-objective maximization problem showing potential limitations of ε-
constraint method. In this case, solution B would be chosen, without even considering
the solution C.

the difficulty to predict the impact of changing slightly the weights and the impossibilities
to find some non-dominated solutions if the Pareto front is not convex.

Another method referred as ε-constraint, consists in transforming all but one of the
objectives into constraints. The optimization problem become, by denoting k the objective
kept:

Maximize fk(x) (2.6)
subject to fm(x) ≥ εm, ∀m ∈ {1, . . . ,M} \ k (2.7)

The ε-constraint method also gives a solution on the Pareto front. Depending on the
problem under study, deciding of the constraints values may be easier than giving weight to
each objective, as each individual εm value is independent, thus being more meaningful for
a decision maker. The main issue is that for some instances of a problem, some constraint
values may lead to an infeasible problem, hence no solution. Having such hard constraints
with only a priori view of the problem may also cause some solutions violating slightly a
constraint to be ignored while a decision maker would have considered them otherwise, as
shown by the fig. 2.3.

Articulating the preferences a posteriori in multi-objective problems gives to the deci-
sion maker an overall view of the possible trade-offs for a given instance of the problem.
The first step is therefore to find some or all the solutions of the Pareto front. Finding
the true Pareto front is however not always feasible, as in the general case it involves to
compute the objective vector for every value of the feasible solution space S. Finding an
approximation of the true Pareto front of a problem may be enough in many real-world
problems. The research on evolutionary algorithms, a well known class of metaheuristics
commonly used for single-objective, led to many promising approaches for multi-objective
problems.

Multi-objective evolutionary algorithms

The base principle of evolutionary algorithms is to manage a set of possible solutions using
randomness and bias toward the reinforcement of the most promising solutions according
to the objective to be minimize or maximize. Each solution is encoded in a form suitable
for the considered algorithm, also referred as individual. The set of individuals existing in

14



Chapter 2. Background and related works

the algorithm at a given time, or the so-called population, slowly changes to explore the
solution space (randomness) and try to converge toward an optimum. While the details
change from a specific algorithm to another, they usually repeat a simple pattern until
some termination criterion is reached. Each iteration, known as a generation, creates new
individuals by introducing random changes in some existing ones (mutation) and merging
the encoded solution of some of promising individuals (mating). Then, a selection step is
performed to keep good individuals for the next generation. This selection uses the fitness
associated to each individual, which is generally the value of the objective function for the
represented solution.

The field of multi-objective evolutionary algorithms (MOEA) aims to provide such
metaheuristic suited for finding approximations of Pareto fronts. Because they handle
multiple solutions simultaneously, as a population, they are naturally able to output a set
of solutions in a single run. This research field, which is still very active, produced many
algorithms often bio-inspired and designed for this purpose [201]. While the bases are
the same as traditional, single-objective evolutionary algorithms, each MOEA has some
specificities for handling the multi-objective aspect. The most important change is often
the way the fitness is computed. As the goal is to approximate the Pareto front, most
MOEA such as NSGA-II [46] and SPEA2 [207] use the concept of non-dominated solution
to compute the fitness of an individual.

Black-box functions and surrogate methods Usually, an optimization problem con-
cerns a well defined model. In some situation however, it may be desirable to optimize
the output of a black-box function, for which the explicit model is not known but some
minimal properties are expected to hold (such as linearity or continuity). This may be the
case, for instance, of an objective based on a large n-body or event-based simulation. In
multi-objective problems, MOEA are especially well suited for finding an approximation
of the Pareto front with black-box objective functions. Evolutionary algorithms in general
are based on the creation and evaluation of large number (often thousands or millions)
of potential solution. If the black-box objective functions are computationally expensive,
this leads to a huge amount of time to reach an acceptable quality of solution.

A strategy to handle this issue is to use surrogate models of the real objective func-
tions [22, 93], which are cheap approximations of the target functions using linear or
non-linear regression methods. It is possible, by knowing the problem and the instance to
solve, to create a surrogate offline and to simply substitute it to the real objectives, but
MOEA provide an interesting base to create the surrogate model online. Several works
attest the efficiency of surrogate-based MOEA [3, 19, 98, 138], but often for a very spe-
cific problem. The existing works for integrating MOEA with online surrogate models are
discussed more deeply in chapter 5, in which a novel approach is proposed and evaluated.

Performance evaluation metrics for Pareto front approximation

Measuring performance of multi-objective heuristics is, by itself, a whole research area.
The major desired properties of a solution set are easily described informally: ideally the
solutions should be close to the real Pareto front (accuracy), widely and well distributed
along the front (diversity) and the set should contain as many solutions as possible (car-
dinality) [146, 164]. Defining metrics to measure these properties is however challenging,
leading to dozen of different performance metrics [164]. Among the existing ones, two of
them, measuring the accuracy and the diversity, are used to evaluate the approach detailed
in chapter 5.
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Figure 2.4 – Illustration of hypervolume and distance to Pareto front metrics with 2
objectives. Each square is a single trade-off from a solution set.

Hypervolume The hypervolume indicator (HV ) introduced in [205], measures the space
covered between the solution set and a pessimistic reference point in the objective space.
It is illustrated by the light green area in fig. 2.4. Its value depends on both diversity (how
well distributed the solutions are along the Pareto front) and accuracy (how close each
solution is from the real front). It may be considered as a global quality indicator without
providing alone finer details. In order to compare the hypervolume between different
experiments, the same reference point must be used.

When the true Pareto front, denoted PF?, is available, it is possible to use it to normal-
ize the hypervolume, making their values easier to interpret. The normalized hypervolume
of a solution set PFh is given by eq. (2.8).

nHV (PFh) = HV (PFh)/HV (PF?) (2.8)

Generational Distance Initially proposed by Van Veldhuizen and Lamont [190], the
generational distance (GD) measures the average euclidean distance between each solution
and the nearest member of the true Pareto front. In fig. 2.4, it corresponds to the average
of the dashed arrows. As the complete Pareto front is often impossible to obtain, the best
known approximation may be used. For a solution set PFh , generational distance is given
by eq. (2.9)

GD(PFh) = avgu∈PFh (minv∈PF? (dist(u, v))) (2.9)
This metric measures only the accuracy aspect. But hypervolume and generational

distance together provide therefore a good overview of the overall quality on both accuracy
and diversity of the solution. Because of its name being slightly misleading, in the rest of
this thesis the generational distance is also referred as average distance to Pareto front.

2.1.2 Decision making and optimization under uncertainties

Uncertainties are more the norm than the exception in real-world problems. Even for
deterministic processes, it is rarely feasible to obtain all the knowledge required to model
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them exactly. For instance, the number of users accessing to a website at a given time
in the future is highly unlikely to be predicted correctly. However, based on a limited
amount of knowledge (e.g. historical data, correlations with other events), an imperfect
prediction model can be available. When such an uncertain information is used in an
optimization process, it is common to simply ignore this aspect and to model it as if it
was deterministic. Depending the problem, this may be justified because uncertainties are
expected to have a negligible impact or because it is acknowledged that the optimization
is done with such simplifications.

Uncertainties can nonetheless be accounted in optimization problems, based on addi-
tional information about the uncertain data. Several methods can be used to model the
uncertainty [104], from a lower and upper bounds of the possible values to a complete prob-
ability distribution of the possible realizations. The latter is often more difficult to obtain,
as it requires deeper understanding of the random process causing the uncertainties. More
complex uncertainty models can be used if the random variables are not independent from
each others or if they represents some temporal evolution of a stochastic process [104].

A wide variety of techniques are designed to handle such uncertain problem, generally
at the cost of some additional complexity compared to deterministic optimization [109,
122, 167]. Many approaches are based on a notion of scenarios, which are either random
samples from the known distribution of uncertain variables (Monte Carlo simulation) or
possible values chosen specifically (i.e. worst case). Each of these scenarios can therefore
be treated as multiple deterministic versions of the problem. It is possible, for instance,
to construct a linear programming version of the stochastic problem by aggregating the
different scenarios, sharing the same decision variables. By setting appropriately the
objective (e.g. minimizing the average deterministic objective of each scenario), a solution
taking into account different outcomes can be chosen [55]. Alternatively, evolutionary
algorithms can be used by relying on scenario-based evaluation of the objectives [123,
145]. MOEA present an additional interest here, even when the underlying deterministic
problem has a single objective. An additional objective can be created, representing
for instance the probability of a given solution to be feasible according to the uncertain
variables. Then, a MOEA can be used to obtain the set of ideal trade-offs between the
main objective and the risk [97].

Sequential decision making is a special case of general optimization problems. A deci-
sion (or an action) has to be taken repeatedly along a time horizon (which may be infinite).
Each decision may lead to a short-term reward and an optional long-term reward can be
additionally granted at the end of the horizon considered. When uncertainty is considered
in this kind of problems, generic approaches presented above can be used, but additional
methods are applicable. Particularly, Markov decision processes (MDP) can model many
uncertain sequential decision making problems and have been extensively studied for sev-
eral decades.

Markov decision processes

Markov Decision Processes, or MDP, is a formalization of some sequential decision making
problems with uncertainty. We focus here only on finite horizon MDP, with the considered
time horizon denoted N ∈ N+. At each time t ∈ {1, . . . , N − 1} (also called decision
epoch), the decision maker must choose an action, denoted at, among a set of possibilities
At. The system, represented by its state st ∈ S, evolves depending on the action chosen
at the previous epoch and on stochastic part.

Depending the current state and the action taken, a potentially stochastic reward
is obtained, denoted rt : S × A → R. After the last decision epoch, a reward can be
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additionally granted depending solely on the final state rN : S → R. The evolution of the
states is described by the probabilistic transition function pt : S×S×A → R. We denote
pt (s′|s, a) the probability, at the epoch t, of ending in state s′ by doing action a in the
state s.

A policy is a function which attribute, at each time, an action to do depending on
the current state. We denote π = (π1, . . . , πN−1) a policy for the whole horizon, with
πt : S → A giving the action to chose at the epoch t for each possible state of the system.
The total expected reward can be written recursively, by considering V π

t : S → R to be
the accumulated expected reward at a given state, from epoch t to the end of the horizon
N when the policy π is used.

V π
N (s) = rN (s) (2.10)
V π
t (s) = rt(s, πt(s)) +

∑
s′∈S

qt
(
s′|s, πt(s)

)
· V π

t+1(s′) (2.11)

The MDP optimization problem consists therefore in finding a policy, called optimal
policy π?, such as it minimizes or maximizes V1(s) for all or for a given s ∈ S. Several
methods exists to find such an optimal policy or a good approximation. When the state
space S is discrete, backward induction (dynamic programming), policy iteration or linear
programming can be used to find the exact solution [154, 155]. All the exact solving
algorithms for general, discrete MDP case, are sensitive to the size of the state space. They
become costly for large number of states and often not practicable for many-dimensionalty
states (curse of dimensionalty) [112, 154]. MDP with continuous state and action spaces
cannot be solved exactly in the general case. They can be approximated by discretization
of states and transitions probabilities, but doing so requires to increase the state space as
much as the desired accuracy of the approximation.

Using the MDP framework can nevertheless be more beneficial by analyzing the result-
ing formulation. Some MDP can be solved more efficiently by finding structural properties
of their optimal policies [84, 126, 154, 155]. For instance, monotonic policies state that
the optimal action is non-decreasing or non-increasing with a given ordering of states and
actions, resulting in an opening for faster algorithms by reducing significantly the search
space [84, 154]. Some of the simpler MDP can even admit an optimal policy with a closed
form [155], but any non-trivial problem is unlikely to be reduced to such a simple form.
Many other properties can be leveraged to design fast algorithms for exact or bounded ap-
proximation of MDP optimal policies, helping to address continuous or many-dimensional
problems. Contrary to the generic MDP solving methods, a detailed analysis is required
to identify the structure of a specific problem.

Finding an efficient algorithm based on MDP formulation presents many advantages
for taking uncertainty into account, compared to other approaches. For instance, scenario-
based optimization for uncertain problems can only consider a limited number of possible
realizations of the random variables. In addition, the number of scenarios required to
probe each uncertainty distribution equally grows exponentially with the number of ran-
dom variables [112], hence with the number of time steps in sequential decision making
problems. At the contrary, a Markov decision process considers the entire distribution of
each random variable and are can be solved with a linear complexity depending on the
size of the horizon.
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Figure 2.5 – Representation of a batch-like job with its main characteristics.

2.2 Datacenter and power consumption

At its most basic level, a datacenter is a building incorporating a set of servers, networking
devices and cooling infrastructure, which goal is to run a workload of some kind. Many
kinds of datacenters exist [14], with various scales (from a dozen of servers to thousands
of them) and operated with different objectives. Some are operated privately, for a com-
pany or institution usage, while others are public, accepting any client able to pay for
its computing needs. They can be built for a very specific workload, such as scientific
computation, or aiming at covering different use cases depending on the needs of the
clients.

Such diversity and large definition makes it rather difficult for a work to address all
kinds of datacenters or even all the aspects of a subset of them. Many existing works
deal specifically with network optimization in datacenters [16], designing more efficient
cooling infrastructure [200] or reducing the cooling cost by taking thermal aspect into
consideration [31, 38, 181]. In this thesis, we focus on the servers management, ignoring
the networking and cooling aspects.

2.2.1 Workload and quality of service

When looking at datacenter management methods, the considered kind of workload plays a
critical role. As mentioned, all datacenters do not aim at running work of similar nature:
high performance computing tasks do not share many characteristics with a database
server.

A common classification consists in two main types of workload: batch-like and inter-
active services [4, 129]. The interactive services are usually designed to continuously, in
order to respond to user requests directly (e.g. web server or online gaming platform) or
indirectly from other services (database). Due to their interactive nature, users expect
these services to react as fast as possible, in seconds or milliseconds time scales. Hence
their resource usage is closely tied to the amount of requests performed by the users at a
given time.

The batch-like jobs are instead defined as a finite and determined amount of work to
perform, whose result is expected to be available in a matter of hours or days. While
scientific computation perfectly fits in this category, many other common usage are also
included such as maintenance tasks (indexing data or integrity checks), video encoding,
big data analysis... Such jobs are somehow delay-tolerant, but this tolerance may vary
accordingly to the user expectations. It may be a strong constraint, in which case a
deadline is specified after which the job is considered as failed and the execution stops.
If it is a soft constraint, the due date denotes a time after which a user may claim to
be unsatisfied. A batch job j is characterized at least by a submission time Sj , a set of
resource requirements (denoted rij with i the type of resource), a duration or a way to
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estimate it (such as a quantity of work) and the due date or deadline, both denoted Dj .
Figure 2.5 illustrates a possible execution of such batch job j respecting its deadline.

For any kind of workload running in a datacenter, it is possible to define some criteria
of quality to describe how well it is running according to user expectations. Many different
criteria are identified in the literature, which relate to performances, security, availability
or reliability aspects [80, 108]. The user expectations are theoretically defined in a Service-
Level Agreement (SLA), which determines a set of criteria and associated metrics along
with accepted level. In practice, large operator often impose predefined SLA to small
clients which are not important enough to negotiate the conditions in detail [87]. Such
a metric used in the definition of SLA is called a Quality of Service (QoS) metric in the
following. For instance, the availability of a service may be measured as a percentage
of time it is available over a year and a SLA may specify that this QoS metric must be
greater than 99.5%.

Even when focusing only on the performance aspect, there are multiple QoS metrics
used in the literature. For services, the response time to a request is commonly used [199].
In shared environments, such as in virtualized infrastructures, the availability of requested
resources such as CPU cycles is also widely used in the literature [203]. For batch jobs,
the most common QoS metric used is the respect of the deadline or due date [27, 127].

2.2.2 Server power consumption

Modeling the power consumption of machines has been the subject of many studies. The
existing models, well referred and classified by Dayarathna et al. [43], are targeting different
trade-offs between the complexity (or available information) and the resulting accuracy.

Basically, the power consumption of a powered-on machine is divided in two parts: a
static power consumption denoted P idle and the dynamic power consumption P dyn .

P total = P idle + P dyn (2.12)

The static part includes the power of all the components in their lowest activity state
(disks idling, motherboard components, processor with minimal activity, fans, network
card). The dynamic part may be again split into the additional power consumed by each
component in a higher usage state. Without loss of generality, it can be written as a
function dyn : S → R of the overall state S. This function can in turn be detailed for
each component, depending on the desired granularity and possible focus to some specific
parts, as illustrated by eq. (2.13).

dyn(S) = dyncpu(Scpu) + dyndisks(Sdisks) · · ·+ dynram(Sram) (2.13)

While some works attempt to model very finely the power consumption [39], simple
models prove to be quite accurate. The simple linear model in eq. (2.14) proposed by Fan
et al. [64] in 2007, approximate the overall dynamic consumption at the server level based
only on the CPU usage u. Even if it is both dated and over-simplified, the average error
on this model has been measured to be lower than 6% with more modern hardware [39].
Hence it is used in many recent works, when a finer model of the hardware is not desired.

P total = P idle + u
(
Pmax − P idle

)
(2.14)

A typical situation where a more detailed model is required is when an approach uses
Dynamic Power Management (DPM) techniques to act on the power consumption [12].
Dynamic Voltage and Frequency Scaling (DVFS) focused a lot of attention during the last

20



Chapter 2. Background and related works

decade. Modern CPUs support several combinations of frequency and voltage, which may
be selected depending the desired trade-off between processor performances and power
consumption. The relationship between frequency and voltage is usually managed au-
tomatically, such as the lower stable voltage is set for any given frequency. Hence, the
classical models for DVFS only consider the frequency, denoted fn for a given processor
n. Only certain frequencies are allowed, such as fn ∈ Fn with Fn the set of possible
values for this processor. The performances are generally assumed to scale linearly with
the frequency, while the power consumption follows a different law. A simple model, still
used in recent works [27], extends the previously detailed linear model to account of each
processor power, is given in eq. (2.15) for a machine with N processors. It considers that
the base dynamic power of a processor depends on the cube of the frequency. The term
P dyn is a processor characteristic and up denote the processor usage ratio.

P total = P idle +
N∑
n=1

un · P dyn
n · (fn)3 (2.15)

In order to get rid of the idle power of a server, it is possible to act on the global power
state of a machine, as described by the Advanced Configuration and Power Interface
(ACPI). Many works consider the possibility to switch on and off machines [13, 192], or to
put them into sleep modes (suspend to RAM or suspend to disk) [71]. However, powering a
server on and off is not instantaneous and consumes extra energy. The power consumption
during the early boot process may even exceed the peaks of power monitored during
high load activity [147]. The boot and shutdown times depend on many factors, such
as the operating system, its storage medium (spinning hard drive or SSD), the software
configuration and the services expected to be available to consider the machine ready [179].

Modeling the power state management requires to define the considered states (such
as on/off/idle) along with the transitions between them. Each state s is characterized by
a power model P s, such as eq. (2.12) for the on state. The off or idle power consumption
is usually modeled by a machine-specific constant. This value may be 0, for instance when
a power off machine is also considered to be disconnected from the power circuit by a
manageable Power Distribution Unit (PDU). Each possible transition between a state s
to another state s′ is characterized by a transition time ts→s′ and an average power P s→s′

consumed during this time.
The different transitions and corresponding power consumptions are shown in fig. 2.6,

for a model with two states (on and off). It also illustrates the power consumption in
active state for a linear load model as given in eq. (2.14).

2.2.3 Energy-aware datacenter management

As it impacts directly the exploitation cost, many current researches on datacenter man-
agement aim at reducing their energy consumption, without dealing with renewable energy
specifically. This section aims to provide a quick overview of these approaches, in order
to highlight the similarities and differences with renewable-aware approaches later.

One of the common way to reduce the energy consumption is to make use of DVFS to
act on the performance/consumption trade-off. Wang et al. [195] propose several heuristics
for scheduling parallel batch tasks with precedence constraints, using DVFS to reduce
consumption generated by non-critical tasks, without increasing the total execution time
of the set of tasks. In addition, they present a mechanism based on an SLA established
with the customer, allowing to reduce the energy needed even more in exchange for a
bounded increase of execution time. Von Laszewski et al. [193] present a virtual machine
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Figure 2.6 – Illustration of power state model (on/off) and a linear power model based on
CPU load.

(VM) scheduler for homogeneous, cloud-oriented clusters. They use DVFS to reduce the
power consumption of the physical machines, depending on the QoS requirements of the
virtual machines running on them.

With the increased use of virtualization in datacenters, some recent approaches leverage
such environment to reduce the energy consumption. Zhou et al. [203] present a greedy
heuristic for minimizing the energy consumption using consolidation while considering the
quality of service of the VM. The QoS metrics consist in resource requirements of VM and
in performance degradation caused by migration during consolidation. By measuring the
load of each machine, the algorithm try to keep it bounded to avoid both over-loading to
preserve VM resources and under-loading to reduce power consumption.

Energy- and thermal-aware scheduling algorithms are often studied in the context
of datacenters. Sun et al. [181] give a spatio-temporal thermal model for machines in
datacenters. They use this model to develop an online scheduler taking thermal constraints
into account, using DVFS to dynamically change the power and thermal impact of the
machines. In [117], authors propose several greedy algorithms to improve the cooling
infrastructure efficiency and to take into account the high failure rate of large datacenters.

Some works do not try to minimize the energy consumption but the energy cost. Li
et al. [121] present a scheduling approach to minimize the cost of the energy consumed
while guaranteeing security-related QoS. The security guarantee is obtained by adding
security services at runtime according to the level of SLA of each task. The scheduling
algorithm itself is an online heuristic, based on Lyapounov optimization. With only knowl-
edge of the past and current electricity prices, the algorithm takes the decision of whether
executing a task or waiting for cheaper electricity.

Renewable-aware approaches differ from most of the energy-efficient schedulers as the
first goal is not to reduce the total energy consumed, but generally the non-renewable
energy consumed. Therefore, they have more similarities with approaches such as [121],
which tries to minimize the energy cost while having dynamic electricity pricing.

2.3 Electrical sources and storage
The traditional works for energy-efficient datacenter often consider the power supply in-
frastructure with the simplest possible model: an infinite source of electricity. A few works
from the electrical engineering community show the complexity of finer models, which de-
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scribe the distribution and conversion of the electricity inside the datacenter itself [149].
This distribution requires multiple transformers and converters, some level of hardware
redundancy is needed for reliability, along with Uninterruptible Power Supply (UPS) near
each server. A total abstraction of the electrical infrastructure is however reasonable for
approaches focused only on workload and machine management for energy efficiency in a
datacenter powered solely by the electrical grid.

The case of renewable-aware energy management is different. Trying to leverage on-
site RES requires at least some rough model of the renewable sources: a finite power
source, with available power varying across time. Batteries or other ESD associated with
the RES may offer other optimization perspectives, at the cost of additional complexity
of electrical infrastructure. Even a traditional electricity provider may be modeled more
finely to take the price or the environmental impact of the energy into account.

When the goal is to reduce the environmental impact of energy consumption, it is
required to define and to measure it. Climate change is not the only consequence on
the environment of human behavior and many other aspects may be considered [197].
Nevertheless it focuses a lot of attention from the scientific communities, resulting in a
lot of studies and data available. A common way to measure it to unify greenhouse gas
(GHG) in terms of equivalent kilogram of CO2, denoted kg CO2 -eq, over a fixed time
period (dozens of years), therefore including the other GHG.

This section presents some background on the different electrical sources and several
storage devices. While some models of the literature are presented and discussed, their
main goal is to highlight some important characteristics thus explaining certain choices in
existing works or in the contributions presented in this thesis.

2.3.1 Electrical grid

On-site electrical generation and storage systems can be designed either as grid-connected
or stand-alone infrastructures. The first are connected to a traditional electricity provider,
or electrical grid, for either buying energy or selling excess of production. On the contrary,
stand-alone systems are isolated and can only use ESD in a limited way to store such
excess, with no possibility to acquire more energy. Kaundinya et al. [99] highlight the
specific advantages and disadvantages of both. Basically, grid-connected systems can only
be deployed in areas with accessible electrical grid and requires additional costs just for
the interfacing with it. On the other hand, the grid provides a virtual infinite storage if it
is possible to sell an excess of production and increases reliability compared to stand-alone
systems. The works on datacenter with RES almost exclusively focused on grid-connected
systems.

The electrical grid can be modeled either as a source only [118] or as a bidirectional
power device [78]. In both cases, it is generally considered as a perfect source or sink,
i.e. with no limit of power or other constraints. Many works on datacenter management,
including a few which are not designed for RES, uses a varying price of the grid energy [78,
113]. At a given time t, the price of a unit of grid energy is denoted cgrid

t . Hence assuming
a discrete time model with time steps of duration δ, the cost for consuming an average
power pt from the grid for each time t ∈ {1, . . . , T} is given by the simple sum:

Cgrid =
T∑
t=1

pt · δ · cgrid
t

Most approaches rely on grid pricing being known perfectly in advance for some time
window at the time of the decision. A few works use a simpler model for varying grid
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price, based on on-peak and off-peak tariffs [70]. In this case, two prices, θmin for off-
peak and θmax are used depending on the hour of the day. Being a specific case of the
aforementioned pricing model, it can be transformed into the corresponding set of cgrid

t

for all t.
For approaches where selling the excess to the grid is allowed, some adjustment is

done such as the selling price is not the same than the buying price at a given time. For
instance, Gu et al. [78] uses a parameter γ ∈ [0, 1] to obtain the selling price csell

t = γcgrid
t .

This lower selling price is explained by the conversion and distribution losses, but also by
the fact that the grid operator is not always able to absorb additional power.

Identifying and measuring the GHG emissions caused by electrical grid energy is a
complex topic. First, it depends highly on the considered location, as each national grid
uses different primary sources mixes [88] which produce different quantities of emissions
per unit of energy. Then, accurate modeling should also take into account the time of
consumption. Even without considering the wind and solar production of the electricity
generation mix, conventional power plant are not always enable depending on their charac-
teristics and the electricity demand. For instance, when demand is high (typically during
work hours), coal and other fossil fuel power plants are more used, while nuclear power
plants, being very slow to start and stop, provide a higher proportion during low-demand
time.

Hence the grid GHG may be modeled similarly to the energy cost [51], with cgrid
t being

the equivalent CO2 emissions for an energy unit at a time t. Unfortunately, precise sub-
day data is not always available, leading to daily or yearly average used instead. When
considering selling renewable excess to the electrical grid, this problem is amplified with
the difficulty to determine the net impact of this additional energy on the overall grid
operation. Similarly to the economic cost, a parameter γ ≥ 1 can be adjusted to reflect
the losses and other grid behaviors which lead the injected energy to compensate only
partly the equivalent emissions from current generation mix.

2.3.2 Renewable energy sources

The term renewable energy source, according to all the commonly admitted definitions,
includes sources such as photovoltaic panels, wind turbines, hydroelectric, geothermal and
biomass power plants. However, as stated previously, the researches targeting renewable
energy integration with datacenter almost exclusively focus on the sources with intermit-
tency and unpredictability, which are the roots of the scientific challenges. Hence in this
section and in the rest of the thesis, the term RES refers primarily to wind turbine or
photovoltaic panels, according to its usage in the datacenter-related literature.

Wind turbines and photovoltaic panels share these two important characteristics: being
tied to the weather conditions, their available power over time is intermittent and difficult
to predict accurately. Both also exhibit some more or less pronounced seasonality and daily
cyclic behaviors [15]. That being said, the models used to determine the output power from
the corresponding environmental conditions, are totally different between photovoltaic
panels and wind turbines and these environmental factors also follow distinct models.

In most of the literature on datacenter management with on-site RES, they are how-
ever modeled indistinctly, as generic sources with variable power [78, 119, 150]. With
this model, all the renewable sources can be aggregated. We denote prenew(t) the power
available at time t for all the RES. This value is not known from the decision algorithm
before the time t is reached.

Let p̂renew
t (t′) be the prediction known at time t of the renewable energy available at

time t′ > t. The approaches differ greatly on way the prediction is modeled. It can be
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considered to be a perfect prediction, at least during a given time window of duration
T forecast , in which case p̂renew

t (t′) = prenew(t′),∀t′ ∈ [t, t + T forecast ] and is undefined for
other values of t′. Alternatively, some approaches consider the imperfect prediction by
updating the forecast regularly [70]. In such case, at a given time t0, the value of the
prediction for a future moment t′ > t0 (denoted p̂renew

t0 (t′)) may not be the same as the
prediction for the same moment at a later time t1 (p̂renew

t1 (t′)). Many methods can be
used to compute the renewable prediction based on weather data, which is discussed in
section 2.3.2.

In this thesis, the RES used for all experimental results is photovoltaic energy. Because
of the simplistic power-over-time model commonly used in the literature, it is possible to
consider wind turbines, other intermittent sources or a mix of several renewable sources
instead, without significant changes. However, understanding the internal model of RES
is still useful, by giving a sense of the relationship between weather conditions and power
production. This helps to understand how the weather forecast uncertainties is translated
into production uncertainties.

Photovoltaic module models

Modeling the production for PV panels is still an active research field. A large number of
models already exist [72, 103, 135, 202], depending on the cells technology, the required
accuracy and the available parameters. Most of the existing works target the electrical en-
gineering community and therefore attempt to model the detailed electrical characteristics
of the PV system. Notably, the PV modules are known to have a very specific relationship
between the intensity of the load connected to it and the output voltage. This aspect is
often covered by the models, as it represents a ground-truth required for fine electrical
simulations. When using PV modules for practical application however, a dedicated sys-
tem is in charge of finding the ideal intensity and tension for maximizing the output power
(known as Maximum Power Point Tracking, or MPPT) [56].

When modeling a PV system at a higher level, it is more convenient to deal with
output power at the maximal power point. Such a model is described as empirical by
Goss et al. [72] and focuses on the overall system (PV, MPPT and sometimes converters)
at the cost of some accuracy. They are however used by the overwhelming majority, if not
all the works on RES integration with datacenters. The most important variable to model
the PV production is obviously the amount of solar power received by the panels, or solar
irradiance. Hence the most basic model is called here the irradiance-linear model and is
described by eq. (2.16). It gives the output power ppv of a PV array of area A depending on
the measured irradiance E at their angle by taking into account the nominal efficiency of
the panels (denoted η) and an optional performance ratio ρ of the whole system (including
converters and other losses) [72].

ppv = η ·A · E · ρ (2.16)

This simple model does not take two major aspects into account: the effect of the
temperature on the module efficiency and the non-constant efficiency at different irradi-
ance levels. The first aspect is sometimes considered in the renewable-aware datacenter
management literature. For instance, Kumar et al. [110] are using a PV model which
takes into account a “temperature exceedance loss”, denoted L. Their model is given by
eq. (2.17), which also approximates the normal-plane irradiance (E above) from the easier
to obtain vertical irradiance Ev and the angle α between panels and the sun.
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ppv = (1− L)η ·A · cos(α)Ev (2.17)

A representative and relatively complete model, yet simple compared to the state of the
art used in electrical engineering, is PVFORM [140]. It handles the non-constant efficiency
of the panels depending on solar irradiance through an alternative formulation when it
is less than 125 W m−2. This effects corresponds to the decreased efficiency observed in
crystalline silicon cells [135] in such conditions. The parameters used by the model are
detailed in table 2.1. The required environmental parameters consist only in the irradiance
E and temperature T . It requires only few parameters from the PV modules themselves,
which are commonly found in the datasheet of recent products, reducing the need of
complex experimental measurements. Equation (2.18) gives the formula used to compute
the maximum output power with the PVFORM model.

Parameter Unit Meaning
ppv W Predicted maximum output power.
Pm0 W Measured output power at Standard Reporting Condition (SRC).
E W m−2 Solar irradiance, as measured with a pyranometer at the location

and angle of the panels.
E0 W m−2 Solar irradiance at SRC.
T ◦C Temperature of the cells.
T0

◦C Temperature of the cells at SRC.
γ ◦C−1 Maximum power correction factor for temperature.

Table 2.1 – Summary of parameters used by the PVFORM model and their meaning.

ppv =


E

E0
Pm0 (1 + γ(T − T0)) if E > 125 W m−2

0.008 · E2

E0
Pm0 (1 + γ(T − T0)) otherwise

(2.18)

Lifecycle cost and greenhouse gaz emissions

The manufacturing, maintenance and disposal of renewable power sources are far from
being free of environmental impact. For instance, manufacturing photovoltaic panels is
quite energy hungry and involves the extraction and transformation of some raw materials.
Consequently, even if they produce more energy in their lifetime than they consume during
their production, they are definitively a source of GHG emissions [7, 151].

It must be highlighted that the aging of photovoltaic panels is almost entirely tied to
the solar radiations they received and their thermal conditions [133]. Hence it depends
mainly on their time spent outside, whether power is actually consumed or not.

These two statements explain the different consideration for economical cost and GHG
emissions of renewable sources in the literature. It may be meaningful to take these costs
into account, for instance when studying the impact of installing new RES or buying
renewable energy from a tier operator. In [51, 78] for instance, economical and ecological
costs are added, which may be balanced with the potential gains associated with their
usage. On the contrary, if the scope of a work is an already built infrastructure, only
maintenance cost would make sense. In the case of photovoltaic panels specifically, it
appears that the maintenance cost does not depend on their production or on the decision
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made on the usage of this energy. Such studies can therefore arguably ignore the cost of
the renewable energy production, considered as null in an energy dispatch optimization
process [68, 70].

Weather forecasting for photovoltaic panels

Solar and wind energy production is tied to weather conditions. Therefore, weather fore-
casting methods are used to predict the future production of these RES. As shown previ-
ously, the most important factor in all photovoltaic (PV) production models is the solar
irradiance received by the panel. The air temperature also affects slightly the production
by impacting the panel temperature, but is secondary and more predictable than solar
radiations [81]. The irradiance at a given location and time depends of several param-
eters, such as the position of the sun in the sky (zenith solar angle), the angle formed
between the panels and the sun, as well as several weather-related data. The presence
and nature of clouds blocking the direct sunlight is the most obvious, but the atmospheric
humidity and other conditions affecting the indirect irradiance may affect the overall ir-
radiance significantly [9]. Various metrics have been proposed to represent the impact
of the weather conditions on the irradiance, such as the clear-sky index introduced by
Marty and Philipona [139] or the KPV [63] which is directly designed for being used in
PV forecasting.

Many methods exist for forecasting irradiance and related weather conditions in gen-
eral, from statistical estimation using past data to satellite imagery processing combined
to numerical weather prediction models [54]. The main challenge for predicting production
of a single PV array is the need for high temporal resolution and precise location forecast,
with an accuracy of a few dozens or hundreds of meters. Traditional numerical weather
models are rarely able to provide this precision [63, 132].

Using numerical weather predictions as a basis for single-site irradiance forecasting
causes errors of two different nature: a part is due to their relatively low spatial resolution
and the other is caused by the weather model themselves. Methods based on historical
data, for instance persistent models or AutoRegressive Moving Average (ARMA) can be
used for local predictions over short time horizon (≤ 1 hour) but are highly inaccurate
for longer periods [54, 106]. Spatial and temporal resolution of numerical weather predic-
tion models can also be improved using different post-processing, by combining historical
statistic models to weather forecast or by interpolation and filters [54, 132].

The irradiance forecasting errors and therefore the prediction uncertainties, are cor-
related by several authors to the clear-sky index or cloudiness [106, 132]. Particularly,
Lorenz et al. [132] show the correlation of their prediction error with both solar zenith
angle (less error near sunset or sunrise) and clear-sky index, in a way that very cloudy
or very clear conditions give more accurate results than partially-cloudy sky. In the same
paper, the authors uses this prediction error to compute the prediction intervals of the
expected irradiance.

Several other authors recently started to investigate on probabilistic forecasting meth-
ods [9]. Instead of giving a single point prediction for each time of the horizon (deter-
ministic forecast), these methods output either a lower and upper bounds, or a complete
probability density function of the irradiance. This area is still young and all authors do
not agree currently on the best distribution law to fit the irradiance uncertainty. Some
works suggest normal or Laplacian distributions are acceptable models [143], but Beta
distribution are used by several authors [11, 109] and more complex joint distributions,
such as multivariate normal laws were also proposed [143].

27



2.3. Electrical sources and storage

Many methods for predicting irradiance exist, with different trade-offs between accu-
racy, time horizons and both geographic and temporal resolutions. Hence, best predictions
for a precise location are achievable using multi-model approaches, combining their respec-
tive strengths [106]. Many sources of errors are identified in the literature and cause these
predictions to be uncertain. However, detailed models of uncertainties in the form of
confidence intervals or probability density functions are still discussed. The PV models
presented in section 2.3.2 can be used with minimal effort to predict probabilistic produc-
tion by knowing the irradiance (and possibly air temperature) probabilistic forecasts.

2.3.3 Energy storage devices

Electrical energy storage at utility-scale is challenging. Many technologies exist, each with
specific advantages and drawbacks [48]. All the storage technologies first transform the
electrical energy into another form which is easier to maintain. They can be classified
based on this intermediary energy form: mechanical (pumped-storage hydroelectricity,
compressed air, flywheel), thermal (molten salt storage, steam accumulator), electrochem-
ical (battery, supercapacitor) or chemical (electrolyzer/fuel cell system, methanation).

Each ESD technology has some specificities, requiring dedicated models for a fine-
grained study. However, a coarse model of most of them can be achieved with a few
characteristics, which are commonly used to compare technologies:

• round-trip efficiency η, representing the expected energy released for a unit of energy
absorbed

• self-discharge rate γ, as many technologies cannot retain the stored energy for a long
amount of time

• capacity in terms of stored energy, Qmax

• maximum power, potentially different for charging (ρcharge) and discharging (ρdischarge)
• lifetime, representing the aging of the device, often expressed in number of charge/dis-

charge cycles
Using these characteristics, a dynamic coarse-model with discrete time (time step δ)

is described by eqs. (2.19) to (2.21). The energy stored at time t is denoted by Qt, and pt
is the charged (positive) or discharged (negative) power. It is common to talk about the
State of Charge, which is defined as a percentage of the capacity (100 ·Qt/Qmax).

∀t ρdischarge ≤ pt ≤ ρcharge (2.19)
0 ≤ Qt ≤ Qmax (2.20)

Qt = Qt−1 · (1− γ) +
{
η · pt−1 · δ if pt > 0
pt−1 · δ otherwise

(2.21)

This model can be even more simplified in some cases. For instance, some battery
technologies have very low self-discharge rate, which may be approximated by γ = 0 in
eq. (2.21). While few existing ESD have near-perfect efficiency, a rough approximation
of η = 1 is sometimes used [51, 110]. Similarly, supercapacitors and certain batteries
have high maximum power values and it may be acceptable to ignore constraints from
eq. (2.19).

Oppositely, finer models quickly exhibit the specificities of each ESD. For instance,
the effect of aging differs between each technology: it can affect the capacity Qmax , the
maximum charge and discharge rate (ρcharge, ρdischarge) or the efficiency η. An other
example is the impact of charge and discharge rate, which may act on the efficiency,
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on the lifetime, and even the available capacity for some time (lead-acid batteries for
instance).

Among the various ESD, electrochemical batteries are still a reasonable choice for
moderate capacity of energy storage. However, battery is a generic term which encom-
passes dozen of technologies, with very different characteristics [153]. The two families of
mature battery technologies which are currently the most used for RES storage applica-
tions are lithium-ion and some of the lead-acid ones. Lithium-ion appears to be more and
more interesting, but suffers from an important investment price. On the contrary, even
if lead-acid batteries have relatively short lifetime (among other drawbacks), they are still
economically attractive because of their low prices [153].

While the works of the renewable-aware datacenter management literature use rela-
tively coarse models (similar or simpler to eqs. (2.19) to (2.21)), we propose to briefly
describe a more accurate model of lead-acid battery. It aims at illustrating the complexity
of the realistic models, highlighting the commonly accepted simplifications.

Fine charge and discharge models of battery

With the wide range of existing models in the literature [95, 188], choosing one of them
requires to understand the pros and cons of each. Different approach families exist, such as
(i) electrochemical models which take into account the chemical process occurring inside
the batteries, (ii) electrical-circuit models which represent a battery as a traditional electri-
cal circuit, (iii) analytical and stochastic models which use a more abstract representation
of the batteries.

While electrochemical models, such as in [66], can reach a very good accuracy, they also
require to set dozens of parameters related to the materials used inside the battery or to
the size and shape of the electrodes, making difficult to adopt in practice. The equivalent
electrical-circuit (EEC) models [28, 157] give an interesting abstraction when batteries
are integrated in more complex electrical-circuits. They indeed allow to represent them
uniformly, and give directly various electrical measurements (tension, intensity or internal
charge). However, they are not as accurate as the electrochemical models [95] and often
require to get experimental data in order to set their parameters.

Stochastic models [34, 35, 159] achieve pretty good accuracy, by representing the charge
or discharge of the battery with Markov chains. They require few parameters, but the
resulting Markov chains tends to be huge (between 6 · 106 and 4.5 · 108 states in their
experiments [95]), and depends directly on the capacity of the considered battery.

Finally, the analytical family contains several interesting models. One of the simplest is
the Peukert’s law, which can be used to approximate the battery lifetime when discharged
at a constant rate. However the simplicity of this model prevents it to be usable when the
output current varies over time, and results in a moderate or low accuracy [95]. Another
analytical model is the Kinetic Battery Model (KiBaM) [134]. It considers the battery
charge distributed in two “wells”: the available well and the bound well, as shown in
fig. 2.7. The first well represents the amount of charge directly available, whereas the
second one consists in the charge actually present in the battery, which cannot be used at
the moment due to the internal chemistry of the battery though. The charge goes from a
well to another at a rate which depends on a parameter k and on the difference between
the level of both wells (h1 and h2 in the figure). The relative size of both wells is controlled
with a parameter c, and the charge in each well is given by q1 = c ·h1 and q2 = (1− c) ·h2.
Two differential equations model the evolution between the two wells depending of the
charge or discharge current I.

With only two parameters, which can be extracted from most battery datasheets,
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Bounded charge Available charge

Figure 2.7 – The “two wells” representation of a battery with the Kinetic Battery Model
(KiBaM).

the KiBaM model is quite simple. It is designed initially for lead-acid batteries, but is
used for other technologies as well, such as lithium-ion [96]. It models quite accurately
their behavior with non-constant charging and discharging current. In addition, recent
researches improve some lacking aspects of KiBaM, e.g. the slight asymmetry between
charging and discharging parameters and the impact of battery aging on them [96].

Very few approaches for datacenter management are using any of the previously cited
battery model. A notable exception is the approach from Li et al. [115], modeling the
behavior of lead-acid batteries through KiBaM equations.

Battery aging and environmental impact

It is rather difficult or impossible to compute the exact amount of pollution emitted to
manufacture a complex device, such as batteries. However, some studies on Life-Cycle
Analysis (LCA) try to evaluate either the energy needed or the environmental impact of
such manufacturing. Depending on the studies, this evaluation may take some steps into
account, such as extraction of raw materials, transportation or recycling. This causes the
wide range of values found in the different studies.

The impact of batteries is measured in terms of emission per quantity of stored energy,
or kg CO2 -eq /kWh, allowing to compare technologies with different energy densities.
There is no clear consensus on the GHG emissions for manufacturing batteries, with
works finding values from 38 kg CO2 -eq /kWh to 356 kg CO2 -eq /kWh [61, 82] just for
lithium-ion ones. It also depends on the exact technology, as lithium-ion encompasses
several kind of batteries with very different manufacturing processes. For instance, the
same study from Hao et al. [82] found values from 96.6 kg CO2 -eq /kWh for Lithium
Manganese Oxide (LMO) to 109.3 kg CO2 -eq /kWh for Lithum FerroPhosphate (LFP),
two lithium-ion technologies.

The lifetime of a battery depends on numerous parameters, such as the charge/dis-
charge currents, the ambient temperature and the number and the depth of discharge
cycle [79]. However, the number of full charge-discharge cycle is a good aging predic-
tor [33], assuming non-extreme usages (regulated temperature and depth of discharge in
the range of the manufacturer). The values commonly used in the literature for the lifetime
of lithium-ion batteries are between 1000 and 4500 cycles [33, 59, 186].

Technically, using a battery does not cause additional emissions, as its manufacturing
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is already performed. The battery lifetime is nonetheless greatly affected by its usage
and it may be considered that once a battery is considered to be too deteriorated it will
be replaced by a new one. Hence it is possible to incur some of the initial battery cost
(economical or ecological) to each performed operation, depending on how much it affects
its lifetime, as a form of amortization. Deng et al. [51] model the cost of using the battery
as if any amount of charged or discharged energy during a time step was a full cycle. It
leads to a fixed cost of Cbat/N cycle for every battery operation, with Cbat the total cost of
new batteries and N cycle their lifetime in number of cycles.

However, a small amount of charged or discharged energy does not cause the same
degradation to the battery than a full charge/discharge [33]. To take this fact into account,
a finer model may be used. The impact on aging can be associated linearly with the amount
of charged/discharged energy and symmetrically over the charge and the discharge. It gives
a cost per kW h of charged/discharged energy, denoted cbatuse in eq. (2.22).

cbatuse = Cbat

2 ·N cycle ·Qmax (2.22)

2.3.4 Electrical infrastructure management under uncertainties

The integration of intermittent and uncertain RES causes new challenges for controlling
and stabilizing electrical grids. This leads, at least partly, to a major change of the grid
management paradigm with the recent emergence of the smart grids research area [175].
Works on smart grids encompass many topics which are distant from the primary focus of
this manuscript and therefore we do not attempt to provide a comprehensive survey of the
whole field here. A few works are nonetheless closely related to the problems studied in
the next chapters. In particular, uncertainty of RES attracted attention in the smart grid
community recently [49, 109, 122] with approaches comparable in some aspects with the
contribution proposed in chapter 6. For this reason, a brief overview of RES uncertainty
management is proposed.

Liang and Zhuang [122] review existing works for dealing with uncertainties of RES
production and electrical load in microgrids, which are define as partially independent
electrical infrastructures with multiple consumers, producers and storage devices. The di-
versity of existing methods to deal with uncertainties, presented in section 2.1.2, is well rep-
resented in these works. Scenario-based approaches are among the most commonly used,
but other methods such as Lyapounov optimization [86] or stochastic dynamic program-
ming [85] are also explored. In a more recent survey, primarily focused on the modeling
of uncertainties in microgrids, Kumar and Saravanan [109] highlight two-stage scheduling,
another category of approach.

Wu et al. [198] present such a two stage scheduling strategy, which is used to mitigate
the effect of uncertainties in long horizon (several hours or days) energy management
problems. An initial planning, using coarse production forecasts, is obtained by a first
optimization stage which may be relatively costly. Then, a simpler sub-problem is used
to adjust the decision variables online when short-term, more accurate predictions are
available.

Talari et al. [182] study a microgrid optimization with RES and load uncertainties.
A stochastic programming method, based on a MILP formulation with two-phases objec-
tives is proposed. The first phase relies on multiple scenario to evaluate the risks due to
uncertainties, which is used in the second phase to perform the final decision.

In [97], Kamjoo et al. handle uncertainties in an energy dispatch problem, targeting
isolated microgrid, by the way of MOEA. Two objectives are minimized, the first being
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Figure 2.8 – Main related research areas and relationship between them. The white-
hatched area highlights the primary focus of this literature review.

the cost of the planning and the other is the probability of not powering the load at some
time. Depending on the required reliability and acceptable trade-off with associated cost,
any solution from the Pareto front approximation may be chosen.

Another approach based on existing meta-heuristic is proposed by Nikmehr et al.
[145], using a particle swarm optimization (PSO) combined with Monte Carlo simulation
to account of uncertainties by evaluating multiple scenarios. This is used to optimize
the energy commitment in multiple microgrids connected with each others (networked
microgrids), each having uncertain renewable sources and loads.

2.4 Management of datacenter powered by renewable sources
As stated previously, reducing the power consumption of a datacenter and improving the
use of RES are non-identical problems. The latter is also actively studied from the last
decade. While it is a relatively young research area, its foundations come from several other
domains, leading to a quantity and diversity of works in this short period. Figure 2.8 shows
the relationship between the most important preexisting areas: the studies in energy-aware
datacenters mentioned in section 2.2.3, the electrical-engineering researches in RES and
ESD and the improvements of the electrical grid which led to the concept of smart grid
in the early 21st century.

The smart grid defines basically the modernization of the electrical grid to help the
integration of many small producers (including RES) and to give a better control on
the optimization of the transmission and distribution system. One of the most studied
aspect is the so-called demand response [175] which aims at controlling the behavior of
the power consumers (demand) according to the electrical grid needs, usually through
economic incentives. A common use-case is the temporal shift of delayable loads, which
helps to absorb the production peaks (when energy is cheap) and to reduce the overall
consumption when additional energy would be costly to deliver.

The relationship between demand response in smart grid and renewable-aware data-
center management research areas is dual. Firstly, temporal load shifting is basically a
scheduling problem, thus the models studied in some demand response works are close
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to models developed in batch task scheduling [131, 204]. Secondly a datacenter being a
kind of delayable load, the smart grid community worked on demand response approaches
which consider it as the delayable power consumer [130]. Demand response concept is
particularly well suited for handling RES intermittent generation, both for distant sources
through the electrical grid and for on-site generation.

Historically, this situation led two different researcher communities to study almost
independently the management of datacenters powered by renewable energy around 2010.
The smart grid community applied the idea of demand response with intermittent RES
to datacenters, generally with fine models of electrical components but rough view of
machine and workload models. In parallel, the datacenter community extended energy-
efficient scheduling to take RES variability into account, with more realistic datacenter
models but rough approximations of power systems. This apparently anecdotal fact is
highlighted here because it explains some differences in models, methods and vocabulary
across the literature. It also shows how young this research area is.

The present literature review includes works from both original communities, as long
as renewable energy is explicitly considered (hatched area in fig. 2.8). Despite its youth,
datacenter management with renewable energy sources attracted a lot of attention. The
survey of Kong and Liu [105] from 2014 presents and classifies dozens of works. It also
summarizes the different ways to address the problem and the two main open issues in
the community, which are:

1. whether to use on-site or off-site energy sources
2. whether to exploit temporal or spatial diversity and flexibility in the datacenter

workload.
After illustrating the main ideas behind renewable-aware datacenter management, a

more detailed classification of the related works is presented and some of the major ap-
proaches are described.

2.4.1 Illustration of renewable-aware scheduling

Before digging into the existing approaches, we propose an overall illustration. It aims at
highlighting how a renewable-aware scheduler differs from a traditional, energy-efficient
scheduler and at providing some intuitions on their behaviors. In this example, we consider
a data center powered by a set of photovoltaic panels and additionally connected to the
electrical grid. The workload consists in a set of batch tasks with due dates. As the
tasks are submitted over time by the users to the data center, they are not known by the
system before submission. The scheduler should assign each task to a machine with enough
resources to execute it, and has to respect as much as possible the due date required by
the user.

With a traditional energy-aware scheduler, the techniques detailed in section 2.2 such as
DVFS or power state management may be used to reduce the global energy consumption.
For this example, we consider a simple first-fit scheduler, able to power off idle machines.
For a given workload, it will execute the submitted tasks as soon as possible, resulting in
the execution trace presented in fig. 2.9a. This figure represents, for each machine, the
tasks executed on it over time. Each task execution is represented as a rectangle, from its
start to its completion. For one of those tasks, named ’0_2’, we represented additionally
the time range between its submission and its due date as a thinner, hatched rectangle. In
this example, the task ’0_2’ appears to end far before its due date, as the first-fit scheduler
executes it immediately after submission.

This scheduler is unaware of the origin of the energy used by the data center. Its
power consumption for that scheduling, and the production of the solar panels over time,
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(d) Power profile with a scheduling approach aware
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Figure 2.9 – Top: possible schedule of tasks, for each machine, with (b) and without (a)
awareness of renewable energy availability. The time between submission and due date is
materialized, for the task ’0_2’, as an hatched rectangle.
Bottom: power profile (production of renewable sources and data center consumption) for
a simple scenario, with a scheduler aware of renewable energy availability (d) and with a
traditional scheduler (c).

is shown in fig. 2.9c. Obviously, the consumption is not correlated with renewable energy
availability. An important part of the energy, in red on this figure, must be drawn from
the grid. We also note that a part of the produced renewable energy, represented in green,
is not consumed by the data center.

This information can be used by a scheduler that is aware of the renewable energy
availability, in order to match more closely both consumption and production. Figure 2.9b
gives a possible schedule obtained with the approach presented in chapter 4, for the same
workload and also respecting all the due dates. However, almost all tasks are slightly
delayed compared to the result of a first-fit algorithm. This is illustrated for the task
’0_2’, which is executed a couple of hours later, but still ends before its due date. By
scheduling tasks this way, the data center consumption over time is quite different from
the previous schedule, as we can see in fig. 2.9d. It still does not fit perfectly the renewable
energy production, but the consumption and the production are clearly more correlated
this time. Note that the total energy consumed by the data center is almost identical
in both cases: what changes is how the power consumption is distributed over time and
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consequently the source it is produced from.
While it exists as much variations as there are different approaches, most of them are

acting in a similar way.

2.4.2 Taxonomy of renewable-aware datacenter management

The literature on renewable-aware datacenter management contains dozens of approaches,
but proposing a meaningful classification of these works is a challenging task. One of
the main reasons lies directly in the variety of datacenter and electrical infrastructures:
many different models are invoked and each model comes with different optimization
opportunities and hardly comparable with each other. Another reason is the diversity
of the optimization objectives used. At least one of the objective is usually related to
the energy, such as the minimization of its total cost or of its ecological impact. At
least one other is related to the workload management, maximizing a QoS metric or the
revenues. However, the QoS may be measured by many different metrics, as described
in section 2.2.1, depending on the kind of workload under use. Consequently, it results a
sparse research area, with heterogeneous works in which each author is ultimately working
in a similar but yet different problem.

Some surveys still attempt to classify the existing works, for instance based on the
number of considered datacenters. Kong and Liu [105] separate the approaches using mul-
tiple geo-distributed datacenters and the ones with a single datacenter. While the frontier
is clear defined, it ignores the fact that many geo-distributed approaches also uses intra-
datacenter power management techniques [78, 110]. Another classification is proposed by
Shuja et al. [174], based on the involved workload scheduling technique. Three techniques
are identified, which are intra-datacenter dynamic load balancing, geo-distributed balanc-
ing (follow the renewable) and power capping (using power state management and DVFS).
It is difficult to assign an exclusive category for every approach from the literature using
this classification, as many of them use a combination of several techniques.

More complete taxonomy are detailed in [105, 174], leading to many different dimen-
sions: electricity pricing model, energy storage devices used, carbon emission market
model, type and location of RES, kind of workload or objective function. However, none
of them gives meaningful exclusive categories which would allow to identify clusters of
works addressing very similar problems.

Using the findings of existing surveys [105, 174] and a detailed exploration of the
existing literature, a new taxonomy is proposed. Only four main dimensions are derived,
each leading to several criteria, shown in fig. 2.10. However, contrary to many conventional
taxonomies, most of the criteria (represented as the leaves in the figures) of a single
dimension may be combined in a single approach.

Each of the classification dimensions (workload, goal, power leverages and electrical
infrastructure) is briefly described below, along with some works illustrating the chosen
criteria. A summary of the characteristics of each work is given in table 2.2.

Workload This first dimension foresees the type of workload submitted to the dat-
acenter. The two main classes of workload, batch-like and interactive services already
mentioned in section 2.2.1, are used as the main categories. Some approaches are easily
associated with one or the other. Gu et al. [78] handle interactive and non-delayable user
requests, which is clearly a kind of interactive service workload. On the contrary, Lei et al.
[114] follow a typical batch-like workload approach, by considering independent tasks with
determined duration and deadline.
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Some approaches consider mixed workload with batch and interactive services such as
PIKA from Li et al. [118]. Finally, a handful of approaches are studying a very precise
workload, being categorized as batch or services, but showing a possible additional re-
finement. GreenSwitch (Goiri et al. [71]), which is implemented specifically for Hadoop
MapReduce workload but can be loosely considered as batch-like as the processing may
be delayed, falls into this category.

Goal This dimension encompasses both the properly speaking objectives and their ar-
ticulation in case there are several explicit objectives. Many specific objectives can be for-
mulated, but they are grouped into three different categories. The first category includes
the objectives related to cost minimization or revenues maximization. It is a common
kind of objective, as most of the approaches assume a connection to the electrical grid and
aims at minimizing the bought energy cost [70]. A few others are taking into account the
revenues from the users of the datacenter. Ghamkhari and Mohsenian-Rad [68] deal with
profit optimization, calculated as the revenues minus the energy cost.

The second category is the objectives related to the maximization of QoS metrics or
minimization of SLA violations. While this seems to be a necessary objective to respect
the functional behavior of a datacenter, it is rarely made explicit. Instead it appears as
a constraint in the problem formulation [70, 118]. However, the heuristics proposed to
solve the problem may not be able to enforce the constraint [110], hence being reasonably
considered as an implicit primary objective.

Reducing the environmental impact is the main motivation of many renewable-aware
datacenter management works. While this may be discussed, we consider here that min-
imizing the energy bought from the electrical grid, as it is proposed by Li et al. [118] or
Kumar et al. [110] for instance, lies in this category. Deng et al. [51] and Gu et al. [78], on
the contrary, explicitly propose a minimization of the ecological impact in term of carbon
emissions.

A few approaches are considering multiple clearly formulated objectives. Lei et al. [114]
propose a multi-objective approach with an articulation a posteriori (Pareto dominance
optimization), with four different objectives formulated. Two of them are related to QoS
and SLA (minimizing the total makespan, maximizing the satisfaction of SLA) and two
others are related to ecological impact (maximizing the utilization of renewable energy,
minimizing the total energy consumption).

Power leverages The power leverages are the different ways the management algo-
rithm can act on to reduce the power consumption of a datacenter or delay it. All these
techniques can be used alone, or in combination with any others.

The geo-distribution of the workload is the only leverage that exploits the spatial flex-
ibility of the workload. Many approaches are investigating the use of multiple datacenters
with RES disseminated in different locations, sometimes as the only leverage [51, 78] or
in combination with intra-datacenter leverages [110].

Several leverages are available at a datacenter level. Delayable workload, typically
batch jobs, can be postponed depending on their deadline or due date, as in PIKA [118].
Virtualization (and containerization) can be used to perform consolidation, by migrating
tasks or services to other physical machines and therefore reducing the number of machines
required at the cost of higher resource usage on the target machine, as Kumar et al. [110]
propose.

Finally, a few techniques can also be used at a single machine or processor level, such
as DVFS in the work of Lei et al. [114]. More common is the management of the power
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states of the machine (powering off or putting the machine in sleep modes) [70, 71, 118].

Electrical infrastructure This last dimension in the proposed taxonomy concerns the
electrical sources and storage devices. Similarly to power leverages, the identified criteria
here can be used alone or conjointly with any others in a given approach. The main
differences between the electrical models of each approach concern three aspects: the
electrical grid (including off-site RES), the on-site RES and possibly the ESD.

The grid is the most common element in existing studies. A single work targeting
datacenters, called Blink [171], is considering only RES and ESD with no grid power sup-
ply. There are multiple ways to represent the grid nonetheless, each model giving specific
optimization opportunities. The possibility to resell a local production excess to the grid
provider is explored by some authors using selling price models [78] or considering the grid
as an infinite storage device (net metering) [71]. The grid energy pricing scheme varies
drastically across the literature. Some works, especially when looking only at minimizing
the grid energy consumption without caring for the energy cost are not modeling this
aspect or use a static cost [110]. Another common pricing model is the on-peak/off-peak
scheme [70, 71, 148], which gives some notion of dynamic energy cost. More advanced
pricing models are considered by some authors, with somehow arbitrary evolution of the
energy cost depending on the time of use [68, 78].

Fine RES models are occasionally used, such as in the work of Pahlevan et al. [148]
with an accurate temperature and irradiance-based PV simulation. In other approaches,
the RES production is only modeled as the resulting power, without explicit definition of
the underlying models used to estimate these values [44, 119].

The majority of works considering on-site ESD are either using explicitly batteries [71,
118] or some abstract storage devices with model generic enough to encompass other
technologies [110]. Using different energy storage devices is rarely explored. Li et al. [115]
advocate the benefits of hybrid renewable energy systems for datacenters, including several
kind of storage. Some of them (small-scaled batteries and even more supercapacitors) can
be viewed as short-term ESD while some others, especially a combination of fuel cells and
electrolyzer, are designed to store energy on the long-term, from days to months. However,
the approach in [115] is not evaluated with such combination of long-term and short-term
ESD. No other approach clearly leverages this aspect, with the closer explored setup being
a combination of two different battery technologies in [148].

Uncertainty of renewable energy sources

The handling of energy production uncertainties does not appear in the proposed tax-
onomy. This is explained by several reasons: the small number of works addressing un-
certainties, the variety of methods used making each approach almost unique and finally
the holistic aspect of uncertainty management (both goals and infrastructure models are
impacted).

Contrary to smart grid management, the field of datacenter management with RES is
still at the early stage of considering production uncertainties. Many of existing approaches
focus only on the intermittent aspect of RES and do not directly account the uncertainties.
Some authors propose ways to mitigate the effects of inaccurate predictions, either by
reconsidering their decisions when better predictions are available [70] or by hardening a
long term decision with online adjustments taking into account the actual production [148].

Only a few existing works consider these uncertainties in a sufficiently comprehensive
way to be considered as a part of the core problem addressed. Deng et al. [50] propose
an online control of energy sources (electrical grid and RES) and storage for datacenter,
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using two-stage Lyapunov optimization minimizing the operational costs. Although their
approach is interesting by some aspects (e.g. by requiring no a priori knowledge on the
uncertainties), no control is performed on the datacenter itself. It is modeled as a stochastic
power consumer, not impacted by any decision, hence making it difficult to classify this
work as a datacenter management approach.

Ding et al. [55] study batch job scheduling with uncertain renewable production and
electrical prices. The problem is formulated using mixed-integer linear programming
(MILP), with multiple scenarios representing a similar sub-problem with fixed value for
each stochastic input. These scenarios are created using Monte Carlo sampling of the
corresponding distributions and considered equally probable. The optimization objective
is a maximization of the expected (sum over all the scenarios) value of a weighted sum of
operating cost, carbon emissions and a measure of the risk associated to a given scenario.
Because the size of the problem increases with the number of scenarios considered, such
a MILP formulation can hardly scale to many scenarios to cover most of the possible
realizations of random variables.

2.4.3 Case study of existing works

The proposed taxonomy, along with the examples from the literature, gives an overview
of the diversity of the existing approaches. A closer look to some of the works used to
illustrate this classification is proposed here to give a brief but more global description of
the approach proposed by each.

Gu et al. [78] describe a request scheduler for distributed Cloud datacenters with on-
site RES and ESD. It aims to minimize both the energy cost and the GHG emissions.
This scheduler is in charge of choosing which node of which datacenter will handle which
request, by using one of the several presented heuristics. These approaches are promising
for taking advantage of the spatial distribution of datacenters. As this thesis focuses on
the management of a single datacenter, we aim to leverage instead the temporal flexibility
of the workload.

Li et al. [118] propose PIKA, a scheduling infrastructure able to leverage renewable
energy sources in datacenters with a mix of interactive web services and batch jobs. Each
job, both batch and interactive, is executed in a virtual machine (VM). While the jobs of
the interactive part are executed immediately, the batch ones may be delayed in a queue
until enough renewable energy is available or until it must be executed due to its deadline.
This approach uses VM migration to minimize the number of physical machines needed to
execute the workload at a given time. The unused nodes are powered off to save as much
energy as possible.

With their approach named GreenSlot, Goiri et al. [70] considered a small cluster used
for scientific computation, and powered partially with solar panels. Using prediction of
available renewable power, along with grid electricity price, the GreenSlot algorithm delays
jobs to execute them when the cost is the lowest (both in terms of brown energy usage
and in terms of purchasing cost). The managed jobs have an estimated execution time
and a deadline. This approach uses a greedy heuristic, based on a discretization of future
time into slots of fixed duration. Each slot is valuated with predicted renewable energy
production, grid electricity cost, and number of available computing node at this time.
To place a task, the method presented by Goiri et al. consists in testing each possible
starting slot. The first one to allow using only renewable energy during each required
slot is chosen, if any. Otherwise, the heuristic consists in choosing the one with minimal
estimated electricity purchasing cost.

In another paper, Goiri et al. [71] present the GreenSwitch approach, along with a
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real datacenter prototype named Parasol in which they implemented and tested their
algorithm. This datacenter, power by solar panels and batteries, is a small scale one,
containing 64 energy-efficient machines. GreenSwitch is intended to manage MapReduce
workloads, and specifically those using the Hadoop implementation. The authors used a
Mixed Integer Linear Programming formulation, as a single optimization problem, of both
workload scheduling and energy distribution constraints. Several variants of the optimiza-
tion problem are studied, to explore the impact of using batteries or net-metering. Two
different kinds of workload were used: deferrable, which can be assimilated to batch jobs
that may be delayed until the end of the experiment window, and non-deferrable, which
cannot be delayed. The results presented in [71] show that the GreenSwitch algorithm
can significantly increase the use of renewable energy, particularly when the workload is
deferrable, compared to a traditional Hadoop cluster.

Pahlevan et al. [148] approach is unique in several aspects. By using an existing
energy-aware VM scheduler [102] the authors add a multi-phase energy optimization with
RES and energy storage management. The electrical infrastructure contains a PV array,
a grid with on/off peak energy pricing and two different batteries banks. These banks
are each using a different technology, lead-acid for the first, lithium-ion for the second,
in order to leverage each technology in term of price and lifetime. The approach starts
by a first offline phase, using irradiance and load forecast to perform a first middle-term
(several days) allocation of the energy using relatively costly optimization method. Then,
an online phase is repeated every hour to adjust the power consumption and production
with the observed values and to perform short-term optimizations, using the initial offline
planning as a reference.

2.5 Conclusion and positioning

While the research field on datacenter management with RES is young, many approaches
were already proposed to tackle some of the new challenges. As shown by previous sections,
numerous IT and electrical infrastructures are studied, each leading to different models
and strategies to use renewable energy more efficiently. This diversity, combined with
that of possible objectives and ways to articulate them, is highlighted by the proposed
taxonomy and the summary of approaches in table 2.2.

Several issues are caused by this diversity of existing works and models. First, this
makes it hard to compare fairly the performances of several approaches, as each work
is considering a slightly different infrastructure (e.g. with/without ESD or dissimilar
workloads) and therefore different problems. Then the complexity of the combined IT and
electrical infrastructures leads the authors to focus on simplified models compared to the
state of the art of each research field (datacenter management and electrical engineering).
Finally, this makes more difficult to apply the approaches to real-world datacenters. To
be applicable with minimal modifications to a real infrastructure, the model studied in a
given approach must be sufficiently close from the target, both in terms of workload type,
possible power leverages and electrical sources and storage devices.

For all these reasons, it is interesting to split the overall optimization problem into par-
tially independent sub-problems. The ANR project Datazero [152], for instance, proposes
an approach based on independent optimization of electrical infrastructure on one side
and IT infrastructure on the other. A central negotiation mechanism is used to manage
the diverging objectives of each side and hence ensuring power available matches the re-
quirement while taking into account the quality of service and the ecological impact. With
this kind of design, the management of both IT or electrical sides may be viewed as black-
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2.5. Conclusion and positioning

boxes. It allows experts of each field to focus on single-area concerns, hence resulting in
more complex and realistic models to be usable. In addition, each resulting optimization
module is tied only to one part of the overall model, making easier to apply, for instance,
such an IT management approach to several datacenters having very different ESD and
RES. Hence it reduces the diversity of the possible models by avoiding the combinatorial
effect of joining IT and electrical concerns directly.

This thesis aims, at first, to explore how such a black-box optimization may be per-
formed to tackle the main challenge of RES which is their intermittency. The contribution
presented in chapter 4 starts by considering an abstract electrical infrastructure giving
limited, aggregated information to a scheduling heuristic. In chapter 5, the concept of
black-boxes is applied to both IT and electrical parts.

Another major observation highlighted by this literature survey is the few approaches
considering RES uncertainties in a non-trivial way. Hence a third approach is proposed
in chapter 6, using detailed information on renewable production forecasts uncertainty to
improve the reliability and robustness of the management of a datacenter.
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Chapter 3

Simulation tools and data sources

It is a mistake to think you can solve any major problems just
with potatoes.

— Douglas Adams, Life, the Universe and Everything

Contents
3.1 Datacenter simulation with rich electrical infrastructure . . . . 44

3.2 Analysis and generation of realistic workload . . . . . . . . . . . 50

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Researches on datacenter energy management in general make heavy use of simulations.
They allow researchers to work with large infrastructures which would be extremely costly,
to perform experiments faster than real-time and globally improve the reproducibility of
the works. Most of the approaches from the renewable-aware datacenter management
literature are evaluated only by simulation.

The addition of the electrical infrastructure, on-site renewable energy sources (RES)
and energy storage devices (ESD) makes even more difficult to use a real testbed. Very few
existing datacenter are currently built with such electrical sources and none are publicly
shared for research purpose. Studying weather-dependent renewable energies also adds a
level of difficulty for reproducibility: the observed weather condition during an experiment.

This chapter aims first to present existing simulation environments and the specifi-
ties required when on-site RES are taken into account. For the purpose of the approach
presented in chapter 4, several improvements to an existing datacenter simulator were im-
plemented and are described next. A simulation environment, however, is useless without
data. Two very different kinds of data are therefore needed. The first is the production
of renewable sources, which is specific to this class of approach. The second is common to
all datacenter management approaches, consisting in the workload submitted. Different
publicly-accessible datasets are presented and compared for this purpose.

Replaying workload traces directly is subject to many practical issues and only a
handful of recent public datasets are available. However synthetic generation of realistic
workloads focused few attention along the previous years. In the second part of this
chapter, one of the largest public trace, from a Google production cluster, is studied.
After analyzing some of its core characteristics, a synthetic generator is proposed to create
custom workloads with similar behaviors.
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3.1. Datacenter simulation with rich electrical infrastructure

3.1 Datacenter simulation with rich electrical infrastructure

There are basically two ways to evaluate a datacenter management approach without a real
testbed: an ad-hoc numerical simulation or using a more generic simulator developed by
the community. Ad-hoc simulation may be preferred when the overall model is relatively
simple, as the cost of a custom and specific implementation is likely lower than the cost
of understanding and adapting an existing complex piece of software. The same goes
when the model is rather unusual for the community maintaining a datacenter simulator.
These two facts explain the large part of the works in the renewable-aware datacenter
management literature which are evaluated with custom simulation environment [119,
148, 150].

While being perfectly legitimate in some situations, such ad-hoc numerical simulation
lead to several issues. As many researchers spend time rewriting and testing similar
software, the overall effort is likely much more important than required. These custom
simulator are rarely released or described enough in the corresponding articles to be reused
by others. This may also decrease the ease of reproducibility of some works and in some
extents their trustability.

In an attempt to address these issues, several datacenter simulation frameworks, with
different purposes and designs, have been developed and are maintained by the community.
A few examples are SimGrid [26], CloudSim [23] and DCworms [111]. Unfortunately, none
of them provide an easy way to deal with rich electrical infrastructures, as found in the
case of a data center powered by on-site RES and ESD.

A full simulation of the electrical infrastructure is not always required when it comes to
studying RES-powered data center. In some situations, a simple input of tabular data can
be enough, as described in section 2.3.2. For instance, using traces of photovoltaic panels
power production as an input allows to study power management strategies for a data
center powered only by those PV panels. In similar situations, simulating the RES still
gives more flexibility in the scenarios considered, as it is possible to study easily sources
with different technologies, sizing and configurations. It also helps to consider different
environmental conditions (different kinds of weather, seasons or geographical locations)
without requiring external tools.

However, simulating the electrical infrastructure becomes necessary when dynamic
components are modeled. These components include notably ESD, like batteries for in-
stance. As the state of charge of a storage device depends on its charge and discharge
over time, which in turns depends on the energy used by the data center, it is impossible
to represent it with pre-calculated input data. Hence any approach which depends on the
state of charge a ESD or which aims to act on its charge and discharge states requires
some electrical component simulation.

To the best of our knowledge, no previous work attempts to augment one of the
datacenter simulator from the community with rich electrical infrastructure RES and ESD.
At the contrary, in addition to the many works using ad-hoc numerical simulation, some
researchers developed new simulation platforms adapted to these specific needs, such as
RenewSim [44] or ReRack [21]. Unfortunately, they struggle to attract enough attention
to them to be considered and used by other authors.

In an effort to address all these issues, the work presented here extended the general-
purpose datacenter simulator DCworms with the notion of electrical infrastructure simu-
lation. This integration was performed with several goals in mind.

1. The simulator was designed to be relatively generic, allowing to implement most
of the simulation models (task execution time, device power consumption or heat
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Chapter 3. Simulation tools and data sources

dissipation for example) as plugins. The same is aimed for the electrical simulation,
by implementing electrical devices as plugins.

2. As the first target users are computer scientists, the electrical simulation should
allow to implement simple electrical models without advanced knowledge of electrical
engineering. In the other hand, it should be possible to implement more advanced
models.

3. The models of the different components of an electrical infrastructure should be
easily re-usable in another infrastructure description.

3.1.1 Design and implementation in DCworms

DCworms, for Data Center workload and resource management simulator, is an event-
based simulator written in Java and developed by the Poznań Supercomputing and Net-
working Center (PSNC). It heavily relies on a plugin architecture for implementing the
different simulation models (task performance estimation, power consumption, thermal
dissipation...) and scheduling policies, making it easily adaptable to the specific needs.
It was originally conceived to study the impact of different scheduling policies on the
power consumption of data centers. It is therefore a good candidate for studying power
management in data centers powered by RES.

The architecture of DCworms, including the modifications detailed thereafter, is rep-
resented in fig. 3.1. Based on a given experiment configuration, and using a given set
of plugins, the simulator will output several statistics in different forms (human-readable
summary, CSV data and charts). The experiment configuration consists mainly in the
workload description (in SWF [1] format with optional per-job description with an XML
file), the simulator global configuration, and the resources description. The resources de-
scription is provided as an XML file, specifying the number, type and organization of the
computing resources.

DCworms

User-providen 
models (plugins)

Scheduling 
policy Application 

performance

Energy 
estimation

Electrical 
component

Experiment 
configuration

Workload 
description

Resource 
description

(IT + electrical)

Simulator 
configuration

Plugin interface

Statistics

Energy 
consumption

Task 
statisticsResource 

usage

Electrical 
statistics

Figure 3.1 – Simplified DCworms architecture with electrical simulation modifications.
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Component

Internal
algorithm

Input Output

Available

Consumed

Available

Consumed

Figure 3.2 – Illustration of an electrical component with one input and one output con-
nections.

Infrastructure model

As stated previously, one of the objectives of this work is to allow to implement simple
electrical models with few knowledge in electrical engineering. The goal is not to imple-
ment an electrical-circuit emulator, but at the contrary a more abstracted model suitable
for an event-based simulation. Hence the proposed abstraction of electrical components
is rough from the point of view of electrical engineering works. Accurate electrical-circuit
simulation propagates voltage and intensity according to the internal properties of each
component (capacitance, resistance, capacitance...) and even simple circuits exhibit com-
plex behaviors at micro or millisecond scale after any change in the circuit (transient
states). The model detailed here do not aim to handle such short-time transient states
and the components interacts with each other only in term of power.

The proposed model considers each individual electrical component as a black-box,
controlled by its own internal algorithm. An electrical component can be a physical
electrical device (such as a power converter, a battery or a photovoltaic (PV) module), or
several physical devices working together and abstracted by a single model.

The component model is represented in fig. 3.2. Each component has one or more
electrical connectors, which are considered to be monodirectional (either input or output).
Those connectors allow to connect any component to another. Each output provides, at
any time, the amount of power available from it. Conversely, each input indicates the
amount of power consumed from the output at which it is connected. In a real electrical
circuit, the concept of available power does not exist: power is simply consumed by a
load according to the voltage difference and intensity passing through it. This depends in
turn on an equilibrium between its electrical characteristics and the source ones. Using
this idea of available power permit simpler interactions and simpler component models.
The algorithm modeling the component can consider drawing up to the available power
from an input connector without risking to be limited at this time. Additionally, the
available power can be modeled easily for many common components: its is the maximum
production for a RES, the output power after losses at the available input power for an
electrical converter or the maximum draw power at a given time for an ESD.

The whole electrical infrastructure consists in the definition of each component plus
the description of the connections between them. Figure 3.3 gives an example of electrical
infrastructure. In this example, a PV panel and a connection to an electrical provider
(grid) are the main sources. They are both connected to a controller, such as a Sunny
Island device1, in charge of managing a battery and of choosing from which source the
required power should be draw. Finally, it is connected to the data center supply, which
consumes the power required by all the computing resources.

This infrastructure model is very flexible. While it was exploited in the works presented
along this thesis, it can handle a large variety of electrical infrastructure, beyond the solely

1http://www.sma.de/en/products/battery-inverters/sunny-island-60h-80h.html
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photovoltaicPanel gridSource

battery

sunnyIsland

dataCenterSupply

<controller>

output

renewable

<controller>

output

grid

<controller>

output

input

batteryIn

<controller>

batteryOutoutput

input

<controller>

dataCenter <DataCenter>

Figure 3.3 – Example of electrical infrastructure simulated with DCworms (including a
PV module, electrical grid input and battery). Each black box is an electrical component,
the red parts are their outputs and blue ones are their inputs. The arrows indicate the
flows of the electrical power between the different parts.

scope of on-site renewable energy sources. For instance, the power supply can be managed
at a rack or node-level and may model both Uninterruptible Power Supply (UPS) and
redundant electrical networks commonly found in large scale datacenters. Hence, it can
be used for studying the robustness to power failures. It is also possible to represent
several distinct electrical infrastructures. This can be used for hybrids datacenters, with
some machines powered only by renewable energy while having a few racks for critical
loads that may be powered by the electrical grid. Another use case is the simultaneous
simulation of several geographically distributed datacenters.

Modifications in the simulator

The implementation of this electrical simulation model in DCworms required a few deep
modifications in the core of the simulator code to add the main electrical concepts and
extend the plugin interface.While the detailed implementation depends highly on the soft-
ware architecture of DCworms, the main steps are likely to be similar for other existing
event-based datacenter simulator. Therefore, they are briefly described here, at the atten-
tion of other researchers targeting another software.
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3.1. Datacenter simulation with rich electrical infrastructure

At the core of the simulator, the electrical resource management requires to add new
types of events to represent changes in electrical state. These events may be generated
by any electrical component, such as primary power sources and battery, based on a
timer or a change in environmental conditions. It can affects either the available power
at an output or the consumed power from an input. They are propagated through the
corresponding connector of the origin component (plain arrows in fig. 3.2). The next
component should handle this change based on its internal model, in order to satisfy its
own constraints between internal state, available power and consumed power. This may
be in turn propagated to its own connectors.

In our implementation, each type of component is modeled by its own Java class,
leveraging the plugin interface of DCworms. The resource description, initially containing
the machines and rack details, was extended to describe the components and the links
between their connectors. An illustrative sample is given in listing 1, which instantiates a
PV component implementing the model described in section 2.3.2.

In order to be useful for a datacenter management algorithm, electrical component can
expose arbitrary interfaces for either providing data or control. For instance, renewable
electrical sources expose instant power production and predicted power for an upcoming
time window. A battery management device may expose the State of Charge (SoC) of the
battery and a way to control its charging or discharging state.

In addition, an automatic monitoring of each connector is performed by the simulator.
It allows to retrieve the power flow over time at any point of the electrical network after
a simulation, for statistics purpose. Components may also register custom metrics to be
monitored in the same way, such as the SoC of an ESD.

<electricalResource class="ElectricalCustom" name="photovoltaicPanel">
<profile>
<electricalProfile>
<electricalPlugin>
<name>experiments.models.electrical.PhotovoltaicPanelPlugin</name>
<parameter name="srcPower"> <value>435</value> </parameter>
<parameter name="powerTemperatureCorrectionFactor"> <value>−0.0038</value> </parameter>
<parameter name="units"> <value>8.0</value> </parameter>
<parameter name="weatherProvider"> <value>localWeather</value> </parameter>

</electricalPlugin>
</electricalProfile>

</profile>
<connectors>
<output>output</output>

</connectors>
</electricalResource>

<electricalNetwork>
<connection output="photovoltaicPanel#output" input="converter#renewable"></connection>
<connection output="converter#output" input="dataCenterSupply#input"></connection>

</electricalNetwork>

Listing 1 – Sample of an electrical infrastructure description for the DCworms implemen-
tation.

3.1.2 Realistic data for electrical sources

Simulating the production of renewable sources requires some input data. Two main
strategies are available for realistic setup: using existing traces from real power plant
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or using weather data combined with models such as the one previously presented in
section 2.3.2.

Traces of real power plant are sometimes made available by either its operator or
public institutions. For instance, the french company Engie provides production data of
a wind-turbine plant located near Nancy in France2. In addition to the power produc-
tion for each wind turbine, a few meteorological conditions are measured, all with a 10
minutes resolution. Another example is the experimental Photovolta micro-plant3, used
for teaching purpose at the Nantes University. Despite its small-scale, the various data
is collected with small temporal granularity (5 minutes), including the power production
and environmental conditions, making it interesting for researchers.

Weather data, such as wind speed vectors, temperature and irradiation, can be ob-
tained online from various public datasets. The most notable is the Modern-Era Ret-
rospective analysis for Research and Applications (MERRA2) [17]. Based on satellite
observations and state of the art models, dozen of weather metrics are provided for the
whole world, at a spatial resolution of roughly 50 km and one hour frequency. It consists
however in low-level weather data, which is difficult to manipulate without good knowledge
in climatology. Some other datasets are easier to understand and to use for non-experts,
such as the National Solar Data Base (NSRDB) [169], containing photovoltaic-related data
for the whole USA. It combines several data sources, including MERRA-2 and ground-
stations to obtain more accurate values, reaching 4 km and 30 minutes precision.

There are also a few publicly available synthetic production data obtained using ad-
vanced weather and sources models for various locations. For instance, the National
Renewable Energy Laboratory (NREL) provides Solar Power Data for Integration Stud-
ies4. The same laboratory is at the origin of a similar dataset for wind-turbines: the Wind
Integration National Dataset (WIND) [57], part of the wind prospector project. Such syn-
thetic traces are an interesting trade-off between real traces and having to implement RES
model to output production based on weather data. They provide much more flexibility
than the first, by being generated for many different locations different technologies. They
also avoid many common pitfalls of model-based production generation by being handled
by researchers in weather and renewable energy sources. Therefore, some behaviors such
as the low-pass filter caused by large photovoltaic arrays or stochastic effects observed on
sub-hour irradiance levels are modeled.

A comparison of the datasets discussed in this section is shown in table 3.1.

3.1.3 Workload data

One of the key element needed to reliably evaluate datacenter management approaches
are precise, realistic and adapted workloads. Most study use workload extracted from
particular infrastructures [89]. For the purpose of evaluation of scheduling, the mostly
used way to take advantages of these data is to directly replay the traces, reducing the
possibilities of test to a specific case with particularities or to study an infrastructure with
a different scale. This also restricts the set of usable traces depending on the infrastructure
and workload model of the approach to evaluate. Another way is to create a synthetic
workload, based on characteristics previously observed or expected in datacenter with the
targeted purpose.

Several workload datasets are publicly available. For instance the Google cluster
data [161], which focused a lot of attention recently because of its large scale: more

2Engie Open Data: https://opendata-renewables.engie.com
3Photovolta: http://photovolta.univ-nantes.fr/
4NREL Solar Power Data for Integration: https://www.nrel.gov/grid/solar-power-data.html

49

https://opendata-renewables.engie.com
http://photovolta.univ-nantes.fr/
https://www.nrel.gov/grid/solar-power-data.html


3.2. Analysis and generation of realistic workload

Data Lo
ca
tio

n

Du
ra
tio

n

Gr
an
ul
ar
ity

PV W
T

Fo
re
ca
st

Irr
ad
ian

ce
W
in
d

Te
m
pe
ra
tu
re

Sk
y
cle

ar
ne
ss

Photovolta Nantes Since 2011 5 min X X ≈ X
Engie Open Data Vaudeville Since 2013 10 min X X X
NSRDB v2 [169] USA? Since 1998 30 min X X
MERRA-2 [17] World? Since 1980 1 hour X X X
NREL WIND [57] USA? 5 years 5 min X X X
NREL SPDI USA? 1 year 5 min X X

Characteristics Production Weather

Table 3.1 – Summary of the characteristics and type of data contained in publicly available
datasets usable for renewable energy sources simulation.
?: dataset with many locations in the given region
≈: only partial data is available, insufficient for modeling RES production

than 10,000 machines during a month, with millions of tasks. It was analyzed by many
authors [6, 53, 162], and used directly for evaluating some renewable-aware scheduling
approaches [101]. In the context of High Performance Computing (HPC) and grid com-
puting, many traces are available through the Grid Workloads Archive [89] or the Parallel
Workload Archive5. Unfortunately, most of these workloads date of a decade or more, not
necessarily reflecting the characteristics of modern environments. For interactive services,
other datasets comes from monitoring the requests performed to existing services (usually
some website). This includes the 1998 World Cup website traces [10] and the Wikipedia
request workload6 [185].

Synthetic workloads are more flexible than direct trace replay, but require an analysis
of these real datasets in order to model their main characteristics. While many works
attempt to understand the real workloads [100, 124], they are rarely sufficient to generate
similar ones. The contribution presented in the next section consists in an analysis of the
Google cluster dataset focused on synthetic generation.

3.2 Analysis and generation of realistic workload

In this section, an analysis of traces from a large scale production environment is proposed.
It leads to a model of the corresponding workload, used to create a synthetic generator to
create similar traces with any variation in scale or with slightly different characteristics.
The traces used as reference are from the Google cluster [161], which contains millions
of tasks from an heterogeneous production and development infrastructure. By using the
configuration possibilities of the proposed model and implementation it becomes possible
to simulate large scale workload.

After describing the Google Cluster workload traces, a review of existing works ana-
lyzing the same traces or comparing them to other datasets. Then, a generic model for
batch-like workload is detailed and is applied to the traces in order to determine their
distributions and characteristics. It is followed by an automatic clustering of the tasks
to provide an alternative classification of the different parts of the workload. Finally, a
reusable and customizable workload generator is detailed as a simple algorithm imple-

5Parallel Workloads Archive: http://cs.huji.ac.il/labs/parallel/workload/
6Wikipedia request traces: http://www.wikibench.eu/?page_id=60
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Table 3.2 – Distribution of number of events per task.

Number of events 1 2 3 4 5 6+ Total

Number of tasks 248 1,093,992 24,258,907 19,378 17,215 34,991 25,424,731

mented in Python.

3.2.1 Workload characteristics

The data used in this study and analyzed below come from one of the datacenter of Google.
Google provided a dataset [161] of some of its servers usage in 2011. The monitored
datacenter is composed by more than 12,000 servers with heterogeneous characteristics.
The different statistics were collected for a period of 29 days. Data have been anonymized
to protect the servers configuration (CPU, Memory, Disk) by being normalized between 0
and 1. The data consists in a zipped collection of files taking 43 GB compressed. It includes
six main data tables: job_events, machine_attributes, machine_events, task_constraints,
task_events and task_usage. A job is composed by one or many tasks. The present work
focuses on the task_events table. This record contains 500 CSV files, 25 millions tasks.
This record encompass 100 millions events which describe each task and their life cycles.
During its lifetime, a task has a state: Unsubmitted, Pending, Running or Dead. An event
indicates a transitions between states (9 events):

The initial task event is Submit which allows the task to be scheduled. The Schedule
event means that a task has been scheduled on a particular server. There are ending events
such as Evict which means that a task has been unscheduled because of a higher priority
task; as Fail is when a task was unscheduled because of a task failure; Finish means that a
task finishes normally; Kill is when a task is canceled by a user or a management program
or when a linked task died. Finally Lost event characterizes information missing because
of monitoring system issue.

Considering the 500 CSV files which describe task events, the results show that task
pass throws several events. Table 3.2 describe the distribution of number of events for
each tasks.

A huge majority (95%, 24,258,907 out of 25,424,731) of tasks have only the three
classical events: an initial Submit, a Schedule one and an ending event. Most other tasks
(4.5%) are the one which are submitted, scheduled but do not finish during the time frame
of the acquired data. The remaining (less than 0.5%) are tasks that have intermediate
events of reconfiguration. In the following, tasks taken into account are the one composed
of three events.

The way the tasks are ending is also important. Table 3.3, describes the distribution
of finishing state for all tasks with three events. Most (73%) completed normally, 26%
are killed (in the Kill state), and less than 1% finish in another state. As stated in the
description of the workload by Google[161], nearly all tasks that do not finish normally are
in this Kill state. No additional information allow to know the actual reason that caused
the tasks to finish abnormally.

The behavior of these two types of tasks are quite different. As an example, the total
time of execution of the 73% of tasks with the Finish state are accumulating 13 × 109

seconds (with an average makespan of 1694 seconds) whereas the 26% of tasks with the
Kill finish state are accumulating 20× 109 seconds (with an average of 7994 seconds).

Most tasks are composed of three events and are finishing in either Finish or Kill
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Table 3.3 – Distribution of finishing event for all tasks with three events

Events type Finish Kill Fail Other

Number of tasks 17,775,284 6,381,906 86,348 15,369
Percentage 73.31 % 26.31 % 0.35 % 0.03 %

Table 3.4 – Number of tasks and frequency for each scheduling class

Scheduling class 0 1 2 3

Tasks number 20,317,398 3,327,283 533,330 49,614
Percentage 83.86 % 13.73 % 2.20 % 0.21 %

states. Only these tasks are considered in the following.
All tasks are not treated equally. Production tasks cannot be stopped or postponed,

some can be postponed but not stopped, and a few monitoring tasks can be stopped but
their is no more interest to restart them latter if they were postponed. Schedulers or
middleware need information on the requirements of tasks in order to evaluate the quality
of their decision. One important such requirement is the impact of time on their allocation.
In most systems, tasks are labeled with their priority or deadline, affecting the policy of
the scheduler.

The Google Workload Traces collection contains, for each task, two properties for their
priority and scheduling class. According to the Google’s documentation [161], the priority
is used by the cluster’s scheduler, whereas scheduling class is used locally by a machine to
manage resource usage.

The table 3.4 gives the number of tasks for each scheduling class. This class value is
between 0, for the least latency-sensitive tasks, to 3 for the most critical tasks.

Priority level is a number between 0 and 11, with 0 as the lower priority. Table 3.5
provides the count of tasks per priority value.

The figure 3.4 shows the average makespan (log scale) for each priority. The tasks
with the highest priority levels (9 and 10) have a significantly longer average makespan
than the rest. At the opposite, the priority level 5 has the lowest makespan, but because
of their very low occurrences (only 104 tasks) it may be caused by some sort of noise.

For this specific dataset, the priorities are logically grouped in 4 categories7. Those
7Additional traces documentation: https://github.com/google/cluster-data/blob/master/

ClusterData2011_2.md

Table 3.5 – Distribution of the tasks across each priority level.

Priority 0 1 2 3 4 5

Tasks 5,701,546 2,357,274 1,078,476 1,027 13,975,078 104

Priority 6 7 8 9 10 11

Tasks 633,445 0 249,932 230,164 579 0
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Figure 3.4 – Average tasks makespan for each priority

Table 3.6 – Number of tasks and frequency for the four priority groups

Priority group Free Normal Production Monitoring
Tasks number 8,058,820 15,938,062 230,164 579
Percentage 33.26 % 65.78 % 0.95 % 0.002 %

groups are, sorted by increasing priorities, free, normal, production and monitoring. Table
3.6 is obtained by grouping the data from table 3.5 using those priority groups. It appears
that, in terms of task count, the monitoring group is almost insignificant, with about 0.002
% of the total.

There is no direct and absolute relationship between scheduling class and priority. A
task with a high priority may also have a low scheduling class and vice versa. However, the
figure 3.5 shows some statistical relationships between those values. For each scheduling
class, it gives the distribution of corresponding tasks between the priority groups. Except
for the monitoring class, there is a small correlation between priority and scheduling class.
The higher the scheduling class, the higher the priority. Concerning the global distribution,
most tasks are in the normal scheduling class for each priority.

Free Normal Production Monitoring
0.0

0.2

0.4

0.6

0.8

1.0
0 (Lowest)
1 (Low)
2 (Middle)
3 (High)

Figure 3.5 – Distribution of priority groups, for each scheduling class
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3.2.2 Other studies of the dataset

Several studies have previously focused on a better understanding of different aspects of
the Google traces dataset and of the characteristics of the described tasks.

In [163], authors described the heterogeneity of the hardware resources in the Google
traces. They classified priorities in five categories, differing compared to the current docu-
mentation: Infrastructure (11), Monitoring (10), Normal production (9), Other (2-8) and
Gratis(0-1). They identify the boulders and sand of this workload: they have classified
tasks in a majority of small tasks (sand) and an important number of large tasks (boul-
ders). In this analyze, they shown that 2% of tasks represent 80% of CPU, Memory and
that 92% are long tasks with a Free priority. Reiss et al. [162] also analyzed the Google
cluster performance. According to this article, many long jobs have stable resource utiliza-
tion, which helps the adaptive resource schedulers. They show that machine configuration
and workload composition are heterogeneous. These two works give a good understanding
of the Google dataset and exhibit the importance of an heterogeneous datacenter to adapt
the resources to the demand. However, they are not aiming to help on using this workload
in another context.

Gbaguidi et al. [67] evaluates the gap between the requested resources and the one
consumed by tasks within the datacenter, highlighting the lack of energy consideration in
the dataset. The requested average load for a processor is 10% on the Google datacenter.
This Google trace analysis shows that processors are overall under utilized which leads to
an increase of the energy consumed: 90% of available processor computing power appear
to not be used. Moreover, most of the workload has a low priority and is not sensitive
to the latency. It shows that there is only a very few number of sensitive tasks, based on
their scheduling classes.

Alam et al. [6] provided a statistical analysis of the traces to make some reference
job profiles emerge. They based this approach on resource usage, clustering of workload
patterns and classification of jobs with k-means clustering. The trimodal nature of the
job distribution is highlighted, both for task duration, and for the resource consumption.
Unfortunately, the article does not give any data usable to generate similar distributions,
focusing only on the ability to classify the jobs.

In [128], authors analyzed how the servers are managed in the cluster and how the
workload behaves during the period of monitoring. They have clustered the machine
population per same CPU and memory. Contrary to the finding of [162], it is claimed that
the machines are almost homogeneous, with 93% of them having the same CPU capacities
and 86% the same memories capacities. A few aspects of the workload behaviors are also
explored in this work. The main observation concerns the large amount of jobs that are
frequently killed.

Liu et al. [124] analyzed and elaborated the characteristics of the Google traces. They
measured some characteristics of the duration of execution (makespan) and waiting time
of jobs, but without focusing on the laws driving their distributions. The study is mainly
focused on job submission over time, not on the characteristics of the submitted jobs.
Based on this analysis they present a workload submission prediction method based on
several existing approaches. This contrasts with the work detailed here, which proposes
to model the job submission along with their duration and priority.

Di et al. [52] evaluated the Google trace compared to grid computing and HPC sys-
tems. They found that the Google dataset have a finer resource allocation with respect to
CPU and memory than grid/HPC systems. They compared the CDF (cumulative distri-
bution function) of the job length, 55% of tasks finish within 10 minutes for the Google
dataset, which appears to be shorter than other studied traces. In addition, Google jobs
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are submitted with higher and more stable frequency than the grid computing jobs. In
another work, Di et al. [53] have observed that, for the Google workload, the resource
utilization per application (which may contain several jobs) follows a typical Pareto prin-
ciple. Di et al. used a k-means clustering algorithm based on task events and resource
utilization to classify applications. Four classes of applications are identified (single-task
application, sequential-task application, batch-task application and mix-mode application).
Additionally, a correlation is found between some task events and application class. For
example, 81.3 % of failed task events belong to batch-task applications. These two pub-
lications show that the behavior of tasks in the Google workload, despite the differences
observed in submission frequency and task duration, follows many similar laws from other
grid/HPC workloads.

All these studies are mainly focused in understanding and characterizing the workload.
The work presented in the following does the same in a first step, but with the aim of
providing sufficient information for generating similar workloads. It also tries to keep
the isolated high-level characteristics, such as the parameters of the distributions used to
model the workload, as meaningful as possible. This enables the modifications of these
parameters to fit similar workloads differing only by some aspect.

3.2.3 Workload laws

The workload traces are analyzed at an inter-task level, without focusing on the intra-task
characteristics such as their resource consumption over time. While the traces contain
both batch jobs and interactive services [163], there are no explicit distinction between
them in the dataset. Instead, all are represented with a batch-like model, service instances
being allocated and stopped dynamically with the same mechanisms than batch tasks. For
this reason, characteristics studied here are usually associated to batch workload:

• Starting time: Usually defined as the inter-arrival time between tasks

• Priority: Used to evaluate the relative importance of tasks

• Makespan: Length of the tasks in seconds

To account for the hybrid nature of the workload, a last characteristic is isolated,
consisting in the type of a task, being either a usual batch-task or a service.

Type

As described in section 3.2.1, most of the tasks end with one of the Finish or Kill events.
In the first case, the task just finishes its work and ends normally. In the second case, the
documentation is unclear about which are the possible causes of a Kill event.

By analyzing those two sets, it appears that they do not follow the same statistical
properties. Figure 3.6 shows the average execution time, depending on both priority and
finished or killed groups. Whereas the makespan for the finished group tends to decrease
when the priority increases, the opposite is observed for killed group. In addition, the killed
group is always longer in average. The difference is the most significant for production
level, with about 493 seconds for finished group compared to 229288 seconds for killed
tasks.

Figure 3.7a shows the effective mass of jobs ending with a Finish event. It shows
the simultaneous running tasks over time that finish well. The mass follows a fractal
structure coherent with the inter-arrival and makespan laws. It also exhibits daily and
weekly patterns. For long-term characterization of traces, such long-term patterns should
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Figure 3.7 – Number of running tasks at each time depending on their ending event.

be taken into account and modeled. Near the end of the monitoring there is a peak, with
a high number of jobs. They are executed before the end of the experiment window and
due to lack of information it is unknown if it comes from an actual peak of submitted
jobs (like near the half of the monitored data) or if it is an artifact due to the end of the
monitoring of the cluster.

Figure 3.7b shows the effective mass of jobs ending by a Kill event. Contrary to the
previous mass, the effective mass of executing jobs with a non-finish event follows a less
regular curve. The average makespan of these tasks is higher than of the Finish category
and thus the mass toward the end of the monitoring window decreases as these long-lasting
jobs start finishing out of the monitoring window. Even with a lower number of tasks,
this Figure shows that the overall mass is higher due to these longer tasks. The high
variability is less linked to daily and weekly timescale, as these jobs are more related to
infrastructure services whereas the one ending with a Finish event are more often jobs
submitted by actual users of the platform.

Overall, the average number of running tasks at a particular time is largely superior to
the number of servers. It shows that most tasks use less than 100% of a server resources.
Actually, other files in the Google dataset contain information about processor and memory
consumption over time for each job and show that these are often not using whole servers.

Those different characteristics, especially the important execution time and the num-
ber of high-priority tasks in the killed group, suggest two different populations. Our
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hypothesis is that most of the killed tasks are, in fact, long-running services. It may be
some monitoring services, web servers, or any other task implementing a service for other
internal or external tasks. This kind of service his no pre-determined duration, and may
be started and killed to scale with the demand or with the cluster usage. The killed set
should also contain some tasks killed manually for other reasons, but it can’t explain the
amount of production tasks stopped this way.

In the following sections, we will use task to refer to a finite task, which has a given
amount of work to do before to finish normally. As an example, typical kinds of tasks in
a such cluster are MapReduce jobs, each containing a set of map and reduce tasks. The
word service will be used to refer to a task which, at the opposite, has no precise amount
of work to do, and therefore just runs until stopped.

Submission Time

As described in the state of the art [163], tasks and services are submitted continuously on
the monitored platform which is highly charged. Very few inter-arrival times are over 10s,
and the average is 0.052s. The inter-arrival law is well modeled by a Pareto distribution,
with a λ parameter set to 5 in the case of the Google dataset as shown on figure 3.8.

A gap for very small intervals can be explained as a large number of jobs, each contain-
ing multiple tasks or services, can be submitted simultaneously, breaking the independence
assumption. But even with this remark, a Pareto distribution simulates well the inter-
arrival time.

Makespan

The execution time of tasks is one of the main characteristics of a workload, as it differs
a lot depending on the kind of application it contains. Particularly, the task makespan
is clearly different between traditional grid workloads and this cloud trace, as pointed by
Di et al. [52]. As most other characteristics are similar, a method to have more HPC-like
traces would be to increase the average makespan.

Tasks In figure 3.9a, the distribution of finished tasks makespan shows a huge number
of small tasks, and few very long ones. The shape is typical of long-tailed distributions,
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Figure 3.9 – Distribution of the tasks execution time (makespan).

Table 3.7 – Statistics for execution time of tasks finsihed by a Finish event

Priority Count Average Std. dev. Median
Free 5,081,775 1,937.9 4,518.7 345.7

Normal 12,677,000 1,600.3 5,231.4 492.6
Production 49,190 493.9 1,955.1 39.1
Monitoring 0 N.A. N.A. N.A.

All 17,807,965 1,693.6 5,034.5 448.9

like Pareto or log-normal. Table 3.7 gives more precise statistical information. The shape
of the distribution is confirmed by the gap between the median value and the average.
Standard deviation is also important compared to average, another property of long-tailed
distribution.

To use the more appropriate distribution for modeling the makespan, we compared the
Kolmogorov–Smirnov (KS) statistic between several fitted distribution and the original
data. The more the KS statistic is close to 0, the more the chosen distribution is similar
to the real data. A fit with a Pareto distribution gives a Pareto coefficient of 0.113 and a
scale factor of 0.073 for these tasks. Its calculated KS statistic is 0.5. The parameters of
the fitted log-normal distribution are σ = 1.42 and µ = 6.25, with a KS statistic value of
0.057. By looking at the KS statistic, the better model to describe this characteristic is
the log-normal law.

Services The figure 3.9b, similarly, shows the same kind of distribution, with even longer
makespans. By comparing table 3.8 with the statistics of finished tasks, it appears that
the average makespan is about 5 times higher, with a lower median. A fit with a Pareto
distribution gives a Pareto coefficient of 0.0916 and a scale factor of 0.0077 for these tasks.
Using a log-normal law, fitting it gives σ = 2.06 and µ = 6.14. The calculated values of
KS statistic are 0.49 for the Pareto distribution, and 0.064 for the log-normal one. For
the services too, using a log-normal distribution to model their makespan is accurate.

Priority

The exact semantic of priority and scheduling classes is not specified in the original doc-
ument. From the combination of priority and scheduling class, importance of tasks and
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Table 3.8 – Statistics for execution time of tasks finished by a Kill event

Priority Count Average Std. dev. Median

Free 2,977,045 5,195.6 24,336.4 595.4
Normal 3,261,062 2,688.5 19,468.9 213.9

Production 180,974 148,424.4 294,182.3 31,429.4
Monitoring 579 388,232.5 579,101.9 71,831.6

All 6,419,660 7,994.3 59,363.8 333.8
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Figure 3.10 – Distribution of priority groups, for each scheduling class.

services can be deduced. To represent this relative importance in our model, we use a
value in the continuous interval ]0, 1]. The lower this value is for a task, the lower its
priority is.

Tasks For tasks, as shown on figure 3.10a, there is a strong relation between priority
and scheduling class. To model this behavior, a simple categorization is sufficient. From
the statistic of occurrences, 84% are of the lowest priority, 15% of the next one, and the
remaining 1% of the highest ones. It can be simulated with an exponential law, truncated
between 0 and 1, with a high λ parameter.

Services For services, as shown on figure 3.10b, the relationship between priority and
scheduling class is less visible but present. A simple model would be also a truncated
exponential law, with a lowest λ value compared to the tasks priority model.

3.2.4 Comparison with other workloads

Such an analysis of this single dataset can only allow us to model the workload for this
specific Google’s cluster. However, several reasons give us confidence that our model can
be used to describe workloads run by other cloud and grid clusters.

Those traces are known to contain multiple and heterogeneous kinds of applications.
This is also the case of datacenters used by most Infrastructure as a Service and Platform
as a Service cloud providers, and we think this diversity gives good insights on their typical
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Table 3.9 – Centroids and analysis of 2-clustering.

Cluster Makespan Priority Sched. class Frequency Disparity
0 3508 0.51 0.72 40.5% 17.2
1 2456 4.1 0.11 59.5% 6.2

workloads.
For datacenters running more homogeneous applications, such as HPC jobs, Di et al.

[52] have done detailed comparisons between the traces from Google and those provided
by several grid infrastructures. They found some differences, such as the lack of periodic
patterns in tasks submission over time for the traces we studied here, compared to the grid
ones. Particularly, diurnal submission pattern is a common characteristic of datacenter
workloads, and may be added to our model to fit better to a typical grid workload.

Di et al. also discovered several similarities which make our model relevant for grid
computing. Notably, distributions of makespan have a long-tailed shape in every workload
they studied, which is a key characteristic of Pareto and log-normal laws. They observed
differences, such as a smaller average makespan, a higher maximum and more short tasks
in the Google traces compared to the grid ones. Those characteristics can be obtained,
using our model, by adjusting the parameters of the probability distribution functions.

Kavulya et al. [100] analyzed the traces of a production Hadoop cluster owned by
Yahoo. They found the same kind of distribution in the Hadoop jobs completion time,
and used a log-normal law to model it. Such similarities between several kinds of workloads
show that our model, based on a specific dataset, keeps some important characteristics
shared by workloads in other datacenter use cases.

3.2.5 Automatic classification

By assuming two main categories, tasks and services, we worked on a priori classifica-
tion. It allowed us to establish a preliminary analysis on the dataset and to understand
some of its characteristics. However, this classification may seem artificial, and it may be
interesting to compare it to the result of an automatic classification.

Some previous work already studied those traces with clustering methods [6, 142],
but were focused on different properties than the ones covered here. We used a k-means
algorithm to classify all the tasks (ending either by a finish or kill event) by respect to
three properties : the makespan, the priority and the scheduling class.

2-clustering

In the case of our initial assumption, we had only 2 classes. Therefore, it is interesting to
study the results of an automatic 2-clustering on the same dataset.

The results of the 2-clustering are summarized in table 3.9. In this table, the frequency
is the part of the tasks belonging to a cluster, and the disparity is the ratio between the
average makespan and the median one for a given cluster. The first category seems to
be relatively long tasks, with very low priority. The second one is centered on medium
execution time, but higher priority. Moreover, this second class represents around 60% of
the total amount of tasks, confirming the high quantity of small tasks in these traces.

With k = 2, the clustering is far to be perfect. The figure 3.11 shows the silhouette
plot using such clustering. With an average silhouette width of 0.55, we can deduce that
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Figure 3.11 – Silhouette analysis of a 2-clustering of tasks using k-means.
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Figure 3.12 – Variation of the average distance to the closest centroid after a k-mean, for
different values of k.

those two categories are relevant, without being very accurate. The cluster 0, in particular,
gives relatively bad results, probably because it is too wide.

General k-clustering

In order to know which value of k is the most relevant for this dataset, different values
have been tested. The figure 3.12 gives the average distance, for each of the normalized
data, to the closest centroid for those different k. The elbow method [183] is quite difficult
to apply here due to the lack of a clear angle. However, we choose k = 4 as a reasonable
value: it is still possible to decrease the average distance by using a higher value, but it is
a good compromise between number of classes and accuracy.

The results of clustering using 4-means are given in table 3.10. Among the 4 different
classes of tasks, the clusters 0 and 1 seems associated to medium tasks with low priority.
The first one contains shortest tasks with relatively high scheduling class value, whereas
the second one contains longer tasks with very low scheduling class. The cluster labeled 2
contains shorter tasks in average, but with high priority, which still represent more than
the half of the total amount of tasks. Finally, the cluster number 3 is quite interesting,
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Table 3.10 – Centroids and analysis of 4-clustering.

Cluster Makespan Priority Sched. class Frequency Disparity
0 1911 0.9 1.64 17.9% 19.8
1 2482 0.53 0 26.2% 6.2
2 1662 4.2 0.1 55.2% 4.4
3 137630 3.39 0.96 0.7% 1.4
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2

1
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Figure 3.13 – Silhouette analysis of a 4-clustering of tasks using k-means. The cluster
labeled 3 contains less than 1% of the tasks and is therefore difficult to see here.

despite the very low proportion of tasks (0.7%) it represents. It consists in the longest
tasks (an average of 38 hours), which also have a high priority.

According to the silhouette plot, given in figure 3.13, this clustering seems quite accu-
rate, having an average silhouette width of 0.68. The different classes seem to fit decently
the characteristics of the tasks that belong to them, at the exception of the cluster 3,
corresponding to the very long tasks.

Our initial, a priori, assumption of the existence of two distinct population of tasks
and services in those traces may be questioned. However, some of the results obtained by
automatic clustering tends to confirm this hypothesis, like the small group of very long
tasks in 4-clustering. Moreover, the results confirm that using only 2 categories leads to a
decent clustering.

3.2.6 Generating workload

The laws and parameters described in the section 3.2.3 are simulating exactly the same
behavior as the workload traces from the Google datacenter. To create more generic
workloads it is needed to be able to provide configuration possibilities needed to adapt to
different types of experiments and context.

The Dynamism is the main characteristics applying to the overall workload. Its value
represents the arrival rate of the tasks, without distinction of categories.

Three other characteristics are to be specified for each category (tasks and services) :
Frequency, Mass and Disparity

• Frequency: Is a value between 0 and 1 representing the percentage of tasks of
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import scipy.stats
import random
import numpy

def truncated_expon(lamda):
while True:

val = scipy.stats.expon.rvs(scale=1.0/lamda)
if val <= 1.0:

return val

def get_makespan(mass, disparity):
mu = numpy.log(mass / disparity)
sigma = numpy.sqrt(2*(numpy.log(mass) - mu))
return scipy.stats.lognorm.rvs(sigma,

scale = mass / disparity)

def get_next_task(timestampLastEvent, dynamism,
ratioTask, tasksMass, tasksDisp,
servMass, servDisp):

arrival = scipy.stats.pareto.rvs(4, loc=-1)
* 3.0 * dynamism

newTimestamp = timestampLastEvent + arrival

if random.random() < frequencyTasks:
ttype='TASK'
priority=truncated_expon(6)
makespan=get_makespan(tasksMass, tasksDisp)

else:
ttype='SERVICE'
priority=truncated_expon(3)
makespan=get_makespan(servMass, servDisp)

return (newTimestamp, ttype, priority, makespan)

Listing 2 – Reference implementation of tasks generator implemented in python

this category in the total workload. The sum of the frequencies for the different
categories must be equals to 1.

• Mass: Represents the average makespan

• Disparity : The ratio between the average and the median makespan, must be
greater than 1

For these Google traces, the dynamism, which is the average inter-arrival time, has a
value of 0.05 (in seconds) for Google Traces. As the percentage of tasks in this workload
is 70%, we use a value of 0.7 for their frequency, and 0.3 for the services.

The mass and disparity parameters are calculated using the average and median values
from the tables 3.7 and 3.8. For tasks, we have a mass of 1700 and a disparity of 3.8. The
values found for services are respectively 8000 and 24.

The implementation of the generator is shown in listing 2 in the Python3 language.
In addition to the workloads laws from section 3.2.3, it is also easy to adapt this al-
gorithm and the parameters to generate a workload similar to the k-clustering analysis
from section 3.2.5. The values of the parameters can be directly retrieved from tables 3.9
and 3.10.
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3.2.7 Additional due date model

Exploiting the temporal flexibility of batch-like workload is one of the keys of renewable-
aware datacenter management. As detailed in section 2.2.1, a common model is to have
a due date (or a deadline) associated to each task. Unfortunately, the Google traces
do not contain this information. It is possible to retrieve the submission date and the
scheduling event, but it appears that most tasks are started almost immediately after
their submission. This is expected as the Google cluster scheduler does not seem to rely
on workload postponing as long as enough computing resources are available.

As we have no knowledge of any work on the modeling of such due dates in cloud work-
loads, an arbitrary model based on tasks priorities is used. First, we define a task flexibility
as the time available for scheduling the task with respect to its due date, taking its ex-
pected duration into account. The proposed model is parameterized with a value named
flexibility factor, which is used to modify the magnitude of individual tasks flexibility.

Defining such a metric and studying how it affects the behavior of this kind of schedul-
ing algorithm seems critical for us. It is obvious that the performances of algorithms based
on workload postponing depends directly on how much those tasks can be delayed. Be-
cause of the lack of existing study, we cannot use known work to take realistic distributions
of the flexibility depending, for example, on the kind of data center or the politic of its
operator.

Based on this observation, two possibilities exist. The first, used by most of the related
study, is to use a workload with arbitrary due dates and analyze the proposed approach on
it. The second one, which seems preferable for us, is to propose an arbitrary, parameterized
distribution of the tasks flexibility and to confront the approach to different instances of
this distribution. The results are therefore easier to extrapolate to real workloads for which
tasks due dates are known. In addition, they provide a better overview of the performances
of an approach, for a wider range of situations. For those reasons, we strongly believe that
defining and studying a flexibility factor results in more interesting comparisons between
different approaches. Hence, a model for task flexibility is proposed as a complement of
the workload generator, integrating well with it.

Let flexf be the flexibility factor used and Tj the expected duration of a given task j
(makespan in the workload generator). The due date Dj the task j is obtained by eq. (3.1),
where fmin is a constant used to define a minimum flexibility (possibly 0) and fbase is the
base flexibility. The base flexibility is obtained using a truncated normal distribution with
its shape depending on the task priority.

Dj = Sj + Tj + fbase.flexf + fmin (3.1)

The task priority, denoted here pj , obtained through the generator, is a value ∈ [0, 1].
A discrete priority group is determined from this value, using uniform consequent intervals
from 0 to 1. By considering G priority groups, the discrete priority gj of task j is therefore
given by:

gj = min(G, bpjGc+ 1)

The value of fbase is obtained with a normal distribution, truncated at µ(gj)± 3σ(gj),
with different values of µ and σ associated to each discrete priority group.

3.3 Conclusion
In this chapter, an overview of the different aspects considered for performing simulations
of datacenter with rich electrical infrastructure was presented. This research area is still
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young and present a large diversity of approaches with heterogeneous models, pointed
out in section 2.4. Therefore, no simulation infrastructure has emerged yet from the
community. Similarly, there is no consensus on common datasets for electrical sources
production or workload data which may be used to compare performances of different
approaches.

Depending on their needs, their focus and the models used, different choices are made
in the evaluation methodology of the works from the literature. It is also illustrated in this
thesis. For instance, the scheduling algorithm presented in chapter 4 is evaluated using
the improved DCworms datacenter simulator. At the contrary, because of a simpler data-
center model that does not fit well the abstractions of DCworms, some of the experiments
conducted in chapter 5 are based on an ad-hoc numerical simulation setup.

A certain diversity of simulation environment in the existing approaches is unavoid-
able when caused by deep differences in models. Using common tools and datasets should
however be encouraged whenever it is possible: it improves the reproducibility and trusta-
bility of the results, may help comparing the performances of different works, reduces the
engineering cost of developing and evaluating new approaches.

Two contributions presented in this chapter address this point. By augmenting the
datacenter simulator DCworms with electrical sources simulation layer, a new tool suitable
for renewable-aware approaches is proposed. The workload model and generator based on
the Google cluster traces analysis may be used as a base by other researchers looking for
a high-level realistic task-based workload.
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Task scheduling with limited
knowledge of electrical model

Once men turned their thinking over to machines in the hope
that this would set them free. But that only permitted other men
with machines to enslave them.

— Frank Herbert, Dune
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As detailed along the previous chapters, adapting a datacenter power consumption
to fit variable energy availability is one of the keys of an efficient usage of renewable
energy sources (RES). Most of the power usage of a datacenter at a given time is tied to
the amount, type and distribution of the computing work at that time. Whenever it is
possible, being able to change how and when the work is performed is an effective way to
adapt the power consumption.

In this chapter, a scheduling approach for batch jobs with due date constraints is
proposed and evaluated. It focuses on the intermittent aspect of RES production and
tackles it by using the temporal flexibility of the workload. The goal is to schedule the
tasks using preferences of an electrical infrastructure with on-site RES, while respect-
ing the Service-Level Agreement (SLA) from the users. Contrary to existing approaches,
described in chapter 2, we propose to separate the optimizations of electrical infrastruc-
ture from the optimizations of the computing resources. The scheduling algorithm itself,
called Attractiveness-Based Blind Scheduling Heuristic, or ABBSH, is an online greedy
algorithm. It exchanges information with an electrical management system, modeled as
a black box, in order to take availability of energy in consideration. Along with this al-
gorithm, several multi-objective functions are proposed to handle the trade-off between
energy and performance considerations.

The approach has been implemented in the data center simulator DCWorms, using the
modifications detailed in section 3.1 to simulate the electrical components. To evaluate the
proposed algorithm with realistic use cases, the workload generator presented in section 3.2
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is used to mimic the statistical distributions of a real, large-scale cluster owned by Google.
In addition, we have evaluated how the choice of the due date of the tasks impacts the
performances of our algorithm. Finally, we compared the results of our approach to those
of the GreenSlot scheduler [70], a renewable-aware approach from the literature.

The main contributions presented in this chapter are:

• a new scheduling heuristic for data center powered by renewable energy sources, with
limited knowledge of the electrical sources infrastructure, detailed in section 4.1.4

• an evaluation of the relationship between the constraints of QoS and the perfor-
mances of scheduling algorithms for batch jobs, based on the results of our experi-
ments in section 4.4

• a method for computing a lower bound of the energy consumed from the grid to
schedule a particular workload, presented in section 4.2.4

In a first part, section 4.1 contains a description of our approach, including an overview
of the concepts used and a detailed description of the scheduling algorithm. The method-
ology used for validating our approach is described in section 4.2. Section 4.3 contains the
results of our experiments, which are interpreted and discussed in section 4.4. Finally, the
conclusion relative to this approach are presented in section 4.5.

4.1 Proposed approach

The problem addressed in this chapter corresponds roughly to the illustration provided
in section 2.4.1: the production of some RES varies across time and batch jobs may be
delayed to some extent in order to consume resources (and therefore power) when enough
renewable energy is available. Before to detail the models of power sources and computing
devices, a brief overview of the global infrastructure is proposed. Then the way electrical
and IT objectives are computed and normalized (attractiveness) is detailed. Finally, the
scheduling algorithm itself is presented, along with several methods used to handle the
multi-objective aspect of the problem.

4.1.1 Data center infrastructure

One of the main goals of the presented approach is to keep separate, as much as possible,
the electrical concerns from the computing ones. Therefore, we consider two distinct
management systems. The first one is in charge of managing the electrical infrastructure
(power sources, storage, and power distribution elements), in order to minimize the power
losses and to maximize the usage of renewable energies when a given amount of power is
to be supplied. The second one is the computing resources (shortened IT) management,
which includes the data center scheduler and the management of the power states of
individual machines.

In order to reach a better global optimization of energy use, each management system
needs to exchange pieces of information with the other. For instance, with some knowledge
about the available renewable power during the near future, the computing management
system may adjust the data center consumption in order to bring it closer to what will
be available. To keep a low coupling between the two parts, the information exchanged is
limited to a small subset. A cost indicator, named attractiveness, is used to abstract the
optimization objectives of each system to the other, and will be presented in section 4.1.3.
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Figure 4.1 – Representation of the proposed infrastructure for both computing and electri-
cal parts of a data center. (This figure uses icons under CC-BY license, authors: Freepik,
Madebyoliver and Yannick Lung.)

This design, compared to a single optimization loop in charge of both electrical and IT
management, allows more flexibility in the considered infrastructures. Indeed, a change in
the electrical components themselves or in the electrical optimization scheme would not
impact the computing resources management, and vice versa.

An overview of the proposed infrastructure is shown in fig. 4.1. The presented work is
mainly focused on the IT optimization part, highlighted in green. Therefore, the electrical
infrastructure and its management system are highly simplified in this chapter. However
we show the flexibility of our approach regarding the electrical part by evaluating two
different objective functions used in the electrical management system: the first considering
only the amount of non-renewable energy required and the second focusing on the total
energy cost.

4.1.2 IT and electrical models

Across this section, we will detail formally the models used in the presented approach. As
our work is focused on the IT part, the electrical model used here is intended to be simple
and illustrative.

Data center model

We consider J the set of the J tasks submitted to the system at any moment. For each
task j, we have the following information: its submission date Sj , its due date Dj , its
execution time Tj , the number of processors required nj ∈ N∗ and the amount of RAM
needed rj . The execution time Tj is normalized by considering the slowest hardware among
the machines. In addition, the date at which the task starts its execution is noted Bj .

The computing resources are a set M of M machines, which may be heterogeneous.
Each machine m is associated to its number of processors1 Nm, the relative computation
speed of the installed processors Cm, and its amount of usable memory Rm. The relative
computation speed is used to compute the execution time of a task on this processor, such
as the time needed for a task j is given by Tj/Cm. The power consumption of a machine

1We consider a processor as a physical execution core, assuming no logical core using SMT technologies.
In addition, we make the assumption of an homogeneous set of processors for a given machine.
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m is obtained using a linear model. Its idling power is noted P idle
m and its maximum (full

load) consumption Pmax
m .

The use of a machine m over time is represented by several functions. The number of
processors used at time t is given by upm(t) and the memory used by urm(t). Each machine
may be either powered on, off, or may be booting up or shutting down, which is represented
by its state sm(t) ∈ {On,Off ,Boot,Shutdown}. For managing transitions between on
and off states, additional information is needed for each machine, using the power state
management model illustrated earlier in fig. 2.6. The booting up time toff→on

m and the
averaged power consumption during boot P off→on

m , with similar information for shutting
down, respectively ton→off

m and P on→off
m . It is then possible to get the instantaneous power

consumption of a machine at any time, pm(t), such as:

pm(t) =


P idle
m + upm(t)

Nm
(Pmax

m − P idle
m ), if sm(t) = On

P off→on
m , if sm(t) = Boot
P on→off
m , if sm(t) = Shutdown

0, otherwise

We can therefore obtain trivially the total consumption of the machines of the data
center with eq. (4.1).

P (t) =
∑
m

pm(t) (4.1)

A task is executed on a single machine (no migration), and without interruption (no
pause and resume nor preemption). Given E the set of couples of task and machine on
which it is executed, we have the following relationships.

∀j,∃m (j,m) ∈ E
∀j (j,m1 ) ∈ E ∧ (j,m2 ) ∈ E ⇐⇒ m1 = m2

To link the task execution model to the use of resources, we define some relationships.

Rm(t) =
{
j | (j,m) ∈ E ∧ t ≥ Bj∧ t < Bj + Tj

Cm

}
(4.2a)

upm(t) =
Rm(t)∑
j

nj (4.2b)

urm(t) =
Rm(t)∑
j

mj (4.2c)

∀t,∀m upm(t) ≤ Nm (4.2d)
∀t,∀m urm(t) ≤Mm (4.2e)
∀t,∀m sm(t) 6= On =⇒ upm(t) = 0 ∧ urm(t) = 0 (4.2f)

Equation (4.2a) defines, for a given time, the set of tasks executed on a given machine.
Equations (4.2b) and (4.2c) represent the use of processors and memory caused by the
execution of the tasks. Those resource usages are additionally constrained by the total
available ones, as shown in eqs. (4.2d) and (4.2e). Finally, eq. (4.2f) describes that a
machine which is powered off should have neither CPU nor memory load.

In this model, the due dates of the tasks are considered to be part of the SLA agreed
by the customers. The respect of the promised quality of service for a task consists in
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finishing it before its due date, as formalized in eq. (4.3a). As we use it as a metric, the
average SLA violation for a given scheduling is given by eq. (4.3b). Its value is between 0
(no violations) and 1 (all tasks violated their due dates).

(j,m) ∈ E , qj =
{

1 if Sj + Tj

Cm
≤ Dj

0 otherwise
(4.3a)

SLAviolation = 1−
∑
j qj

J
(4.3b)

Electrical model

The electrical infrastructure considered here is composed of an electrical grid power supply
and a set of renewable power sources without storage. Although we used solar panels in
our experiments, no particular assumption on the kind of source is used in our model.

Let W be the set of the W renewable power sources. The effective available power at
a time t for a source w is obtained through pw(t), and is supposed to be known only for
the current instant. For each source, we have a prediction function p̂wt (t′), which gives the
expected available power for a time t′ in the future of current time (t′ ≥ t). The prediction
is available only for t within a given time window T forecast from the current instant. The
prediction function is considered as a black box, and numerous existing works may be
used to compute it based on source characteristics and weather forecast, as much for solar
panels [32, 90] than for wind turbines [116, 176].

The grid model allows to represent variations of the electricity price over time, such
as on-peak/off-peak pricing. Pricing should be known in advance (within the same time
window T forecast), and is represented by a function cgrid(t), which is the price of a kilowatt-
hour of grid energy at the time t.

4.1.3 Abstraction of electrical and IT objectives

Each of the management systems, electrical and IT ones, has only a full knowledge of the
their own model, described above. Those two parts have therefore different objectives: the
electrical part goal is to reduce either the total cost of purchased energy or the amount of
grid energy used, and the IT goal is to schedule each submitted task with respect to the
SLA.

To exchange bits of information between them, our approach consists in valuing these
objectives in an abstracted and normalized way, named attractiveness. An attractiveness
value is a real ∈ [−1, 1] which represents, for a given proposal, its benefit or cost for one
of the optimization loops. A value of −1 is used for the strongest cost, or an impossibility
to accept a proposal, whereas a value of 1 corresponds to the most important benefit
possible. The values between allow for any intermediate degree of cost or benefit, with 0
representing a neutral proposal.

We propose attractiveness functions for both electrical and computing parts, which
associate a proposal to an attractiveness value, using information from its own model. As
the attractiveness value abstracts the internal objectives of each part, it is possible to use
it to guide an optimization, without the awareness of the elements considered to obtain
it. Those values will be used by the scheduling algorithm to reach the best schedule.

Electrical attractiveness

The proposal sent by the IT optimization loop is to be seen as a part of a consumption
plan. It contains an average power needed, the time at which the power is required, and
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the duration of the request. The electrical attractiveness is therefore calculated based on
these proposal data and on the prediction of the model described in section 4.1.2.

In order to demonstrate the flexibility offered by the use of attractiveness to abstract
the internal objectives of each optimization loop, we propose two variants of the electrical
attractiveness function. Whereas the first one (named variant A) only considers renewable
energy use, the second one (variant B) also takes the grid electricity price into account.

The variant A is detailed in algorithm 1. This function has several interesting prop-
erties. It is defined as a piecewise function, depending on the value of ∆power. The
two sub-functions, for ∆power ≥ 0 and ∆power < 0 are identical at the exception of the
constants used as base, maxIncrement and rate. In those functions, the value of ∆power

determines the impact of the maxIncrement factor. The closer ∆power is to 0, the closer
the resulting attractiveness is to base. At the opposite, when ∆power approaches ±∞,
the attractiveness asymptotically approaches base + maxIncrement. Both sub-functions
are monotonic in their definition interval. Consequently, the computed attractiveness is
bounded in [αpos, αpos + βpos] when ∆power ≥ 0, and by [αneg, αneg + βneg] otherwise.
Finally, the speed at which both sub-functions go from base to base + maxIncrement is
controlled by the value of rate.

Algorithm 2 is the attractiveness function for the variant B. It is similar to the variant
A, but using a more complex function to determine the value of base, using the average
price of the grid energy used (Cgrid). It depends on three other constants, which are the
minimum and maximum price of grid energy (respectively θmin and θmax), and λ. The
value of λ, called price factor thereafter, determines the variation of base between Cgrid =
θmin and Cgrid = θmax. This modification impacts the value of the attractiveness when
∆power < 0 (when the average renewable energy production is lower than the requirement).
Consequently, the more the grid energy price is expensive, the less the value of base is.

Some of the constants used in algorithms 1 and 2 are given in table 4.1. The other
constants, which depend on the electrical infrastructure, will be given in section 4.2.3.

αpos βpos αneg βneg

Variant A 0.6 0.4 -0.7 -0.3
Variant B 0.6 0.4 N.A. -0.3

Table 4.1 – Values used for constants in algorithms 1 and 2. Values of hpos, hneg, λ, θmin
and θmax depend on the considered electrical infrastructure.

IT attractiveness

For each proposed task schedule, the calculated IT attractiveness depends on the schedule
start time related to the due date of the task (tdue = Dj − Tj), as shown in algorithm 3.
The purpose of this attractiveness function is to favor an early execution, and, more
importantly, to penalize a schedule which leads to violate the due date. The difference
between tdue and the submission date Sj is named flexibility of the task (flexibility =
Dj − Tj − Sj). Indeed, it represents the amount of time during which the start of the
task may be scheduled without violating the SLA. A task with low flexibility gives few
freedom to the scheduler for choosing an appropriate time for its execution, compared
to one with a higher flexibility. Two additional times are defined in addition to tdue,
before and after it, named turgent and tlate. They are used respectively to reduce the
attractiveness shortly before the deadline, and to encourage a schedule shortly after the
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Data:
Pavailable : predicted average available renewable power during the requested
period
Prequired : average required power during the same period
Result: aelec : electrical attractiveness for this request ∈ [−1, 1]
∆power ← Pavailable − Prequired
if ∆power ≥ 0 then

base ← αpos ;
maxIncrement ← βpos ;
rate ← hpos ;

else
base ← αneg ;
maxIncrement ← βneg ;
rate ← −hneg ;

end

aelec ← base + maxIncrement. ∆power

∆power + rate ;

Algorithm 1: Electrical attractiveness function for a given consumption request (vari-
ant A).

Data:
Pavailable : predicted average available renewable power during the requested
period
Cgrid : average grid purchasing cost when renewable is not sufficient
Prequired : average required power during the same period
Result: aelec : electrical attractiveness for this request ∈ [−1, 1]
∆power ← Pavailable − Prequired
if ∆power ≥ 0 then

base ← αpos ;
maxIncrement ← βpos ;
rate ← hpos ;

else
base ← −1.0− βneg − λ.

(
Cgrid−θmin
θmax−θmin

− 1
)
;

maxIncrement ← βneg ;
rate ← −hneg ;

end

aelec ← base + maxIncrement. ∆power

∆power + rate ;
Algorithm 2: Electrical attractiveness function for a given consumption request, with
grid price taken into account (variant B).
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due date over one occurring long time after. Table 4.2 presents the values used for the
several constants required by algorithm 3 to compute the IT attractiveness.

Data:
Bj : beginning of the proposed schedule
Sj : submission date
tdue : Dj − Tj
Result: ait : IT attractiveness ∈ [−1, 1]
turgent ← tdue − γ.(tdue − Sj) ;
tlate ← tdue + γ.(tdue − Sj) ;
if Bj ≤ turgent then

ait ← vbase + αbase.
turgent−Bj

turgent−Sj
;

else if Bj ≤ tdue then
ait ← vurgent ;

else if Bj ≤ tlate then
ait ← vlate ;

else
ait ← vbad ;

end
Algorithm 3: Calculation of the IT attractiveness for a single possible task schedule.

αbase vbase vurgent vlate vbad γ

0.2 0.7 0.2 -0.9 -1 0.1

Table 4.2 – Values used for constants in algorithm 3 to compute IT attractiveness.

4.1.4 Scheduling algorithm

The purpose of a scheduling algorithm for batch tasks is to find, for each task j, a machine
in M on which to run the task and a starting time Bj . We will name thereafter a
placement such a couple of a machine and starting time. Our algorithm, ABBSH (for
Attractiveness-Based Blind Scheduling Heuristic), is online, scheduling tasks as and when
they are submitted, without knowledge of the future submissions. It is implemented as a
greedy heuristic, choosing a definitive placement for a task at the time it is submitted.

To decide this placement, the algorithm compares multiple possible placements. For
each one, the IT attractiveness is computed, and the power consumption of the data center
is evaluated using eq. (4.1) by adding the resources use generated by this placement. The
average power consumption is then used to make a request to the electrical loop, which
gives the corresponding attractiveness as described in section 4.1.3.

In order to chose among the possible placements, we are facing a multi-objective prob-
lem. Indeed, we would like to maximize both electrical attractiveness (which is an image
of the quality of the power used) and IT attractiveness (representing the respect of SLA
criteria). We decided to evaluate ABBSH using different of the multi-objective methods
presented in section 2.1, which are recalled and detailed after.

Algorithm 4 presents the method used to place a task j at its submission, using a given
multi-objective function. The value of the time step used is function of the execution time
of the task and of a coefficient, such as αstep.Tj . The time step is also bounded with a
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Function placeTask(j, multiObjectiveFun)
placements ← empty list ;
timeStep ← min(αstep.Tj , stepmax) ;
windowEnd ← Dj+ min(αwindow.(Dj − Sj),windowmax) ;
for tcur ← timeStep; tcur < windowEnd; tcur ← tcur+ timeStep do

foreach machine ∈M do
ts ← first time ≥ tcur with at least (cj , rj) available on machine for a
duration ≥ Tj ;
Prequired ← average P (t) between [ts, ts + Tj

Cm
], including current

placement ;
aelec ← electrical attractiveness for proposal (Prequired, ts, Tj) ;
ait ← IT attractiveness for proposal (j, ts);
place ← (machine, ts, ait, aelec) ;
placements.append(place) ;

end
end
(bestMachine, bestTime) ← multiObjectiveFun(placements) ;
schedule j on bestMachine with Bj = bestTime ;

Algorithm 4: Simplified pseudo-code of the single task placement function of the
ABBSH algorithm. The parameter multiObjectiveFun is a function which takes a list
of placements with their attractiveness and returns the couple (time, machine) of the
best solution.

Function onTasksSubmitted(tasks)
foreach j ∈ tasks do

placeTask(j, multiObjectiveFun) ;
end

// called toff→on
m before Bj

Function onTaskReady(j, m)
if pm(tnow) = Off then

startMachine(m) ;
end

Function onTaskStart(j, m)
executeTask(m, j) ;

Function onTaskEnd(j, m)
tend ← tnow + αreboot(toff→on

m + ton→off
m ) ;

if ∀t ∈ [tnow, tend],Rm(t) = ∅ then
stopMachine(m) ;

end
Algorithm 5: Simplified event-based scheduling and power management algorithm
for ABBSH.

75



4.1. Proposed approach

maximum, to have its value in [0, stepmax]. Similarly, the length of the time window during
which placements are considered is based on time between the submission and the due
date, with another coefficient: alphawindow.(Dj −Sj). To keep this duration into a known
interval, a maximum value is also used, keeping the time window in [0,windowmax]. The
values of those parameters as used in our experiments will be given in section 4.2.3.

To reduce the global power consumption of the data center, our approach turns off
the machines when they are unused. By having the usage planning of all computing
resources in the near future, it is easy to anticipate the necessary boot-up. The overall
scheduling and power management algorithm is presented in algorithm 5, in an event-
driven form. Then functions onTasksSubmitted and onTaskStart implement the scheduler
itself. The power state of the machines is managed by onTaskEnd, which allows to turn
off idle machines, and onTaskReady. The latter is called before the scheduled execution
of a task, to let the time to turn on the corresponding machine if needed. Turning on
and off the machines too often may result in some drawbacks, including an increase of
the total consumption, because of the additional energy required during those steps. In
order to avoid unnecessary reboot, Villebonnet et al. [192] define a “minimum switching
interval”, which is the duration under which it is preferable to keep the machine idle than
to do a complete reboot cycle. In our scheduling algorithm, the parameter αreboot is used
for a similar purpose, but is relative to the time required for a reboot cycle. A machine is
switched off only if it is expected to be idle for more than αreboot.(toff→on

m + ton→off
m ), with

αreboot > 1.

4.1.5 Multi-objective methods

The scheduling algorithm needs to choose one of the possible placement for each task.
Having two objectives, the IT and the electrical attractiveness values, the considerations
of multi-objective optimization discussed in section 2.1 apply here. Four multi-objective
methods are explored. The first is a weighted sum of both objectives, commonly used
in the literature. The second consists in a weighted sum of the hyperbolic sinus of both
attractiveness. Finally, two variants of the fuzzy-based approach proposed by Sun et al.
[180] are used, each using a different primary objective (either the IT or the electrical
attractiveness).

The use of a weighted sum is particularly interesting here, as the attractiveness values
are already normalized. This avoids the issues of taking the scale of each objective function
into account to decide the weights. The choice of the hyperbolic sinus variant is motivated
by the shape of this function. In addition to its symmetry, due to the fact it is an
odd function, it also has interesting properties which give more weight to the extreme
attractiveness values (close to -1 or 1). These functions are defined in eq. (4.4a) for the
simple weighted sum and eq. (4.4b) for the sum of hyperbolic sinus. The weighting is
controlled by a parameter α ∈ [0, 1]. Parameter β in eq. (4.4b) is used to control the
shape of the hyperbolic sinus transformation. A value close to 0 makes the transformation
almost linear in [−1, 1]. The greater β is, the more the weight of the extreme attractiveness
values are important compared to medium ones.

fwsum(ait, aelec) = α.ait + (1− α).aelec (4.4a)
fwsinh(ait, aelec) = α. sinh(β.ait) + (1− α). sinh(β.aelec) (4.4b)

The fuzzy-based method is basically a ε-constraint enhanced by some a posteriori
knowledge of the Pareto front. Figure 4.2 illustrates this method, with a scenario where
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Pareto front of known solutions
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Figure 4.2 – Illustration of the fuzzy-based multi-objective approach, with two objectives
to maximize. The solutions A and C are respectively the best and worst solution for the
first objective. After applying the fuzzy factor, solution B is selected.

two objectives are to be minimized. Initially, the best solution for the first objective is
selected (point A in the figure). A constraint on the value of the first objective is then
added based on this best value, increased by a certain margin. The final solution is the
one minimizing the second objective in this subset (B in fig. 4.2). Contrary to a classi-
cal ε method, the constraint relative to the minimum and maximum values observed for
this objective. With minobj1 and maxobj1 the extreme values of the solutions on the first
objective, the added constraint is:

fobj1 ≥ maxobj1 − α(maxobj1 −minobj1 ) (4.5)

The parameter denoted α for uniformity with the other methods, is also called fuzzy
factor thereafter.

4.2 Evaluation methodology

Our approach has been developed and evaluated using DCworms [111] as a simulation
platform, with the changes described in section 3.1 to handle electrical infrastructure sim-
ulation. As detailed along chapter 2, the works studying the management of datacenter
powered by RES exhibit a large diversity of models and objectives, making experimen-
tal comparisons between them challenging. The proposed approach is compared to the
GreenSlot scheduling algorithm [70], which considers a similar IT and electrical model: a
single datacenter with on-site RES, grid and a workload composed of batch tasks with due
dates. In addition, it has similar objectives (minimization of the non-renewable energy
used and of the cost of this energy), allowing a fair comparison of the results.

After describing the simulation environment, the original GreenSlot scheduler and the
modifications added either to adapt it to some model specificity or to improve it for the
considered workload are presented. Finally, we will detail the parameters used in our
experiments for instantiating the models presented in section 4.1.2.
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4.2.1 Environment and workload

For the purpose of the presented experiments, we used a simple infrastructure, composed
of solar panels and of an electrical grid supply which handle price variation during the day.
To keep the experimental setup simple, the solar irradiance data used simulates clear sky
days at the equinox and the production is computed using linear-irradiance photovoltaic
model given in section 2.3.2.

On the IT side, synthetic workloads are generated using the analysis of the Google
workload detailed in section 3.2. As this approach is only focused on batch tasks, we set
the parameter ratioTask = 1.0 in order to not generate services. The parameters related
to execution time are the one extracted from the Google traces: mass = 1700 (average
task execution time in seconds) and disparity = 3.8 (ratio between average and median
execution time). The value of dynamism, which is the average inter-arrival time, has been
adapted to fit the size of our simulated computing infrastructure, and we used a value of
72 seconds.

We also uses the due date model (presented in section 3.2.7), which attributes flexibility
to the tasks according the flexibility factor (flexf ) and the priority generated for each
tasks. Three priority classes are defined (G = 3): low, normal or high. The parameters
of the random distribution (normal law, truncated at µ ± 3σ) for each priority class are
given in table 4.3. For the priority class high, tasks have only the minimum flexibility,
resulting in µ and σ both equal to 0. For our needs, the minimum flexibility value is set
to fmin = 60 seconds, giving sufficient time for the scheduler to start the task.

Using this due date model allows to study in details the impact of the workload flexi-
bility on the results. Specifically, the impact of the flexibility factor on the results of the
different heuristics will be pointed out in section 4.3.

Priority class µ σ

Low 3600 600
Normal 1200 300
High 0 0

Table 4.3 – Parameters of truncated normal distribution used to define task flexibility (in
seconds) depending on its priority class.

In our experiments, each workload starts at midnight, and contains tasks submitted
during 72 hours (corresponding to an average of 3600 tasks). As the log-normal distri-
bution used for execution time is long-tailed, some very high values may occasionally be
assigned to Tj . The time period considered for the workload being relatively short, we
decided to only accept tasks with Tj ≤ 24 hours (if a task is longer, a new task is generated
instead).

4.2.2 GreenSlot

We implemented the “GreenVarPrice” version of the GreenSlot scheduler, which takes
into account the variation of grid energy price, based on its description given in [70]. This
algorithm is based on a discrete time unit (15 minutes in the original paper experiments),
named time slot. It considers a finite time window, divided into multiple slots. For each
slot, the algorithm keeps the prediction of renewable energy production at that time, the
available computing resources, the price of grid energy, and the planned consumption
during this slot.
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The tasks submitted by the users are put in a waiting queue in Least Slack Time First
(LSTF) order. At the beginning of each time slot, the waiting tasks are scheduled in
LSTF order. For each task, the algorithm computes the cost for starting the task at the
beginning of every slot in the window and schedule the task in order to minimize its cost.

Several adaptations were made in the algorithm presented in the aforementioned paper
to fit some differences of computing and electrical models.

• As we have a perfect renewable prediction, we removed the adjustment and re-
scheduling in case of prediction error.

• The task execution time is perfectly known, and we do not add tolerance to the time
specified at submission.

• Instead of rejecting a job at submission if we cannot respect its due date, we accept
it and schedule it after its due date.

• In our implementation, a machine may execute several tasks at the same time (de-
pending on the number of processors installed and required), whereas the original
study considered tasks using whole machines.

• In the original article, the idle nodes were put in sleep mode (S3 state). Instead, our
implementation turns them off, based on the model presented section 4.1.2.

The core of the GreenSlot algorithm is the slot cost calculation. For a given slot and
task, the cost is infinite if the required computing resources are not available during all
the task execution time, or if the task is expected to end outside the current window.
Otherwise, it depends on the total cost of the grid energy required, plus an eventual
penalty if starting the task at this time violates its due date.

Equation (4.6a) gives the cost function, for a given couple of starting slot ts and task j,
when it is not infinite. The set of time slots during which the task is executed is given by
S. For a slot s, we have gridEnergys the amount of energy which will be required from the
grid at this time (in kWh) and gridPrices the price of grid energy for this slot (in $/kWh).
A coefficient cgrid is used to obtain the cost considered by the algorithm. Finally, an
additional penalty may be added to the total cost, as given by eq. (4.6b). This value can
be either 0 or penaltyviolated , depending if the due date is respected or not. The values used
as cgrid and penaltyviolated are not given in the original work, but we assume the due date
violation to be important compared to some grid energy use. We used penaltyviolated = 5,
and cgrid = 1 in our experiments.

penalty +
∑
s∈S

cprice.gridPrices.gridEnergys (4.6a)

penalty =
{

0 if ts ≤ Dj − Tj
penaltyviolated otherwise

(4.6b)

When the costs, for a given task, are calculated for every possible starting slot, it is
scheduled to begin at the slot with the lowest cost (choosing the earliest if several have the
same cost). Once scheduled, the available computing resources and planned consumption
are updated for the slots during which the task will be executed.

However, during our early experiments with the GreenSlot algorithm, we found it to
be poorly suited to the kind of workload we used. The one used in the original work [70]
was a scientific computation workload, with few short tasks and due dates relatively far
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away from the submission. Our workloads, at the contrary, contain a lot of short tasks,
and some of them have to be started in the next minute.

We identified two causes of bad performances when using our workloads with the
original algorithm. Appropriate modifications are proposed to improve it in order to
adapt it to our use case.

1. A task with a low flexibility, submitted in the middle of a slot, may need to be
scheduled before the next slot to have its due date respected. As the task queue is
processed only at the beginning of each slot, such a task is likely to have its due date
violated.

2. As the original algorithm considers a time slot to be indivisible, a task which uses
only a small part of a slot (either a very short task or the last slot in which a longer
task is running) will appear to reserve an entire slot. Because of that, the computing
resources usage become fragmented, causing the algorithm to need more resources
than really required, or even to delay tasks after their due dates because the nearest
slots are already reserved.

To address the first issue, we propose to modify the task submission processing, to
schedule it immediately if its due date will be violated before the next slot, instead to put
it in the waiting queue. For the second issue, we improve the algorithm to make it able
to reserve resources for a fraction of a slot. It is then possible to backfill a slot with other
tasks, starting immediately after the previous one.

Because of those modifications, we used three different versions of the GreenSlot al-
gorithm in our experiments. The first, referred as original, contains none of those mod-
ifications, and uses a slot time of 15 minutes (the same value used in the experiments
of the authors of the GreenSlot approach). The second, named partially modified, uses a
shorter time slot (5 minutes) and implements the urgent scheduling modification. Finally,
the modified version implements both modifications, and a time slot of 15 minutes, as
the second modification reduces the need of short time slot. The performances of those
different versions will be detailed in section 4.3.2, allowing to argue about the two issues
and the impact of our modifications in the GreenSlot algorithm.

4.2.3 Experimental configuration

Before to present the experiment results, we will detail the model instance we used and
the values of the various parameters mentioned previously.

IT model We simulated a small data center, quite similar in peak consumption and
computing power to the one used by the authors of [70]. To use realistic values of power
consumption, we chose an energy-efficient commercial rack server as a reference. It is the
Dell PowerEdge R210 II, with a 4-cores Intel Xeon E3-1200 series processor and 32 GiB
of RAM.

The consumption of this server is measured up to 130 W at peak load and 44 W at
idle2. This is slightly higher than the values announced by the manufacturer in its power
and performance data sheet, but in accordance to other measurement on comparable
servers [191]. The time required for turning on the server was not measured directly for
this model. Very few works studied in detail the boot time of servers. There is a wide

2Power consumption using SiSoft Sandra benchmark, as measured by http://www.itpro.co.uk/
635800/dell-poweredge-r210-ii-review.
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Parameters Meaning Values
M Number of machines 10
Nm Processors per machine 4
Rm Memory per machine 32 GiB
P idle
m Base machine consumption 44 W
Pmax
m Machine consumption at full load 130 W
Cm Processor relative speedup 1
P off→on
m Total power used during boot up 120 W
toff→on
m Time for booting up 40 seconds
P on→off
m Total power used during shut down 100 W
ton→off
m Time for shutting down 15 seconds

Table 4.4 – Instantiation of the IT model described in section 4.1.2 (homogeneous data
center, the values are given ∀m).

range of measured values depending the architecture and the software configuration [179],
as shown for instance by Villebonnet et al. [191] measuring from 12 to 189 seconds. A
value of 40 seconds seems reasonable for a headless server, as the measurements from [179]
are comparable in the case of several machines with GNU/Linux distributions including
a graphical session start. The measurements are even lower (around 30 seconds) when
booting from network instead of using a hard drive for this purpose. To take into account
the peak of power consumption which occurs when turning on and off a machine [147], we
considered a consumption close to the full load one.

The simulated data center is composed of 10 of these servers, or 40 processors available.
The model from section 4.1.2 is therefore instantiated with 10 identical machines with
values summarized in table 4.4. This setup, resulting in a small infrastructure with a peak
production of 1300 W, is chosen to be of similar scale with the GreenSlot [70] evaluation
infrastructure (1765 W peak).

Electrical model and attractiveness The electrical infrastructure is composed of
two electrical sources, as mentioned in section 4.2.1. The first one is a set of solar panels,
providing a peak production of 1500 W. Depending of the photovoltaic module used,
the cells technology, and the efficiency of the solar inverter, the required surface of solar
panels may vary a lot. We will consider an efficiency of around 15%, which is a conservative
value of what is commonly found in the current market, for modules using single or multi-
crystalline technologies cells [37]. With such efficiency, a peak production of 1500 W is
achievable with 10 m2 of panels, assuming a peak solar irradiance of 1000 W.m-2 [36].
The time window for prediction of energy availability and grid energy pricing, T forecast

is set to 48 hours. As a matter of simplification, and as the electrical infrastructure is
implemented in a simulator, the prediction model used here is an oracle, with perfect
prediction during the whole window (p̂solar

t (t′) = psolar(t′),∀t′ ∈ [t, t+ T forecast ]). The
second source is the electrical grid, with an on-peak/off-peak pricing based on the values
used in [70]. Two periods are considered for pricing: $0.13/kWh from 9am to 11pm (on-
peak), and $0.08/kWh from 11pm to 9am (off-peak).

Having the maximum renewable sources production and the grid prices, we can define
the missing constants used in electrical attractiveness functions. The values of hpos and
hneg determine the rate at which attractiveness increase or decrease depending on the
available power. We set both to a quarter of the peak renewable power, hpos = hneg =
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375 W . For the variant B of the attractiveness function, we have the minimum and
maximum grid energy price, θmin = 0.08 and θmax = 0.13. The price factor λ will be set
by experiments detailed in section 4.3.1.

Scheduling algorithm Several parameters are used in the task placement algorithm
itself ( algorithm 4). Two couples of parameters, related to time steps (αstep and stepmax)
and to the time window considered for scheduling (αwindow and windowmax) are used
by the algorithm, as described in section 4.1.4. A last parameter, αreboot, control the
aggressiveness of the shutting down of idle machines. The values used for the first four
parameters, presented in table 4.5, were chosen based on preliminary experiments for
giving good results for both short and very long tasks. However, they were not tuned
specifically for the workloads used in this chapter and different values may lead to better
results, at the cost of a longer execution time of the task scheduling algorithm.

For the parameters related to the time window, the chosen values allow the scheduling
of tasks long after their due dates (up to 4 times the duration of the task with a maximum
of 12h). This permits possible SLA violations if a heuristic considers it more interesting
than using more energy at some point to respect the due date of a task. The ones related
to the time steps are chosen to avoid too long steps for long tasks (the maximum time step
is 30 minutes), while keeping steps long enough for short tasks (0.3 times its normalized
execution time Tj).

Finally, choosing αreboot = 2 allows to keep a machine turned on if it is idle for less
than twice the time needed to perform a complete reboot. Choosing higher value results
in more idle machines not powered off and a lower value results in more aggressive reboot
of machines to avoid any idle time. As the machines consume more power when shutting
down or booting up than in idle state, this value may also be tuned with the characteristics
of the machines used. For sake of completeness, the optimal in terms of power consumption
and for an homogeneous data center is given by eq. (4.7). This equation gives the value of
αreboot for which the total energy consumed during a reboot cycle is equal to the energy
consumed if the machine stayed idle.

αoptimalreboot = P off→on
m · toff→on

m + P on→off
m · ton→off

m

Pmax
m · (ton→off

m + toff→on
m )

(4.7)

αstep stepmax αwindow windowmax αreboot

0.3 0.5 h 4 12 h 2

Table 4.5 – Values of parameters used in the scheduling algorithm.

Workloads The workloads are generated with the model described in section 4.2.1,
which gives the values, for each task j, of the parameters Sj (submission date), Dj (its
due date) and Tj (its execution time). Several values of flexibility factors flexf are used,
depending on the experiments, and will be given along with the results. In order to keep
the workload definition simple enough, all the tasks have the same CPU and memory
requirements, nj = 1 and rj = 1 GiB. In our experiments, the measured average load of
the computing infrastructure with such a workload is about 45 %, which is higher than
most of the typical data centers [158], and similar to some modern cloud clusters.

To ensure the validity of our experiments, we generated a set of 10 different workloads
for each flexibility factor used. Those 10 workloads are generated with the same probability
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distributions, but using different random seeds. All the results given in the next sections
were repeated on the 10 workload instances, and the values used are the average, unless
specified otherwise.

4.2.4 Lower bound of grid consumption

The methodology presented here was focused on comparing our approach to others heuris-
tics from the literature. However, it does not give hints to know how close those results are
from the optimal. Scheduling problems are, unfortunately, known to be easily intractable,
even for simple models [184]. In the particular problem presented in this chapter, we
expect that obtaining an optimal solution (thanks to linear programming for instance)
within a reasonable time can be achieved only on tiny instances. Therefore, we propose
instead to study a lower bound of the energy consumed on the grid.

The main idea is to relax the problem in a continuous way, such that individual tasks
are gathered into a fully parallelizable workload (described as a mass). This mass can be
assigned indistinctly onto the machines, while keeping information about submission and
due dates of the tasks. We keep the notations of the model presented in section 4.1.2 and
rely on the following assumptions:

• A task may be executed on any number of processing unit (fully parallelizable tasks),
suspended and migrated instantaneously with no cost.

• The data center is homogeneous (the subscript m, used in the notations from sec-
tion 4.1.2, will refer to any machine and their speedup Cm = 1).

• The machines can be powered on and off instantly.
• The power consumed by a machine is proportional to the amount of processor used

(each accounting for Pmax
m /Nm).

As the problem has been relaxed with these assumptions, we should note that the
lower bound would be unachievable.

We focus on two characteristics of the workload. The first one, Massearliest , given by
eq. (4.8c), is the cumulated mass if every task is scheduled as early as possible. It is easy to
compute based on Wlearliest , the mass given in eq. (4.8a). Equation (4.8d) gives Masslatest ,
the second one, when the tasks are scheduled as late as possible while respecting their due
dates, based on the mass from eq. (4.8b).

Wlearliest(t) =
∑
j

{
nj if Sj ≤ t ∧ Sj + Tj ≥ t
0 otherwise

(4.8a)

Wllatest(t) =
∑
j

{
nj if Dj − Tj ≤ t ∧Dj ≥ t
0 otherwise

(4.8b)

Massearliest(t) =
∫ t

0
Wlearliest(x) dx (4.8c)

Masslatest(t) =
∫ t

0
Wl latest(x) dx (4.8d)
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Figure 4.3 – Illustration of the method for finding the lower bound of grid energy con-
sumption.

∀t 0 ≤ Cpu(t) ≤ Nm ·M (4.8e)
Cpu(t) ≥ Masslatest(t)−Massdone(t− 1) (4.8f)
Cpu(t) ≤ Massearliest(t)−Massdone(t− 1) (4.8g)

MassDone(t) =
∫ t

0
Cpu(x) dx (4.8h)

Cons(t) = Cpu(t) · P
max
m

Nm
(4.8i)

Grid(t) = max(0,Cons(t)−
W∑
w

availablew(t)) (4.8j)

Figure 4.3a illustrates that using an example workload with only 3 tasks. The tasks are
represented in the top figures, along with the period between their submission and their due
dates (in green). The cumulated mass associated to the earliest and latest scheduling are
given respectively in the bottom left and bottom right subfigures. Any valid scheduling
which respects all the due dates must have, at each time, its cumulated mass between
Masslatest and Massearliest . This is represented by the constraints in eqs. (4.8e) to (4.8h).
Cpu(t) is the total amount of processors used at a given time t, while MassDone(t) is the
associated cumulated mass.

Based on these constraints, it is possible to find a lower bound of the energy consumed
from the electrical grid. Equation (4.8i) gives the consumption of the data center, Cons(t).
By removing the power produced by each of the W renewable sources, Grid(t) represents
only the power coming from the grid, given by eq. (4.8j). An illustration of the method,
for the example workload, is shown in fig. 4.3b. At the top, the earliest and latest cumu-
lated mass are represented, as well as the one found as the lower bound. The resulting
consumption, for both grid and renewable, are given in the bottom subfigure.

In practice, we used a discrete time model, with time steps small enough, to compute
the lower bound. The solution is therefore given by minimizing ∑t Grid(t). At each time
step, the renewable power is used to do as much work as possible without exceeding the
earliest cumulated mass. Then, if it was not enough to reach the latest cumulated mass,
grid power is used for this purpose.
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Figure 4.4 – Impact of multi-objective functions parameter value (weighting or fuzzy mar-
gin) on SLA violation and on part of grid energy used.

4.3 Results

In order to present our results, we will, in a first time, present the experiments we used
to fix the parameters of the several multi-objective methods detailed in section 4.1.5, and
the price factor used in variant B of the electrical attractiveness function. Then, using
the values determined by those experiments, we will compare the performances of the
different approaches and heuristics on several criteria, and for multiple flexibility factors
of the workload.

4.3.1 Choosing parameters

Multi-objective functions parameters We have a total of four different multi-objective
methods, described in section 4.1.5, that may be used by ABBSH: the simple weighted
sum, the weighted sum of hyperbolic sinus, the fuzzy-based with IT attractiveness as its
first objective (fuzzy-IT) and the one with electrical attractiveness as its first objective
(fuzzy-elec). For each of them, we have an α parameter which controls its behavior. For
the two weighted sums, it is the weighting factor, and it is the fuzzy factor used to cal-
culate the margin on the first objective for the fuzzy-based approach. The parameter β,
used for the weighted hyperbolic sinus sums, was fixed to a value high enough to give more
weight to the extreme attractiveness value, and we used β = 2.5.

The value used impacts directly the preference toward either the IT or the electrical
attractiveness. Ideal value depends on the formulation of attractiveness function. As these
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(b) Weighted sum of hyperbolic sinus
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(c) Fuzzy-based with IT attractiveness as first ob-
jective

Figure 4.5 – Impact of price factor variation on the amount of energy bought from the
electrical grid and its total cost (with the variant B of electrical attractiveness function,
which considers the price variations).

formulations do not change during the use of the scheduling algorithm, choosing the value
is expected to be done offline and only once for configuring the scheduler.

To choose a value for them, we used workloads generated with a relatively high flexi-
bility (flexf = 8), and used only the electrical attractiveness variant A. The experiments
consist in changing the α value, and evaluating the impact of it on two criteria: the part
of non-renewable energy used and the rate of tasks that finished their execution after their
due dates. The results are shown in fig. 4.4. We are looking for a value of α, for each
method, which minimizes both criteria.

For the weighted sums, the results in fig. 4.4a and fig. 4.4b are quite similar. The SLA
violation rate decreases quickly when α becomes higher than 0.5, and the non-renewable
part increase when α is close to 1. To keep a high QoS and a high renewable energy usage
in the same time, we choose α = 0.55 for both functions.

For the fuzzy-based approaches, a first look to fig. 4.4d indicates its worthlessness when
the electrical attractiveness is the first objective. Indeed, the margin needed to have a SLA
violation rate near zero seems to imply a less important renewable usage than for the other
methods. For this reason, we will not keep it in the subsequent experiments. Figure 4.4c
shows a very different result when the first objective is the IT attractiveness. In this case,
we note that non-renewable energy usage decreases a little bit when α increases between
0.1 and 0.9, staying almost constant. Similarly, the SLA violation rate is slowly increasing,
until it grows quickly when α reaches 0.9. We will choose a relatively high flexibility factor
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of α = 0.75, to keep the renewable energy usage as important as possible, and without
risking to degrade too much the QoS.

Electrical attractiveness variant B With the multi-objective parameters fixed in the
case of the variant A of the electrical attractiveness function (without taking the electricity
price into account), we can study how to integrate the price in the variant B. The influence
of the electricity price from the grid is controlled by λ, the price factor. The choice of it’s
value is to be considered as a decision of the data center operator. It fixes the trade-off
between privileging the renewable energy (low value) or the cheap grid energy (high value).
With λ = 0, the behavior is the same as with the variant A (we find base = αneg = −0.7),
guaranteeing that the parameters chosen for the multi-objective methods will work as well
for this case of the variant B. By increasing it, the attractiveness value, for a situation
where renewable energy is not sufficient, will increase compared to the variant A by at
most λ (in the case of the cheapest possible energy prices).

Figure 4.5 gives the results of non-renewable energy consumed (bought from the elec-
trical grid) and its total cost. The impact of λ is similar for the different multi-objectives
methods. The total cost decreases initially, but starts increasing again when the price
factor becomes too high (≥ 1.3). This behavior is related to the total grid energy con-
sumed. Indeed, the total cost is correlated with the energy consumed from the grid, and
the average price for this energy. With small values of λ, the grid consumption increases
a bit compared to λ = 0, but as the price is taken into consideration, the average price
decreases in the same time. However, when λ becomes high enough, increasing it does
not reduce significantly the average energy price, and the total price simply follows the
grid consumption. Worse, when the price factor is too high, the electrical attractiveness
function tends to favor the use of cheap grid energy instead of renewable one which covers
only partially the requirement. Consequently, the amount of grid energy increases again
and the total cost follows. Those high values are probably not the behavior wanted by
any operator of data center with renewable energy sources, but shows how important it is
to choose an appropriate value for λ.

With those results, we can choose a value for the price factor, used by the three different
heuristics. We want a value that increases the least possible the non renewable energy
consumption, while decreasing the grid energy cost the most possible. Therefore, setting
the price factor λ = 1.2 seems reasonable, and will be used for the next experiments.
With this value, compared to the variant A, the weighted sum with the variant B uses
2.2% more grid energy but reduces the cost by 12%. Similarly, with the weighted sum of
hyperbolic sinus, the consumption from the grid is 0.7% higher for a cost saving of 13%,
and respectively 1.0% and 4.9% for fuzzy-IT.

4.3.2 Impact of the workload flexibility

With the multi-objective functions parameters set and electrical attractiveness well de-
fined, we can compare the performance of the different heuristics depending on the flex-
ibility factor used to generate the workload. Greater flexibility factor gives tasks with
more time between their submission and their due dates and therefore more opportunity
for a scheduling algorithm to delay them to a better time while respecting their SLA. We
used 6 different values for the flexibility factor flexf : 0 (resulting in tasks needing to be
executed immediately after their submission), 1, 2, 4, 8 and 16.

For each value of flexf , 10 workloads were generated, using the same parameters de-
scribed in section 4.2.1 but with different random seeds. We evaluated 9 different heuristics
which are the following.
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• the 3 GreenSlot variants (original, with partial modifications and fully modified)
• ABBSH with electrical attractiveness function A in combination with 3 multi-objective

methods (weighted sum, weighted sum of hyperbolic sinuses and fuzzy-based method
with IT attractiveness as first objective)

• ABBSH with electrical attractiveness function B in combination with the same 3
multi-objective methods

These 9 heuristics were each applied to all of the 10 workloads of each value of flexf .
Several metrics were measured (percentage of tasks for which SLA was violated, amount
of grid energy consumed and total price of this grid energy) to compare the different
heuristics. During the rest of the section and unless stated otherwise, the results presented
are the average value over the execution with the 10 workloads for a given combination of
heuristic and flexibility factor.

GreenSlot versions Figure 4.6 gives the results for the three GreenSlot versions. We
note the high SLA violation rate for the original version, in fig. 4.6a, which reaches 98%
when the workload flexibility factor is 0. The violation rate is less than 2.5% for higher
flexibility values, but is still several times more important than with the two other versions,
which include our modifications. The same figure shows that the violation rate for the
partially modified and modified versions is increasing with the flexibility factor.

Figure 4.6b presents the power consumption from the grid for the different GreenSlot
versions. Each tends to consume less grid energy when the flexibility factor increases.
The original version consumes always more than the two others, for the reasons given
in section 4.2.2. The cost of the grid energy, given in fig. 4.6c, is very similar to the
amount of energy drawn from the grid. However, we can notably note that the cost is
not exactly proportional to the energy consumed. The results suggest that GreenSlot
scheduler use cheaper energy when the flexibility increases, as we can expect from a price-
aware algorithm.

We can see how our modifications allow to improve the performances of the GreenSlot
approach when used with our kind of workload, composed in large proportion of short
tasks. As the modified version is better in all criteria compared to the others, we will use
it as a reference when presenting the heuristics of our approach.

Electrical attractiveness variant A Figure 4.7 presents the results obtained with the
several multi-objective methods of ABBSH, using the variant A of the electrical attrac-
tiveness function (no grid energy price consideration) and the GreenSlot modified version.
The SLA violation rate ( fig. 4.7a) has a similar shape for all the heuristics, increasing with
the flexibility factor. Our approach leads to a bit more violations compared to GreenSlot,
especially when the flexibility factor is high.

The consumption of non-renewable energy, shown in fig. 4.7b, is decreasing when the
flexibility factor increases for all the heuristics. The fuzzy-IT method gives better results
than the others when the flexibility factor is low (≤ 4 at least) or high (16), but is worst
for medium value. Both simple weighted sum and the weighted sum of hyperbolic sinus
give almost identical results, always equal or worst than the modified GreenSlot.

As the total cost for the grid energy is correlated with the amount of grid energy used,
the behavior of the different heuristics is similar for this metric ( fig. 4.7c). We can note,
however, that GreenSlot takes advantage of the tasks flexibility to use cheap energy, which
allows to reduce the cost more efficiently with high flexibility values than our approach
with the variant A of electrical attractiveness. In addition, the fuzzy-IT method of our
approach seems to use cheaper energy than the two others, without the grid price being
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(c) Cost of the grid energy.

Figure 4.6 – Impact of flexibility factor over several metrics, for different versions of the
GreenSlot scheduler implemented.

considered by the heuristic.

Electrical attractiveness variant B The same metrics are presented, for the variant B
of our electrical attractiveness function, in fig. 4.8. SLA violation rate, in fig. 4.8a, follows
a similar law than with the other cases, tending to increase along with the tasks flexibility.
For low flexibility factors, the two weighted sum methods give much more violations than
the fuzzy-IT one, or the modified GreenSlot algorithm.

As we take into account the grid energy price with this electrical attractiveness func-
tion, we note that the grid energy consumption ( fig. 4.8b) and cost of this energy ( fig. 4.8c)
are much more similar than for the variant A.

4.3.3 Comparison between approaches

Figure 4.9 summarizes the results for most of the presented approaches and heuristics. The
results of ABBSH using the weighted sum of hyperbolic sinus as multi-objective methods
are not shown as they differ only slightly from using the simple weighted sum. Three
flexibility factors are considered, 2, 8 and 16, which seem representative of workloads with
respectively a low, medium and high level of flexibility. In this figure, the results obtained
by using a first-fit scheduler are also represented, illustrating a traditional scheduling
algorithm with no renewable energy consideration.
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(c) Cost of the grid energy.

Figure 4.7 – Impact of flexibility factor over several metrics, for ABBSH with different
multi-objective functions, using variant A of electrical attractiveness function (without
consideration of grid energy price).

For workloads with low flexibility, our approach using the fuzzy-based method out-
performs the GreenSlot one, even with all our modifications. Whereas, for flexf = 2, the
GreenSlot modified version reduces the use of grid energy by 7.6% compared to a first-fit
scheduling, our approach, with the fuzzy-IT method and the variant B of electrical attrac-
tiveness function, reaches 10.5%. The cost saving is even more important, with only 9.6%
for GreenSlot compared to 12.4% for fuzzy-IT.

The same heuristic (fuzzy-IT with variant B) gives results similar to the modified
version of GreenSlot for the workloads with high flexibility. The GreenSlot scheduler
reaches 48.2% grid energy saving and 51% cost saving. Our ABBSH algorithm performs
slightly better on this scenario, with a grid energy saving of 49.4% and a reduction of
51.2% of the cost, compared to the traditional scheduler.

Our approach is slightly outperformed for workloads with medium flexibility (flexf =
8). In this case, our best heuristic for reducing non-renewable energy use is the fuzzy-
IT with variant A, reaching 31% saving, and the best one for reducing cost, with 35.4%
saving, is the simple weighted sum with variant B. The GreenSlot modified version reduces
the grid consumption by 33.2% and the cost by 38.6%.

In all the scenarios, the original version of GreenSlot gives the worst results, showing
again that it is not adapted to the kind of workload we used. Notably, when the flexibility
factor is low, it actually increases both non-renewable energy use (+2.5% for flexf = 2)
and total cost (+0.4%) compared to a first-fit scheduling. In addition, it causes important
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(c) Cost of the grid energy.

Figure 4.8 – Impact of flexibility factor over several metrics, for ABBSH with different
multi-objective functions, using variant B of electrical attractiveness function (considera-
tion of the variation of the grid energy price).

SLA violation rate compared to the other heuristics, as shown in fig. 4.9a.
The other heuristics give an average SLA violation rate lower than 1% on each of the

three scenarios. However, at the exception of case of workloads with low flexibility, the
violation rate of our heuristics is slightly higher than the one of the GreenSlot version with
our modifications.

4.3.4 Comparison to the lower bound

Based on the method presented in section 4.2.4, we computed a lower bound of the grid
energy consumption for every workload used in the previous experiments. The results for
different values of the flexibility factor are given in fig. 4.10a, along with one of the ABBSH
heuristic and the two variants of GreenSlot. To interpret those results, it is important to
emphasize that the model used for this lower bound does not take into account some of the
energy consumed normally. Notably, the energy needed to power on and off the machines
is not accounted.

Therefore, the total energy consumed (both from grid and renewable sources) is sig-
nificantly less than with the tested heuristics. For all of them, this amount of total energy
varies little depending on the flexibility. The average, for each of the variants of our
approach as well as for the modified GreenSlot algorithm, are between 55.7 kWh and
56.6 kWh. This value is as high as 60.5 kWh for the original GreenSlot variant. By con-
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Figure 4.9 – Comparison of the results between the approaches and heuristics, for work-
loads with different flexibility values. The standard deviation is represented, as each
experiment is repeated with 10 workloads generated using different random seeds.

trast, the solutions from the lower bound method give an energy consumption of 50.4 kWh.
The shape of the grid energy consumed curves, from fig. 4.10a, are similar for the

different heuristics and for the lower bound. The absolute difference between the lower
bound and the best result of all the heuristics increases with the flexibility factor for small
values (from 3.8 kWh for flexf = 0 to 5.4 kWh for flexf = 4). For higher flexibility factors,
the difference is almost constant (5.6 kWh and 5.4 kWh respectively for flexf = 8 and
flexf = 16).

Figure 4.10b shows the percentage of the energy consumed provided by the renewable
sources. The method used to compute the lower bound of the grid consumption does not
give an upper bound to the percentage of renewable energy used. However, those values
help to take into account the differences in total energy consumption.

The lower bound shown in figs. 4.10a and 4.10b, demonstrates that the heuristic we
propose provides gain of the same order of magnitude of what could possibly be reachable
under our hypothesis.

4.4 Discussion
One of the interesting findings of our experiments concerns the impact, on the perfor-
mances of the tested heuristics, of workload flexibility (e.g. the average time available for
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sumption.

Figure 4.10 – Comparison of the results between different approaches and the lower bound
of grid consumption.

scheduling each task and meeting their due dates). While the increase of flexibility allows,
as expected, to improve the results in terms of non-renewable energy and cost saving, it
also leads to an increase of SLA violations. It may seem counter-intuitive, but is easily
explained by the increased usage of computing resources when the energy is available. As
some tasks, with important flexibility, are delayed to be executed at those moments, a
task with low flexibility submitted when all machines are already reserved is likely to be
scheduled after its due date. It may be possible to overcome this issue by using a heuristic
which takes into account a prediction of tasks submitted in the future, in order to keep
some computing resources available for them.

The relationship between the workload flexibility and the reduction of the cost and
of the grid energy use seems quite complex. Beyond a certain flexibility (flexf > 8 in
our experiments), increasing it still allows to give better results, but proportionally less
important to what is achievable by increasing it as much below this threshold. This finding
is reinforced by the results of our lower bound of grid consumption. The saving of grid
energy as a function of the flexibility factor behave almost linearly for flexf ∈ [0, 4], as
shown in fig. 4.10. However, we believe that it is particularly related to the profile of the
renewable source we used. Indeed, our simulated solar panels give a very regular power, as
if every day was perfectly sunny. If, instead, we had simulated a more realistic weather, a
cloudy day would involve to move as much tasks as possible to the next day, and therefore
would probably take advantage of tasks with very high flexibility.

Contrary to other studies, like [70, 71], our work shows how the potential energy saving
of a renewable-aware scheduler is constrained by the SLA negotiated with the users. Also,
we believe it is important to define a metric which gives the amount of freedom for the
scheduling of a workload. The definition of this metric would depend on the kind of
workload considered. In the case of a batch tasks with due dates, a more generic equivalent
of our flexibility factor may be used (for example a measurement of the average or median
of the flexibility of the tasks). We see two major reasons for defining such metrics. Firstly it
would make possible to compare more easily the performances of different approaches, and
to evaluate a given approach with several well identified hypothesis of SLA level. Secondly
it would allow to measure it in real data centers, either to predict the performances of a
given approach for this specific data center, or to use this measurement as a reference for
future researches.

The aforementioned relationship between SLA and potential energy saving could also
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be used to study possible green pricing for data center operators. The operators can
promote lower SLA level to the users, by the way of incentive schemes, in order to save
energy and money. Such incentives may concern the price of the jobs, but not necessarily
limited to that. Indeed, other parameters also play a role in the energy saving behavior
of individuals [65].

The results of the several variants of our ABBSH algorithm show that all of them reduce
both grid energy usage and energy cost compared to a traditional scheduler. Taking the
grid energy price into account (with the electrical attractiveness variant B) leads to a
small increase of non-renewable energy use, but allows an important reduction of the grid
energy cost, as illustrated by figs. 4.9b and 4.9c. The fuzzy-based multi-objective method
provides, in overall, the most interesting trade-off between respect of SLA and energy or
cost saving.

By introducing some modifications into the GreenSlot scheduler [70], we adapted it to
the kind of workload we used for validating our approach, as evidenced by the results from
fig. 4.6. In the original article, the authors used a very grid-oriented scientific workload.
In contrast, the workload we used, based on the traces of a Google cloud cluster, is
more representative of a typical batch workload executed in cloud infrastructures, like
map-reduce jobs or periodic indexing tasks. With our modifications, the performances
of GreenSlot are quite similar with those of ABBSH. Whereas GreenSlot is a bit more
efficient than our heuristics with a medium flexibility, our approach gives slightly better
results for workloads with low flexibility (flexf ≤ 4).

A notable fact is the proximity of the results of both approaches. For every flexibility
factor value, and for both grid energy consumption and cost, the results of our best
heuristic and those of the modified version of GreenSlot are included into a 5% interval.
We believe that such close results for two different heuristic-based approaches suggest they
are near to a local optimum of this kind of online and greedy heuristics. The results of the
proposed lower bound gives only a partial answer. Looking to the absolute difference of
the grid consumption with the tested heuristics and to the percentage of renewable energy
used, it seems possible to slightly improve our approach. Unfortunately, we are currently
unable to tell exactly how much improvement can be done, as this lower bound does not
take some of the characteristics of the problem into account (such as the cost of powering
on and off the machines). Trying to solve the formal optimization problem, at least for
small instances, would allow to identify exactly the improvement margin we can expect.

4.5 Conclusion

In this chapter, we presented ABBSH, a new algorithm with several variants for schedul-
ing batch tasks with awareness of renewable energy and electricity cost. Our scheduler,
contrary to other approaches, never deals directly with the model of the electrical infras-
tructure, but instead uses partial and abstracted information provided by a black-box
function. By using these hints to guide the scheduler, our approach gives results close to,
or slightly better, to a reference scheduler of the literature which has a full knowledge of
the electrical model.

Experimental results also give many insights on the relationship between the magni-
tude of the SLA negotiated for the tasks of the workload, and the performances of the
different heuristics studied. With SLA allowing more freedom on the time a submitted task
should be executed, a renewable-aware scheduler can take more efficiently advantage of the
intermittent nature of most renewable energy sources. As an indirect consequence, this
increases the part of the computing resources used when the energy is the more available,
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leading to an inability to satisfy stricter SLAs of tasks submitted at these times.
The performances of the different heuristics are also compared to a lower bound of

the grid energy consumption. The results show that our approach performs already well
and gives an idea of maximum margin of improvement. In addition, such lower bound
formulation with lower complexity than the real optimization problem can be used to
continue to investigate on the relationship between SLA and possible cost and energy
savings.

With results being comparable to a scheduler with total knowledge of the electrical
model, this approach shows that it is possible to use efficiently the renewable energy in
a data center with separated (electrical and IT) management systems. This open the
perspective of changing the electrical infrastructure, by adding electrical sources, storage
or changing its objectives without being tied to the model handled by a given scheduling
algorithm. However, with the presented approach, both systems simply cooperate with the
other, and the scheduling algorithm is not designed to minimize the amount of commu-
nication needed to find a solution. Moreover this approach is still tied to the underlying
computing resource and workload models. Finally, the unavoidable uncertainties in re-
newable power prediction are not taken into account and the impact of prediction errors
is not studied.

While the uncertainty is explored later in chapter 6, the other points are addressed
by the contribution presented in the next chapter. It extends the concept of coopera-
tion between the electrical and the IT infrastructures, by considering each as a totally
independent black-box and exploring the possible trade-offs that satisfy them.
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Chapter 5

Multi-objective, cooperative
power planning

The greatest challenge to any thinker is stating the problem in a
way that will allow a solution.

— Bertrand Russell
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In the previous chapter, we studied the management of on-site renewable energy sources
(RES) variability and intermittency as an IT resources scheduling problem. While it
still considers a single datacenter powered with on-site RES, the work presented in this
chapter focuses less on the computing part, which is considered as a black-box. The overall
problem is therefore tackled as a multi-objective power planning problem, in which the
computing infrastructure (machines and allocation of their resources to the workload) is
as important as the optimization of the electrical sources and storage devices. These two
parts of the overall infrastructure, IT and electrical ones, are each optimized independently
under power planning constraint and the details of their model and optimization method
is hidden (black-box model).

The multi-objective aspect of datacenter management with RES has already been
highlighted. At least two major objectives are easily identified: minimizing the ecological
footprint and maximizing the operation of the datacenter itself, in terms of quality of
service and/or economical revenues. Considering that the two concerns are hardly miscible,
transforming the problem into a single-objective one using weighted sum or ε-constraint
appears insufficient. Hence we propose to tackle the bi-objective problem directly, trying
to reach the optimal Pareto front representing the ideal trade-offs. With this multi-
objective approach, we aim at providing a set of solutions that offers datacenter operators
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the freedom to choose the right trade-off between carbon footprint and immediate income
according to their green commitment.

We consider an existing datacenter powered partially by renewable sources and poten-
tially any energy storage devices (ESD), encompassing the design proposed by the ANR
Datazero project. The electrical part, or Power Decision Module (PDM), is in charge of
planning the electrical sources commitment, according to the green objective. The Infor-
mation Technology Decision Module (ITDM) is responsible for scheduling the tasks and
managing the power state of the machines, having the economical income (through the
quality of service) as objective. Some of the practical and theoretical reasons of using
black-boxes are detailed in section 5.1.

In this model, each black-box is able to associate a value to any planning of power.
This value reflects the impact of the given planning (power available or power to produce)
on its own objective, if it is applied during the upcoming time window.

By using these two black-boxes, an overall optimization module explores possible so-
lutions, trying to find a set of power plannings which covers a wide range of trade-offs
between the two objectives. As they rely on complex models, the valuations of the power
planning by the black-boxes are expected to be costly, therefore we aim at finding reason-
able trade-offs using a limited budget of solution evaluation requests.

Several contributions are presented along this chapter.
• we design USPEA2, a multi-objective evolutionary algorithm integrating well with

objective approximation techniques
• a novel method for online approximation of black-box functions defined on time

series is proposed, using Haar transform to perform dimensionalty reduction
• an extensive performance evaluation is performed over several scenarios of renewable

production based on realistic data from the National Renewable Energy Laboratory
(NREL) [144], using a simplified infrastructure model

• the approach is validated using a datacenter model and scheduling algorithm from
the literature [27], along with a workload based on the Google cluster traces

A description of the overall infrastructure and of the problem addressed by our ap-
proach are detailed in section 5.1, followed by a brief description of existing methods and
concepts used in this context in section 5.2. Our multi-objective optimization approach,
USPEA2, is presented in section 5.3 along with the two surrogate methods for time series
defined objective functions. Section 5.4 covers the methodology of the experiments and de-
scribes the simplified model used for extensive evaluation. The results of the experiments
are split between section 5.5 for preliminary results used for tuning some parameters and
section 5.6 for the core results. They are interpreted and discussed along section 5.7 and
finally section 5.8 concludes this chapter.

5.1 Problem statement

The optimal management of computing resources and workload with variable power con-
straint is known to be a hard problem. The same goes for the optimal engagement of
multiple electrical sources and storage devices to maintain a stable power supply. Despite
the high complexity of these optimization problems, a lot of works proposed more reason-
able heuristics which give good enough results in practice, for either the computing or the
electrical sources management. The biggest challenge to provide efficient solutions to the
joint optimization probably lies directly in the complexity of both problems.

Instead of proposing new methods to solve the overall problem, the proposed approach
keeps the two independent sub-problems, which can be implemented using existing meth-
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Figure 5.1 – Overview of the datacenter and renewable sources infrastructure, using the
proposed multi-objective optimization approach. The two infrastructures are represented
along with their decision module, Power Decision Module (PDM) and IT Decision Module
(ITDM).

ods with minimal modifications. We propose a generic negotiation algorithm, which is
in charge of driving the two distinct optimizations in order to find solutions that satisfy
both.

An overview of the whole datacenter infrastructure is shown in fig. 5.1. Each decision
module represents both the optimization algorithm, internal model and data for the elec-
trical part or the computing part of the infrastructure. The decision modules are black
boxes for the negotiation module. These modules are assumed to be designed and devel-
oped by experts in their own field, either electrical engineering, or datacenter management.
Their purpose is to evaluate possible power consumption or production plans represented
by power profiles, which are sequences of power values at each time step in a given time
window. Such evaluation is done by an internal optimization, leading to associate to a
power profile a utility value as an indicator of preference.

In a power profile, the set of possible values at each time step is notedW ⊆ R. A power
profile for a window of T time steps is therefore an element of WT . Utility value may be
any number in R with the only assumption that preferred solutions lead to greater values.
We can abstract the evaluation of the power profiles by one of the decision modules as a
function f : WT → R. This utility evaluation function is noted fitdm for the IT decision
module and fpdm for the electrical one.

The generic optimization problem here consists therefore of finding a power profile p
in WT such as the associated utilities fitdm(p) and fpdm(p) are both as good as possible.
Each utility value represents however a distinct objective. Furthermore these objectives
are expected to be antagonists in most cases, as consuming more energy should favor the
computing part at the expense of the electrical part.

The whole problem should therefore be considered as a multi-objective one. Without
additional information on the relative importance of each objective, solutions may only
be compared by the way of Pareto dominance as presented in section 2.1. By knowing
the Pareto front of a multi-objective problem, a decision maker has as much information
as possible to select one of these optimal trade-offs. We will not discuss here on the way
this final decision is taken, but instead on providing the necessary information. For this
purpose, having the complete and exact Pareto front is ideal, but not always feasible.
When not feasible easily, as in the problem presented here, finding a good approximation
in reasonable time is already valuable.

The optimization problems solved by each decision module are complex and we expect
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good quality heuristics with realistic models to be both resource- and time-consuming.
Consequently, the cost of evaluating the utility associated to a power profile is far from
being negligible. The time available to take a decision is however limited, at least because
this decision concerns an upcoming time window and becomes useless if taken too late. To
take this into account, the number of possible evaluations of power profiles is constrained
by a budget, denoted evalmax . Without more prior knowledge of the time required for
PDM and ITDM, the two are considered in the same budget, such as the evaluation of a
solution by the two decision modules counts as 2 costly evaluations. The complete problem
may therefore be formulated as: find the best Pareto front approximation set A by using
at most evalmax power profile evaluations (represented by either fitdm or fpdm). This
budget constraint is one of the characteristics of approaches dealing with optimization of
expensive black-boxes, such as Regis [160].

To give an idea of the time requirement for a given budget, simple hypothesis are
proposed. We suppose first that the total time is largely dominated by the costly func-
tion evaluation and that a given profile is evaluated by both the ITDM and the PDM
simultaneously, as if each decision module optimization process is running on a different
machine. With a given budget evalmax and an average execution time of the slowest de-
cision module of d, the total duration is evalmax ∗ d/2. Therefore, with a budget and
evalmax = 100 evaluations and a costly evaluation duration of d = 1minute, the total
duration is close to 1 hour (50 minutes). For this reason it is critical to keep the budget in
a smaller range compared to some other multi-objective evolutionary algorithm (MOEA)
applications where the optimization is totally off-line. The target budget here is between
100 and 400 evaluations, which may both be interesting values depending the duration of
a single costly evaluation and the time horizon of the optimization.

5.2 Multi-objective optimization of expensive black-boxes

Finding an approximation of the Pareto front for a multi-objective problem is well stud-
ied in the field of MOEA. The core of evolutionary algorithms is the exploration of the
solution space by many creation and modification of individuals (representing possible
solution) and the evaluation of their objective values. Thousands of possible solutions are
usually evaluated by these approaches. Hence, when the evaluation of a single solution is
computationally expensive or the time available is limited, this amount of evaluation is
prohibitive.

To reduce the time spent evaluating solutions by evolutionary algorithms, it is com-
mon to use an approximation function (or surrogate function) to substitute some of the
evaluations by cheap approximations [22, 93].

5.2.1 Integration of MOEA with surrogate models

The integration of surrogate models with MOEA may be done in different ways, with
three main categories in the existing works. A first design, referred here as synchronous
integration, consists of applying the chosen MOEA using the real objective functions for
a small number of iterations, followed by its application with the surrogate objective
functions for more iterations [19, 138]. This process is repeated multiple times, using
the last solution set as initial population for the next phase and optionally updating
the surrogate model after each non-surrogate phase. Such approaches do not require
modifications of the MOEA used internally and can use surrogate method with relatively
costly construction cost, but are easily impacted by a surrogate performing badly during
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a single phase and not well adapted for a low budget of costly objective evaluations (few
hundreds).

The second category, asynchronous surrogate integration, mixes evaluated and surrogate-
approximated individuals in the same MOEA population, performing a costly evaluation
only if an approximated individual is expected to improve either the solution set or the
surrogate model [98]. A few modifications in existing MOEA are usually required, or com-
pletely novel approaches are proposed, but such methods may be applied even with low
evaluation budget and the continuous verification of potentially good solutions reduces
the impact of badly approximated individuals.

In addition to the synchronous or asynchronous integration, a few works also tried
to integrate the surrogate model more deeply into the population selection and evolution
process [3]. In this case, the main goal of the surrogate model is to allow the discovery
of interesting areas of the solution space, either expected to improve the overall solution
quality or to explore unknown parts of the space. Contrary to the two other categories,
the surrogate model is not used simply as a substitute for evaluating possible solutions,
but to perform local or global search in the solution space. Some solutions located in
the area of interest are then evaluated using the costly objective function, which in turn
improves the knowledge of the surrogate model.

We propose in this chapter a new method, which belongs to the asynchronous category
and adapted to low evaluation budgets. Contrary to [98], the individuals are evaluated
based on the number of generations during which they survive as good solutions. In
addition, it embeds a mechanism to perform a costly evaluation when surrogate model
considers to lack local information to accurately approximate a solution.

5.2.2 Surrogate methods for black-boxes

A surrogate of a costly function f : S → R is a function f ′ : S → R which gives, for each
input s ∈ S a value as close as possible of f(s) with lower cost (in terms of time or memory
for instance). When the analytical form of f is available or when an algorithm computing
values of f is known, is may be possible to formulate a simplified version keeping the main
features, hence providing a surrogate f ′.

When f is a black-box, such methods are not feasible. Assuming the function is not
totally arbitrary, for instance by exhibiting some local linearity or continuity, regression
techniques may be used after sampling some of the solution space. Building a surrogate by
sampling the original function f is sometimes feasible offline, before the surrogate is used.
This is useful when the surrogate is used several times for different purpose, allowing an
expensive but precise sampling of f beforehand.

We focus here on online surrogate building instead, because of the definition of our
problem. Each decision module is a costly black-box function for which a surrogate is
desired. It is expected that their implementation depends on both environmental factors
(weather forecast or planned workload submission) and internal state (current state of
charge of the batteries or running tasks). For these reasons, building a surrogate model
of these functions offline, in a static way, is not adapted. Online methods may be used
instead, which are progressively learning the shape of the utility functions as new solutions
are evaluated. In addition, because the solution space consists in time series of T time
steps, with up to hundreds of time steps considered, surrogate methods should handle
many-dimensions inputs.

Common surrogate methods used in evolutionary algorithms include Kriging models,
artificial neural networks and Radial Basis Functions (RBF) approximation [22, 93, 170,
172]. Some of them, such as Kriging, are known to be prohibitively costly for many-
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Figure 5.2 – Representation of a multilayer perceptrons neural network used as a surrogate
of ITDM or PDM objectives, with a single hidden layer.

dimensions problem spaces [172]. Two methods from the literature, which are known
to scale better with the number of dimensions, are considered in this chapter: multilayer
perceptrons (a form of artificial neural network) and RBF. We believe that these methods,
while performing well in many problems, are not well adapted for simultaneously having
large solution space and few known samples caused by the low evaluation budget we are
targeting. Two new methods, named Average Distance (AD) and Multiresolution Haar
Transform (MHT) are proposed in the next section, which take the time-series aspect into
consideration.

Multilayer perceptrons

Multilayer perceptrons (MLP) are a simple kind of artificial neural network, which consists
of several layers, each counting one or more neurons. The neurons of a layer are connected
with all the neurons of the previous one and no cycle are permitted, hence being classed
as a feedforward network. When used as a function approximation, the first layer (input)
contains the parameters of the target function and the last (output layer) represents its
result for a given set of inputs. Between them, one or more hidden layers are used to model
the behavior of the target function. Figure 5.2 illustrates an MLP used as a surrogate of
a decision module objective in our problem.

The function computed by each neuron is basically a weighted sum of the application
of its activation function applied to the value of each neuron of the previous layer. By
considering the neuron j on layer l, with activation function g, its value is computed as
in eq. (5.1). Here we denote Nl−1 the number of neurons in the previous layer, wl,i,j the
weighted accorded by this neuron to the neuron i and the last weight, w0

l,j representing
the bias added to the final value. As the same method is used for each neurons of both
hidden and output layers, the final value of a output neuron is simply given by the same
equation and use the values of the last hidden layer. A small difference is the activation
function used for the output neurons, which is often different than g and in practice is
usually the identity function in this kind of usage.
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Figure 5.3 – Representation of tanh and relu activation functions for multilayer percep-
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vl,j = w0
l,j +

Nl−1∑
i

g(vl−1,i) · wl,j,i (5.1)

We do not aim to enter too much in the details of the implementation of MLP here,
but instead highlight the most important aspects for using it. As other artificial neural
networks, they are used in two distinct phases. First, a training phase is required to
determine the values of the weights and biases. For this purpose, different solvers are
used in the literature, but all have the same goal: based on a training set (combination
of inputs and expected outputs), they progressively tune the weights to minimize the
prediction error on this set.

Artificial neural networks in general are notoriously known for the many model pa-
rameters, called hyperparameters, to carefully select in order to obtain good results [168].
In addition to the choice of a solver of its internal parameters (learning rate, number of
iterations and many others), the activation function must be chosen carefully as well as
the shape of the hidden layers (number of layers and neurons in each). Because of the way
a solver manipulates the neural network during the learning phase, not all functions are
usable for playing the role of activation function. The rectified linear unit (relu) and the
hyperbolic tangent (tanh) are among the most popular nowadays, showing good results in
many kind of problems. Despite its convoluted name, relu is simply the minimum between
0 and the input, as represented in fig. 5.3.

Radial-basis functions

A radial-basis function by itself is a function which only depends on the distance between
a vector and an origin. They are usually denoted ϕ, with the latter properties satisfied
if ϕ(x) = ϕ(||x||). Radial-basis functions are commonly used to approximate arbitrary
functions, through several methods denoted generically RBF. The central idea is to use a
set of origins together with a weight associate to each. The equation solved by the RBF is
given in eq. (5.2), in which x is the input vector, xi and wi respectively the coordinate and
the weight of each the N origins used. Similarly to MLP, a global bias w0 may optionally
be used.
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f ′(x) = w0 +
N∑
i

ϕ(||x− xi||) · wi (5.2)

This usage was initially proposed as a kind of artificial neural network, which explains
the similarity with an MLP having a single hidden layer of N neurons. Contrary to
MLP, this number of neurons (or origins, depending the view used) can be chosen to
match the number of known solutions if the set is relatively small (a few thousands or
less) [172]. If this set is too large, a fixed number is used instead for N to keep training
and approximation fast. The model is simpler when each known solution correspond to a
single origin, as the training only consists in finding the best weights wi for each solution
input xi. RBF of reasonable sizes are easier and cheaper to train than the general case
of MLP. In addition, they are controlled by less hyperparameters, with the choice of the
radial-basis function itself being the only significant one when using as much origins as
training data.

Similarly to MLP, several functions are commonly used, such as cubic splines, quadrat-
ics or Gaussian ones, and some of them are controlled by an additional hyperparame-
ter. While Gaussian function is often used, we focus here only on the cubic function
(ϕ(x) = ||x||3). The cubic function lead to good results in many surrogate-based optimiza-
tion works, including high dimensional cases (≥ 100 solution space dimensions) and does
not requires to tune an additional hyperparameter contrary to a Gaussian function [160].

5.3 Approach description

The approach presented in this chapter consists in two parts: a MOEA adapted for using
surrogate models with low evaluation budget and the surrogate model itself. First, we
propose a novel method, adapted to low evaluation budgets and based on Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [207], a well known multi-objective genetic algorithm.
Then, two surrogate models, adapted to online usage and the high-dimensional nature of
the time series are presented

5.3.1 Adapting SPEA2 for surrogate objectives functions

SPEA2 [207] is a genetic algorithm, designed to approximate Pareto front of multi-
objective black-box problems. Its individual selection function is designed to favor both
the improvement of the solutions towards the Pareto front and the diversity of the solutions
to cover as much of the front as possible.

Similarly to Karakasis and Giannakoglou [98], a few additions are proposed to allow
the MOEA to handle a mix of individuals with either evaluated (by the way of the costly
objective functions) or approximated objective vectors. Each time a costly evaluation
of an individual is performed, it is added to a set of known data points P used by the
surrogate models. Contrary to existing approaches however, the surrogate methods are
not considered to be reliable, in the sense that they may fail to give an estimation of the
objective value. The causes of a failure, called thereafter a miss, are fully controlled by the
surrogate method but may consist for instance in a lack of local data near the estimated
solution.

To take into account the possibility of an approximation miss, surrogate function f ′

objective space is augmented by a special value f ′ : S → R ∪ {Miss}. Handling surrogate
model misses is expected to be beneficial to the overall optimization, by avoiding to take
into account approximations which are known to be of low quality. In such situation,
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Figure 5.4 – Flowchart of the proposed algorithm, replacing the usual individual objectives
evaluation in SPEA2 to handle approximation method.

it may be better to evaluate the solution immediately, which will additionally feed the
knowledge base of surrogate model.

Two sets of modifications are proposed on the original SPEA2 algorithm. The first,
presented as the naive integration, only consists in minimal changes to allow approximation
of objectives of individuals and their evaluation with costly objective functions when some
criterion is met. Then a set of improvements are detailed to handle mix of evaluated and
approximated individuals, forming a new algorithm named USPEA2.

Naive integration

A simplified version of the SPEA2 algorithm with a few modifications is given in algo-
rithm 8. The fitness assignment function and selection operator (setSpea2Fitness() and
spea2Selection() in the listing) are not detailed here, but are the same as described in
the original SPEA2 article [207]. The initialization of the population, denoted by the
initialPopulation() function in the algorithms, is detailed later in section 5.4.2. Modifi-
cations to the original algorithm are highlighted in blue. They provide an integration of
the utility approximation functions in SPEA2. The flowchart in fig. 5.4 gives an overview
of the approximation or evaluation process replacing the usual individual objectives eval-
uation, corresponding roughly to the detailed algorithm 7. The utility values of each
individual are approximated if possible, otherwise directly evaluated by interrogating each
decision module.

When an individual is approximated using the surrogate models, a lifetime is associated
to it with an initial value denoted lf base. At each generation, the lifetime of all individuals
is decremented. When it reaches 0, a complete evaluation of the individual objectives is
performed. If any of the surrogate models fails to approximate the utility value (miss), the
individual is immediately evaluated. Each time an individual is evaluated with the costly
objective functions, it is also added along with its real utility to the knowledge base P of
each surrogate. The number of generations is not the stopping criterion here, contrary to
many genetic algorithms. Instead, the number of costly evaluations (sum of both decision
modules) performed from the beginning is used. Depending on the quality of the surrogate
and of the offspring scheme, the algorithm could take an unknown amount of generations
to reach the maximum number of costly evaluations. Hence, to ensure the time spent by
the algorithm is negligible compared to the evaluation functions, a mechanism forces at
least one individual to be evaluated at each generation, as shown in algorithm 8. If no
evaluation has been performed by the evaluateRequired() function, the best approximated
individual of the population according to the SPEA2 fitness value is directly evaluated.

The detailed offspring generation algorithm is given in algorithm 6 for completeness.
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Function generateOffspring(population)
offspring ← ∅ ;
for i ∈ {1, . . . , populationSize} do

ind1 ← binTournament(population) ;
ind2 ← binTournament(population) ;
ind1.valid ← false ;
ind2.valid ← false ;
if random(0, 1) ≤ pbcross then

offspring.appendAll(
onePointCx(ind1, ind2)) ;

else
for ind ∈ {ind1, ind2} do

mut = uniformMutate(ind,
pbindmut);

offspring.append(mut) ;
end

end
end
return offspring ;

Algorithm 6: Generation of the offspring
population.

Function evaluateRequired(population,
archive)

foreach ind ∈ population ∪ archive do
ind.lifetime ← ind.lifetime - 1 ;
if not ind.valid then

approximate(ind) ;
end
if ind.lifetime = 0 then

updm ← fpdm(ind.value) ;
uitdm ← fitdm(ind.value) ;
ind.utility = (updm, uitdm) ;
ind.lifetime ←∞ ;

end
ind.valid ← true ;

end
Function approximate(ind)

updm ← f ′pdm(ind.value) ;
uitdm ← f ′itdm(ind.value) ;
ind.utility ← (updm, uitdm) ;
if updm = Miss ∨ uitdm = Miss then

ind.lifetime ← 0 ;
else

ind.lifetime ← lf base ;
end

Algorithm 7: Addition to SPEA2 for
mixed approximation and evaluations.

Any pairs of individuals, selected using binary tournament with replacement, are either
mated (with a probability pbcross) or both mutated (probability 1− pbcross). The mating
function used here is a one-point crossover. A mutation consists of an independent proba-
bility pbindmut for each time step of the individual to be replaced by a random value from
a uniform distribution in the range of acceptable values W.

USPEA2

SPEA2 gives good results for a wide range of problems with two or more objectives.
However, it was designed to use reliable utility functions. In our approach, the utilities
of an individual are either evaluated directly by the decision modules or by a surrogate
function. In the first case, the utility is reliable as two evaluations of the same profile are
guaranteed to return the same values during the optimization. In the second case however,
the approximated utility is not reliable, as it may change if the individual is evaluated.
Such approximated utility is therefore considered unreliable, as well as the individual to
which the approximation is associated.

Unreliable utilities may lead SPEA2 to perform badly in some scenarios. An individual
with approximated utility values may dominate an evaluated, reliable individual. In this
situation, the unreliable individual is likely to replace the evaluated one. If the estimated
individual is finally evaluated with lower utilities than the eliminated one, this results in
a decrease of the overall individual pool quality and potentially in a deterioration of the
Pareto front approximation.

To overcome this problem, we propose a variant of the SPEA2 algorithm, named
USPEA2, for Unreliability-SPEA2. Figure 5.5 illustrates the algorithm, which is detailed
in algorithm 9, with modifications compared to SPEA2 highlighted. It consists in the
introduction of a second archive of individuals, called reliable archive, containing only
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Function optimizeSpea2()
archive ← ∅ ;
population ← initialPopulation(populationSize) ;
ended ← false ;
while not ended do

ended ← endingCondition() ;
if ended then

population ← {ind|ind ∈ population, ind.lifetime =∞} ;
archive ← {ind|ind ∈ archive, ind.lifetime =∞} ;

else
evaluateRequired(population, archive) ;
if no evaluation performed then

evaluateBestIndividual() ;
end

end
setSpea2Fitness(population, archive) ;
archive ← spea2Selection(population, archive, archiveSize) ;
if not ended then

population ← generateOffspring(archive) ;
end

end
return archive ;

Algorithm 8: Simplified algorithm of SPEA2. Lines in blue are additions to provide
a naive support of the utility approximation functions.
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Figure 5.5 – Schematic view of USPEA2 algorithm with modifications compared to SPEA2
highlighted in red.
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Function optimizeUspea2()
archive ← ∅ ;
reliableArchive ← ∅ ;
population ← initialPopulation(populationSize) ;
ended ← false ;
while not ended do

ended ← endingCondition() ;
if not ended then

evaluateRequired(population, archive) ;
if no evaluation performed then

evaluateBestIndividual() ;
end

end
uniqueArchive ← unique(archive ] reliableArchive) ;
setSpea2Fitness(population, uniqueArchive) ;
archive ← spea2Selection(population, uniqueArchive, archiveSize) ;
reliablePopulation ← {ind|ind ∈ population, ind.lifetime =∞} ;
uniqueReliableArchive ← {ind|ind ∈ uniqueArchive, ind.lifetime =∞} ;
setSpea2Fitness(reliablePopulation, uniqueReliableArchive) ;
reliableArchive ← spea2Selection(reliablePopulation, uniqueReliableArchive,

archiveSize) ;
if not ended then

population ← generateOffspring(archive) ;
end

end
return reliableArchive ;

Algorithm 9: Simplified algorithm of the Unreliability-SPEA2 (USPEA2) approach.
Changes from SPEA2 are highlighted in blue.

evaluated solutions. Individuals from this second archive allow to maintain constantly
a set of good and reliable solutions even if some of them are temporarily dominated by
unreliable individuals. At each generation, after the fitness assignment and selection of the
next archive in accordance with the classic SPEA2 scheme, an additional selection is done
only on evaluated solutions, using the same selection operator. To avoid the introduction
of a large number of duplicated individuals, which is not addressed efficiently by SPEA2,
uniqueness of individuals is ensured when the two multi-set archives are merged.

5.3.2 Surrogate models for time series

Evaluating the quality of a potential solution p ∈ S is achieved by the way of the black-box
objective functions fitdm(p) and fpdm(p). To approximate them, a surrogate model has
the data base of previously evaluated solutions P, with their power values normalized for
practical reasons (W → [0, 1]).

Giving its definition, a power profile in S appears as a N -dimension vector, each
dimension being a time step and the value for this dimension ∈ W being the power at
this time step. Classic surrogate methods presented earlier, such as RBF and Multilayer
Perceptron (MLP), can be used as they are known to work with high-dimensional solution
space. However, they are not designed to leverage the time series aspect of the power
profiles.

To the best of our knowledge, no existing work already focused on optimizing costly
function defined on time series space. Despite the many areas where time series are studied,
their use cases are usually quite different, such as the prediction of time series evolution.
Therefore, we propose new approaches to perform utility approximation adapted for long
profiles, inspired by works on signal and time series processing. These methods, contrary
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to existing surrogate methods, may fail to return an approximation for some inputs (miss).
As argued previously, we believe that forcing a costly evaluation because the surrogate
method considers lacking local data to be accurate is not necessarily bad. Quite the con-
trary, it helps improving the quality of the surrogate around this new solution and prevent
to return very inaccurate values which could impact negatively the overall optimization.

Average-distance method

By assuming that small differences between power profiles generally imply small differences
in their utility values, a possible way to achieve utility approximation is by studying
similarity between profiles. A simple way to determinate similarity between vectors is to
use a well-known distance function.

The proposed method, named simply Average Distance (or AD) is similar in some
aspects to a weighted k-nearest neighbors method [58]. It consists, first, in selecting profiles
among the known and already evaluated ones which are closer than a given distance rclose
from the unknown profile to estimate. The approximation is then performed by doing
a weighted average of utility values of the close solutions, with a weight depending of
their relative closeness. Based on an initial study, it appeared that euclidean distance was
not always appropriate to compare profiles. In order to penalize some important local
differences (e.g. a peak in one of the power profiles), a different measurement is used,
based on the average of the square differences at each time step. As this is equivalent to
mean square error (MSE) defined in statistics, it is used here and qualified by abuse of
language as the distance between two profiles.

The complete algorithm is detailed in algorithm 10. The approximation of an individual
p is considered as a miss when less than nclose are known in a radius of rclose around p.

Function distanceUtilityApproximation(target, rclose, nclose, P, lf base)
Pclose ← {p|p ∈ P,mse(p, target) < rclose} ;
if |P| ≥ nclose then

approx ← distanceWeighted(target, rclose,Pclose,mse) ;
return approx ;

else
return Miss ;

end
Function distanceWeighted(target, radius, Pclose, distanceFunc)

totalWeight ←
∑

p∈Pclose

radius− distanceFunc(p, target) ;

return
∑

p∈Pclose

objective(p)radius− distanceFunc(p, target)
totalWeight

;

Algorithm 10: Average-distance (AD) approximation algorithm, for a given target
profile and using the known solutions P with their utility values given by objective.

Multiresolution Haar transform distance method

A power profile may be considered, instead of an ordinary N-dimensional vector, as a
time series of power values. Time series are well studied in various areas, such as in
economics and meteorology. Particularly, a lot of works exist which deal either with
finding similarities between several time series [2] or predicting next values of time series
using past data [18].
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Figure 5.6 – Illustration of the transformation of a time series X = (8, 6, 1, 5) using Haar
wavelets, resulting in flatten representation HC 2 = (5, 2, 1,−2).

While there is no existing work usable directly for building surrogate models of function
defined on time series, similarity detection of time series shares some challenges with our
problem. Several works already demonstrated some qualities of wavelet transform for
similarity detection and similarity indexing of time series and more specifically of Haar
wavelets [2, 29, 30]. Wavelet transforms provide an elegant way to achieve dimensionalty
reduction in time series, by resulting in a multiresolution representation.

We first need to introduce some notations and properties of the Haar wavelet transform,
as well as a definition of a partial distance between Haar representations. Then, the
surrogate method itself is described.

Overview of the Haar transform Transforming a series of N = 2k values using
Haar wavelet gives a new series of same size, containing the coefficients of the wavelet
for different combinations of scale and shift. These coefficients are commonly grouped by
sequence [177], each containing the coefficients for a given scale (or frequency). Figure 5.6
shows the application of Haar wavelet transform, with a few simplifications on the actual
resulting values for illustration purpose.

A total of k + 1 groups are obtained this way, denoted by H0, . . . ,Hk. The first,
H0, is a single value proportional to the global average of the series. The other groups
Hi, i ∈ {1, k, . . . ,} have a size given by |Hi| = 2i−1. Each sequence Hi contains information
on the original series with a temporal resolution doubled compared to Hi−1.

Let X,Y be two series of size N = 2k. The concatenation of the sequence H0, . . . ,Hi

of the Haar transform of X, called here its flatten notation, is denoted by HC i(X).
Haar transform has several interesting properties for similarity finding:

• the Euclidean distance between two profiles X,Y is the same than the euclidean
distance between their flatten Haar representation HC i(X),HC i(Y ) [30]

• each depth of the tree representation is tied only to local features of the signal
• the first components of the Haar representation depend only on the low frequency
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features, while each successive depth increase the high frequency details, allowing
efficient dimensionalty reduction

• Haar transform is fast to compute, having a time complexity in O(n) [30], with n
the length of the signal

Haar-based distance function The Haar transform of signals may be used to define
a new partial distance function. As mentioned previously, the Euclidean distance between
two signals is the same as the Euclidean distance between the flatten representation of
the Haar transform of those signals. With dist being the Euclidean distance function, and
X,Y ∈ Rl two signals of length l = 2k, we have:

dist(X,Y ) = dist(HC k(X),HC k(Y ))

We introduce a Haar distance function, denoted hdistd, which give the distance between
the first d sequences of two Haar transform:

hdistd(X,Y ) = dist(HC i(X),HC i(Y ))

The Euclidean distance is monotonically increasing when new elements are added to
each vector, such as:

dist(u0···l−1, v0···l−1) ≤ dist(u0···l, v0···l)

Two properties must be highlighted here. For two signals X,Y ∈ Rl, with l = 2k :

1. with d = k, the maximum depth, the Euclidean distance and the Haar distance are
equal (eq. (5.3))

2. Haar distance is monotonically increasing with the value of d (eq. (5.4))

dist(X,Y ) = hdistk(X,Y )) (5.3)

∀i, j ∈ {0, . . . , 2k}, i ≤ j, hdisti(X,Y ) ≤ hdistj(p, q) ≤ dist(p, q) (5.4)

These properties are exploited in a new surrogate model, leveraging both dimensional
reduction by using Haar distance and local precision around known solutions by using the
monotonic convergence towards the real Euclidean distance.

Haar-based surrogate We propose here a new surrogate method, named Multireso-
lution Haar Transform (MHT). It uses the same basic idea of Average Distance method,
but exploit the Haar transform of the solutions at multiple temporal resolutions. The
full algorithm is detailed in algorithm 11. Basically, it looks for the profiles closer than
a fixed radius rclose to the one to approximate according to the Haar distance at a given
depth. This depth, starting from 0, is progressively increased, hence reducing the number
of profiles close enough to be considered. It stops when the increase of depth results in a
close solutions set Pclose smaller than a given threshold nclose. The approximation is then
calculated based on the average of the objective values of the close solution set, weighted
by their closeness. As the Haar wavelets are only defined on series of length being a power
of 2, the power profiles are filled with 0 up to the nearest valid length.

To be easier to understand, the full algorithm given in algorithm 11 is simplified
and not optimized. Some optimizations may be used to achieve low average complexity.
Mainly, profiles (known solutions and a target profile) may be stored along with their Haar
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Function haarUtilityApproximation(target, rclose, nclose, P, lf base)
depth ← 0 ;
Pclose ← P ;
Paccepted ← ∅ ;
while depth < k ∧ |Pclose| ≥ nclose do
Pclose ← {p|p ∈ Pclose, hdistdepth(p, target) < rclose} ;
if |Pclose| ≥ nclose then
Paccepted ← Pclose ;
depth ← depth+ 1 ;

end
end
if Paccepted 6= ∅ then

approx ← distanceWeighted(target, rclose,Paccepted, hdistdepth) ;
return approx ;

else
return Miss ;

end
Algorithm 11: Haar-based utility approximation algorithm, approximating the ob-
jective value for target profile and using the known solutions P. The function dis-
tanceWeighted() is defined in algorithm 10.

transform result, avoiding re-calculation at each distance measurement. This makes Haar
distance computing complexity O(n), with n the profiles length.

Therefore, the complexity of Haar surrogate algorithm is dominated by its main loop
having a maximum of log2(n) iterations. Each iteration requires to evaluate the Haar
distance with a subset of the known profiles set, for a worst-case time in O(n · m), m
being the number of known solutions. The overall, worst case time complexity is thus
O(n log(n) ·m).

However, we can expect better performance in average. The set of the considered
solution at iteration i of the main loop is always a subset of the close solutions found at
iteration i−1. In addition, the depth of the Haar distance is increasing at each generation,
starting from constant-time complexity (distance between two 1-dimension vectors) and
doubling at each iteration. Thus, the most costly distance computing occurs with the
smaller set of retained solutions.

5.4 Evaluation methodology

To evaluate our approach, a practical optimization problem must be targeted. While some
multi-objective functions are commonly used in the MOEA field for evaluation purpose,
such as ZDT [206] or DTLZ [47], they do not capture some characteristics of the problem
exposed here. Particularly, they are not defined on time series, which is our primary
target.

Our approach is designed to use black-box objective functions for both IT and electrical
decision modules. Hence its evaluation requires to specify the models and algorithms
used for the concrete modules. To evaluate the performances of a purely multi-objective
optimization method in a complete and extensive way, knowing the real Pareto front of
the problem is ideal. It represents the best achievable set of trade-offs and therefore a
solid and unquestionable point of comparison.

We target a medium scale datacenter powered partially by on-site RES and batteries.
A scheduling algorithm from the literature, such as RECO [27], is usable as the IT decision
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module. The RECO algorithm consists in a batch task scheduling algorithm under power
envelope constraint, targeting heterogeneous datacenter and leveraging Dynamic Voltage
and Frequency Scaling (DVFS) to modulate the power consumption. Finding the real
Pareto front of the overall problem with such detailed model, however, is hardly feasible.

Hence a simplified model of datacenter and electrical infrastructure is proposed first.
It is designed to allow a Mixed-Integer Linear Programming (MILP) formulation of the
overall optimization problem with reasonable solving time, providing a very accurate
Pareto-optimal set of solutions, while keeping most characteristics as expected in a similar
real-world problem. This model is therefore used to perform extensive evaluations of the
proposed heuristics. To validate the main findings, additional experiments are performed
by using the RECO scheduling algorithm in place of the simplified IT model.

After a detailed presentation of this model, its various parameters are discussed in order
to propose realistic instances for evaluation purpose. This finally leads to the definition
of scenarios, consisting of variations of environmental parameters (weather forecast and
battery state of charge).

5.4.1 Simplified model for evaluation

The practical optimization problem proposed for the evaluation is composed of two sub-
models, tied together only by the way of provided or consumed power denoted pt for each
time t ∈ {0, . . . , T − 1}. On the one hand, the electrical model includes the RES, ESD
(such as batteries) as well as a connection to the electrical grid through an electricity
provider. On the other hand, the IT model describes the tasks, the machines and their
power consumption. Both models are linked by the resulting power availability from the
electrical part being equal to the power consumed by the IT part. An instance of the model
concerns a single time window of T time steps, of fixed duration δ each. A summary of
the symbols used in the model is given in table 5.1.

Electrical model We consider a set of RES, producing together, at each time step
t ∈ {0, . . . , T}, an average power of rt. In addition, batteries may be used to store some
energy. These batteries have a total capacity batmax energy units, with an initial charge
of batinit at the beginning of the window, as given by eq. (5.5a). The remaining charge at
the beginning of a time step t is denoted by ct and is constrained by eqs. (5.5b) and (5.5c).
The whole electrical system is connected to the electrical grid. The power bought from
or sold to the grid to it at a time t is given by gt. The sign of gt indicates if the power
is bought (gt > 0) or sold (gt < 0). Finally, the maximum power made available by the
electrical part is the sum of the renewable production, battery charge or discharge and
grid usage, as given by eq. (5.5d).

∀t ∈ [0, T ),


c0 = batinit

ct ≥ 0
ct ≤ batmax

pt ≤ rt + (ct+1 − ct)δ + gt

(5.5a)
(5.5b)
(5.5c)
(5.5d)

The utility of electrical part represents the environmental impact of a decision, calcu-
lated through several criteria. A first part, in eq. (5.6), depends on the grid usage, with
each unit of energy bought decreasing the utility by ghgbuy and each unit sold increasing
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it by ghgsell .

ugrid =
T−1∑
t=0

{
−ghgbuy · δ · gt if gt ≥ 0
−ghgsell · δ · gt otherwise

(5.6)

As a battery life highly depends on the amount and the depth of charge and discharge
cycle[33, 59, 186], a second part of the utility reflects this additional aging cost, as in
eq. (5.7).

uaging = costaging

T−1∑
t=0
|ci+1 − ci| (5.7)

Finally, a third part represents a potential saving coming from the energy stored in
the battery at the end of the time window presented in eq. (5.8). The potential gain is
calculated as if it saved the same amount of energy from being bought later on the grid,
while taking into consideration the aging of batteries caused when the energy will be used.

ustorage = cT (ghgbuy − costaging) (5.8)

The total utility, for the electrical part, is therefore given by eq. (5.9) below.

uelec = ustorage − uaging − ugrid (5.9)

IT model The IT part is modeled as a set of M identical machines, each consuming
powermachine when being used. The workload is considered as a fluid mass W , expressed
in equivalent run time for a single machine (machine·time unit). This total mass of the
workload W can be divided into an arbitrary number of chunks to be run on any machine
at any time (eq. (5.10a)). It can be seen as a divisible load with no communication cost and
a linear cost on the load. However, each part of the workload requires an entire machine
during a full time step.

The number of machines used at a given time t is equal to the amount of tasks executed,
noted wt and constrained by eqs. (5.10b) and (5.10c). The minimum power required at
every time step is therefore given by eq. (5.10d).

∀t ∈ [0, T ),



T−1∑
t=0

δ · wt ≤W

wt ≥ 0
wt ≤M
pt ≥ powermachine · wt

(5.10a)

(5.10b)
(5.10c)
(5.10d)

The utility of the IT part depends on the executed workload. We consider that the
benefit for executing any workload is homogeneous through gaintask :

ubase = gaintask

T−1∑
t=0

δ · wt (5.11)

A second part of the utility is given by an additional gain when a task is submitted
early. This gain, for each task, is at most gainearly if the task is executed in the first slot,
as given in eq. (5.12).

uearly = gainearly

T−1∑
t=0

(T − 1− t)wt
(T − 1)δ (5.12)

Maximizing uearly is then equivalent to minimizing the flow time of the workload.
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Finally, eq. (5.13) gives the overall IT utility.

uit = uearly + ubase (5.13)

Decision modules and centralized Pareto approximation

The IT and electrical models can be used to derive a centralized MILP formulation. How-
ever the optimization problem has two different objectives: maximization of both uitdm
and updm . To obtain an approximation of the Pareto front of solutions, two steps are
required. In a first phase, the extreme solutions are obtained by optimizing each objective
without any constraint on the other. It results in two pairs of utility values, (uminpdm , umaxitdm)
when ITDM utility is optimized and (umaxpdm , uminitdm) when it is PDM utility. Then, a desired
number of solutions distributed along the Pareto front are obtained by maximizing one of
the utility subject to an additional constraint on the second:

maximize uitdm

subject to updm ≥ uminpdm + α
(

umaxpdm − uminpdm

)
By repeating this for different values of α ∈ [0, 1], a good approximation of the real

Pareto front is provided with as many solutions as required.
Each infrastructure model can also be used to implement each decision module. By

accounting only the constraints of the electrical infrastructure (respectively IT infrastruc-
ture), the utility of a power profile P is given by maximizing updm (respectively uitdm)
with additional constraints:

∀t ∈ [0, T ), pt = Pt

Complex IT model

The RECO algorithm [27] uses a finer and more realistic IT model. The computing in-
frastructure handles heterogeneous machines, with DVFS and power-on/power-off models
taking into account the time and power required for booting up or shutting down the
machines. It focuses on a workload of batch tasks with due dates, each having different
requirements in terms of CPU.

5.4.2 Parameters for evaluation

The evaluation of our approach is done using several instances of the electrical and com-
puting infrastructure models. Some parameters, such as the capacity of the battery batmax
or the duration of a time step δ, are given by an expression of higher level parameters.
This helps making simpler the definition of the different scenarios. The values of the
parameters related to GHG emission and renewable power production use existing studies
and publicly available data to keep realistic figures. Table 5.1 provides a short summary
of the values used for the symbols corresponding to model parameters.

Time window and time step For all the experiments, a fixed time window of 72 hours
is used, starting at midnight. The number of time steps T , however, is set to different
values across the experiments, being either 20, 80 or 320. The time step duration δ thus
depends on T such as δ = 72/T hours.

115



5.4. Evaluation methodology

Symbol Meaning Value in final evaluation

ghgbuy Cost (in greenhouse gas (GHG) emission) of an en-
ergy unit from the grid

0.3 kg CO2 -eq /kWh

ghgsell Resell price of an energy unit to the grid provider 0.15 kg CO2 -eq /kWh †

costaging Cost due to battery aging when battery is charged
or discharged.

0.0483 kg CO2 -eq /kWh

gaintask Benefit when a unit of workload is executed in the
time window.

1

gainearly Maximal additional benefit when a unit of workload
is executed early

0.2

T Number of time steps in a time window {20, 80 or 320}
δ Duration of a single time step 72/T
rt Renewable power available at time t -
ct Energy in the batteries at beginning of time t -

batmax Total capacity of the batteries ∗

batinit Energy in the batteries at t = 0 batmax · batsoc
∗

gt Power bought from (gt > 0) or sold to (gt < 0) the
grid at time t

-

powermachine Machine consumption when used 200 W
W Total amount of workload to execute in the time win-

dow
∗

M Number of available machines 100
wt Amount of workload executed at time t -
pt Power used at time t -

Table 5.1 – Summary of symbols used in the electrical and IT models.
† Except for the specific experiments showing the impact of this value in approach results.
∗ Calculation detailed in section 5.4.2.

Workload and machines The amount of workload considered is based on the maximal
work that may be executed by the datacenter if all the machines are used during the
whole time window. A factor is then applied, to consider an average load of Load = 70%.
Therefore, we can define its value using eq. (5.14) below.

W = Load · δT ·M (5.14)

The experiments account for M = 100 machines. Each is consuming an average power
of powermachine = 200 W under load, for a datacenter peak consumption of 20 kW. The
ITDM utility account for a benefit for each unit of workload executed in the time window
gaintask and additional benefit which is higher when the task is executed near the beginning
of the time window. These parameters are fixed to values in arbitrary units, gaintask = 1
and a maximal benefit when executed early gainearly = 0.2.

Battery capacity and initial state The maximum and initial capacity of the battery
is chosen between several settings. The maximum capacity is set to provide enough energy
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Figure 5.7 – Power production for the simulated photovoltaic (PV) power plant in Cali-
fornia during the chosen periods.

to fully power all the machines during 12 hours. With the parameters chosen for the IT
part, this gives approximately 240 kW h of batteries. This is a relatively high figure, but
result in an initial investment of around $65, 000 based on the 2016 values [40]. This seems
acceptable, staying in the order of magnitude of the budgets and operating cost of such a
medium-scale datacenter.

batmax = powermachine ·M · 12 (5.15)

The initial capacity is then simply set by using a coefficient batsoc, such as batinit =
batmax · batsoc.

Photovoltaic production data

We used the high quality synthetic photovoltaic production data from the U.S. National
Renewable Energy Laboratory (NREL), contained in the Solar Power Data for Integration
Studies dataset [144]. It contains, for hundreds of power plant locations, 5-minutes power
data is available during all the year 2006.

We used the data from a power plant located at coordinates N34°85′ W120°45′, near
the city of Santa Maria in California. This is a medium power plant, with a peak capacity
of 4 MW (with a maximum of 3.93 MW reached in these data). For the need of our
experiments, we choose only a few 3-days periods of interest inside the year-long data,
with associated production shown in fig. 5.7:

• ExcessRenew: almost perfectly sunny days, starting 1st June 2006
• Normal: noisy days with the second one being very cloudy, starting 10th June 2006
• FewRenew: very cloud days during the winter, starting 1st January 2006
This power plant is scaled to fit the need of the considered data center. More precisely,

we assume that the goal was to produce a yearly amount of energy equals to the yearly
amount of energy consumed by the data center (considering the average load Load = 0.7,
as given above). The yearly average of power production is PvProd = 730.9 kW. Therefore,
the scaling factor used on the PV data is pvScaling = 1.915× 10−2, as given by eq. (5.16)
below.

pvScaling = M · Load
PvProd

(5.16)
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Gas emission parameters

The electrical utility for a given profile is an amount of GHG emission avoided the given
power during the time window of the profile. These values are given in equivalent kilogram
of CO2. It is rather difficult to obtain unquestionable values, as discussed in section 2.3,
but realistic values from available sources are used. In this work, we do not focus on
the total environmental impact of building such a green datacenter, considering it already
built. Hence, even if their manufacturing is a pollution source [7, 151], the energy from
photovoltaic panels is considered free of any environment impact.

Batteries We consider some Lithium Manganese Oxide (LMO) batteries, from the
lithium-ion family. According to Hao et al. [82], the emission of GHG caused by their
manufacturing is about 96.6 kg CO2 -eq /kWh. The environmental impact of using the
batteries is modeled as described in section 2.3.3, considering a linear degradation of
their lifetime with the charged or discharged energy. By using lifetime of N cycle =
1000 full charge/discharge cycles, we found an amortized GHG emissions of costaging =
0.0483 kg CO2 -eq /kWh.

Electrical grid Accurate data of electrical grid GHG emissions are hard to find, espe-
cially with hourly or finer resolution. Several less-extensive datasets are made available
by either an electrical grid operator or organizations (both governmental and nongovern-
mental). In the case of California, some operators like CISO give some information on
the GHG emissions [25] every month. The California Environmental Protection Agency
provides an annual GHG emission inventory [24] for multiple sectors, including electrical
power generation. Based on the 2016 report, the average annual values for the year 2014,
including energy imports, is 0.3 kg CO2 -eq /kWh. This value is used for ghgbuy.

Selling an excess of production on the electrical grid is expected to avoid some pro-
duction of GHG. For one unit of renewable energy sold in the grid, the avoided GHG is
likely less than the emission caused by the production of one unit on the overall grid. In
addition to the various losses such as the conversion and transport ones, the grid is not
always able to absorb excessive energy as the traditional power plants may already satisfy
the demand at a given time. To account of this, the avoided GHG emission for selling
energy to the electrical grid ghgsell is considered here, on average, to be half of ghgbuy.

Complex ITDM settings

The experiments involving the RECO scheduler [27, 165] use the same parameters and
workload than in the original paper. The computing infrastructure consists in 30 bi-
processor machines of two kinds, with a workload composed of 1029 tasks of various
duration and CPU requirements. They are submitted along a 48-hours time window, with
a duration and submission using the synthetic workload generator described in section 3.2.

To use it as IT objective function in our approach, the power profile evaluated is
used as the maximum power envelope and the utility (objective value) is computed as the
percentage of tasks scheduled without violation of their due dates. In the experiments
involving the complex IT model, we consider the same electrical model than for other
experiments. However, to take into account the lower total consumption for the associated
workload, the renewable production and battery capacity are scaled to 20% of the value
used for the simplified IT infrastructure.
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Name PV production batsoc

ExcessRenew Good 0.5
Normal Bad 0.5

FewRenew Worst 0.25

Table 5.2 – Definition of the scenarios used for the experiments.

Scenarios

The number of model parameter combinations is important, but the main goal of the
experiments is to evaluate the performance of the approach in a few different conditions.
We define therefore a set of 3 scenarios, consisting of variations of the photovoltaic panels
production data and battery settings. Their names and the values used are given in
table 5.2. They are chosen to have both some expected normal situation and edge cases
where the problem space may be easier or more difficult to explore.

Meta-heuristic settings

The SPEA2 and USPEA2 algorithms, along with their mutation and crossover functions,
are configured by several parameters. The values chosen for probability of crossover pbcross
and the independent probability of time step mutation pbindmut are detailed in section 5.5.1,
based on experimental results. Some other are not experimentally studied here.

The size of the archives and of the population, archiveSize and populationSize, are both
set to 20. This relatively small value is chosen because a low number of costly objective
function evaluation budget is aimed in this approach. A higher number of individuals in
the population would require more evaluations, which is not desirable here. Lower values
tend to limit too much the diversity of the individuals, which is required to have useful
crossover.

As described in section 5.3.1, the mutation function used causes each time step of the
concerned individual to be potentially replaced by a random value following a uniform
distribution. The boundaries of the distribution are chosen to match the requirements
of the decision modules while minimizing the explored solution space. By knowing the
minimum and maximum power produced or consumed by each decision module (pmin and
pmax), the range of the uniform distribution is given by:

[max(pitdmmin , p
pdm
min); min(pitdmmax , p

pdm
max)]

In practice with the models used, the minimum is bounded to 0 (electrical infrastructure
not providing power, computing infrastructure with all machines powered off). The max-
imum is unbounded for the PDM, but limited by the ITDM, when all machines are used
simultaneously (M · powermachine).

In the description of SPEA2 and USPEA2 algorithms, the individuals forming the pop-
ulation at the beginning of the first generation is abstracted by calling initialPopulation(size)
function. Two different initial population schemes are studied here.

The primary one is the Random scheme. It simply consists of a generation of size indi-
viduals for which every time step values is randomly selected using an uniform distribution.
The bounds of the distribution are the same as for the mutation function.

The second scheme is called Best. While size − 2 individuals are generated similarly
to the Random scheme, 2 individuals are provided by the decision modules themselves.
Each module is supposed able to compute an optimal power planning for its own objective
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(without any constraint related to the other’s requirement). Therefore, the best power
planning of each module is added to the initial population and is expected to be part of
the real Pareto front as it maximizes one of the objectives.

To compare the results of different heuristics, the two multi-objective performance
metrics detailed in section 2.1.1: hypervolume indicator and generational distance. The
hypervolume indicator (abbreviated HV) gives the space covered between a set of non-
dominated solutions and a pessimistic (Nadir) point, measuring both the diversity of the
solution and the accuracy of the Pareto front approximation. For comparing the results of
two approaches, the same Nadir point must be used. The same reference point is used for
all the comparable results (same scenario and same number of time steps) and consists of
the minimum values for each objective across all these results. For ease of interpretation,
the normalized hypervolume (nHV) is used, considering the Pareto front obtained by the
MILP for the same scenario and time window as a reference.

The generational distance (GD), also referred as average distance to Pareto front, mea-
sures only the accuracy aspect, but helps interpreting the hypervolume values. Similarly
to hypervolume, the raw values of this metric are not easy to interpret as it depends on
the scale of the each objective. Hence a normalization is performed on the objective values
to scale each dimension of the objective space in [0, 1] before computing the generational
distance.

5.5 Preliminary experiments on approach parameters

Several parameters must be chosen for the optimization algorithms (SPEA2 and USPEA2)
and the different surrogate methods.

• pbcross, the probability of crossover/mutation
• pbindmut , the probability for each time step value of a mutated individual to be

modified
• lf base, the initial lifetime of approximated objective values
• rclose, the distance considered as close for the Average Distance (AD) approximation

and Multiresolution Haar Transform (MHT) approximation methods
• nclose, the minimum number of close known solutions to do an approximation (AD

and MHT)
• number of neurons and structure of the hidden layers (MLP)
• activation function (MLP)
The behavior of the overall optimization process depends on the interaction between

(U)SPEA2 and the surrogate models. For instance, the accuracy of the surrogate models
affects the individual that will be preferred by the MOEA to survive, affecting which
individuals will be eventually evaluated. In turn, the evaluated individuals affect the data
base of known solutions, impacting the quality of the approximation performed by the
surrogate. Therefore the precise impact of each parameter is expected to be tied to all the
others. It would be rather impractical, especially for more complex problems, to evaluate
the overall results of such approach for a large set of parameter combinations. Instead, we
propose a simplified methodology to choose them.

The proposed methodology does not aim to find the optimal combination of their values
for our precise evaluation scenarios (overtuning the parameters). To enforce that, only
one of the evaluated scenarios is used for setting the parameters. In a first time, the two
parameters of (U)SPEA2 (crossover probability and independent mutation probability)
are studied, without considering any approximation method. Then for each surrogate
approach, the impact of their parameters on the quality of approximation is studied, using
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a prepared training set of power profiles and associated objective values (i.e., independently
from a MOEA). Finally, the initial lifetime of approximated individuals lf base is studied
by using all the previously chosen parameters, by using MOEA with surrogate method.

5.5.1 SPEA2 and USPEA2 parameters

First of all, the core parameters of the genetic algorithm need to be set to reasonable values,
leading to good results without any objective approximation method. To evaluate the
impact of their value on the overall results, SPEA2 is used with the scenario Normal and 80
time steps in the window (T ). Their resulting metrics (hypervolume and average distance
to Pareto front) are measured after 100, 1600 and 6400 evaluations. The probability
of crossover pbcross is chosen between 0 (mutation only) and 1 (crossover only). For the
probability of individual gene mutation pbindmut , it is chosen such as the average number of
values (time step) mutated in an individual vary between 1 and T following a geometrical
progression. As genetic algorithms results have an inherent part of randomness, especially
for a low number of iterations, each combination of parameters is repeated 10 times. The
values shown below are therefore the average metrics over the 10 runs.

Figure 5.8 presents all the results in the form of heatmaps. As expected from a genetic
algorithm, results for a very low number of iterations are noisy and with low disparity,
as shown in figs. 5.8a and 5.8b for 100 evaluations. With more iterations, some patterns
appear.

For the hypervolume indicator, worst results are reached when either pbcross is close to
1.0 (no mutation) or when pbindmut is close to 1.0 (mutation causing all the power profile
to change), both for medium amount of evaluations ( fig. 5.8c) and important amount
( fig. 5.8e). The best results for 1600 evaluations are achieved with 0.03 ≤ pbindmut ≤ 0.173
and 0 ≤ pbcross ≤ 0.6. For a larger amount of evaluations, a lower value of pbindmut seems
preferable (0 ≤ pbindmut ≤ 0.072) as well as a value of pbcross closer to 0.5.

When it comes to the average distance to Pareto front (GD), the disparity is less
important than hypervolume even for higher number of evaluations as presented in fig. 5.8d
(1600 evaluations) and fig. 5.8f (6400 evaluations). A noticeable improvement is however
observable with crossover rate pbcross between 0.5 and 0.8 along with non-extreme values
of pbindmut .

As our experiments will focus on low and moderated amount of evaluations, we chose
values in favorable range for both hypervolume and GD at 1600 evaluations, while taking
into account the results for 6400 evaluations in order to choose in this acceptable range.
In all the following experiments, we use values of pbcross = 0.5 and pbindmut = 0.072.

5.5.2 Surrogate methods parameters

Four different surrogate methods are explored. The RBF with cubic function is parameter-
free, but each of the three others has various parameters to tune for them to perform well.
The use of surrogate models of a complex objective function is well studied for single-
objective evolutionary optimization, especially when the surrogate model is constructed
off-line. In such case, the surrogate (or approximation function) may be studied as a
prediction function and a lot of common statistical analysis may be performed to evaluate
the quality of the approximations. For instance, the R2 or the root-mean-square deviation
(RMSD) of the surrogate may be computed using a well distributed set of samples. It may
be assumed that a surrogate model leading to higher R2 (or lower RMSD) will perform
better. In the case of MOEA and/or online methods, it is more difficult to evaluate an
approximation method and very little literature exist on the topic.
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Figure 5.8 – Performance of SPEA2 depending on crossover rate and independent mutation
probability, for different evaluation budgets. Higher is better for hypervolume, lower is
better for generational distance (GD).
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In our context, evaluation of our surrogate functions is challenging for the following
reasons.

• As mentioned previously, the overall performances of MOEA with surrogate methods
likely depends on complex interactions between both parts which are not captured
by looking only at the quality of the approximations

• Evaluating an approximation method independently requires a set of solutions (power
profiles with their utility values) representative of the solutions that would be pro-
duced by the MOEA.

• The two new approximation methods proposed may either return an approximated
value or indicate a “miss”, considering that the known solutions set is not appropriate
to perform the approximation. This leads to at least two different metrics for mea-
suring the quality of an approximation method: the accuracy of the approximations
themselves and its miss rate.

• With multi-objective approach focused on Pareto-dominance, the quality of the
whole approximation, in a Pareto dominance sense, highly depends on the worst
approximated objective for a given solution making harder to extrapolate results on
an objective taken individually.

Due to the fact that there is no clear literature covering clearly all these points, we pro-
pose to keep the methodology simple enough by evaluating first the impact of the various
parameters of each approach on the accuracy of PDM and ITDM utilities independently.
Once the parameters chosen by this way, we complete with some additional experiments
to provide some discussion on the limits and inherent issues of this problem.

Independent evaluation

To obtain a realistic dataset of power profiles and objective values, the individuals gen-
erated during SPEA2 runs are recorded and stored. These profiles were obtained using
SPEA2 with the settings presented in section 5.5.1 (80 time steps with Normal scenario),
1600 evaluations and the chosen values for pbcross and pbindmut . This is repeated for 10
different runs, leading to a set of 8000 known profiles for both ITDM and PDM utilities.

Using this dataset, each surrogate method is evaluated with different parameters. A
subset of 100 profiles are randomly selected in the dataset to form the set of known so-
lutions, while all the others are used to perform approximations and compare to the real
utility. For AD and MHT, the number of these profiles for which the approximation al-
gorithm is not successful is counted as missed. This process is repeated 10 times for each
combination of parameters in order to have robust results. Two metrics are obtained by
averaging results for a combination of parameters: the RMSD between successful approx-
imation and real utility value of a profile, and the ratio of missed approximations for AD
and MHT.

MHT and AD Our two surrogate methods are both controlled by two parameters
with similar meaning, rclose and nclose. The value of each parameter is selected among
6 possibilities, following a geometrical progression. Values of nclose varies from 1 to 32
for both MHT and AD. The distance metric is however not the same between the two
approaches: it is a derivative of Euclidean distance for MHT while it is a mean square
error (MSE) for AD, which grows much faster than Euclidean distance. Different ranges
of values are therefore studied for rclose, both obtained as geometric series of ratio 2, from
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Figure 5.9 – Miss rate and root-mean-square deviation (RMSD) for the Multiresolution
Haar Transform (MHT) approximation method using 100 known profiles.

1/24 to 4/3 for MHT and from 1/144 to 2/9 for AD. Their start terms may appear somehow
arbitrary for historical reasons, but are capturing accurately the different behaviors of the
surrogate methods.

Figure 5.9 shows the results for the Multiresolution Haar Transform (MHT) approach.
As the miss rates are the same when approximation is performed for either ITDM utility
or PDM utility, they are given in a single figure 5.9c. Small values of rclose and/or large
values of nclose lead to very important miss rates (up to 100%). This is expected, as
both cause the requirement for performing the approximation to be more difficult to meet
(closer solutions required for large nclose and smaller distance to known solutions for small
rclose).

The quality of approximations is presented in fig. 5.9a for the PDM utility. As only the
successful (i.e., not missed) approximations are considered, it must be highlighted that
combinations with miss rates close to 1.0 may have their quality computed with a very
small number of samples. The worst values are obtained for large values of rclose (≥ 4)
and for nclose = 1. While the scale of utility values (and therefore the RMSD) are not
the same, the approximation of ITDM utilities gives very similar patterns, as shown in
fig. 5.9b.

Ideal values for nclose and rclose would perform an approximation of all the profiles
matching exactly the real utility value for this power profile (both miss rate and RMSD
as close to 0 as possible). As none of the tested value combinations is perfect, a trade-off
must be chosen. The combination selected is the best one for quality with a constraint on
miss rate ≤ 3%, resulting for the MHT method in nclose = 4 and rclose = 1

6 .
For Average Distance (AD) approximation method, similar results are summarized
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Figure 5.10 – Miss rate and root-mean-square deviation (RMSD) for the Average Distance
(AD) approximation method using 100 known profiles.

similarly in fig. 5.10. The resulting miss rates shown in fig. 5.10c differ a lot compared to
MHT results. This is expected as the distance metric used by both methods are not the
same. Low miss rates (≤ 5%) are only achieved with the highest value of rclose. A few
other combinations result in miss rates lower than 90%, by requiring few close solutions
to return an approximation (nclose ≤ 2). Figures 5.10a and 5.10b present the quality of
successful approximations for PDM and ITDM utility functions respectively. Similarly to
MHT results, the RMSD is lower for small values of rclose and nclose, with a more important
deviation for rclose = 8. However, the values suggest a worse approximation quality for
all parameter combinations compared to MHT ones, except for some values which lead to
very high miss rates (≥ 99%).

Contrary to MHT results, where it was easy to find values with both a relatively good
approximation quality and a low miss rate, no such combination appears for AD. As it
seems important to have a relatively good approximation quality, a different trade-off is
used to choose the parameters. While leading to a high (80%) miss rate, parameters
nclose = 1 and rclose = 1

18 lead to a relatively good approximation quality.

Multilayer perceptron hyperparemeters Neural networks in general are known to
have many hyperparameters that are difficult to setup without testing many configurations
for a given problem. Here, we focus only on a subset of them: the activation function and
the shape of the hidden layers. The solver L-BFGS [125] showed better and more stable
results in preliminary experiments compared to stochastic methods such as Adam and is
therefore used in the presented experiments.

To study their impact, we proceed similarly than for the previous analysis of AD and
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(a) PDM utility, relu activation function
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(b) ITDM utility, relu activation function
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(c) PDM utility, tanh activation function
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(d) ITDM utility, tanh activation function

Figure 5.11 – Root-mean-square deviation (RMSD) for different hidden layers and activa-
tion function of Multilayer Perceptron (MLP), with 100 known profiles.

MHT methods, without the need to care about approximation misses as an MLP gives an
approximation as long as the network was trained. The results of two activation functions
are detailed, relu and tanh. Additional experiments with a logistic activation were made
and lead to results slightly different but with many similarities with tanh. The structure
of the hidden layers is studied by setting the number of layers (between 1 and 16) and the
number of neurons on each layer (between 1 and 32).

Figure 5.11 presents the results for both activation function, showing RMSD for PDM
utility on the left and for ITDM utility on the right. For recall, the scale of ITDM utility
values being higher than PDM ones on the studied profiles, higher RMSD are expected
for the first.

We clearly see that tanh perform badly on this problem, with results on ITDM utility on
fig. 5.11d being significantly worst than other surrogate methods for all tested parameters.
Its accuracy for PDM utility, detailed in fig. 5.11c, is comparatively better but stays behind
the ones of relu. For relu activation function, some better results are observed especially
for ITDM utility in fig. 5.11b. The absolute best accuracy is obtained for maximum values
of parameters (64 neurons per hidden layer and 16 layers), but close values are obtained
by lowering this high number of layers. For the PDM utility, shown in fig. 5.11a, the better
values are reached with 8 or more neurons per hidden layer and 8 or more layers.

A set of parameters which leads to a good trade-off between ITDM and PDM accu-
racy is using relu activation with 8 layers of 32 neurons. These figures seem really high
considering our problem, especially the number of layers as many works suggest that 2 or
3 hidden layers is generally sufficient for approximating any function. However, a small
training set is rarely considered, with in our case only slightly more samples than input
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Figure 5.12 – Median and spreading (top and bottom deciles) of the root-mean-square
deviation of the different selected surrogate, depending on the number of samples of the
real utility values (known profiles). Miss rates of MHT and AD are given on the right
axis, as dashed lines.

neurons. While the values found are surprising, the methodology used is clear and fair
with AD and MHT methods. Therefore, these parameters will be used for MLP in the
rest of the experiments.

Impact of number of known solutions on accuracy To help understanding better
the behavior of the surrogate methods, an additional set of experiments is performed using
a similar setup. Using the selected parameters for each approach, the accuracy and miss
rates are studied for different sizes of known solution pool (training set). Similarly to the
previous experiments, a number of solutions are selected randomly in the large pool of
8000 profiles and the rest is used for evaluation. Each combination of surrogate method
and number of known solutions leads to 10 experiments with different training set.

Results are given in fig. 5.12 for both ITDM and PDM utilities, as log-log plot and with
the spreading displayed as a surface around the median value. It shows first that MHT and
AD only slightly improve their accuracy when more solutions are known. However, their
RMSD is quite good compared to the other methods for few known solutions, especially
MHT which outperforms all the other methods for up to 200 samples for PDM utility and
800 for ITDM one. By looking at their miss rates, it seems to confirm that the concept of
approximation miss helps to keep the accuracy good when training set is small.

The RBF method exhibit unique behaviors among the different surrogate methods.
The first noticeable one is the huge spreading for low number of known solutions (≤ 200).
This is a good indication that it is not adapted for such conditions, being highly unstable
as small changes on the data may cause high variations of the radial function weights.
The second observation is its very high accuracy for large budgets (≥ 400 for PDM and
≥ 1600 for ITDM utility). Past this amount, it largely outperforms the other methods
and behave in a stable way.

Finally, the multilayer perceptron method gives unequal results on PDM and ITDM
utilities. For the PDM utility, it slightly improves with the number of known solutions,
but becomes more and more unstable and never performs better than AD or MHT. This
may be a consequence of a badly adapted method for this problem combined with some
overfitting phenomenon [172] (neural network trying to fit “too well” the set of known
solution and resulting in inaccurate approximation for other inputs).
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While these results are helpful to understand the surrogate model themselves, for the
reasons mentioned previously they are not directly usable to predict the behavior of the
overall optimization process.

Multi-objective joint approximations

While they are not used to choose the approximation methods parameters, additional
experiments are performed to highlight the behaviors of these surrogate models when
used simultaneously for multiple objectives. Two cases are studied for the use of surrogate
models to approximate both ITDM and PDM utilities: independently from the MOEA like
the previous section and during the optimization. In the following, both the ITDM and
the PDM approximation functions are set with the same method and same parameters.

As our approach is based on Pareto strength of individuals, it is important that the
surrogate models predict accurately the Pareto dominance of individuals over the known
solution set. If a new individual is considered, by the approximation functions, as dom-
inated by the current set of best individuals, it would very likely be eliminated before
having a chance of being evaluated with the real utility functions. It must be highlighted
that a single pessimistic approximation function is enough for mis-considering a dominat-
ing solution. This makes the whole approximation quality depending mostly on the worst
of the approximation functions.

To characterize more precisely the combined use of surrogate models (one instance for
ITDM utility and another for PDM utility), a set of 5 indicators are measured. All of
them represent a percentage of the approximations and are to be maximized for an ideal
surrogate model.

• hit rate, part of successful approximations (not leading to a miss)

• true dominated, part of individuals dominated by the set of known solutions (with
the real objective values) which are also considered as dominated by the surrogate
model

• true non-dominated, part of individuals which are not dominated by the set of known
solutions correctly considered as non-dominated by the surrogate model

• miss desired, part of non-dominated individuals among the missed approximations
and would therefore cause a useful evaluation (set at 100% for RBF and MLP)

• overall desired, part of individuals which are either true dominated, true non-dominated
or miss desired among all the performed approximations

A first experiment series is done independently from the real optimization loop, using
a pool of known solutions and without MOEA. Because this allows to study the behavior
of the approximation method before using them in an optimization framework, it is called
here a priori evaluation. Using the same settings as in section 5.5.2, a set of 100 pairs of
solutions and their real objective value are chosen for becoming the set of known profiles
for both ITDM and PDM approximation functions. All the other solutions are used to
approximate their objective values, which is compared to the real ones.

Figure 5.13 summarizes the different indicators for the 4 surrogates using the chosen
parameters. The values of hit rate and miss desired are only interesting for the approaches
handling approximation misses, MHT and AD. The miss rates were already studied for
selecting the parameters of both approaches and the low hit rate for AD is not surprising.
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Figure 5.13 – Pareto-dominance related performance of surrogate methods, based on ran-
dom samples of known profiles and their utilities.

The part of prediction miss which led to a non-dominated solution (miss desired metric)
is higher (77%) for MHT than for AD (36%).

Interestingly, very different behaviors are observed on the true dominated and true non-
dominated metrics. MLP and RBF performs similarly to correctly predict a new solution
dominating the known ones (true non-dominated), with almost 50% of correct predictions
(45% and 49% respectively). The AD method is the worst for this metric (9.3%) and
MHT is in-between, with 29% of correct guesses. The results are almost inverted for true
dominated ratio, with AD predicting correctly 96% of dominated individuals, followed
by MHT (85%) and MLP (75%). The radial-basis function surrogate is the last, with
just below the half of them (49%) correctly considered dominated by known solution set.
These results show that AD is extremely “pessimistic”, but avoid considering potentially
interesting solutions which would have not lead to any improvement of the current Pareto-
dominating solutions. At the contrary, MLP appears quite balanced in terms of Pareto-
accuracy of predictions.

In this a priori evaluation, despite the observed accuracy on independent objectives,
the overall rate of desired outcomes is similar between MHT (66%) and multilayer percep-
tron method (64%). RBF does slightly worst (49%) and AD is still getting an acceptable
value of 41%, probably because of the high figure of true dominated indicator.

In the second experiment series, the same characteristics of the surrogate models are
analyzed in situ, during a complete optimization run, using USPEA2 along with the
approximation methods. While this is not practical for tuning the surrogate models for
the overall approach, it is useful to understand how the overall MOEA and surrogates are
working together. The parameters used for USPEA2 and for the ITDM and PDM models
are the same as in experiments presented later in section 5.6.4, using scenario Normal with
80 time steps. The end condition is set when 100 evaluations are performed by the real
objective functions (N = 100) and each experiment is repeated 10 times in order to average
the results. Two different cases are compared. One is using the Random initial population
scheme, the other is using the Best initial population (one individual considered as the
best solution for each ITDM and PDM, completed with random individuals).

Figure 5.14 presents the indicators for each approach, along with their results in a
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Figure 5.14 – Pareto-dominance related performance collected during USPEA2 optimiza-
tion and using either a random initial population (Random) or including the best profiles
of each decision module (Best). Results for a priori evaluation from fig. 5.13 is given for
comparison.

priori setup. A first observation concerns the differences with the a priori analysis. Some
characteristics are similar, such as the high values of true dominated indicator for AD. It is
also notable that despite behaving differently, the overall desired metric is very stable and
close in all condition to the value obtained a priori (less than 10% of absolute difference).
However it seems that the values observed for true non-dominated are systematically
higher in situ and systematically lower for true dominated ratio. The hit rate is also
significantly higher for AD (between 78% and 84% instead of 19%), as well as for the miss
desired ratio.

The indicator values for each initial population settings are close (less than 15% abso-
lute difference) in most cases. A major exception concerns the hit rate of MHT, which is
around 94% when initial population is Random, but as low as 51% with the Best scheme.
Such a difference may be explained by the relatively high number of close known solu-
tions (nclose = 4) required for performing an approximation. As the best solutions of both
decision modules are likely very different, several areas of the solution space, far from
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each other, are explored early in the optimization process. This makes less probable to
known already enough solutions close enough to a new individual obtained after crossover
of solutions far from each other.

All these results together are very useful to understand two main points. As stated
previously, the surrogate models and the MOEA behaviors are closely tied together. This
is highlighted by the differences observed for some indicators between the a priori analysis
(which attempts to isolate the approximation functions from the MOEA) and the in situ
one (studying both used together). While some differences may be explained by not
using a good enough solution sample set in the a priori method, some others, such as
the hit rates of AD, are more likely explained by the interactions between the MOEA
and the surrogate models. The second point is the impact of initial population over the
performance of the approximation functions. The different behaviors observed in the two
settings give a good reason to expect different performances for the overall MOEA and
surrogate models, depending on the initial population.

5.5.3 Lifetime of approximation

The last unset parameter of the approach is lf base (initial lifetime of approximated ob-
jectives) which is meaningful only when combining both optimization and approximation
algorithms. Using the previously detailed values for all the other parameters, USPEA2
with the approximation algorithms are evaluated with end condition set to either 100 or
400 evaluations. The initial population is generated using the Random scheme. The ex-
periments are performed 10 times for each settings. A total of 4 values of lf base are chosen
between 1 and 16, following a geometrical progression.

Higher values of lf base mean that an individual with approximated objective functions
needs to survive more generations in order to be evaluated with the real objective functions.
While this allows to reduce the amount of required evaluations, it also increases the risk
of keeping bad individuals longer.

Figure 5.15 shows the resulting normalized hypervolume (to maximize) and genera-
tional distance (to minimize) of the final solution set for each approach. For a low target
of objective functions evaluations (evalmax = 100), approaches either do not improve sig-
nificantly (AD and RBF) or give better results with higher lf base, as shown by figs. 5.15a
and 5.15c. This is especially visible for MHT, for which the resulting nHV increases from
0.596 for lf base = 1 to 0.661 for lf base = 16. Similarly for multilayer perceptrons surrogate,
the average distance to Pareto front (GD) is continuously decreasing down to 0.068.

Figures 5.15b and 5.15d present the results for a higher evaluation budget (evalmax =
400). In this case, the benefit of a high value of lf base is less clear, with only MHT showing
clear improvement on hypervolume, with a small decrease at lf base = 8. It is however not
significant according to its standard deviation (0.045 for this value of lifetime). Contrary to
the results obtained with a lower budget, the generational distance is almost not improved
for lf base ≥ 2 and is even slightly impacted negatively for lf base ≥ 8.

Using a value of lf base ≥ 8 appears to give good results when USPEA2 is used. How-
ever, increasing the value of lf base also tends to increase the number of generations of
the genetic algorithm required to reach a solution, as more generations are needed for
an approximated individual to be evaluated. Even if the execution time is expected to
be bound by the evaluation of real objective function themselves, the initial lifetime of
approximated individuals should not be chosen uselessly too high. Increasing lf base from 8
to 16 present an improvement for evalmax = 400 only possibly for MHT and also for MLP
for lower budget (evalmax = 100). Therefore, the value used in the rest of the experiments
presented here is lf base = 8.
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(d) Generational distance for 400 evaluations

Figure 5.15 – Impact of the base lifetime (lfbase) value on hypervolume and generational
distance of resulting Pareto approximation when using the different surrogate methods.

Symbol Meaning Value
pbcross Probability of crossover 0.5
pbindmut Probability of a timestep to change during a mutation 0.072
archiveSize Maximum size of the archives 20
populationSize Maximum size of the population 20

Table 5.3 – Parameters used for SPEA2 and USPEA2.

5.6 Experimental results

In order to validate the proposed algorithms, several series of experiments are conducted,
using the parameters defined along the previous section and summarized in tables 5.3
and 5.4. To evaluate the robustness of the algorithms with respect to the objective func-
tions definition, the impact of an important constant of the PDM utility function on the
quality of the optimization is studied first. Then, the behavior of each heuristic depending
on the initial population used is studied. This shows how different level of initial knowl-
edge of the solution space may impact the quality of the result for each heuristic. Finally
the results are compared for all the defined scenarios and different sizes of the solution
space (number of steps in the time window, T ) to show the robustness of the heuristics
depending on the problem definition and how they scale for huge solution spaces.
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Method Parameter Value

MHT rclose 1/6
nclose 4

AD rclose 1/18
nclose 1

MLP
Neurons per layer 32
Hidden layers 8
Activation function relu

RBF Radial function cubic

Table 5.4 – Parameters used for each objective function surrogate method.
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(b) Normalized hypervolume with 400 evaluations.

Figure 5.16 – Impact of the grid sell utility parameter (ghgsell) for the different approxi-
mation methods used with USPEA2.

5.6.1 Impact of PDM utility formulation

The quality of the objective function approximation may depend on various characteristics
of the real utility functions themselves. For instance, functions with clear non-linearity
are usually more challenging to approximate, whereas very symmetrical ones may instead
lead to better approximations. On the other hand, the formulation of utility functions
also impacts directly the shape of objective space of feasible solutions. This may lead to
larger or sparse space, more difficult to explore with MOEA in general.

In the PDM utility as formulated in section 5.4.1, the added utility for selling energy
on the grid (ghgsell) causes some kind of symmetry, depending on its value, compared to
the utility removed for buying on the grid (ghgbuy). For instance, when ghgsell = ghgbuy,
any profile with the same amount of energy (∑T−1

t=0 pt · δ) will have the same PDM utility
as the renewable energy may be sold directly to the grid when produced and bought at
anytime with no impact on resulting utility. However this also extends the range of PDM
utility values and consequently the size of the real Pareto front. By looking at the behavior
of the approaches for different values of ghgsell , it is possible to have an overview of the
impact of such utility function property on the overall approaches. Different values are
used, from 0 (selling energy for no benefit) to ghgsell (selling a unit of energy compensates
exactly the purchase cost).
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Figure 5.16 gives the resulting normalized hypervolume for each value of ghgsell , with
end condition set to a budget of evalmax = 100 or evalmax = 400 evaluations of real objec-
tive functions. A general trend for all the heuristics is that values closer to ghgbuy result in
a lower hypervolume, likely because of the increased objective space. The behaviors of each
surrogate differs between the two budgets of evaluations. Particularly, for evalmax = 100
MLP gives results higher than the baseline SPEA2 without surrogate with ghgsell = 0 and
becomes closer with increased values. With higher budget, using multilayer percetrons
surrogate leads to no significant improvement of hypervolume. Similarly, USPEA2 with
radial-basis functions (RBF) is very close to the baseline for low budget, but results in
smaller values for evalmax = 400.

The proposed Multiresolution Haar Transform approach gives higher hypervolume in
both cases. However, for a low evaluation budget, the relative improvement compared to
SPEA2 without surrogate method is similar for all values of ghgsell , whereas it increases
with it when evalmax = 400. Te other approaches, USPEA2 without surrogate and with
AD, perform similarly to the baseline.

5.6.2 Maximum number of evaluations

The problem considered here is a black-boxes optimization with evaluation budget con-
straint. The more evaluations are allowed, the more resource and time are required to
perform the optimization. To be able to take a decision in a reasonable amount of time,
the main target is between 100 and 400 evaluations. To understand how this budget affects
the quality of the resulting Pareto front approximation, a larger range is evaluated.

The results of each variant are compared for evalmax between 50 and 1600 in fig. 5.17,
with scenario Normal and 80 time steps in the time window. The variant SPEA2 + None
(original SPEA2 algorithm without approximation method) is considered as the baseline
for comparing the other results. The objective values of each individual from the initial
population must be either evaluated or approximated using the surrogate model in the
same way as any further new individual. Therefore, it must be highlighted that for small
values of evalmax , a significant amount of evaluations may be spent before the first series
of crossover and mutations. It may be up to 2 · populationSize (one costly evaluation per
decision module), or 40 evaluations in case none of them are successfully approximated.

For all the methods using USPEA2, the hypervolume increases with higher number of
evaluations, as shown in fig. 5.17a. The relationship between hypervolume and evalmax
is almost logarithmic for all of them except RBF, which increases quickly when evalmax
exceeds 400. The approximation method MHT lead to the highest hypervolume for all the
values of evalmax below the maximum tested of 1600, in which RBF gives slightly higher
result. The relative improvement of MHT on hypervolume compared to the baseline is
between 6.5% (for evalmax = 50) and 13% (for evalmax = 200). The other approaches are
close to the baseline. The MLP surrogate methods, initially slightly upper the baseline,
crosses it after evalmax = 400 and ends up 6.6% below for the highest budget. For all the
tested conditions, USPEA2 and SPEA2 without surrogate are giving similar values, with
less than 0.5% relative difference.

Figure 5.17b shows the average distance to Pareto, or generational distance, which
must be minimized. The global trend is a logarithmic decrease with the evaluation budget,
with RBF diverging here too for evalmax = 1600. The Average-Distance (AD) and MLP
surrogate methods result in lower generational distances than the baseline. The gap is
increasing with evalmax for AD and globally decreasing for MLP. On this metric, MHT is
always close to the baseline (maximum relative difference of 3%). Without using surrogate
methods, USPEA2 and SPEA2 result in very close generational distance (difference < 2%).
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Figure 5.17 – Performance of each variants for different evaluation budgets, with random
initial individuals.

Results when using SPEA2 together with the different surrogates are presented in
fig. 5.17c for hypervolume and fig. 5.17d for generational distance. Their behaviors are dif-
ferent from the ones observed with USPEA2, especially for high budgets (evalmax ≥ 400).
For all the values of evalmax , the hypervolume of the Pareto front approximation obtained
is lower than with the USPEA2 algorithm, with the most noticeable degradation observed
for MLP and RBF. The generational distance is however lower in some conditions, with a
significant gap for MLP but also slightly better results for MHT. The explanation of this
phenomenon, counter intuitive at first, is discussed in the next section. As similar results
are observed in all other experiments, we focus only on USPEA2 when surrogate models
are used in the rest of the section. With the same argument, SPEA2 and USPEA2 with
no objective approximation method giving comparable results in all the other conditions
studied (less than 2.5% of difference), only SPEA2 is given for comparison.

5.6.3 Initial population schemes

In genetic algorithms, the choice of initial individuals may greatly impact the convergence
speed. As explained in section 5.4.2, an alternative way to generate the initial population
is proposed in addition to the fully Random one. The Best scheme includes an optimal
solution of each decision module, which maximizes its internal utility without other con-
siderations, completed by random individuals to reach the size of the population. As this
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Figure 5.18 – Evolution of the performance with increasing evaluation budget and best
initial individuals.

individual is expected to be the optimal for one of the objective, it must be on the actual
Pareto front.

The experiments here are identical to the ones from section 5.6.2 except for the initial
population scheme used. Similarly, the normalized hypervolume and the generational
distance of each variant are presented in fig. 5.18 for different values of evalmax .

Compared to the use of the Random scheme in fig. 5.17, all the methods give higher
hypervolume and lower GD. Both metrics also improve with the number of costly evalu-
ations allowed evalmax for all the USPEA2-based variants. Contrary to what is observed
for the random scheme, there are important differences between surrogate methods on
resulting hypervolume for low number of evaluations, up to 23% of the baseline value
for evalmax = 50. In this setup, RBF and MLP give both the best results for such low
evaluation number, followed closely by MHT (+20%) and finally AD improves the base-
line hypervolume by only 9%. This difference between surrogate methods is significantly
lowered with higher budget of evaluations (±3% for evalmax = 1600).

The generational distance shown in fig. 5.18b is also globally improved compared to
Random initial population. The behaviors of MLP and RBF are however almost reversed,
with MLP giving worst (higher) generational distance than SPEA2 without surrogate for
evalmax ≥ 100. The AD method still exhibits lower distance to Pareto front for moderate
to high budgets (evalmax ≥ 400).

5.6.4 Scenarios and number of time steps

In order to evaluate the behavior of the approximation methods in various situations,
experiments are performed for each power scenario defined in section 5.4.2. Another
interesting point to show is the behavior of each approach when the size of problem
change. As described in section 5.1, the number of time steps in a power profile (T ) is
also the number of dimensions of the solution space. Therefore, the same 72-hours time
window is considered with either 20, 80 or 320 time steps. The two targeted evaluation
budgets, 100 and 400 are also studied.

The results for evalmax = 100 evaluations are shown in fig. 5.19. For all the algorithms,
better results are always achieved for lower number of time steps, both for normalized hy-
pervolume and generational distance. For both metrics, there is also a noticeable difference
between each scenario, with FewRenew leading to better overall results and ExcessRenew
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to slightly worst ones, especially for GD. With the exception of RBF in a few cases,
the resulting GD for a given scenario and number of time steps is close between all the
variants. The combination of USPEA2 with our proposed MHT surrogate gives the high-
est hypervolume in all the conditions, with a lower gap compared to the other in the
Normal scenario. Using multilayer perceptrons (MLP) does not improve significantly the
hypervolume except for the scenario FewRenew and for large time window (T = 320).

Figure 5.20 presents the results for a higher budget of costly evaluation evalmax = 400.
The same observation on the global impact of the scenarios is still accurate for both
generational distance and hypervolume. A major difference between the results detailed
for lower budget is the behavior of the Radial-Basis Functions (RBF) surrogate. It leads
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(c) Window of T = 320 time steps.

Figure 5.19 – Median and quartiles of both metrics (normalized hypervolume and genera-
tional distance) for the different heuristics with a budget evalmax = 100 costly evaluations
over several scenarios.
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Figure 5.20 – Median and quartiles of both metrics (normalized hypervolume and genera-
tional distance) for the different heuristics with a budget evalmax = 400 costly evaluations
over several scenarios.

to the higher hypervolume values for all the scenarios when the number of time steps
is low (T = 20) but inversely to worst results (both on hypervolume and generational
distance) than the baseline SPEA2 for larger time windows. On all scenarios, MHT gives
the highest hypervolume when medium or large time windows are considered and is below
RBF for the short case T = 20. The generational distance of all approaches is close from
the baseline in most conditions, with only AD giving systematically better values.

5.6.5 Using complex IT model

The previous experiments were performed on a simplified infrastructure model, with there-
fore objective functions exhibiting less complex behaviors. Results presented here are in-
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Figure 5.21 – Resulting solutions and Pareto front approximation after 100 costly evalua-
tions, using RECO scheduler from the literature and complex IT infrastructure.

stead using the RECO scheduler [27] with a more realistic machine and tasks model. The
experimental setup consists in the Normal scenario, with T = 80 and a budget of 100
costly evaluations.

Figure 5.21 shows the solutions obtained by running the different approaches over a
complete optimization run. The approximated Pareto front from each approach is high-
lighted, but dominated solutions are also plotted as individual points outside the front.
While this result alone does not allow a deep analysis, it provides valuable clues. On
this run, the capacity of MHT and MLP to spread across the extremum is clearly visible,
while AD is only improving a very local area towards the maximum values. MHT is the
only method which ends with all its solutions being Pareto-optimal between them. At the
contrary, AD only 9 out of 20 solutions fulfill this condition. It can also be noted that AD
and MHT both results in most of their solutions dominating the ones of SPEA2 without
surrogate method.

As mentioned earlier, the high complexity of this IT model prevent to obtain the
real Pareto front of the problem. To allow comparing the approaches with higher level
metrics, some modifications of the hypervolume indicator and generational distance are
proposed. The hypervolume can still be computed but not normalized with the real
Pareto front. To keep its value in meaningful range, it is calculated after normalizing
each objective value by considering the minimum and maximum found among all the
experiments. The generational distance requires a Pareto front to which measure the
distances from each solution. While this is not commonly done in the literature, we propose
for these experiments to extract the Pareto-optimal solutions among all the results to form
the best approximation of the Pareto front PF?. Generational distance is then computed
as for the other experiments using this approximation instead of the MILP-based front.

These modified metrics are compared between the approaches in fig. 5.22, over 10 runs
with the same parameters. Using the MHT surrogate method gives better results than
the other approaches most of the time, for both hypervolume and generational distance
metrics. On the hypervolume indicator, using any surrogate method leads to more spread
results compared to SPEA2 alone. In addition, RBF and MLP appear to give worst results
than the baseline at least half of the time. Finally, using USPEA2 with AD surrogate
method leads to slightly better hypervolume and generational distance than the baseline
in the nominal case.
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Figure 5.22 – High level metrics for all the approaches using the RECO scheduler and
complex infrastructure.

5.7 Discussion

Many experiments are presented along the previous sections, showing different aspects
of the proposed approach. For sake of clarity, the main findings are sorted in different
categories. Some points concerning SPEA2 and our modified version USPEA2 are stated
first. Then, the important observations on the proposed function approximation methods
are described, followed by the identified limits of such approach.

5.7.1 USPEA2

The proposed modifications of SPEA2 to design USPEA2 aim at improving the perfor-
mance when the individuals consist in a mix of evaluated and approximated solutions
(through online-trained surrogate model). However, these modifications could affect the
general behavior of this multi-objective evolutionary algorithm.

No significant difference is observed compared to SPEA2 when no surrogate method is
used, as shown by the results in section 5.6.2. As expected however, when an approxima-
tion function is used the results are usually improved compared to SPEA2. It is clearly
shown for the hypervolume of MLP and RBF surrogate methods. When a relatively high
budget of costly evaluations is used (evalmax ≥ 400), using USPEA2 also allows to keep
increasing hypervolume for AD and MHT. This is explained by the reliable archive used,
preventing the loss of good solutions when surrogate models are too much optimistic,
giving falsely believed, unreliable good solutions which replace the reliable ones. The ad-
ditional results in other tested conditions (scenarios and number of time steps), while not
detailed here because of the lack of any other interest, also give similar results.

While it was expected to be similar, the impact of USPEA2 on the average distance
to the Pareto front (GD) is lower and in some situations may even leads to worst (higher)
values. This phenomenon is caused mainly by the set of solutions lost, which are observed
contain more often some of the extremum of the current front. It causes a diminished
spreading, making easier to keep only a few solutions close to a given area of the true
Pareto front. In addition, because the generational distance only takes non-dominated
solutions into account, any individual resulting in very poor outcomes is not impacting
this metric.
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5.7.2 Online surrogate of objective functions

In addition to the method from the literature, multilayer percetrons (MLP) and radial-
basis functions (RBF), two methods to new surrogate methods for time series, high-
dimensonality objective functions are presented. The average-distance based method (AD)
is a trivial approach and appear to perform relatively badly when used alone, as detailed
in section 5.5.2. On the other hand, the multiresolution Haar wavelet distance method
(MHT) is designed to handle timeseries better and provides quite accurate prediction ac-
cording the results in section 5.5.2. The two commonly used surrogate methods exhibit
bad results when evaluated alone and with the reduced training set caused by the limited
budget of costly evaluation in our problem. When used together with an evolutionary
algorithm however, the surrogate method used could impact the solution explored, which
in turn impacts the known solutions used to build the surrogate and therefore the quality
of subsequent approximations.

The different Pareto-based characteristics of the surrogate methods, described in sec-
tion 5.5.2, are expected to impact the quality of the overall optimization. Most experiments
using MHT approximation give a better hypervolume. Notably, the results of fig. 5.17a
show it reaches similar or higher hypervolume compared to SPEA2 alone with a budget 4
times less important. However it does not reduce significantly the generational distance in
the experiments performed on the simplified model. This is also confirmed by the experi-
ments made with the Best initial scheme, shown in fig. 5.18a, where MHT approximation
appear to improve only slightly the hypervolume when the individuals are already well
spread. Such results suggest that using MHT prevents costly evaluation of many individ-
uals near to the known Pareto-optimal solutions, allowing a faster spreading, while failing
to identify accurately non-dominated individuals among them (which are closer to the real
Pareto front from only a small difference).

Compared to MHT, the behavior of the overall optimization is quite different when AD
is used. While it leads to few or no improvement of hypervolume in most cases, it results
in a slightly better GD for large budget (≥ 400) of costly evaluations. It also performs
better than all the other methods when the individuals are already well spread, as shown
for the Best initial population scheme. This is likely explained by a low prevention of
individuals evaluation near the current approximation of the Pareto front. As suggested
by preliminary results in section 5.5.2, it is caused by both high approximation miss rate
and pessimistic estimations (almost the totality of dominated individuals are considered
such).

Both RBF and MLP only improve the quality of the optimization in a limited amount
of cases. The multilayer percetrons surrogate gives good results compared to the baseline
in a specific scenario (FewRenew) and for large solution space (time window with 320
time steps). Oppositely, using a surrogate based on radial-basis functions performs better
with small solution space. RBF also gives very good results for both hypervolume and
generational distance for the largest budget tested, by knowing 1600 solutions at the end.
The two points confirms that RBF is remarkably well-suited when the ratio of the size of
the training set over the number of dimensions of the problem is higher than our target.

The most important result is the stability of the proposed MHTmethod over the various
tested conditions. First, it is less affected than the other methods by the formulation of
the objective functions (scenarios and internal values such as ghgsell used to compute the
PDM utility). It is also the only method which gives significant improvements when a
more complex IT infrastructure is considered, using an arguably realistic scheduler from
the literature in place of the simplified model. Then it grants a significant improvement
of hypervolume for any target budget of costly evaluations. Finally it is clearly robust
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to the high-dimensionalty aspect of large time series, resulting in relative hypervolume
improvement similar or greater for values of T from 20 to 320. This new method may
seem simpler than approaches such as RBF and MLP. It is however designed deeply for
taking the time series aspect into account, mitigating the issues of high-dimensional space,
with the results confirming this initial hypothesis.

5.7.3 Limits of approximation-based methods

When using a surrogate model to approximate black-box functions, evaluation of the
quality of the approximations is required in order to choose the best model and to tune
its parameters. In this work, several difficulties are exhibited. Working with multiple
objectives makes it more delicate to define what is the quality or accuracy of a set of
surrogate models. As highlighted by Karakasis and Giannakoglou [98], if a single objective
is badly approximated, a good solution appears as dominated and therefore uninteresting.
Some metrics, designed for multi-objective approximation, are proposed in section 5.5.2.
Unfortunately, maximizing all these metrics is by itself a multi-objective problem and it
is likely that a trade-off must be carefully selected depending on the target problem.

A second issue is related to the interactions between the meta-heuristic (SPEA2 or
USPEA2) and the online surrogate model itself, as explained in section 5.5. The overall
algorithm quality becomes difficult to predict, as it does not depend solely on the accuracy
of the approximation functions used. A first illustration is given in section 5.5.2, with
the quality metrics changing significantly for some surrogate methods when measured
during the algorithm execution. The difference of behaviors of each approximation method
depending only on the initial population used is also an issue which is not fully covered in
this study.

There is clearly an advantage, according to the different experiments, in combining
surrogate model to meta-heuristics when objective functions are costly. These issues,
however, make very difficult to predict of the actual improvement before actually running
the algorithm to evaluate the overall results.

5.8 Conclusion

In this chapter, we presented an approach for multi-objective power planning optimiza-
tion between a datacenter and an electrical infrastructure with on-site RES, each having
its own objective and being considered as a black-box. Multi-objective heuristics being
especially costly, a surrogate-assisted method was explored in order to reduce the amount
of evaluation of solutions required to find a set of good power planning trade-offs. Two
surrogate methods are proposed, Average Distance (AD) and Multiresolution Haar Trans-
form (MHT), designed to deal efficiently with time series. In addition, a variant of the
multi-objective evolutionary algorithm SPEA2, named USPEA2 is presented to handle
better a mix of individuals with evaluated objectives and unreliable, approximated values.

Extensive experiments have been presented using a simplified datacenter and electrical
sources model, both to study the impact of the parameters of the algorithms and to
evaluate the performance in various conditions. By improving the quality and the stability
of the results when a surrogate method is used, USPEA2 proved to be a robust MOEA
for leveraging online objective function approximation. The proposed MHT surrogate
method led to a clear improvement of the quality of the solution set when used together
with USPEA2 in all tested conditions compared to other methods and absence original
SPEA2 algorithm without surrogate. By taking the time series aspect of the solution
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space, this method gives better results than techniques known to provide good quality
surrogates in the literature, such as multilayer neural networks and radial-basis functions.
The evaluation using a more complex and arguably rich datacenter and workload model,
with a scheduler from the literature confirms the benefit of the proposed approach in real
use cases.

To the best of our knowledge, this is the first work on surrogate-based evolutionary
optimization targeting objective functions defined on time series. Hence it opens several
perspectives which were not explored here, such as the usage of crossover and mutation
functions designed for this particular case of high-dimensional space. Other improvements
may be obtained by using techniques used in similar areas. The good results obtained by
the radial-basis functions surrogate when the evaluation budget is high suggests it may be
a good candidate for hybrid surrogate method together with the MHT method proposed.

The work presented here is also the first to attempt a multi-objective optimization of
datacenter and rich electrical infrastructure while being totally agnostic of the respective
models. Such a black-boxes model has tangible benefits in real world situations, by re-
ducing the coupling between electrical and IT aspects, which are in practice managed by
separated entities and evolving independently. The multi-objective aspect, in a Pareto
sense, avoids to decide the articulation of objectives beforehand and allows to use arbi-
trary objectives for the IT and the electrical parts. In this work, we only focused on 2
objectives, one for each part of the infrastructure. However the approach itself supports
more objectives. A possibly interesting extension is the addition of an objective common
to both parts such as the economical aspects.

By tackling the multi-objective aspect without prior assumption on the articulation of
objectives, the choice of a solution among the best trade-offs (Pareto-optimal solutions)
has not been studied. Without deeper investigation, this approximation of the Pareto-
front can be used to implement simple policies or to improve the choice of an existing
decision maker. For instance, the knee points of the Pareto-front give the most interesting
trade-offs [20, 194], which is helpful to articulate the preferences at a given time. By
providing a set of good trade-offs, an automatic decision making algorithm can take into
account both a priori articulation of objectives and a posteriori knowledge (shape of the
Pareto-front, knee points, extremum solutions). Even with the improvements proposed
here, finding the Pareto-front with costly ITDM and PDM is quite time consuming. Hence
a possible use case is in a two-phases optimization process such as proposed by Pahlevan
et al. [148], in which it can take a good offline decision for a middle-term horizon and is
completed by cheap online heuristic to adjust the decision to small deviations from the
power planning.

When a longer period than the time window is considered, the problem can also be
modeled as multi-objective sequential decision making problem: at each decision epoch,
a solution (power planning for the upcoming time window) must be chosen among a
set of Pareto-optimal trade-offs. In such formulation, a multi-criteria reward is obtained
depending on the chosen solution, represented here by the ITDM and PDM utilities and
their internal state is affected by the decision, such as the ESD state of charge or the some
waiting workload. Hence, the best long-term decision for maximizing the accumulated
reward depends of its impact on the overall state in addition to the immediate reward.
In this chapter, the black-box model is used to hide these states, making hard to reason
on a time longer than a decision epoch. Future studies could explore how to tackle this
long-term decision making problem with different amount of information on the ITDM
and PDM states.

Another perspective explored by Kamjoo et al. [97] in a slightly different context
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(RES powering a fixed target load) is to incorporate the uncertainty of the solutions as an
independent objective. Along this chapter, none of the IT or electrical models considered
any sources of uncertainty. But once a decision is implemented, the prediction of renewable
energy production for instance is likely to not match exactly the real production. Hence
we can imagine that some of the power profiles considered as potential solutions are more
likely than others to result in undesirable situation (empty storage devices or massive
lack of renewable energy compared to the prediction). With the presented approach, the
miss-predictions could be addressed by two complementary ways: being used in a two-
phases optimization as mentioned earlier and by running the proposed multi-objective
optimization when the deviation compared to the previous power planning became too
important. These two mechanisms are external to the approach itself, as it does not
handle uncertain models. In the next chapter, these uncertainty are instead considered as
a central dimension of the problem.
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Chapter 6

Datacenter management with
uncertain renewable energy
production

Come, let us hasten to a higher plane,
Where dyads tread the fairy fields of Venn,
Their indices bedecked from one to n,
Commingled in an endless Markov chain!
...
I’ll grant thee random access to my heart,
Thou’lt tell me all the constants of thy love;
And so we two shall all love’s lemmas prove,
And in bound partition never part.

— Stanisław Lem, The Cyberiad
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In the two previous chapters, we focused on the intermittent aspect of renewable
energy sources (RES), proposing methods to take the varying availability of the energy
into account in the management of a datacenter. These contributions, similarly to most of
the literature, overlooked the uncertainty of solar and wind energies production forecasting.

We propose here to study a model with uncertain RES production. As detailed in
section 2.4.2, most of the current works on datacenter management with RES are either
ignoring the production uncertainties, or using simple methods to mitigate their effects,
such as an online adjustment of the initial optimization. In order to strengthen the knowl-
edge and provide a robust base for future studies, this problem is tackled here in a more
theoretical way, assuming a full knowledge of RES production uncertainties (i.e. their
probability distributions).

Contrary to the previous contributions, the infrastructure studied is a stand-alone
microgrid, not connected to an electrical grid. A renewable source, photovoltaic (PV)
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panels, is the only primary source and batteries are used to store some of its production.
The datacenter is therefore constrained by the energy production and must carefully plan
its power consumption as no grid backup can be used.

In this chapter, we propose a Markov Decision Process (MDP) formulation that tackles
several flavors of the problem. We increase gradually the complexity of the problem, so
that we analyze the structural properties of every instance and expose the impact of each
additional constraint on the problem. Doing so gives a precious, deep understanding of
the overall problem.

Markov decision processes, as explained in section 2.1.2, are generally impossible to
solve exactly with continuous states and actions which are required in some of the models
studied here. Generic discretization techniques can be applied to approximate the solu-
tion, but their computation is costly when a very close approximation is desired. The
analysis conducted along this chapter reveals some structural properties of the optimal
policy for workload management with uncertain renewable production. These properties
can be leveraged in order to solve more efficiently the problem compared to a generic
solution. To illustrate how these findings are usable in practice, a method for computing
a bounded-error approximation of the optimal policy is described and implemented. The
improvements provided by this uncertainty aware approach are attested by comparing it to
the optimal policy with deterministic RES forecast and to the best achievable results using
a perfect oracle. Its performances in terms of execution time to solve different instances
of the problem are also attested experimentally.

The general infrastructure model studied and the overall problem are first described
in section 6.1. Then the analysis of a first variant of the problem, considering perfect
batteries and discrete state and action spaces is conducted along section 6.2. Section 6.3
extend the analysis to a second, more complex model, taking into account the efficiency of
non-ideal batteries. The optimal policy structure described for this second variant is used
in section 6.4 to describe the bounded approximation algorithm, which is implemented
and studied experimentally. Section 6.5 concludes this chapter and present the main
perspectives of this work.

6.1 Framework

6.1.1 Context

We consider a datacenter composed of machines that can execute a workload and of
batteries that can store and return energy. The datacenter is not connected to the grid
but to sources of renewable energy, so that the machines can be supplied by the batteries
and/or directly by these renewable energy sources. Through misuse of language we will
call renewable energy the energy that is produced by renewable energy sources.

A finite time window (or horizon) is considered, with discrete time model. At the
beginning of each time step, users submit to the platform some workload to be executed
during the time step, modeled as an homogeneous amount of work (i.e. millions of instruc-
tions). The platform manager decides at this point to commit to execute all or any part of
the workload, qualified as accepted work thereafter. The power consumption is modeled
as an energy proportional datacenter, which is a major simplification but becoming closer
to the realty with the recent progress in this direction [91, 191].

The future renewable energy production is not known surely, but a forecast of energy
production from renewable sources is available at the beginning of the time step. Therefore,
the decision of the quantity of accepted work takes place before knowing the exact energy
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production for the next time step. Each unit of work that has been accepted and that
is actually executed during the time step provides a gain to the datacenter, while the
datacenter gives back a penalty to the users for any work that has been accepted but
could not be run. Submitted but non-accepted work does not imply any gain or loss to
the datacenter.

Batteries are automatically charged if renewable energy is in excess, or discharged
(down to 0) if not enough renewable energy is available to fulfill the datacenter needs,
since there is no advantage in not executing all the accepted work to save energy in the
batteries in this model. We consider that when there is not enough energy to supply the
running machines during the time period, the energy is “gathered” to supply only a subset
of the machines for the whole time period: the datacenter receives then a gain (resp. gives
back a penalty) for any work that has been executed (resp. accepted but not executed).

6.1.2 Models

For the sake of understanding, we begin with a simple model of batteries and workload,
and move step by step towards a more realistic setting. Two main variants are studied.
In a first part, we consider ideal batteries, i.e. such that no battery loss takes place when
charged or discharged, denoted as Ideal variant. In a second part (Imperfect), we
deal with non-ideal batteries, that suffer from imperfect efficiency, leading to energy losses
when discharged and charged.

For each of these variants, three submodels are progressively considered. In the Ideal-
Unbounded model, the batteries do not have maximum capacity and the available work
at any step is infinite (the datacenter does not have other limitation on the total work that
it can accept and execute during a time step than the available energy). In the Ideal-
BatteryBounded model, we are given a capacity on the batteries, i.e. the total stored
energy is limited at any time. Finally, in the Ideal-Bounded model, the users submit a fi-
nite amount of work, that is known to the datacenter before deciding which part will be ac-
cepted. Similarly, the non-ideal batteries case is studied across these three flavors, namely
Imperfect-Unbounded, Imperfect-BatteryBounded and Imperfect-Bounded.

We formalize this problem through Markovian Decision Processes (MDP), briefly pre-
sented in section 2.1.2 and start with some notations.

6.1.3 Formalization

We consider a finite-horizon MDP decomposed into N − 1 periods, numbered from 1 to
N − 1, where period t starts at decision epoch t and finishes at decision epoch t+ 1.

A state of the MDP is fully characterized with the amount of energy stored in the
batteries: we denote by bt ∈ B the amount of energy stored in the battery at decision
epoch t.

(wt)t∈{1,...,N−1} is a vector that expresses the amount of work that is available at
decision epoch t, i.e. the quantity of work that has been submitted by the users to
the datacenter to be executed at period t. We denote by Et the amount of renewable
energy that is produced during period t. Its realization is denoted by et ∈ E . Forecast
informations give the probabilistic distribution of each Et and its realization is known
after decision epoch t.

We denote by A the default set of available actions. At decision epoch t, at ∈ At =
A ∩ [0, wt] is the amount of work that is accepted by the datacenter operator. Dt (resp.
St) is the amount of work that is done (resp. spoiled, i.e. accepted but not run) by
the platform during period t. These quantities are such that Dt + St = at. We define
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c+ ∈ R+
? as the gain earned by the datacenter per unit of work that has been accepted

and executed, while c− ∈ R+
? is the penalty that has to be paid back per unit of work

that has been accepted but not executed during the time period. The revenue Rt of the
datacenter during period t is then given by: Rt = c+ ·Dt − c− · St.

We denote by rt(bt, at) the expectation of the reward during period t, when, at decision
epoch t, bt units of energy are stored in the batteries and the datacenter operator chooses
to accept at units of work. No decision is made at decision epoch N , and the final reward
is there rN (b) = 0 for all b (no bonus for the energy stored in the batteries).

The decision problem is to find possibly optimal policies, i.e. a sequence (πt)t∈{1,...,N−1},
where for all t ∈ {1, . . . , N − 1}, πt : B → A gives the action at to perform depending on
the state bt, such that the expectation of the sum of the rewards ∑N−1

t=1 Rt is maximized.
For convenience, we define the optimal value functions Vt such that Vt(bt) is the maxi-

mum reward expectation that can be obtained when bt units of energy are in the batteries
at decision epoch t. It should be noticed that for all b ∈ B, VN (b) = rN (b) = 0. We also de-
note by Qt(bt, at) the expected reward in the following situation: choosing action at when
in state bt at decision epoch t, then an optimal sequence of actions until the end. Therefore,
we have for all bt ∈ B, Vt(bt) = maxa∈At Qt(bt, a). Any action a?t ∈ arg maxa∈At

Qt(bt, a)
will be called indifferently a maximizer or an optimal action at decision epoch t for a given
bt.

This generic formalization comes into several flavors according to the targeted model.
If the batteries are ideal, we can use discrete random variables and states. Especially,
E = N and a compact notation qet is used for the probability that e units of energy will
be produced during period t, equivalently to P [Et = e]. As the energy model of the
datacenter is proportional to the load, we consider, without loss of generality, the units of
work being equivalent to the corresponding energy consumption. Similarly, the time unit
corresponding to the duration of a time step, we can mix the energy, workload and power
units without the burden of constant factors added in all the equations. Hence, the charge
and discharge of the batteries are ruled by: bt+1 = bt + et − dt, where et (resp. dt) is the
realization of Et (resp. Dt).

The Ideal-Unbounded model corresponds to B = N, and for all t ∈ {1, . . . , N − 1},
A = N and wt = ∞. In the Ideal-BatteryBounded model, we denote by Bmax the
capacity of the batteries, i.e. B = {0, . . . , Bmax}, while A and the wt are unchanged. In
the Ideal-Bounded, B is unchanged, and for all t ∈ {1, . . . , N − 1}, wt ∈ N and the set
of available actions at decision epoch t is At = A ∩ [0, wt].

In the case of non-ideal batteries, there is an energy loss when the batteries are charged
or discharged. Without loss of generality however, we can assume that this lack of efficiency
is paid only when charged, i.e. there exists η ≤ 1 such that if the batteries are charged
with e units of energy, only ηe units of energy are stocked into the batteries. The charge
and discharge of the batteries follows:

bt+1 =
{
bt − (dt − et) if dt ≥ et
bt + η · (et − dt) otherwise

This results in a slightly modified model: the available work, the accepted work, the
renewable energy production and the remaining energy in the batteries are not discrete
but continuous1. Especially, E = R+. We denote by qt the probability density function
of Et, and by Ft its cumulative distribution. In addition, we need some regularity in

1For sake of readibility, and according to the ISO 31-11 standard on mathematical signs and symbols
for use in physical sciences and technology, we use the form ]x, y[ to refer to an open interval between x
and y, instead of the more common (x, y).
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the probabililty density function: we assume that for all t ∈ {1, . . . , N}, qt is in C1. We
emphasize that the production of renewable energy is intrinsically bounded by physical
limitations, e.g. the size of the solar panels, hence there exists Emax such that for all
t ∈ {1, . . . , N} and e ∈ [Emax,∞[, qt(e) = 0.

In the Imperfect-Unbounded model, B = R+, and for all t ∈ {1, . . . , N − 1},
A = R+ and wt =∞. In the Imperfect-BatteryBounded model, we denote by Bmax

the capacity of the batteries, i.e. B = [0, Bmax], while A and the wt are unchanged. In
the Imperfect-Bounded, B is unchanged, and wt ∈ R+ and the set of available actions
at decision epoch t is At = A ∩ [0, wt].

6.2 Ideal batteries

6.2.1 Unbounded batteries and workload

We consider first the Ideal-Unbounded model where neither the batteries nor the work-
load that can be executed on the platform during a period are bounded: B = N and for
all t, wt =∞.

We define pt(b′|b, a) as the probability that there is b′ units of energy in the batteries
at decision epoch t+ 1 when there was b units of energy in the batteries at decision epoch
t and the datacenter operator accepted a units of work.

By definition,
Qt(b, a) = rt(b, a) +

∑
b′∈B

pt(b′|b, a) · Vt+1(b′) (6.1)

The reward function rt(b, a), which is the expectation of the reward that is received
during period t when we choose action a while being in state b at decision epoch t, can be
decomposed into two cases. If a ≤ b, there is enough energy in the batteries not to depend
on the renewable energy, so that we are certain that the accepted work is executed, hence
rt(b, a) = a·c+. If a > b, we rely on the renewable energy, whose value is e with probability
qet . If e ≥ a − b, the sum b + e of available energy is not less than a, thus the reward is
a · c+. If e < a− b, then we only execute b+ e units of work out of the a accepted units of
work: we earn (b+ e) · c+ but we pay a penalty of (a− (b+ e)) · c− for the accepted but
not run work. More formally,

rt(b, a) =


∑a−b−1
e=0 qet ·

(
c+ · (b+ e)− c− · (a− b− e)

)
+∑∞a−b qet · c+ · a if a > b

c+ · a otherwise,

which simplifies as

rt(b, a) =
{
c+ · a− (c+ + c−)∑a−b−1

e=0 qet · (a− b− e) if a > b
c+ · a otherwise (6.2)

We will proceed by backward induction, starting at the last decision epoch N − 1,
storing the best outcomes in VN−1 for the previous step. Since there is no bonus for the
energy that could be stored in the batteries at the final decision epoch (i.e. VN = 0), the
value iteration VN−1 at decision epoch N − 1 is fully determined by the reward that is
obtained during period N − 1.

Lemma 1. In the Ideal-Unbounded model, for all b ∈ B,

VN−1(b) = c+ · (αN−1 + b)− (c+ + c−)
αN−1−1∑
e=0

qeN−1 · (αN−1 − e), (6.3)
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where αN−1 is the unique integer that fulfills

P [EN−1 ≤ αN−1] ≤ ρ < P [EN−1 ≤ αN−1 + 1] , where ρ = c+

c+ + c−
. (6.4)

Choosing action a?N−1 = αN−1 + b at the last decision epoch N − 1 is optimal with a
battery b.

Proof. Let b ∈ B; we try to find some a that maximizes rN−1(b, a) by studying how
rN−1(b, a) evolves with a. Based on the definition of the reward function from eq. (6.2),
the following holds

rN−1(b, a+ 1)− rN−1(b, a) = c+ − (c+ + c−) ·
a−b∑
e=0

qeN−1

= c+ − (c+ + c−) · P [EN−1 ≤ a− b]
rN−1(b, a+ 1)− rN−1(b, a) = (c+ + c−) · (ρ− P [EN−1 ≤ a− b]),

where ρ = c+

c++c− . As a function of δ ∈ Z, P [EN−1 ≤ δ] is non-decreasing, P [EN−1 ≤ −1] =
0 and P [EN−1 ≤ δ] δ→∞−−−→ 1, and ρ ∈]0, 1[; therefore there exists a unique αN−1 ∈ N such
that:

P [EN−1 ≤ αN−1] ≤ ρ < P [EN−1 ≤ αN−1 + 1] .

rN−1(b, a) is a non-decreasing function of a on {0, . . . , αN−1 + b}, and non-increasing
on [αN−1 + b,∞[∩N, hence the theorem.

For each of the previous decision epochs, there are several optimal actions that maxi-
mizes the sum of the expected rewards until the end. They are described in the following
lemma.

Lemma 2. In the Ideal-Unbounded model, for all t ∈ {1, . . . , N − 2}, for all b ∈ B,{
Vt(b) = Vt(0) + c+ · b
Vt(0) = Vt+1(0) + c+ · E [Et]

(6.5)

A policy that chooses, for all t ∈ {1, . . . , N − 2}, a?t ∈ {0, . . . , b}, then a?N−1 at decision
epoch N − 1 is optimal.

Proof. We proceed in two steps, by induction. Let (Ht) be the following induction hy-
pothesis: for a given t ≥ 1, for all b ∈ B,

Vt(b) = Vt(0) + c+ · b.

We assume first that there exists t > 1 such that (Ht+1) is verified, and prove that
(Ht) is then true.

We recall that
Qt(b, a) = rt(b, a) +

∑
b′∈B

pt(b′|b, a) · Vt+1(b′).

In order to express the transition probabilities pt(b′|b, a), we rely on the same line of
reasoning that we used to express rt(b, a) in eq. (6.2). If the renewable energy e is such that
b+e ≥ a, then a units of energy are consumed to run the accepted work and there remains
b+e−a energy in the batteries at the beginning of the next decision epoch. Otherwise, the
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whole available energy is consumed (and does not reach a), and the batteries are empty
at the end of the period. In other words,

pt(b′|b, a) =


P [Et = e] if b′ = e+ b− a
P [Et < a− b] if b′ = 0
0 otherwise,

which can be rewritten as

pt(b′|b, a) =


qet if b′ = e+ b− a
a−b−1∑
e=0

qet if b′ = 0 ∧ a− b > 0

0 otherwise.

Copying the reward expression of eq. (6.2) in the expression of Qt(b, a), we obtain

Qt(b, a) =



a−b−1∑
e=0

qet ·
(
Vt+1(0) + c+ · (b+ e)− c− · (a− b− e)

)
+
∞∑
a−b

qet ·
(
Vt+1(b+ e− a) + c+ · a

)
if a > b

∞∑
e=0

qet · Vt+1(b+ e− a) + c+ · a otherwise.

By induction hypothesis,

Qt(b, a) =



a−b−1∑
e=0

qet ·
(
Vt+1(0) + c+ · (b+ e)− c− · (a− b− e)

)
+
∞∑
a−b

qet ·
(
c+ · (b+ e− a) + Vt+1(0) + c+ · a

)
if a > b

∞∑
e=0

qet ·
(
c+ · (b+ e− a) + Vt+1(0)

)
+ c+ · a otherwise.

Since (qet )e∈N represents a probability distribution on N, ∑∞e=0 q
e
t = 1, hence

Qt(b, a) =

 Vt+1(0) + c+ ·
∞∑
e=0

qet · (b+ e)− c− ·
a−b−1∑
e=0

(a− b− e) if a > b

Vt+1(0) + c+ · b+ c+ · E [Et] otherwise

Qt(b, a) =

 Vt+1(0) + c+ · b+ c+ · E [Et]− c− ·
1
2 · (a− b+ 1) · (a− b) if a > b

Vt+1(0) + c+ · b+ c+ · E [Et] otherwise.

We can deduce that for a given b, Qt is constant in a when a ≤ b and is not greater than
this constant when a > b. We have indeed

∀(b, a, a′) ∈ B ×A2 , (a ≤ b) ∧ (a′ ≥ b)⇒ Qt(b, a′) ≤ Qt(b, a), and

∀(b, a, a′) ∈ B ×A2 , (a ≤ b) ∧ (a′ ≤ b)⇒ Qt(b, a′) = Qt(b, a).
For all b ∈ B, Vt(b) is defined as Vt(b) = maxa∈AQt(b, a). According to the two previous

equations, the maximum is attained for any a ≤ b. Especially, Vt(0) = Vt+1(0)+c+ ·E [Et],
which implies that (Ht) is true.
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Instantiating eq. (6.3) of lemma 1 with b = 0 shows that (HN−1) is true, hence (Ht)
is true for any t ∈ {1, . . . , N − 1} by induction.

The previous proof also shows that for any t ∈ {1, . . . , N − 2},

Vt(0) = max
a∈A

Qt(0, a) = Qt(0, 0) = Vt+1(0) + c+ · E [Et] ,

which demonstrates the lemma.

Remark 1. Lemma 2 shows that in this simple problem there exist several optimal policies.
One of them would be not to accept any work, and store the energy until the last moment,
then, at decision epoch N − 1, choosing the right action with the help of lemma 1. This
trivial policy will not be optimal any more in the next Ideal-BatteryBounded, since
energy could be spoiled when the batteries become full.

6.2.2 Bounded Battery and Unbounded Workload

We take one step towards a more realistic model, through Ideal-BatteryBounded,
where we set a maximum capacity to the battery: there exists Bmax ∈ N such that
B = {0, . . . , Bmax}.

In this model, the reward function is the same as in Ideal-Unbounded model, given
in eq. (6.2) while the state transition function is slightly modified. We transition to state
b′ = Bmax, when the renewable energy is not less than Bmax − b+ a (the excess energy is
spoiled):

pt(b′|b, a) =


P [Et = e] if b′ = e+ b− a ∧ b′ ∈ {1, . . . , Bmax − 1}
P [Et < a− b] if b′ = 0
P [Et > Bmax − b+ a] if b′ = Bmax

0 otherwise.

(6.6)

Contrary to the Ideal-Unbounded model, we cannot here exhibit a closed formula
for Vt(b). However, we show in lemma 3 an important property stipulating that Qt(b +
1, a+ 1) = Qt(b, a) + c+, which means that accepting one more unit of work while having
one more unit of energy in the batteries leads to an additional reward of c+. This implies
that the behavior of Qt(b, a) when a ≥ b can be inferred from the behavior of Qt(0, a).
We prepare the final induction proof by demonstrating in lemma 4 a property that will
be useful to show that the optimal action cannot be less than b. We focus then on
a 7→ Qt(0, a), deriving properties (that leads to the existence of a maximum) in lemma 5.
Finally, we compile the results in theorem 1, expressing Vt(b) according to Vt(0) and
ensuring that the properties on the value iteration are preserved by induction.

Lemma 3. For all b ∈ {0, . . . , Bmax − 1} and a ∈ A,

Qt(b+ 1, a+ 1) = Qt(b, a) + c+. (6.7)

Proof. First, from the definition of pt in eq. (6.6) we observe that pt(b′|b + 1, a + 1) =
pt(b′|b, a) since b and a appear only in the form of a− b.
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Similarly, based on eq. (6.2),

rt(b+ 1, a+ 1) =


c+ · (a+ 1)
−(c+ + c−)∑a+1−b−2

e=0 qet · (a+ 1− b− 1− e) if a+ 1 > b+ 1
c+ · (a+ 1) otherwise

= c+ +
{
c+ · a− (c+ + c−)∑a−b−1

e=0 qet · (a− b− e) if a > b
c+ · a otherwise

rt(b+ 1, a+ 1) = c+ + rt(b, a).

Using these properties in eq. (6.1), we show that

Qt(b+ 1, a+ 1) = rt(b+ 1, a+ 1) +
∑
b′∈B

pt(b′|b+ 1, a+ 1)Vt+1(b′)

= c+ + rt(b, a) +
∑
b′∈B

pt(b′|b, a)Vt+1(b′)

Qt(b+ 1, a+ 1) = c+ +Qt(b, a)

Before going further, we can slightly rewrite eq. (6.6) to ease Qt(b, a) expression:

pt(b′|b, a) =



qet if b′ = e+ b− a ∧ b′ ∈ {1, . . . , Bmax}
a−b∑
e=0

qet if b′ = 0 ∧ a− b ≥ 0
∞∑

e=Bmax−b+a+1
qet if b′ = Bmax

0 otherwise.

(6.8)

We first study in the following lemma 4 the behavior of Qt for small actions, i.e. when
the accepted work is not more than the energy stored in the batteries.

Lemma 4. Given t ∈ {1, . . . , N−1}, if Vt+1(b+1)−Vt+1(b) ≤ c+ for all b ∈ {0, . . . , Bmax−
1}, then Qt(b, a) is non-decreasing in a in the interval {0, . . . , b} for all b ∈ B.

Proof. Let t ∈ {1, . . . , N − 2}, b ∈ B and a ∈ {0, . . . , b− 1}.
Since the reward function is the same in both Ideal-BatteryBounded and Ideal-

Unbounded models, we have (cf. second case in eq. (6.2))

Qt(b, a) = c+ · a+
Bmax−(b−a)∑

e=0
qet · Vt+1(b− a+ e) +

∞∑
e=Bmax−(b−a)+1

qet · Vt+1(Bmax), hence

Qt(b, a) = c+ · a+ Vt+1(Bmax) · E [Et] +
Bmax+a−b∑

e=0
qet · (Vt+1(b− a+ e)− Vt+1(Bmax)).

We can then deduce that

Qt(b, a+ 1)−Qt(b, a) = c+ +
Bmax+a−b∑

e=0
qet · (Vt+1(b− a− 1 + e)− Vt+1(b− a+ e)) . (6.9)
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As a consequence,

Qt(b, a+ 1)−Qt(b, a) ≥ c+ +
Bmax+a−b∑

e=0
qet · (−c+)

Qt(b, a+ 1)−Qt(b, a) ≥ 0,

since all qet are positive and sum up to 1. This proves the lemma.

The previous lemma will allow us discarding the small actions (i.e. a ≤ b) when
seeking for optimal actions. Lemma 3 tells that the behavior of Qt(b, a) for bigger actions
is translated from Qt(0, a). That is why we focus on Qt(0, a) and show that after a given
threshold, trying to accept more work keeps degrading the expected future total reward.

Lemma 5. If for all b ∈ {0, . . . , Bmax− 1}, Vt+1(b+ 1)−Vt+1(b) ≤ c+ + c− and if Vt+1 is
non-decreasing, then Qt(0, a) is non-increasing in a when a ≥ αt, where αt is the unique
integer such that:

P [Et ≤ αt] ≤ ρ < P [Et ≤ αt + 1] , where ρ = c+

c+ + c−
.

Proof. Let t ∈ {1, . . . , N − 2} and a ≥ 0. We use the formulae of the reward function
(eq. (6.2), first case) and of the transition probailities in eq. (6.8) to compute Qt(0, a).

Qt(0, a) =
a∑
e=0

qet ·
(
c+ · a− (c− + c+) · (a− e) + Vt+1(0)

)

+
Bmax+a∑
e=a+1

qet ·
(
c+ · a+ Vt+1(e− a)

)
+

∞∑
e=Bmax+a+1

qet ·
(
c+ · a+ Vt+1(Bmax)

)

Qt(0, a) = c+ · a− (c− + c+)
a∑
e=0

qet · (a− e)

+
a∑
e=0

qet · Vt+1(0) +
Bmax+a∑
e=a+1

qet · Vt+1(e− a) +
∞∑

e=Bmax+a+1
qet · Vt+1(Bmax)

Let f and g such that
f(a) =

a∑
e=0

qet · (a− e)

g(a) =
a∑
e=0

qet · Vt+1(0) +
Bmax+a∑
e=a+1

qet · Vt+1(e− a) +
∞∑

e=Bmax+a+1
qet · Vt+1(Bmax)

.

We then have Qt(0, a) = c+ · a− (c− + c+) · f(a) + g(a).
For any function φ, we define ∆φ(a) as ∆φ(a) = φ(a + 1) − φ(a) and ∆aQt(0, a) as

∆aQt(0, a) = Qt(0, a + 1) − Qt(0, a). We show that Qt is non-increasing in a by proving
that ∆aQt(0, a) ≤ 0. On the one hand,

∆f(a) =
a∑
e=0

qet (a+ 1− e− (a− e)) + qet (a+ 1− (a+ 1))

∆f(a) = P [Et ≤ a] .

154



Chapter 6. Datacenter management with uncertain renewable energy production

On the other hand,

∆g(a) = qa+1
t · Vt+1(0)

+
Bmax+a+1∑
e=a+2

qet · Vt+1(e− a− 1)−
Bmax+a∑
e=a+1

qet · Vt+1(e− a)

− qBmax+a+1
t · Vt+1(Bmax).

Then synchronizing the sums

∆g(a) = qa+1
t · Vt+1(0)− qBmax+a+1

t · Vt+1(Bmax)

+
Bmax+a∑
e=a+2

qet · Vt+1(e− a− 1)−
Bmax+a∑
e=a+2

qet · Vt+1(e− a)

+ qB
max+a+1

t · Vt+1(Bmax + a+ 1− a− 1)− qa+1
t · Vt+1(1),

which ends up with

∆g(a) = −
Bmax+a∑
e=a+1

qet ·∆Vt+1(e− a− 1).

Now, coming back to Qt(0, a),

∆aQt(0, a) = c+ − P [Et ≤ a] · (c+ + c−)−
Bmax+a∑
e=a+1

qet ·∆Vt+1(e− a− 1) (6.10)

To prove the lemma, we assume now that for all b ∈ {0, . . . , Bmax − 1}, Vt+1(b +
1) − Vt+1(b) ≤ c+ + c− and Vt+1 is non-decreasing. This implies that all ∆Vt+1(·) are
non-positive, hence

∆aQt(0, a) ≤ c+ − P [Et ≤ a] · (c+ + c−).

We can deduce that as soon as a ≥ αt, P [Et ≤ a] ≥ c+/(c+ + c−), and Qt(0, a) is non-
increasing in a, hence the lemma.

Theorem 1. In the Ideal-BatteryBounded model, the value iteration (resp. the set
of maximizers) at step t for all b ∈ {1, . . . , Bmax} are obtained from the value iteration
(resp. the maximizers) in state 0 such as

∀t ∈ {1, . . . , N − 1},
{
Vt(b) = Vt(0) + b · c+

π∗t (b) ⊇ {a+ b : a ∈ π∗t (0)} .
(6.11a)
(6.11b)

Proof. Let (Ht) be the following induction hypothesis: Vt(b+ 1)− Vt(b) ≤ c+ and Vt+1 is
non-decreasing. We assume that for a given t ∈ {1, . . . , N − 1}, (Ht+1) is true and show
that (Ht) is then true.

First, according to lemma 5, we know that {Qt(0, a) : a ∈ A} has a maximum, and
this maximum occurs when a < αt.

Next, according to lemma 3, we have for all (b, a) ∈ B×A, Qt(b+1, a+1) = c++Qt(b, a),
which implies by induction that Qt(b, a+ b) = b · c+ +Qt(0, a). Therefore

{Qt(b, a+ b) : a ∈ A} =
{
b · c+ +Qt(0, a) : a ∈ A

}
and {Qt(b, a+ b) : a ∈ A} has a maximum.
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On the other side, {Qt(b, a) : a ∈ A ∧ a < b} has a maximum and lemma 4 stipulates
thatQt(b, a) is non-decreasing in a when a ≤ b, hence maxa′∈AQt(b, a′) = maxa∈AQt(b, b+
a), and finally,

max
a∈A

Qt(b, a) = b · c+ + max
a∈A

Qt(0, a).

In other terms, Vt(b) = b · c+ + Vt(0). This implies that Vt(b + 1) − Vt(b) ≤ c+ and Vt is
non-decreasing: (Ht) is true.

Since for all b ∈ B, VN (b) = 0, (HN ) is true, and by induction (Ht) is true for any
t ∈ {1, . . . , N}.

The previous induction shows also that for all t ∈ {1, . . . , N − 1}:
• Vt(b) = Vt(0) + b · c+,
• for all b ∈ B, Qt(b, a) is non-decreasing in a when a ≤ b,
• for all b ∈ B, Qt(b, a) is non-increasing in a when a ≥ b+ αt.
We now examine the set of maximizers that achieve the maximum value iteration.

First, based on lemma 3, the following holds on the relationship between the maximizers
in state b and b+ 1

arg max
a∈N

Qt(b+ 1, a+ 1) = arg max
a∈N

Qt(b, a),

leading by induction to arg maxa∈NQt(b, a+ b) = arg maxa∈NQt(0, a), i.e.

arg max
a∈[b,∞[

Qt(b, a) =
{
a∗ + b : a∗ ∈ arg max

a∈N
Qt(0, a)

}
.

Then at least one of the maximum of Qt(b, a) in a is reached in the interval [b,∞[ as
Qt(b, a) is increasing in a in the interval {0, . . . , b}, therefore

arg max
a∈N

Qt(b, a) ⊇ arg max
a∈[b,∞[

Qt(b, a),

allowing to show that π∗t (b) ⊇ {a+ b : a ∈ π∗t (0)}, since

arg max
a∈N

Qt(b, a) ⊇
{
a∗ + b : a∗ ∈ arg max

a∈N
Qt(0, a)

}
.

Remark 2. Theorem 1 shows in turn that there exists an optimal policy which is mono-
tonic. We can build such a policy by choosing, at each step of the backward induction, the
minimum amount of accepted work that maximizes Qt(0, a) over a ∈ A when the batteries
are empty, and this amount plus b when the batteries contain b units of energy.

6.2.3 Bounded Batteries and Workload

We envision now the Ideal-Bounded model, where the batteries keep a maximum ca-
pacity, and the amount of work that is available during each period is limited: wt ∈ R+.
We stress that the work has to be immediately executed: some work that is proposed but
not accepted at a given decision epoch is lost.

The expressions of all Qt(b, a) remain unchanged but the set of available actions At
at decision epoch t is shrinked to At = {0, . . . , wt}, which translates in the value iteration
formula: Vt(b) = maxa∈{0,...,wt}Qt(b, a). This means that lemmas 3 to 5 are still valid in
the Ideal-Bounded model.
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While following the same pattern of proofs as in the Ideal-BatteryBounded model,
we need to demonstrate other properties, e.g. concavity, on Qt and Vt in order to exhibit
optimal policies. A consequence of adding a constraint on the action set is indeed that the
convenient translation formula Vt(b) = b · c+ + Vt(0) does not hold any more. Instead we
show a weaker but true property: Vt is non-decreasingly concave and its rate of change is
not greater than c+.

The basics of the demonstration are shown in the following lemma.

Lemma 6. If Vt+1(1)− Vt+1(0) ≤ c+ + c− and if Vt+1 is non-decreasingly concave, then
Qt(0, a) is concave in a, and non-increasing when a ≥ αt.

Proof. First of all, lemma 5 shows the variation property (Qt(0, a) non-increasing in a
when a ≥ αt). We are interested here in the concavity property.

We define ∆2
aQt(0, a) = ∆aQt(0, a + 1) −∆aQt(0, a), and for any function φ, ∆2φ(a)

as ∆2φ(a) = ∆φ(a + 1) − ∆φ(a). Let t ∈ {1, . . . , N − 2} and a ≥ 0. According to the
expression of Qt(0, a) written in lemma 5 (Qt(0, a) = c+ · a − (c− + c+) · f(a) + g(a),
where f(a) = ∑a

e=0 q
e
t · (a− e) and g(a) = ∑a

e=0 q
e
t · Vt+1(0) +∑Bmax+a

e=a+1 qet · Vt+1(e− a) +∑∞
e=Bmax+a+1 q

e
t · Vt+1(Bmax)), we have ∆2f(a) = qa+1

t . In addition,

∆2g(a) =
Bmax+a∑
e=a+2

qet · (∆Vt+1(e− a− 2)−∆Vt+1(e− a− 1))

− qBmax+a+1
t ·∆Vt+1(Bmax − 1) + qa+1

t ·∆Vt+1(0).

This leads to

∆2
aQt(0, a) = 0− (c+ + c−) ·∆2f(a) + ∆2g(a)

∆2
aQt(0, a) = qa+1

t ·
(
∆Vt+1(0)− (c+ + c−)

)
− qBmax+a+1

t ·∆Vt+1(Bmax − 1)

+
Bmax+a∑
e=a+2

qet · (∆Vt+1(e− a− 2)−∆Vt+1(e− a− 1)) .

This implies that if ∆Vt+1(0) ≤ c+ + c− and Vt+1 is concave, then Qt(0, a) is concave in
a, hence the lemma.

For large actions, the behavior of Qt(b, a) is translated from the shape of Qt(0, a). We
now show that Qt(b, a) will keep the properties of the previous theorem even for small
actions.

Lemma 7. If Vt+1(1)− Vt+1(0) ≤ c+ + c− and if Vt+1 is non-decreasingly concave, then
for all b ∈ B, Qt(b, a) is concave in a, non-decreasing when a ≤ b and non-increasing when
a ≥ αt.

Proof. We assume that Vt+1(1)−Vt+1(0) ≤ c+ + c− and Vt+1 is non-decreasingly concave.
Lemmas 3 and 6 show that Qt(b, a) is concave in a when a ≥ b, non-decreasing when a ≤ b
and non-increasing when a ≥ αt + b. There remains to prove that

• Qt(b, a) is concave in a when a < b, and
• ∆aQt(b, b − 1) ≥ ∆aQt(b, b) (i.e. the junction point between a < b and a ≥ b does

not break the concavity).
On the one hand, let a ∈ A such that a < b− 1. Equation (6.9) gives that

∆aQt(b, a) = c+ −
a+Bmax−b∑

e=0
qet ·∆Vt+1(b− a− 1 + e),
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leading by differentiating to

∆2
aQt(b, a) = −

a+1+Bmax−b∑
e=0

qet ·∆Vt+1(b− a− 2 + e) +
a+Bmax−b∑

e=0
qet ·∆Vt+1(b− a− 1 + e)

=
a+Bmax−b∑

e=0
qet · (∆Vt+1(b− a− 1 + e)−∆Vt+1(b− a− 2 + e))

− qa+1+Bmax−b
t ·∆Vt+1(Bmax − 1)

∆2
aQt(b, a) = −qa+1+Bmax−b

t ·∆Vt+1(Bmax − 1) +
a+Bmax−b∑

e=0
qet ·∆2Vt+1(b− a− 2 + e)

Since Vt+1 is non-decreasing and concave by hypothesis, Qt(b, a) is concave in a when
a < b.

On the other hand, according to eqs. (6.9) and (6.10), we have{
∆aQt(b, b− 1) = c+ −

∑Bmax−1
e=0 qet ·∆Vt+1(e)

∆aQt(b, b) = ∆aQt(0, 0) = c+ − q0
t · (c+ + c−)−∑Bmax

e=1 qet ·∆Vt+1(e− 1).

Since for all a ≥ b, ∆aQt(b, a) = ∆aQt(0, a− b) (thanks to lemma 3), we have

∆aQt(b, b− 1)−∆aQt(b, b) = ∆aQt(b, b− 1)−∆aQt(0, 0)

∆aQt(b, b− 1)−∆aQt(b, b) = −
Bmax−1∑
e=1

qet ·∆2Vt+1(e− 1)− q0
t ·∆Vt+1(0) + q0

t · (c+ + c−)

+ qB
max

t ·∆Vt+1(Bmax − 1).

Since ∆Vt+1(0) ≤ c++c−, Vt+1 is concave and Vt+1 is non-decreasing, we obtain ∆aQt(b, b−
1) ≥ ∆aQt(b, b).

Theorem 2. In the Ideal-Bounded model, the policy (πt) that fulfills:

• πt(0) = min
(
arg maxa∈{0,...,wt}Qt(0, a)

)
,

• for all b ∈ {1, . . . , Bmax}, and πt(b) = min (πt(0) + b, wt)

is optimal.

Proof. In the same way as in the proof of theorem 1, let (Ht) be the following induction
hypothesis: Vt(b+ 1)− Vt(b) ≤ c+ and Vt+1 is non-decreasingly concave. We assume that
for a given t ∈ {1, . . . , N − 1}, (Ht+1) is true and show that (Ht) is then true.

We call here action any a such that a ∈ A, and qualify this action as valid if a ∈ At,
and recall that the set of valid actions At is such that At = A ∩ [0, wt].

We first look at the situation when the batteries are empty. We denote by m(abs)
the smallest value of a that realizes the absolute maximum of Qt(0, a), that is m(abs) =
min (arg maxa∈NQt(0, a)). This action might not be valid, in case there is not enough
available work. Still according to lemma 5, we know that Qt(0, a) is concave in a, therefore
Qt(0, a) is non-decreasing when a ∈ {0, . . . ,m(abs)}. This implies that the action a?0 =
min(m(abs), wt), which is valid, is an optimal action (i.e. such that Qt(0, a?0) = Vt(0)).

Let b ∈ B. On the one hand, according to lemma 4, Qt(b, a) is non-decreasing in a
when a ∈ {0, . . . , b}. Since lemma 3 shows that Qt(b, a) = Qt(0, a − b) for any a ≥ b, we
deduce that

arg max
a∈N

Qt(b, a) ⊇
{
b+ a′ : a′ ∈ arg max

a∈N
Qt(0, a)

}
,
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which implies that b + m(abs) ∈ arg maxa∈NQt(b, a). On the other hand, we have shown
that Qt(0, a) is non-decreasing in a when a ∈ {0, . . . ,m(abs)}, hence lemma 3 implies that
Qt(b, a) is non-decreasing in a when a ∈ {b, . . . , b+m(abs)}. We then deduce from lemma 4
that Qt(b, a) is non-decreasing in a when a ≤ b+m(abs).

All put together, mb, defined as mb = min
(
m(abs) + b, wt

)
, is valid, and is a maximizer

at decision epoch t when there is b amount of energy in the batteries (i.e. that maximizes
Qt(b, a) over the set of valid actions).

We need now to show that the property on Vt+1, namely non-decreasing concavity, is
preserved on Vt. First, lemma 3 implies that

∀(b, a) ∈ B × N, Qt(b, a) = Qt(Bmax, a+Bmax − b) + (Bmax − b) · c+.

We denote by b(abs) the hypothetical value of batteries for which we hit the workload limit:
b(abs) = wt−m(abs), and we partition B into at most two parts. Let B+ and B− be defined
as: B+ = B∩] −∞, b(abs)] and B− = B ∩ [b(abs),+∞[, such that B = B+ ∪ B−, knowing
that B+ or B− may be empty. From the first part of the proof we deduce that{

mb = m(abs) + b = wt − b(abs) + b if b ∈ B−
mb = wt if b ∈ B+ , hence

Vt(b) =
{
Qt(b, wt − b(abs) + b) if b ∈ B−
Qt(b, wt) if b ∈ B+

Vt(b) =
{
Qt(Bmax, wt − b(abs) +Bmax)− (Bmax − b) · c+ if b ∈ B−
Qt(0, wt − b) + b · c+ if b ∈ B+

We show that Vt is non-decreasingly concave on both B− and B+, and that if Vt spreads
over the two sets, i.e. |B+| > 1 and |B−| > 1 then ∆Vt(b(abs) − 1) ≤ ∆Vt(b(abs)).

First, if (b, b+ 1) ∈ (B−)2, then

∆Vt(b) = Qt(Bmax, wt − b(abs) +Bmax)− (Bmax − b− 1) · c+

−Qt(Bmax, wt − b(abs) +Bmax) + (Bmax − b) · c+

∆Vt(b) = c+,

which shows that Vt is increasingly concave on B−, and for all b ∈ B−, ∆Vt(b) ≤ c+.
Then, if (b, b+ 1) ∈

(
B+)2,

∆Vt(b) = Qt(0, wt − b− 1) + (b+ 1) · c+ −Qt(0, wt − b)− b · c+

∆Vt(b) = −∆aQt(0, wt − b− 1) + c+.

According to eqs. (6.9) and (6.10), for all a ∈ N, ∆aQt(0, a) ≤ c+, thus Vt is non-
decreasing on B+. Moreover, by definition of m(abs), Qt(0, a) is non-decreasing in a when
a ∈ {0, . . . ,m(abs)}. Yet wt − b ≤ wt − b(abs) ≤ m(abs), hence ∆aQt(0, wt − b− 1) ≥ 0, and
Vt is non-decreasing on B+. In addition, if b + 2 ∈ B+, ∆2Vt(b) = ∆2

aQt(0, wt − b − 2),
thus Vt is concave on B+.

Finally, if both sides of b(abs) are in the set of valid batteries, i.e. b(abs) + 1 ∈ B+ and
b(abs) − 1 ∈ B−,

∆Vt(b(abs) − 1)−∆Vt(b(abs)) = c+ − (−∆aQt(0, wt − b(abs) − 1) + c+)
∆Vt(b(abs) − 1)−∆Vt(b(abs)) = ∆aQt(0,m(abs) − 1).
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This leads to ∆Vt(b(abs) − 1)−∆Vt(b(abs)) ≥ 0 since Qt(0, a) is non-decreasing in a when
a ∈ {0, . . . ,m(abs)}.

All put together, Vt is non-decreasingly concave and for all b ∈ {0, . . . , Bmax − 1},
∆Vt(b) ≤ c+, and (Ht) is true.

Since (HN ) is true, (Ht) is true for all t ∈ {1, . . . , N}, hence the theorem.

Remark 3. One can observe that the optimal actions are always in the domain of the
large actions (i.e. a ≥ b). An optimal policy would then be developed as follows: at each
decision epoch, accept as much work as you need to empty the batteries (and as you can,
since at most wt work is available), plus a small amount of work according to the renewable
energy production. This is partly due to the ideal efficiency of the batteries: there is no
energy loss when the renewable energy transits through the batteries, hence they can be used
without moderation. This artefact will disappear in the next section, where the batteries
have imperfect efficiency.

6.3 Non-ideal batteries

6.3.1 Unbounded batteries and workload

Roadmap

As usual, we find an optimal policy and the optimal expectation of the sum of the rewards
over all time periods by induction.

In the same line of reasoning as in the previous part, we consider decision epoch t and
split the behavior of the MDP into two parts depending on the value of the accepted work
a compared to the current state of charge of the batteries b, and we start by expressing
Qt(b, a) in section 6.3.1 as well as all its useful differentiations in section 6.3.1.

We decompose the final theorem 3 into several lemmas, which all assume that the
induction hypothesis (that is composed of several properties on Vt+1, V ′t+1 and V ′′t+1) is
fulfilled.

First, we study the impact of the induction hypothesis on Qt, and show where the
extrema along a can be found. In lemmas 8 to 10 we show that for all b ∈ B, Qt(b, a)
is concave in a and that the extrema along a can be found where the differentiate of Qt
according to a is null.

In lemma 11, for all b ∈ B we exhibit an action m(b) among the optimal actions, and
show in lemma 12 that variations around a given b cannot change drastically their images
by m.

As a consequence, we show that we can differentiate Vt twice, harmlessly, and express
it and its differentiates in lemmas 13 and 14.

Finally, Lemmas 15 to 17 prove that the properties on the value iteration and its
differentiates (the most important of them being the bounds on the first differentiate of
the value iteration and the concavity of Vt) passes from Vt+1 to Vt through Qt.

In order not to congest the reasoning with lines of differentiation/integration, we move
part of computations details and secondary proofs to chapter A.

Expression of Qt(b, a)

As in the ideal batteries model, Qt(b, a) follows distinct behaviors depending on the po-
sition of a relatively to b, since we cannot lack of energy for the current time period if
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b ≥ a.
Still, we have to ensure that we can integrate and differentiate easily and assume

coarse-grain hypotheses on the integrability and differentiability of Vt+1: we assume in
this section that Vt+1 is continuous and recall that for all e ∈ [Emax,∞[, qt(e) = 0.

Case a ≥ b The current reward is transformed into the continuous space. For all (b, a) ∈
B ×A, e 7→ qt(e) · (a− b− e) is integrable on ]0, a− b[ and

rt(b, a) = a · c+ −
∫ a−b

0
qt(e) · (a− b− e) · (c+ + c−)de.

We integrate by part, integrating e 7→ qt(e) and differentiating e 7→ (a− b− e),

rt(b, a) = a · c+ − (c+ + c−) ·
(

[Ft(e) · (a− b− e)]a−b0 +
∫ a−b

0
Ft(e)de

)

rt(b, a) = a · c+ − (c+ + c−)
∫ a−b

0
Ft(e)de.

We prepare already the continuation by changing variables, with e← e/(a−b). We indeed
want to integrate between constant bounds (according to a and b), in order to be able to
differentiate along a or b without trouble.

rt(b, a) = a · c+ − (c+ + c−) · (a− b) ·
∫ 1

0
Ft((a− b)e)de

The contribution of all future steps in Qt, which is dispatched in Vt+1, is partitioned
into three parts, such as:

Qt(b, a) = rt(b, a) +Qt,1(b, a) +Qt,2(b, a) +Qt,3(b, a)

.
These partitions allows to isolate different behaviors, which depends on the renewable

energy production compared to the taken action a and the state of charge b. We assume
first that the whole accepted work can be executed thanks to renewable energy, and denote
by Qt,1(b, a) this contribution to the current step. As the batteries may not be ideal, the
best option is not to use the energy stored in the batteries, to execute the work with
renewable energy sources only, and to store the excess energy in the batteries. From e
units of energy produced by renewable energy sources, a units go for the execution of
the accepted work, and only η · (e − a) units of energy are stored in the batteries due to
imperfect efficiency.

Vt+1 and qt are continuous on [0,∞[ and for all e > Emax, qt(e) ·Vt+1(b+η(e−a)) = 0,
hence e 7→ qt(e) · Vt+1(b+ η(e− a)) is integrable on ]a,∞[ and

Qt,1(b, a) =
∫ ∞
a

qt(e) · Vt+1(b+ η(e− a))de.

By changing variables e← e− a,

Qt,1(b, a) =
∫ ∞

0
qt(a+ e) · Vt+1(b+ ηe)de.

We assume now that the renewable energy production and the energy from the batteries
are not enough to execute the accepted work: this happens when the renewable energy

161



6.3. Non-ideal batteries

production is less than a − b. At the next decision epoch, the batteries are then empty
and the contribution to the current step is expressed as

Qt,2(b, a) =
∫ a−b

0
qt(e) · Vt+1(0)de = Vt+1(0) · Ft(a− b).

We assume finally that the total available energy is enough to execute the whole
accepted work, but the renewable production is not: the battery needs to be at least
partially discharged. Again e 7→ qt(e) · Vt+1(b− (a− e)) is integrable on ]a− b, a[, and

Qt,3(b, a) =
∫ a

a−b
qt(e) · Vt+1(b− (a− e))de

We change variables with e← (a−e)/b in order to have constant bounds for the integration
and obtain

Qt,3(b, a) = b ·
∫ 1

0
qt(a− be) · Vt+1(b(1− e))de

All put together,

Qt(b, a) = a · c+ − (c+ + c−) · (a− b) ·
∫ 1

0
Ft((a− b)e)de+ Vt+1(0) · Ft(a− b)

+
∫ ∞

0
qt(a+ e) · Vt+1(b+ ηe)de+ b ·

∫ 1

0
qt(a− be) · Vt+1(b(1− e))de (6.12)

Case a ≤ b We are sure that there is enough energy stored in the batteries so that
the accepted work can be executed during the current time period. The reward is then
rt(b, a) = a · c+. Similarly to the previous case, we partition the contribution of all future
rewards into Qt,4 and Qt,5, depending if there is enough renewable energy production to
handle the accepted work or not. In the first case, the contribution is

Qt,4(b, a) =
∫ ∞
a

qt(e) · Vt+1(b+ η(e− a))de =
∫ ∞

0
qt(a+ e) · Vt+1(b+ ηe)de,

after changing the variable with e← e− a.
For the lowest energy production, we have

Qt,5(b, a) =
∫ a

0
qt(e) · Vt+1(b− (a− e))de = a

∫ 1

0
qt(ae) · Vt+1(b− a(1− e))de,

by changing the variable e← e/a. Hence

Qt(b, a) = a · c+ +
∫ ∞

0
qt(a+ e) · Vt+1(b+ ηe)de+ a

∫ 1

0
qt(ae) · Vt+1(b− a(1− e))de.

Differentiations

We are about to differentiate under the integral, hence we need some differentiation prop-
erties on qt and Vt+1. By hypothesis, qt is of class C1 and for all e ∈ [Emax,∞[, qt(e) = 0.
We assume in addition that Vt+1 is of class C2 and V ′t+1 is bounded (we will see later on
that these properties on the value iteration can be passed from t+ 1 to t in the induction
proof of theorem 3).
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Case a ≥ b We compute now the first order differentiates of Qt(b, a), starting with
∂Qt

∂b (b, a). We show that Qt can be partially differentiated and that this partial differenti-
ates are continuous, which demonstrates that Qt is differentiable.

We inspect first rt(b, a) = a · c+− (c+ + c−) · (a− b) ·
∫ 1

0 Ft((a− b)e)de. To simplify the
later equations, we define a function f which gives the appropriate value of Ft for a given
set of battery state, action and renewable production. Let for all (b, a, e) ∈ B × A × E ,
f(b, a, e) = Ft((a − b)e). On the one hand, for all (b, a), the function e 7→ f(b, a, e) is
differentiable on E = [0,∞[ and its differentiate along b is ∂f

∂b (b, a, e) = −e · qt((a − b)e).
We know that for all e ∈ [Emax,∞[, qt(e) = 0. Let φ : [0,∞[→ R such that

φ(e) =
{

maxe∈[0,Emax] qt(e) if e < Emax

0 otherwise (6.13)

For all (b, a, e) ∈ B × A × [0, 1],
∣∣∣∂f∂b (b, a, e)

∣∣∣ ≤ φ(e). Since φ is integrable on [0, 1], this
implies that we can derive under the integral. rt is differentiable along b, its differentiate
is continuous, and

∂rt
∂b

(b, a) = (c+ + c−)
∫ 1

0
Ft((a− b)e)de− (c+ + c−) · (a− b) ·

∫ 1

0
(−e)qt((a− b)e)de.

We integrate by part the second integral, differentiating e 7→ e and integrating e 7→
(a− b) · qt((a− b)e).

∂rt
∂b (b, a)

(c+ + c−) =
∫ 1

0
Ft((a− b)e)de+ [eFt((a− b)e)]10 −

∫ 1

0
Ft((a− b)e)de = Ft(a− b)

We show that we can differentiate under the integral in the expression of Qt,1(b, a). The
differentiate domination comes in a similar way: by definition of φ in eq. (6.13), we have
for all a ∈ A, qt(a+ e) ≤ φ(e). We know indeed that either a+ e > Emax and qt(a+ e) =
0 ≤ φ(e), or a+e ≤ Emax (hence e < Emax) and qt(a+e) ≤

(
maxe′∈[0,Emax] qt(e′)

)
= φ(e).

Since by hypothesis there exists K such that for all b ∈ B,
∣∣V ′t+1(b)

∣∣ ≤ K, we have that for
all (b, a, e) ∈ B×A× [0,∞[,

∣∣qt(a+ e) · V ′t+1(b+ ηe)
∣∣ ≤ K ·φ(e). e 7→ K ·φ(e) is integrable

on [0,∞[ and (b, a, e) 7→ qt(a + e) · Vt+1(b + ηe) is of class C1, hence Qt,1 is differentiable
along b, its partial differentiate is continuous and

∂Qt,1
∂b

(b, a) =
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

Straightforwardly,

∂Qt,2
∂b

(b, a) = −Vt+1(0) · qt(a− b)

We do not repeat the reasoning, but we claim that under our hypotheses we can
differentiate all previously exposed pieces of Qt under the integral, twice, and obtain
continuous first and second order partial differentiates.

∂Qt
∂b

(b, a) = (c+ + c−) · Ft(a− b) +
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

+ b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de (6.14)
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With the same kind of techniques, we can obtain the first and second order partial differ-
entiates along a

∂Qt
∂a

(b, a) = c+ − (c+ + c−) · Ft(a− b)

− η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de− b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de (6.15)

∂2Qt
∂a2 (b, a) =

(
V ′t (0)− (c+ + c−)

)
· qt(a− b)− (1− η) · qt(a) · V ′t+1(b) (6.16)

+ η2
∫ ∞

0
qt(a+ e) · V ′′t+1(b+ ηe)de+ b

∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de

(6.17)

Case a ≤ b The differentiates of Qt for small actions are simpler cases, whose formulae
are given in the following:

∂Qt
∂a

(b, a) = c+ − η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de− a

∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

(6.18)

∂2Qt
∂a2 (b, a) = η2

∫ ∞
0

qt(a+ e) · V ′′t+1(b+ ηe)de+ a

∫ 1

0
qt(ae) · V ′′t+1(b− a(1− e))de (6.19)

∂Qt
∂b

(b, a) =
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de+ a

∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de (6.20)

The other less primordial second order differentiates can be found in section A.1.1.

Properties

We define (Ht+1) the induction hypothesis such that

• Vt+1 is of class C2 and non-decreasingly concave

• For all b ∈ B, V ′t+1(b) < min(c+/η, c+ + c−)

We notice first that if (Ht+1) is true, then the hypotheses of the two previous sections
(where we compute Qt and its differentiates) are fulfilled, thus the expressions of Qt are
valid, Qt is of class C2 and all its partial differentiates formulae are valid.

Lemma 8. If (Ht+1) is true, then for all b ∈ B, a 7→ Qt(b, a) is concave.

Proof. If (Ht+1) is true, then V ′t+1 ≥ 0 and V ′′t+1 ≤ 0, hence for all (b, a) ∈ B × A,
∂2Qt

∂a2 (b, a) ≤ 0 as a sum of non-positive terms.

Lemma 9. If (Ht+1) is true, then for all b ∈ B, ∂Qt

∂a (b, 0) > 0.
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Proof. For all b ∈ B,

∂Qt
∂a

(b, 0) = c+ − η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

> c+ − η · c
+

η

∫ ∞
0

qt(a+ e)de

> c+ − η · c
+

η

∂Qt
∂a

(b, 0) > 0

Lemma 10. If (Ht+1) is true, then for all b ∈ B, there exists an ∈ A such that ∂Qt

∂a (b, an) <
0.

Proof. If (Ht+1) is true, then for all (b, a) ∈ B ×A,

∂Qt
∂a

(b, a) ≤ c+ − (c+ + c−) · Ft(a− b).

The lemma comes then from the fact that Ft(a− b) −−−→
a→∞

1.

Lemma 11. If (Ht+1) is true, let the function m : B → A defined for any b ∈ B as

m(b) = inf A?b , where A?b =
{
a ∈ A : ∂Qt

∂a
(b, a) = 0

}
.

For any b ∈ B, m(b) is a maximizer at decision epoch t if there is b energy in the batteries.

Vt(b) = Qt(b,m(b))

Proof. According to lemmas 8 and 9, for any b ∈ B, Qt(b, a) = maxa′∈A(Qt(b, a′)) if and
only if ∂Qt

∂a (b, a) = 0. Since a 7→ Qt(b, a) is concave, A?b is an interval, and as ∂Qt

∂a is
continuous, this interval is closed. As a result, inf A?b ∈ A?b , hence the lemma.

Lemma 12. If (Ht+1) is true, the function m is of bounded variation, and

∀(b, b′) ∈ B2,
|m(b)−m(b′)|
|b− b′|

≤ η

Proof. Let b ∈ B and h ∈ R+. In order to study the variations of m, we examine where is
m(b+ ηh) compared to m(b) and m(b) + h. If m(b+ ηh) belongs to [m(b),m(b) + h], we
will have proven the lemma. More precisely, we show two propositions: under a state of
charge of b+ ηh, (i) there exists an optimal action belonging to [m(b),m(b) + h], and (ii)
m(b+ ηh) is indeed within the same interval.

On the one hand, we have that

∂Qt
∂a

(b+ ηh,m(b) + h) = ∂Qt
∂a

(b+ ηh,m(b) + h)− ∂Qt
∂a

(b,m(b)),
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since by definition of m(b), we have ∂Qt

∂a (b,m(b)) = 0. In section A.1.2, we show that

∂Qt
∂a

(b+ ηh, a+ h)− ∂Qt
∂a

(b, a)

=−
∫ a−b+(1−η)h

a−b
qt(e)

(
(c+ + c−)− V ′t+1(b+ e− a)

)
de

−
∫ a+h

a
qt(e) ·

(
V ′t+1(b+ e− a− (1− η)h)− ηV ′t+1(b+ η(e− a))

)
de

−
∫ a

a−b+(1−η)h
qt(e) ·

(
V ′t+1(b+ e− a− (1− η)h)− V ′t+1(b+ e− a)

)
de.

Primo, for all b′ ∈ B, V ′t+1(b′) ≤ c+ + c−. Secundo, as V ′t+1 is non-increasing, for all
e ∈ [a, a+h], b+ e−a− (1− η)h ≤ b+ η(e−a), thus V ′t+1(b+ e−a− (1− η)h) ≥ V ′t+1(b+
η(e−a)) ≥ ηV ′t+1(b+η(e−a)). Tertio, for the same reason, for all e ∈ [a− b+ (1−η)h, a],
b + e − a − (1 − η)h ≤ b + e − a, hence V ′t+1(b + e − a − (1 − η)h) − V ′t+1(b + e − a). All
put together, we obtain

∂Qt
∂a

(b+ ηh, a+ h) ≤ ∂Qt
∂a

(b, a), therefore ∂Qt
∂a

(b+ ηh,m(b) + h) ≤ 0.

On the other hand, we have seen that for all (b, a) ∈ B × A, ∂2Qt

∂b∂a (b, a) ≥ 0, which
means that

∂Qt
∂a

(b+ ηh,m(b)) ≥ ∂Qt
∂a

(b,m(b)) = 0

Altogether, we have on the left side ∂Qt

∂a (b + ηh,m(b) + h) ≤ 0, and on the right side
∂Qt

∂a (b + ηh,m(b)) ≥ 0. We prove now that m(b + ηh) cannot be less than m(b) or more
than m(b) + h.

Since Qt(b + ηh, a) is concave in a, this implies that for any h ∈ R+, there exists
ah ∈ [m(b),m(b) +h] such that ∂Qt

∂a (b+ηh, ah) = 0. In other words, for any b′ ∈ [b,∞[×B,
there exists a′ ∈ [m(b),m(b)+η−1(b′−b)] such that ∂Qt

∂a (b′, a′) = 0. By definition of m(b′),
which is the smallest action where the first order partial differentiate along a is null, this
implies that m(b′) ≤ a′ ≤ m(b) + η−1(b′ − b).

For any b′ ∈ [b,∞[×B, could there exist a ∈ A such that a < m(b) and ∂Qt

∂a (b′, a) = 0?
By definition of m(b) and because Qt(b, a) is concave in a, for all a ∈ A, if a < m(b), then
∂Qt

∂a (b, a) > 0. Since ∂Qt

∂a (b, a) is non-decreasing in b, this implies that for all (b′, a) ∈ B×A,
∂Qt

∂a (b, a) > 0 if a < m(b) and b′ > b. This proves that for all b′ ∈ B, if b′ > b then
m(b′) ≥ m(b).

All put together, we have shown that

∀(b, b′) ∈ B2, b′ > b⇒ m(b) ≤ m(b′) ≤ m(b) + η−1(b′ − b).

In other terms,
∀(b, b′) ∈ B2, b′ > b⇒ 0 ≤ m(b′)−m(b)

b′ − b
≤ η−1.

We use similar arguments when b′ < b to obtain the lemma.

Remark 4. We just have shown that

∀(b, a, h) ∈ B ×A× R+,
∂Qt
∂a

(b+ ηh, a+ h) ≤ ∂Qt
∂a

(b, a). (6.21)
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This property gives insight about the geometry of the problem when there are several optimal
action for a given b. The non-uniqueness of optimal actions translates into the existence
of b ∈ B and of a non-singleton interval I ⊂ A such that for all a ∈ I, ∂Qt

∂a (b, a) = 0. We
show in section A.1.3 that there exists then a subset of B × A containing {b} × I with a
non-null area where any action is optimal.

Lemma 13. If (Ht+1) is true then Vt is differentiable and

V ′t (b) = ∂Qt
∂b

(b,m(b)). (6.22)

Proof. Let ε ∈ R+
? and let b ∈ B. We want to show that there exists r ∈ R+

? such that

∀b′ ∈ B, |b− b′| < r ⇒
∣∣∣∣Qt(b,m(b))−Qt(b′,m(b′))

b− b′
− ∂Qt

∂b
(b,m(b))

∣∣∣∣ < ε.

We can first apply the decomposition that will drive the proof. We observe that for
all b′ ∈ B2,∣∣∣∣Qt(b,m(b))−Qt(b′,m(b′))

b− b′
− ∂Qt

∂b
(b,m(b))

∣∣∣∣
<

∣∣∣∣Qt(b,m(b))−Qt(b′,m(b))
b− b′

+ Qt(b′,m(b))−Qt(b′,m(b′))
b− b′

− ∂Qt
∂b

(b,m(b))
∣∣∣∣

<

∣∣∣∣Qt(b,m(b))−Qt(b′,m(b))
b− b′

− ∂Qt
∂b

(b,m(b))
∣∣∣∣+ ∣∣∣∣Qt(b′,m(b))−Qt(b′,m(b′))

b− b′

∣∣∣∣
<

∣∣∣∣Qt(b,m(b))−Qt(b′,m(b))
b− b′

− ∂Qt
∂b

(b,m(b))
∣∣∣∣

+
∣∣∣∣Qt(b′,m(b))−Qt(b′,m(b′))

m(b)−m(b′)

∣∣∣∣× ∣∣∣∣m(b)−m(b′)
b− b′

∣∣∣∣ .
Qt is differentiable, hence for all (b′, a) ∈ B ×A there exists r1 such that

∀a′ ∈ A, |a− a′| < r1 ⇒
∣∣∣∣Qt(b′, a)−Qt(b′, a′)

a− a′
− ∂Qt

∂a
(b′, a)

∣∣∣∣ < ηε

2 .

Especially, for all b′ ∈ B,

∀a′ ∈ A, |m(b′)− a′| < r1 ⇒
∣∣∣∣Qt(b′,m(b′))−Qt(b′, a′)

m(b′)− a′ − ∂Qt
∂a

(b′,m(b′))
∣∣∣∣ < ηε

2

⇒
∣∣∣∣Qt(b′,m(b′))−Qt(b′, a′)

m(b′)− a′
∣∣∣∣ < ηε

2 ,

as ∂Qt

∂a (b′,m(b′)) = 0, by definition of the maximizer m. According to lemma 12,

∀(b1, b2) ∈ B2,
|m(b1)−m(b2)|
|b1 − b2|

≤ η−1,

which leads to

∀(b1, b2) ∈ B2, |b1 − b2| < η · r1 ⇒ |m(b1)−m(b2)|
η · r1

<
|m(b1)−m(b2)|
|b1 − b2|

≤ η−1

⇒ |m(b1)−m(b2)| < r1.
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Altogether,

∀b′ ∈ B, |b− b′| < η · r1 ⇒
∣∣m(b)−m(b′)

∣∣ < r1

⇒
∣∣∣∣Qt(b′,m(b′))−Qt(b′,m(b))

m(b′)−m(b)

∣∣∣∣ < ηε

2 .

Lastly, Qt is differentiable, hence for all a ∈ B there exists r2 such that

∀b′ ∈ B, |b− b′| < r2 ⇒
∣∣∣∣Qt(b′, a)−Qt(b, a)

b− b′
− ∂Qt

∂b
(b, a)

∣∣∣∣ < ε

2 ,

and in particular,

∀b′ ∈ B, |b− b′| < r2 ⇒
∣∣∣∣Qt(b′,m(b))−Qt(b,m(b))

b− b′
− ∂Qt

∂b
(b,m(b))

∣∣∣∣ < ε

2 .

Finally, for all b′ ∈ B,

|b− b′| < min(ηr1, r2)⇒
∣∣∣∣Qt(b,m(b))−Qt(b′,m(b′))

b− b′
− ∂Qt

∂b
(b,m(b))

∣∣∣∣ < ε

2 + ηε

2 × η
−1

⇒
∣∣∣∣Qt(b,m(b))−Qt(b′,m(b′))

b− b′
− ∂Qt

∂b
(b,m(b))

∣∣∣∣ < ε.

This holds for any ε ∈ R+
? , and for any b ∈ B, hence Vt is differentiable in any point of

B, and
∀b ∈ B, V ′t (b) = ∂Qt

∂b
(b,m(b))

Lemma 14. If (Ht+1) is true then Vt is of class C2 and, for all b ∈ B,

• if ∂2Qt

∂a2 (b,m(b)) 6= 0 then m is differentiable in b and

V ′′t (b) = ∂2Qt
∂b2 (b,m(b)) +m′(b) · ∂

2Qt
∂b∂a

(b,m(b)) (6.23)

• if ∂2Qt

∂a2 (b,m(b)) = 0 then

V ′′t (b) = ∂2Qt
∂b2 (b,m(b)) (6.24)

Proof. We first prove that V ′t is differentiable. Let b ∈ B. We show that either ∂2Qt

∂a2 (b,m(b)) 6=
0 and we can apply the implicit function theorem to prove that m ∈ C1 and differentiate
V ′t without trouble; or ∂2Qt

∂a2 (b,m(b)) = 0 and we can show that V ′t is differentiable and
compute V ′′t in the same way as in lemma 13.

We assume first that ∂2Qt

∂a2 (b,m(b)) 6= 0. Since ∂2Qt

∂a2 is continuous, there exists an open
neighborhood U of (b,m(b)) such that for all (b, a) ∈ U , ∂2Qt

∂a2 (b, a) 6= 0. In addition, by
definition, ∂Qt

∂a (b,m(b)) = 0, and ∂Qt

∂a ∈ C
1. According to the implicit function theorem,

there exists a neighborhood W of b, a neighborhood U ′ ⊆ U of (b,m(b)) and a function
ψ : B → A such that ψ ∈ C1 and for all (b′, a′) ∈ B ×A

(b′, a′) ∈ U ′ ∧ ∂Qt
∂a

(b′, a′) = 0 ⇔ b′ ∈W ∧ a′ = ψ(b′).

168



Chapter 6. Datacenter management with uncertain renewable energy production

But for all (b′, a′) ∈ U ′, we know that ∂2Qt

∂a2 (b,m(b)) 6= 0, which implies that m(b′) is
the unique solution of ∂Qt

∂a (b′, a) = 0. In other words, for all (b′, a′) ∈ B×A, ψ(b′) = m(b′).
Therefore m is in C1 within an open neighborhood of b.

We can then apply the classical differentiation formula and obtain

V ′′t (b) = ∂2Qt
∂b2 (b,m(b)) +m′(b) · ∂

2Qt
∂a∂b

(b,m(b)).

The implicit function theorem also stipulates that

m′(b) = −
∂2Qt

∂a∂b (b,m(b))
∂2Qt

∂a2 (b,m(b))
.

We assume now that ∂2Qt

∂a2 (b,m(b)) = 0. We notice first in eqs. (6.16) and (6.19) that,
since all sumed terms in ∂2Qt

∂a2 (b,m(b)) are non-positive terms, all these terms are null,
hence ∂2Qt

∂b∂a (b,m(b)) = 0. We first split the initial expression to exhibit the direction of the
proof:∣∣∣∣∣∣

Qt(b,m(b))−Qt(b′,m(b′))
b−b′ − ∂Qt

∂b (b,m(b))
b− b′

− ∂2Qt
∂b2 (b,m(b))

∣∣∣∣∣∣
<

∣∣∣∣∣∣
Qt(b,m(b))−Qt(b′,m(b))+Qt(b′,m(b))−Qt(b′,m(b′))

b−b′ − ∂Qt

∂b (b,m(b))
b− b′

− ∂2Qt
∂b2 (b,m(b))

∣∣∣∣∣∣
<

∣∣∣∣∣∣
Qt(b,m(b))−Qt(b′,m(b))

b−b′ − ∂Qt

∂b (b,m(b))
b− b′

− ∂2Qt
∂b2 (b,m(b))

∣∣∣∣∣∣+
∣∣∣∣Qt(b′,m(b))−Qt(b′,m(b′))

(b− b′)2

∣∣∣∣
<

∣∣∣∣∣∣
Qt(b,m(b))−Qt(b′,m(b))

b−b′ − ∂Qt

∂b (b,m(b))
b− b′

− ∂2Qt
∂b2 (b,m(b))

∣∣∣∣∣∣
+
∣∣∣∣∣Qt(b′,m(b))−Qt(b′,m(b′))

(m(b)−m(b′))2

(
m(b)−m(b′)

b− b′
)2∣∣∣∣∣ .

We show in section A.1.4 that there exists r ∈ R+
? such that for all b′ ∈ B,

|b− b′| < r ⇒

∣∣∣∣∣∣
Qt(b,m(b))−Qt(b′,m(b′))

b−b′ − ∂Qt

∂b (b,m(b))
b− b′

− ∂2Qt
∂b2 (b,m(b))

∣∣∣∣∣∣ < ε.

We prove in a similar way that V ′′t is continuous. Let b ∈ B. If ∂2Qt

∂a2 (b,m(b)) 6= 0,
there exists a neighborhood around (b,m(b)) where ∂2Qt

∂a2 (b,m(b)) 6= 0, i.e. where V ′′t (b) =
∂2Qt

∂b2 (b,m(b)) + m′(b) · ∂2Qt

∂a∂b (b,m(b)). All functions are continuous around b or around
(b,m(b)), hence V ′′t is continuous in b.

If ∂2Qt

∂a2 (b,m(b)) = 0, V ′′t (b) = ∂2Qt

∂b2 (b,m(b)). We can find a neighborhood of b such that
for all point b′ in this neighborhood, ∂2Qt

∂a2 (b′,m(b′)) is as close as we want to ∂2Qt

∂b2 (b,m(b)),
hence all V ′′t (b′) such that ∂2Qt

∂a2 (b′,m(b′)) = 0 are as close as we want to V ′′t (b). Moreover,
we can also find a neighborhood of b such that for all point b′ in this neighborhood,
∂2Qt

∂a∂b (b′,m(b′)) is as close as we want to ∂2Qt

∂a2 (b)b,m(b) which is null since ∂2Qt

∂a2 (b,m(b)) = 0.
Since m is of bounded variations, it implies that we can find a neighborhood of b such
that for all point b′ in this neighborhood, all V ′′t (b′) such that ∂2Qt

∂a2 (b′,m(b′)) 6= 0 are as
close as we want to V ′′t (b). Altogether, V ′′t is continuous in b.
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Lemma 15. If (Ht+1) is true, then Vt is concave.

Proof. We show that for all b0 ∈ B, V ′′t (b0) ≤ 0. If ∂2Qt

∂a2 (b0,m(b0)) = 0, then V ′′t (b) =
∂2Qt

∂b2 (b0,m(b0)) ≤ 0, since V ′t+1(0) < c+ + c− and V ′′t+1 is concave.
If ∂2Qt

∂a2 (b0,m(b0)) 6= 0, then V ′′t (b0) = ∂2Qt

∂b2 (b0,m(b0)) + m′(b0)∂2Qt

∂b∂a (b0,m(b0)). This
expression alone is not enough to conclude: we show in section A.1.5 how to overcome
this issue by deriving

V ′′t (b0) = −(1− η) · qt(a) · V ′t+1(b0) ·m′(b0)

+ (1− η)(1− η ·m′(b0)) ·
∫ ∞

0
qt(a+ e) · V ′′t+1(b0 + ηe)de

Since Vt+1 is non-decreasingly concave (by the induction hypothesis (Ht+1)), η ≤ 1
(by hypothesis), and m′(b0) ∈ [0, η−1] (thanks to lemma 12), we have V ′′t (b0) ≤ 0, hence
the lemma.

Lemma 16. If (Ht+1) is true then for all b ∈ B, V ′t (b) < c+η−1.
Proof. We prove that V ′t (0) < c+η−1, which shows by concavity of Vt (proved in lemma 15)
that for all b ∈ B, V ′t (b) < c+η−1.

By definition of m(0), ∂Qt

∂a (0,m(0)) = 0. As a consequence,

(c+ + c−) · Ft(m(0)) = c+ − η
∫ ∞

0
qt(m(0) + e) · V ′t+1(ηe)de, hence

V ′t (0) = ∂Qt
∂b

(0,m(0))

= (c+ + c−) · Ft(m(0)) +
∫ ∞

0
qt(m(0) + e) · V ′t+1(b+ ηe)de

V ′t (0) = c+ + (1− η)
∫ ∞

0
qt(m(0) + e) · V ′t+1(b+ ηe)de.

By hypothesis, for all b ∈ B, V ′t+1(b) < c+η−1, thus

V ′t (0) < c+ + (1− η)c
+

η

∫ ∞
0

qt(m(0) + e)de

< c+ + (1− η) · c+

η

V ′t (0) < c+

η
.

Lemma 17. If (Ht+1) is true then for all b ∈ B, V ′t (b) < c+ + c−.
Proof. We show that V ′t (0) < c++c−. Since by hypothesis, for all b ∈ B, V ′t+1(b) < c++c−,
and thanks to lemma 13,

V ′t (0) = ∂Qt
∂b

(0,m(0))

= (c+ + c−) · Ft(m(0)) +
∫ ∞
m(0)

qt(e) · V ′t+1(b+ η(e−m(0)))de

< (c+ + c−) ·
∫ m(0)

0
qt(e)de+ (c+ + c−) ·

∫ ∞
m(0)

qt(e)de

V ′t (0) < c+ + c−.
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We gather all lemmas into the following main theorem.

Theorem 3. In the Imperfect-Unbounded model, the policy (πt)t∈{1,...,N−1} that fulfills
πt(b) = inf A?b , where

A?b =
{
a ≥ b : c+ − (c+ + c−) · Ft(a− b)− η

∫ ∞
0

qt(a+ e) · V ′t+1(b+ ηe)de

− b
∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de = 0

}
∪
{
a ≤ b :

∫ ∞
0

qt(a+ e) · V ′t+1(b+ ηe)de+ a

∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de = 0

}
is optimal. In addition, for all b ∈ B, we can express V ′t easily

V ′t (b) = c+ + (1− η) ·
∫ ∞

0
qt(πt(b) + e) · V ′t+1(b+ ηe)de.

Proof. Following all lemmas, the induction proof on the optimal policy is trivial when
noticing that for all b ∈ B, VN (b) = 0, implying that VN is of class C2 and 0 ≤ VN <
min(c+ + c−, c+/η).

The expression of V ′t comes from the translation of the fact that ∂Qt

∂a (b, πt(b)) = 0 into
V ′t defined as V ′t = ∂Qt

∂b (b, πt(b)) in lemma 13.
If πt(b) ≥ b, then according to eq. (6.15),

(c+ + c−) · Ft(πt(b)− b) + b

∫ 1

0
qt(πt(b)− be) · V ′t+1(b(1− e))de

= c+ − η
∫ ∞

0
qt(πt(b) + e) · V ′t+1(b+ ηe)de,

and according to eqs. (6.14) and (6.22),

V ′t (b) = (c+ + c−) · Ft(πt(b)− b) +
∫ ∞

0
qt(πt(b) + e) · V ′t+1(b+ ηe)de

+ b

∫ 1

0
qt(πt(b)− be) · V ′t+1(b(1− e))de,

from which we obtain

V ′t (b) = c+ + (1− η) ·
∫ ∞

0
qt(πt(b) + e) · V ′t+1(b+ ηe)de.

We show in section A.1.6 that the case πt(b) ≤ b results in the same expression for V ′t ,
hence the theorem.

Bounded battery, unbounded workload

The structure, i.e. the lemma decomposition, that has lead to the expression of an optimal
policy, together with the total expected reward, in the Imperfect-Unbounded model
can be reused in the Imperfect-BatteryBounded model, where the battery has a
maximum capacity.

In section A.2 we exhibit the impact of the maximum battery capacity on the expres-
sions of Qt and its differentiates. From these formulae we can deduce that all lemmas
hold:

• Qt(b, ·) is concave,
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• its maxima along a for a given b can be found where its partial differentiate according
to a is null,

• the policy that chooses the smallest accepted work that achieves the maximum is of
bounded variations,

• Vt is of class C2, V ′t is still bounded and the same bounds hold.
The following theorem can then be demonstrated with the same lemmas.

Theorem 4. In the Imperfect-BatteryBounded model, the policy (πt)t∈{1,...,N−1}
that fulfills πt(b) = inf A?b , where

A?b =
{
a ≥ b : c+ − (c+ + c−) · Ft(a− b)−

∫ a

a−b
qt(e) · V ′t+1(b+ e− a)de

− η
∫ a+η−1(Bmax−b)

a
qt(e)V ′t+1(b+ (e− a)η)de = 0

}
∪
{
a ≤ b : c+ +

∫ a+η−1(Bmax−b)

a
qt(e)V ′t+1(b+ (e− a)η)de

−
∫ a

0
qt(e) · V ′t+1(b+ e− a)de = 0

}
is optimal. In addition, for all b ∈ B, we have a compact expression for V ′t

V ′t (b) = c+ + 1− η
η

(Bmax − b) ·
∫ 1

0
qt(η−1(Bmax − b)e+ πt(b))V ′t+1(b− (Bmax − b)e)de.

Bounded battery and workload

We consider now the Imperfect-Bounded model, where the workload that is submitted
to the datacenter is finite, i.e. for all t ∈ {1, . . . , N − 1}, wt ∈ R+. This model is at the
crossroads between Ideal-Bounded and Imperfect-BatteryBounded. Compared to
Ideal-Bounded, the energy losses during the charges and discharges of the battery do not
affect the structure of the problem, and we can use the same technique that we employed
in the Ideal-bounded model, where the optimal action for a given state of charge was
the minimum between the available workload wt and the optimal action as if there was no
limit on the accepted work.

We give here the sketch of the reasoning. As we did since the beginning, we perform the
proof by induction. First, we define what shall appear in the induction hypothesis (Ht+1).
Because of the workload limit, (Ht+1) slightly differs from the induction hypothesis used in
the Imperfect-BatteryBounded model. Especially, the regularity of Vt loosens when
the optimal action with no consideration of the workload hits the workload wall (in case
we would like to execute more work than available). The induction hypothesis includes
that Vt is of class C1 and piecewise C2, instead of being of class C2. The other hypotheses
(Vt+1 non-decreasingly concave and the bounds on V ′t+1) remain in (Ht+1).

Next, despite Vt+1 not being of class C2, Qt is still in C2. This can be shown by splitting
the integrals that appears in Qt to avoid the points where V ′t may not be differentiable.
This does not add additional terms, hence Qt can be considered as unchanged compared
to the unbounded workload problem.

Then, we can find the optimal actions on the unbounded workload problem by explor-
ing where the differentiate of Qt according to a nullifies. Within the interval of batteries
where the chosen optimal action is not greater than wt, it constitutes an optimal action of
the bounded workload problem. Since for all b ∈ B, Qt(b, a) is concave in a, if this action
is greater than wt, then an optimal action of the unbounded workload problem is wt. For
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greater battery states of charge, this action is still optimal, which implies a constant policy
in this second interval. Vt is then of class C2 on both intervals, and on both intervals, if
we name πt the policy described above

∀b ∈ B, V ′t (b) = ∂Qt
∂b

(b, πt(b)).

Since both πt and ∂Qt

∂b are continuous, Vt is of class C1.
Finally, since Qt is unchanged, the growth and concavity of Vt+1 pass to Vt and the

bounds on V ′t+1 reverberate on V ′t . This leads to the following theorem.

Theorem 5. In the Imperfect-Bounded model, the policy (πt)t∈{1,...,N−1} that fulfills
πt(b) = min(wt, inf A?b), where

A?b =
{
a ≥ b : c+ − (c+ + c−) · Ft(a− b)−

∫ a

a−b
qt(e) · V ′t+1(b+ e− a)de

− η
∫ a+η−1(Bmax−b)

a
qt(e)V ′t+1(b+ (e− a)η)de = 0

}
∪
{
a ≤ b : c+ −

∫ a

0
qt(e) · V ′t+1(b+ e− a)de

+
∫ a+η−1(Bmax−b)

a
qt(e)V ′t+1(b+ (e− a)η)de = 0

}
is optimal.

6.4 Numerical application and experiments

In the previous section, a complete study of optimal policies in the Imperfect-Bounded
problem has been detailed. States and actions being defined in continuous domains, no
generic method exists to compute the optimal policy. Based on its identified structure, it
is nonetheless possible to design an algorithm to find an approximation of the expected
reward (and an associated policy) as close as we desire to the optimal expected reward.

As always, the proof goes by induction: we assume that there exists an approximation
V app
t+1 of the value iteration at decision epoch t+1 within a given error margin, and build an

approximation of the value iteration V algo
t of the value iteration at decision epoch t within

a new error margin. There are four natures of errors when it comes to the approximation
of the problem:

• the initial error from the next decision epoch,
• the operated discretizations in order to compute the integrals that appear in Qt

(integral on e 7→ qt(e) · e in the reward and integrals on qt · Vt+1),
• the margin when computing the maximum on a of Qt for a given b,
• the last linearization of the value iteration.
Hence, the final maximum error of the value iteration approximation V app

t computed
for epoch t is the sum of the margin caused by all these sources. We start with theoretical
considerations, assuming that we have discretizations of any function, and separate clearly
the independent errors that can sum up. After detailing optimal policies without RES
uncertainty information, the methodology for an experimental study is detailed. This
methodology also discuss some more practical aspects of implementing the approximation
with bounded errors. Simulation results under various conditions are finally presented,
followed by an interpretation and discussion of the findings.
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6.4.1 Error propagation

We assume that there exists a linear approximation V app
t+1 and εt+1 such that |V app

t+1 −Vt+1| <
εt+1, and that the cumulative distribution function Ft of renewable energy produced along
epoch t is known perfectly, or at least within a negligible bound.

Impact of the initial error We can notice that denoting by Qapp
t the function that is

obtained after replacing Vt+1 by V app
t+1 in Qt(b, a), we have |Qapp

t −Qt| < εt+1. We try now
to compute the integrals that appears in Qapp

t in a discretized way.

Computing the integrals We note that Qapp
t is composed of two main parts: the

reward for the current decision epoch, and the future rewards.
We start with the reward, once simplified and integrated by part as in section 6.3.1:

rt(b, a) =
{
a · c+ − (c+ + c−)

∫ a−b
0 Ft(e)de if a > b

a · c+ otherwise

Its value for the case a ≤ b is obtained exactly, and we focus on the case a > b. As Ft
is the cumulative distribution function of the renewable production, it has several prop-
erties that helps integrating it numerically: Ft is non-decreasing, with value in [0, 1] and
Ft(Emax) = 1. A simple midpoint rule quadrature with appropriate strategy for select-
ing the interpolation values can give efficiently an approximation with an error bounded
by arbitrarily small ε(int). The maximum error of a part (rectangle approximating the
integral between [e0, e1]) is no more than:

(Ft(e1)− Ft(e0))(e1 − e0)
2

As Ft is non-decreasing and e0 < e1, this is equals to 0 if and only if Ft(e1) = Ft(e0). If the
maximal error is non-nul, chosing an intermediate point em = (e1 + e0)/2 and summing
the two resulting rectangle (between [e0, em] and [em, e1]) is guaranteed to reduce the total
maximum error. Hence, by dividing progressively the range [0, a − b] in order to reduce
the maximum approximation error each time, we effectively approximate

∫ a−b
0 Ft(e)de for

any desired accuracy ε(int).
We denote ralg

t (t) the ε(1)-approximation of rt, obtained by computing the integral
with a maximal error ε(int) = ε(1)

c++c− when a > b.
The future reward that appears in Qapp

t , denoted by Pt(b, a), can be ε(2)-approximated
thanks to a piecewise constant discretization of V app

t+1 , as shown in section A.3: we denote
this approximate function by `alg

t .
After applying a similar approximation when a ≤ b, and definingQalgo

t (b, a) = ralg
t (b, a)+

`alg
t (b, a), we obtain

|Qapp
t −Qalgo

t | ≤ |ralg
t (b, a)− rt(b, a)|+ |Pt(b, a)− `alg

t (b, a)| < ε(1) + ε(2).

To the approximated value iteration The function Qalgo
t can then be used to find an

approximated value iteration V algo
t by finding for each b the maximum of Qalgo

t (b, a) among
a. Finding numerically the maximum of a continuous function adds a new error denoted
ε(3): for all b, |V algo

t (b) − maxaQalgo
t (b, a)| < ε(3). During the numerical computation of

V algo
t , we do not know how the potential error is distributed. Hence, the concavity of the

approximated function Qapp
t is not guaranteed in Qalgo

t . To use efficient maximum finding
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algorithm, such as Newtonian methods, it is possible to adapt the sampling method.
Considering a set of sample points at a bounded distance ε(1) + ε(2) of a concave function
(Qapp

t ), it is always possible to build a concave approximation by keeping a subset of the
sample points. Using this property, a custom maximum point algorithm can be elaborated,
which converges quickly near the maximum of Qapp

t ±ε(1)+ε(2). However, such an iterative
method adds necessarily an additional error, denoted ε(3), which depends on the maximum
number of iterations or on the converging criterion tolerance.

Finally, we can build a linear approximation V lin
t of V algo

t , submitted to the last error:
|V lin
t − V algo

t | < ε(4). This maximum error can be set arbitrary low by computing enough
points of V algo

t , such as the linear interpolation V lin
t b between two known values at points

b0 < b1 is as close as desired from V algo
t (b)∀b ∈ [b0, b1].

Total error bound There remains to gather all the error bounds to obtain the final
error that will be given to the previous decision epoch.

|V lin
t (b)− Vt(b)| ≤ |V lin

t (b)− V algo
t (b)|+ |V algo

t (b)− Vt(b)|
< ε(4) + |V algo

t (b)−max
a

Qalgo
t (b, a)|+ |max

a
Qalgo
t (b, a)−max

a
Qt(b, a)|

We know that

|Qalgo
t (b, a)−Qt(b, a)| ≤ |Qalgo

t (b, a)−Qapp
t b, a|+ |Qapp

t b, a−Qt(b, a)| < ε(1) + ε(2) + εt+1,

hence |maxaQalgo
t (b, a)−maxaQt(b, a)| < ε(1) + ε(2) + εt+1, and finally,

|V lin
t (b)− Vt(b)| < εt+1 +

4∑
i=1

ε(i).

In other words, we have computed a linear approximation V lin
t of Vt with an error margin

of εt = εt+1 +∑4
i=1 ε

(i).

6.4.2 Optimal policy without uncertainty information

To study how taking uncertainties into account can improve the decisions, an optimal
policy for deterministic renewable production forecast is given. Hence the only difference
with the model considered by our approach is the energy available at a time t, which
represented here as a scalar value ēt ∈ E instead of the complete distribution Et. Different
characteristics of the distribution Et can be used to obtain ēt. Without loss of generality,
we assume in the following the mean is used ēt = E(Et).

To be used as a decision policy, at each time epoch t0 the optimal action a?t0 must be
chosen based on current state (battery) and future expected energy production. To be
fair in our comparison, we consider the same process is repeated at the beginning of each
epoch, hence knowing the actual battery resulting of the realization of Et0−1.

Once uncertainties are removed, the problem is easily transformed as a linear program.
We use notations for inputs and variables similar to the one used for describing the MDP.
First, a non-linear obvious version can be written, using three decision variables per epoch.
The accepted work at epoch t is denoted a?t and the corresponding amount of work done
with this action, once the potential limited energy is taken into account, is denoted w+

t .
The third variable is the battery state bt, with its initial value bt0 set to either the state
of the battery at the beginning of problem (when t0 = 1) or to the resulting battery after
the realization of the previous epoch decision.
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Maximize:
N−1∑
t=t0

w+
t · c+ − (a?t − w+

t ) · c− (6.25)

subject to:
∀t, 0 ≤ a?t ≤ wt (6.26)

w+
t = min(a?t , bt + ēt) (6.27)

0 ≤ bt ≤ Bmax (6.28)

bt+1 = bt +
{
η−1 · (ēt − w+

t ) if ēt > w+
t

ēt − w+
t otherwise

(6.29)

(6.30)

Several observations helps its linearization. First, it appears that the optimal accepted
workload a?t is necessarily lower than the total available energy (battery and production),
as higher values contributes negatively to the objective directly (by increasing the term
a?t − w+

t ) without helping in any indirect way. The two cases of bt+1 can be linearized in
two inequalities. Its value should be as high as possible to maximize the objective, and
is upper bounded both by bt + η−1 · (ēt − w+

t ) and by bt + ēt − w+
t . Hence, the following

linear program is equivalent:

Maximize:
N−1∑
t=t0

a?t · c+ (6.31)

subject to:
∀t, 0 ≤ a?t ≤ wt (6.32)

a?t ≤ bt + ēt (6.33)
0 ≤ bt ≤ Bmax (6.34)
bt+1 ≤ bt + η−1 · (ēt − a?t ) (6.35)
bt+1 ≤ bt + ēt − a?t (6.36)

(6.37)

As we chose a model with constant rewards c+ over time, this linear program admit
a trivial solution by choosing a?t = min(wt, bt + ēt),∀t. Doing so, the inefficiency of the
battery is minimized and the total amount of work done is maximized. Interestingly, this
leads to the same policy than the optimal for the Ideal-Bounded model, which was
interpreted in remark 3, but for different reasons. This can be interpreted in this case
as the limits of a deterministic production forecast. While the realization of energy is
necessarily different from the prediction, taking this inaccurate forecast as the only known
information prevent any accurate risk measurement. Hence, the optimal solution has to
use as much of this energy as possible in order to avoid the inefficiency caused by the
batteries. At the next decision epoch, if the realized energy production was higher than
the prediction ēt, the energy stored in the battery can be used at any time. The earlier
is the better as it prevents either wasted energy due to full batteries and the inability to
use all the stored energy because it is limited by the workload arrival near the end of the
horizon.
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Optimal policy with an oracle Our approach is based on an ε-optimal policy for
maximizing the expected accumulated reward. It is however possible to compare it to an
upper bound, which is represented by an optimal policy with perfect knowledge of future
energy production. Such a policy may be built based on the detailed optimal policy with
deterministic forecasts, using ēt = et, where et is the realization of Et as given by an
oracle. In practice, this oracle is achieved by sampling the renewable energy distribution
beforehand.

6.4.3 Methodology of experimental study

To attest the impact of uncertainty handling in this problem and of our approximation of
the optimal policy, an experimental study is proposed using numerical simulations.

Implementation and practical considerations

The implemented approximation of optimal policy is based on the formulations proposed
for error propagation analysis. A few adjustments are used for practical purpose, relying
on existing implementations from SciPy [94] for some steps of the numerical computation.
The core of the algorithm consists in computing values of Qalgo

t (b, a) for different values
of b and a. Two potentially costly computations are done once by epoch (t), reducing
drastically the complexity and execution time of Qalgo

t without losing the error bound:
• the integral of Ft(e) between 0 and any value up to Emax is computed with the

desired maximum error ε(1)

c++c− , allowing fast computation of ralg
t

• the piecewise constant discretization of V algo
t+1 , discussed in section A.3, is computed

such as it leads to a maximum error ε(2)

The maximum of Qalgo
t for a given b is obtained using the SciPy minimize_scalar

function with the bounded method, which is an implementation of Brent’s algorithm. The
maximum error of such algorithm is difficult to predict, depending on the shape of the
function and of the number of iterations. Practical results show excellent accuracy and
efficiency using this algorithm, even with a low number of iterations (≤ 50, converging
usually in less than 20 steps). However its maximum error is not strictly bounded and
we cannot give a value for ε(3) with this implementation but expect it to be negligible
compared to the other errors.

For all the experiments presented thereafter, the other sources of errors are bounded by
ε(1) = 0.01 (error due to the reward approximation), ε(2) = 0.01 (approximation of Pt(b, a))
and each linear interpolation of the value function is computed such as ε(4) < 0.1. These
values are absolute, their importance is therefore to compare with the other parameters
used in the experiments such as the reward c+, the maximum workload and the renewable
energy production scaling.

Parameters of the model

The bounded, non-ideal batteries model is instantiated with different parameters along
the detailed experiments. A summary of the default values, used when experiments are
not conducted explicitly for studying different conditions, is given on table 6.1. As the
considered model is continuous, the units can be set arbitrary as long as they are coherent
with each others. To stay with order of magnitude which are easy to visualize and realistic
for a fully renewable-powered datacenter, a relatively small infrastructure is proposed,
with 20 kW peak solar panel production and Bmax = 15 kW h of usable battery capacity.
All the experiments starts with a battery at half of its capacity. The datacenter peak
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Symbol Meaning Value or distribution
Bmax Usable battery capacity 15 kW h
Emax Installed peak capacity of photovoltaic array 20 kW
η Battery efficiency 0.8 or 0.9
wt Workload arrival at time t Uniform ∈ [0, 40]
c+ Reward per unit of work done 1
c− Penalty per unit of undone accepted work 0.5
b0 Initial battery capacity Bmax/2

Table 6.1 – Summary of the model parameters used for experimental study (default values
considered unless stated otherwise).

consumption is not explicitly represented in our model, but is obtained in the bounded
workload formulation by the maximum workload arrival at each time step. Here, different
values are used, representing a maximum capacity from 10 kW to 40 kW.

Choosing realistic values for the reward c+ and penalty c− is difficult. Existing data-
center operator and Cloud provider are usually accepting every submitted workload. They
provide strong SLA guarantees but with low penalties in case of violations, often as free
credit to use in the same service [5, 87]. The prospective datacenter model studied here
behave quite differently, as a significant fraction of the work can be refused (without any
cost). Hence, stronger reliability may be expected from the clients when some work is ac-
cepted, which prevent them from submitting it to another datacenter. We consider a unit
value for the reward per unit of work done (c+ = 1) and a base penalty of half (c− = 0.5).
For completeness, a study of the impact of penalty cost value is presented in the next
section.

Battery efficiency varies highly with the technology used. In our model, additionally,
this value represents the overall efficiency taking into account the required electrical con-
verters, leading to slightly lower efficiency compared to the batteries alone. Two different
values are considered, based on the efficiency range for different battery technologies of
Dunn et al. [59]. Reasonable value for average lead-acid batteries is η = 0.8 and higher
value of η = 0.9 models either average lithium-ion or very good lead-acid. While elec-
trochemical batteries are usually in the 70% to 95% range, other energy storage devices
(ESD) may be largely below (fuel cells combined with electrolyzer) or very close to a
perfect efficiency (supercapacitors). Hence, an additional evaluation with other values
η = {0.1, 0.2, . . . 1} is performed to understand how different ESD would affect our ap-
proach.

Realistic PV production forecast data is relatively easy to find, as mentioned in sec-
tion 3.1.2. This is unfortunately far more difficult when probabilistic forecasting is desired,
as all the known datasets are limited to a single predicted value (deterministic models).
Hence we used several models from the literature to build realistic setup of probabilistic
PV forecasting. Deterministic irradiance and cloudiness data are extracted from NSRDB
public dataset [169]. The variance of the prediction at each time is obtained through
the empirical model of Kostylev and Pavlovski [106], which gives the error of best irradi-
ance prediction method depending on prediction time ahead and cloudiness. Finally, this
variance is used to build a Beta distribution with the parameters computed as described
in [109], by using the original deterministic prediction as the mean of the distribution. The
irradiance is finally converted to production forecast using an irradiance-linear model, sized
such as its peak capacity is Emax.
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(b) Cloudy day

Figure 6.1 – Photovoltaic production forecasts with 95% probability intervals around the
expected value.

We use NSRDB data from same location as experiments of chapter 5 (coordinates
N34°85′ W120°45′, near the city of Santa Maria in California) but for the year 2017. Two
different days are chosen for illustrating specific weather conditions, with their production
for Emax = 20 kW h shown in fig. 6.1. The clear sky day 17th July 2017 is an almost
perfect day for PV production, with no significant clouds expected, keeping however some
uncertainties due to all the other factors. Another day (7th May 2017) is used as a typical
mostly cloudy day, causing relatively more uncertainties.

The experiments are made on a duration of 12 hours, with time steps of 30 minutes
(N = 25 as the last epoch does not lead to any decision).

6.4.4 Methodology

To evaluate accurately the different methods and compare their results, all are evalu-
ated with the same random sampling of realized renewable production, according to the
distribution Et at each epoch t.

For a given experiment, the first step consists in solving the entire MDP using our
ε-approximation algorithm, hence resulting in linear approximation of the Vt of each time
step of the horizon. Then, each approach is evaluated across multiple runs, corresponding
to different renewable productions during the time window. To do so, we start by sampling
the realizations et of renewable energy for each t ∈ {1, . . . , N − 1}, which are given to the
oracle. One at a time, the approaches are used to take a decision for the first epoch,
the realized energy is considered to compute the reward and the next battery and a new
decision is taken according to the current battery state until the last epoch.

The workload arrival, while deterministic and perfectly known during the problem res-
olution, is sampled randomly from an uniform distribution. Each combination of parame-
ters is evaluated with 5 different random workloads to mitigate the impact of favorable or
unfavorable distribution. For every workload, the mentioned evaluation loop is repeated
100 times. The outcome of each approach is compared to the unquestionable result of the
oracle-based optimization. This comparison is done for the same workload and renewable
energy realizations, providing a robust metric to evaluate the quality of the results.

6.4.5 Simulation results

In a first series of experiment, the impact of different values of the failed work penalty (c−)
is evaluated. Figure 6.2 shows the results for the two different weather conditions and with
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Figure 6.2 – Results for different values of penalty for accepted but not done work (c−),
while keeping the reward c+ = 1.

battery efficiency η of either 80% or 90%. The values correspond to the relative differences
of final accumulated reward over the whole horizon between oracle-optimal decisions and
each approach, calculated for every identical conditions (same realization of renewable
variables). The average over the 500 runs (100 per random workload) and the standard
deviation are represented. With the cloudy day (fig. 6.2a), our approximation of optimal
policy gives very stable performances, with a mean below 0.5% compared to the best
possible outcome (oracle) and negligible standard deviation (< 0.3). At the contrary, the
LP method with no uncertainty knowledge shows performances inversely proportional to
penalty, from 0.6% when penalty is null to 16% for c− = 4. It is also notoriously unstable,
with its standard deviation growing similarly from 0.2% to 6.8%. For both approaches, the
results are very close for both values of efficiency (less than 0.5% of absolute differences).
The clear sky day, in fig. 6.2b, results in overly similar behaviors, with the LP method
giving results closer to the oracle-optimal outcome (from 0.2% to 4.5%). While the scale
of the figure shows better the slight decrease of our MDP approximation method, its mean
performances are similar to those on Cloudy day, from almost perfect result (< 0.001%)
when penalty is 0 to 0.5% for c− = 4. Its standard deviation for this high penalty is
however slightly higher (0.43%). A minor difference is observed at c− = 2 between the
two values of battery efficiency, but being largely smaller than the standard deviation it
may be attributed to some exceptional workload arrivals in several of the experiments.

In a second experiment series, a larger range of battery efficiency values η is used,
from 10% to 100%. The performances of the approaches compared to perfect oracle are
given in fig. 6.3a for the default, small penalty (c− = 0.5). Globally, the results of the
approaches are improving when getting closer to perfect batteries. For clear sky renewable
production day, our method is between 0.24% and 0.1% from the oracle optimal outcome,
with tiny deviation (≤ 0.2). The LP optimization with deterministic forecast gives quite
good results in these conditions, with a mean of 1.8% for smallest efficiency and down to
0.8% for η = 1, but with higher deviation compared to our approach. In the cloudy day
condition, both approaches performed significantly worst and the improvement caused by
a better efficiency is more noticeable. The approximated MDP optimal policy is in average
at 1.2% at lowest efficiencies (standard deviation of 0.7%) and reaches 0.19% (SD 0.24%)
with perfect batteries. The LP method evolves similarly, starting at 5% (SD 1.1%) and
reaching 1.9% (SD 0.8%). Both methods results in a noticeable irregularity when the
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Figure 6.3 – Performance of the approaches compared to an oracle depending on the
efficiency of the batteries (η).

efficiency is η = 0.4, performing slightly closer to the oracle compared to close values.
While this could be due to favorable workloads scenarios during the evaluation process,
it may also correspond to a non-linearity behavior of the optimal policies. For instance,
this value may form a gap between cases where battery is unlikely to be full at any time
(giving average production and workload) and cases where it becomes highly probable at
some point.

Results of similar experiments with higher penalty (c− = 4) are summarized by
fig. 6.3b. Similarly to the observations on fig. 6.2, the LP method performs significantly
worst with a large penalty. Its mean difference with optimal oracle final outcome varies
from 7.5% to 4.6% with clear sky conditions and from 21% to 14% with the cloudy day.
Compared to the smaller penalty, it also improves less with the efficiency of the batteries
and is less stable (higher standard deviation in all tested conditions). Our approach be-
haves closer to the smaller penalty case, but also with slightly lower performances. The
mean values varies from 1.9% for an efficiency of η = 0.2 to 0.5% for perfect batteries for
the cloudy day and from 0.5% to 0.4% for clear sky day.
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Figure 6.4 – Results for different time horizons, with number of epochs being 2 times the
duration in hours (time step of 30 minutes) and efficiency η = 0.8.
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The behavior of the approaches depending on the number of epochs is evaluated using
fixed time steps of 30 minutes per epoch and adjusting the duration of the horizon between
3 hours and 48 hours. The extended power production with uncertainties for the two
weather conditions is represented in fig. 6.4b. Despite his name, the Cloudy data is quite
sunny in the second day. Figure 6.4a shows the results of LP and MDP approximation.
Under both weather scenarios, our approach performs better with higher number of epochs
and converges towards tiny difference compared to the oracle-based optimum (0.1% for
clear sky and 0.15% for cloudy production). The LP method is always below the MDP
approximation for similar weather. With the cloudy weather, it tends to give better results
with longer time horizons, but with a few exceptions, regressing from a mean of 3.2% for a
duration of 3 hours to 4.3% after 6 hours. In the clear sky case, the duration only slightly
affects the results in a direction or another, with its worst value being for 3 hours (mean
of 1.7%) and its best average results at 12 hours (0.8%). The observed convergence of
both approaches between their results with clear sky or cloudy weather can largely be
attributed to the second day, sunny in both conditions.

The other parameters of the model which can affect the results are finally studied.
Figure 6.5 gives the results for each parameter using box plots, with the box showing the
median and quartiles and the whiskers representing minimum and maximum excluding
the (plotted) outliers.
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(a) Impact of PV array sizing (peak production).
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(b) Impact of the battery usable capacity (Bmax).
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Figure 6.5 – Impact of parameters related to energy consumption and production, with
battery efficiency set to η = 0.8 and the cloudy production day. Other parameters are set
to their default values given in table 6.1.
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Figure 6.6 – MDP approximation solving time for different horizon size (log-log scale).

The effect of different sizing of the photovoltaic array, measured in terms of its peak
production Emax, is detailed in fig. 6.5a. The outcome of the LP method compared to the
oracle is in the same range for all the values of Emax, with median results between 2.5%
and 2.1%. Our approach, while resulting in accumulated rewards closer to the absolute
maximum, give slightly worst and more spread relative results with higher values of Emax.

Figure 6.5b shows the impact of the battery capacity Bmax on each approach. The
LP approach with deterministic forecasts performs worst with small batteries (median
difference with the oracle of 2.7%), followed by the larger setup (2.3%) and the medium
capacity (2%). The MDP approximation improves its outcome with larger battery size in
all points of view (quartiles and worst case), with a median value between 0.5% and 0.1%.

The workload at each time step is obtained from a uniform distribution between 0
and a maximum (40 in previous experiments). To measure the impact of different average
loads, the maximum of this distribution is set to other values and the results of both
approaches is given in fig. 6.5c. Without uncertainty distribution knowledge, the LP
method gives worst relative results with more important workloads, with the median
difference increasing from 0.84% to 2% while the dispersion stays similar (SD between
0.7% and 0.8%). Our method, at the contrary, both improves its median results and their
dispersion with higher maximum workloads, from 0.3% (SD 0.5%) to 0.2% (SD 0.2%).

Execution time of the implemented approximation Along the discussions on error
propagation and implementation, several remarks highlight ways to reduce the overall
complexity and computation costs of our ε-approximation algorithm. However, we do not
provide a formal analysis of its complexity. Some experimental results on the execution
time are nevertheless provided here to give some indications of the actual cost of our
implementation for solving the whole MDP with guaranteed maximum error, along with
order of magnitude of the algorithmic complexity. Two important factors are expected
impact significantly the solving time: the number of epochs in the horizon and the desired
accuracy (maximal error tolerance per time step).

The number of epoch is increased by considering different horizon duration similarly to
the results presented in fig. 6.4. Hence it varies between N = 7 (3 hours) and N = 97 (48
hours). The measured execution times, averaged over 5 runs, are presented in fig. 6.6 and
used the default parameters (with η = 0.9). Both renewable production scenarios result in
almost identical execution times, at the exception of a data point at N = 13 where clear
sky weather is slightly below but within the standard deviation range. The execution time
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Figure 6.7 – Solving time of MDP approximation depending on the desired maximum
error, with corresponding n → an and n → an log(n) best fits, where n is the accuracy
(log-log scale).

of our algorithm is close to perfectly linear with the number of epochs solved.
Measuring how the maximum desired error of the approximation affects the solving

time requires first to define a measurement of the accuracy and the distribution of the
errors across the different sources of errors. We denote here εb the base maximum error,
which is used to defines the values of each error source bound such as ε(1) = ε(2) = 0.1 · εb
and ε(4) = εb. As mentioned earlier, our implementation does not strictly guarantee a
maximum error on ε(3), but with reasonable number of iterations of the maximum finding
algorithm it appears to be negligible compared to the others. Hence the maximum total
absolute error for each time step is given by εt = 1.2εb. To make the results easier
to interpret, we define accuracy as the inverse of εb. Hence, dividing the error by x is
equivalent to the more intuitive representation of an accuracy improved by a factor x.

Measured execution times, with default parameters (and η = 0.9) are given for each
weather condition in fig. 6.7. A difference is measured for the highest accuracy between
the two scenarios, with a mean of 157 seconds (SD 24.6) for clear sky, compared to
the 202 seconds (SD 15.9). The other measurements are all far closer from each other
than the standard deviation. For each production scenario, both n → a · n and n →
a · n log(n) functions are shown, using least square method for fitting the value of a and
n being the accuracy. The solving time with clear sky condition (fig. 6.7b) is relatively
well approximated by a linear function of accuracy. Asymptotically, it seems to increases
very slightly faster, but significantly below an n log(n) function. For cloudy weather,
represented in fig. 6.7a, the overall execution time appears clearly to be superlinear with
the accuracy, as shown by the linear fit, but is also growing slower than the n log(n)
function.

6.4.6 Discussion

In the experiment results, two methods were primarily compared with each other: our
bounded-error approximation of optimal MDP policy, taking uncertainties fully into ac-
count and the repeated linear programming method, providing the optimal decision under
deterministic forecasts assumption. By measuring their performances in terms of relative
difference compared to the absolute best, oracle-based decisions, two major pieces of in-
formation are available. The first is given by the results of our approximation alone, as a
measurement of how the uncertainties are intrinsically affecting the outcome even in case
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of a policy knowing their distribution (but obviously not their future realizations). The
second, provided by the comparison between the MDP approximation and the LP results,
indicates the potential improvement that may be obtained by fully considering the random
distribution of the variables instead of a single point prediction (the average of the dis-
tribution). Such a comparison is useful in our context, as renewable production forecasts
are still largely modeled as deterministic predictions in existing datacenter management
approaches.

In the problem detailed along this chapter, three kind of penalties may affect the
reward obtained in case of unexpected renewable production. If more power is produced
then expected, the battery efficiency causes a loss of energy compared to directly using it
and consequently a lower final reward even if the battery energy is used before the end of
the horizon. In case the battery is not able to store all this exceeding energy, additional
losses are caused by the battery becoming full. At the contrary, if less energy is produced
than expected, the penalty c− may reduce the total gain. Except for the battery full
losses, which is not likely to happen in practice, these penalties are added linearly with
the amount of the prediction error.

Linear penalties are usually causing less trouble for approaches which ignore the uncer-
tainties, especially when the distributions of random variables are narrow. This is shown
by the results of LP which give a total outcome closer than 6% of the oracle-optimal under
many tested conditions, when the work failed penalty is small (c− ≤ 0.5). The relative
results are even better when the renewable production is distributed closely around the
expected value, as attested by the LP outcome being in average closer than 2% for similar
conditions when clear sky weather scenario is used. Such a deterministic optimization
leads, however, to quite unstable results which cause high standard deviation and distri-
bution of the relative total reward across multiple runs differing only by the realization of
the renewable energy production. In addition, considering higher penalty for failed work,
such as c− = 4 affects considerably the average outcome of this method, which is unable
to estimate the risk associated to a decision.

By using a MDP formulation, hence taking fully into account the notions of risks and
random variable distributions, our bounded approximation algorithm performs consider-
ably better and more stably in all the tested conditions. Notably, the average relative
result compared to the oracle-based optimization is always less than 2%, despite some
experiments with unfavorable parameters (such as a low number of epochs, high failed
work penalty and bad battery efficiency). This number is even lower when considering the
more stable, clear sky forecast (< 1% from the oracle). The different experiments show
the robustness of our approach for different setup of model parameters corresponding to
realistic or even hypothetical infrastructures setups. While its impact is not null, the MDP
handles very well cases with low or high penalty c− for work accepted but not done.

The performances compared to an oracle are the most affected negatively by low bat-
tery efficiency (< 40%) and short time horizon (< 12 hours or 25 epochs). The first is
explained by the reduced ability to store excess of energy for latter use, preventing the op-
timal policy from relying on this energy buffer to compensate the unavoidable uncertainty
of renewable energy. Short time horizons is impacting the relative performances mostly
because our objective ignore the final energy in batteries (after the last decision epoch).
The oracle, knowing the last realization of energy, is assured to end with an empty battery
if it is possible. At the contrary, the MDP can only takes the optimal risk which gives
the higher expected reward for the last energy distribution. As the final outcome is the
accumulated rewards along the whole horizon, the relative impact of this last step is more
important with short horizons and become negligible with longer ones.
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The impact of other parameters on the MDP approximation algorithm results is lim-
ited, but some correlations appear. Larger renewable energy production may, counter-
intuitively, reduce the performances of our approach compared to the oracle-based opti-
mization. This observation is explained by the higher probability of exceeding the battery
capacity at least once during the horizon in this case, similarly to the more intuitive effect
caused by lowering the battery capacity.

An empirical study of the complexity of our approximation is provided by the mea-
surements of execution times under several conditions. Because the outcome at a given
epoch depends only on the instant reward and on the values of each state of the next
epoch, even generic solving algorithms have rarely more than a linear component of their
complexity depending on the number of epochs. Our algorithm, as expected, is requiring
a computing time linear with the total epochs of the horizon. This computing time is
slightly superlinear with the desired accuracy (inverse of the maximum error), but grow-
ing slowly than n log(n) functions. Traditional and generic methods to approximate MDP
with continuous states and actions rely on a discretization of both, which can also achieve
arbitrary accuracy in theory by using enough discrete values. Such discrete problem with
S different states and A actions can be solved by dynamic programming, with a com-
plexity of O(S2 · A) for each epoch. Doubling the accuracy, without specific structural
properties, requires to double the number of discrete states and actions. Hence, a sim-
ple discretization would cause the computing time to depends on the cube of the desired
accuracy. Our approach, while giving a proven ε-approximation of the optimal policy,
scales exceptionally well with the desired accuracy. This is made possible by exploiting
the analyzed structure of the optimal policy, which gives a more efficient formulations,
along with the detailed procedure for discretizing the continuous functions which reduces
computations while guaranteeing a known maximum error.

6.5 Conclusion

Along this chapter, we presented a MDP formulation of optimal workload acceptance
problem in datacenter powered by uncertain RES and ESD. By studying the properties
of the MDP, we show that optimal policies have several remarkable properties. This
structure is usable to reduce the complexity of finding a bounded approximation of an
optimal policy compared to arbitrary continuous state and action MDP.

Such an efficient algorithm has been implemented, with a detailed analysis of the
sources of errors and methods to bound them. Hence, the worst case error of our approx-
imation compared to the uncomputable, theoretical optimum is known and can be chosen
arbitrarily small. This ε-optimal approach has been evaluated by numerical simulations,
using realistic renewable production forecasts. It has been compared both to the optimal
policy considering deterministic (yet inexact) weather forecasting and to the best achiev-
able results using an oracle to predict the renewable energy production. These results
highlight the stability and accuracy of our approach, which perform closely to the oracle-
based optimization (less than 2% of average difference in all tested conditions). By fully
taking random distribution of uncertain variables into account, our approach improves
significantly the expected total gain during the optimization horizon, as well as the worst
case and a lower variability of the results.

This mean improvement of the total gain depends on many parameters of the model,
with the two most important criteria being the uncertainties of the weather conditions and
the failed work penalty. The model studied allows the datacenter to refuse, without any
cost, a part of the workload before the beginning of a decision epoch. Therefore, a strong
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guarantee that accepted works will be executed must be given to the users, modeled as a
penalty to pay back for any work that failed to be executed in addition to not receiving the
work reward. Contrary to a method using deterministic forecasts, our approach handles
well important values for this penalties, with up to 20% improvement of the total gain
for a penalty 4 times higher than the corresponding reward. Such an important penalty
may appear excessive, but shows how the knowledge of RES uncertainties can be used
to provide reliable service, with important guarantees for the users, without reducing
significantly the total benefit.

The implementation of the MDP approximation algorithm has been shown experimen-
tally to be efficient in terms of computing time depending on the number of epochs and
on the maximum approximation error, making it usable in practice even when high accu-
racy is required. As average execution times on a few scenarios can hide the worst cases,
additional analysis is nonetheless necessary to find its algorithmic complexity, giving some
guarantees on the solving performances. This is therefore an important extension of this
work to consider in the near future.

By providing a comprehensive analysis of the problem through MDP formulation along
with an efficient solving method, this work opens several perspectives. A first direction
to explore is the extension of the underlying model, to take into account more of the
complexity of real-world infrastructures. Based on our analysis, some extensions can be
added with less extensive proofs. For instance, by showing that a deterministic but time-
dependent reward per unit of work does not impact the different hypothesis, it is possible
to reuse most of the proofs with few or no modifications. Our approach can also be
used as a base to target an infinite-horizon variant of the problem, for instance by using
myopic methods or looking for stationary policies. Some extensions are however expected
to be difficult to integrate in this analytical framework. Particularly, if many pieces of
information must be maintain between decision epochs, the Markov property requires
them to be part of the MDP state. At the same time, MDP with large state space are
both very costly to solve exactly and more difficult to study in order to find structural
properties.

Finally, we studied here a single source of uncertainty which is the renewable energy
production. When optimizing a real-world infrastructures, uncertainties are present in
almost every aspect, either caused by imperfect models of deterministic processes (execu-
tion time of batch jobs or resources consumption of a service for a given request) or by
intrinsically unpredictable events (task submission rate from users or hardware failures
for instance). Considering the datacenter model used in this chapter, the workload arrival
is supposed to be known perfectly for the whole horizon. It could be modeled instead
as a stochastic process to take into account uncertainties in both energy production and
consumption.
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Chapter 7

Conclusion

An unexciting truth may be eclipsed by a thrilling falsehood.
— Aldous Huxley, Brave New World Revisited

With the rise of information and communication technologies, the number and the size
of datacenters is rapidly growing nowadays. To mitigate the ecological impact caused by
their huge energy consumption, on-site renewable energy sources (RES) combined with
some energy storage is a promising perspective. It also becomes more and more economi-
cally attractive with the simultaneous rise of energy cost and fall of some RES technology
prices such as photovoltaic panels. Leveraging solar and wind energy in a datacenter is
nonetheless challenging, as they are intrinsically intermittent and uncertain, whereas con-
ventional datacenter management relies on constant and reliable power supply. This thesis
investigated how these two key characteristics of solar and wind energy can be integrated
in datacenter management methods in order to use RES as efficiently as possible.

Several approaches have been presented, each work exploring a different aspect of
the overall problem. First, a scheduling algorithm designed to deal with intermittent
sources and variable cost of energy was proposed. Contrary to existing renewable-aware
approaches, the electrical model and primary data, such as the prediction of renewable
energy production, are not directly required by the algorithm. Limited knowledge is
used instead, by the way of an independent system managing the electrical infrastructure
and giving preference indications to the scheduler depending on its internal objectives.
The interest of this black-box model was demonstrated by evaluating two variants of the
electrical management, without any changes required in the scheduling algorithm itself.
Both variants reached similar performances compared to an improved version of GreenSlot,
an algorithm from the literature solving the problem by using a centralized view with both
IT and electrical models and data.

The second contribution explored the idea of black-boxes further, by considering in-
dependent and opaque management of electrical and computing infrastructures. Using
multi-objective evolutionary algorithms (MOEA) and fitness approximation techniques, it
solves the overall power planning problem in a purely multi-objective way and without
depending on specific electrical or computing models.

These two contributions show the feasibility of cooperative optimization of indepen-
dent management systems, one taking care of machines and tasks, the other optimizing
the electrical sources and energy storage devices (ESD). Such a co-optimization is ex-
pected to be less efficient than a global and centralized management with full knowledge
of both parts. In practice however, a perfect management of the overall system is hard
to achieve. This is mainly due to of the diversity of possible setups for both the data-
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center and its on-site RES and ESD, along with the immense complexity of fine models
of both infrastructures. Being able to design independently the electrical and computing
optimization systems increases the flexibility (by uncoupling the two infrastructures) and
makes it easier to finely optimize each part (by separating the concerns, hence reducing
the complexity of the considered models and allowing researchers of each domain to focus
on their area of expertise).

The last approach differed from the others by studying the holistic problem in a central-
ized way. Contrary to the intermittency, uncertainties of RES powering datacenters have
been studied in very few works. A more theoretical study has been proposed, dropping
the black-box abstraction to provide a better understanding of how uncertainties impact
the problem. By modeling it as a Markov Decision Process (MDP), the structure of the
optimal policy has been deeply analyzed. This structure has been leveraged to design an
algorithm for taking decision with proven bound from optimum, yet reducing sufficiently
the complexity to be usable on large instances. The uncertainties are rarely considered in
existing works, either totally ignored by using perfect predictions or their effects slightly
mitigated by handling incorrect predictions once they are detected. While the datacenter
and workload model is arguably simplified, this work provides robust foundations for tack-
ling more realistic models. Our simulation results have shown the benefits of accounting
uncertainties as accurately as possible, in the core of the datacenter management methods,
increasing the robustness and reliability of the decisions.

In addition to the approaches proposed to tackle intermittency and uncertainty as-
pects of RES in datacenter management, works on simulation and validation tools have
been detailed. By studying the integration of electrical infrastructure models in general-
purpose datacenter simulators, a contribution to the methodological tools has been pro-
posed. Moreover, a large-scale datacenter workload based on Google cluster traces has
been studied and its statistical characteristics analyzed. This work has led to a synthetic
workload generator, with reduced and understandable set of parameters, allowing more
robust and reproducible experiments.

7.1 Perspectives

The contributions presented in this manuscript raise some new research questions and
many perspectives may be envisioned, both as short-term research projects and broader,
long-term directions.

7.1.1 Short-term perspectives

Power consumption from non-computing parts

All the contributions presented here considered only the computing power consumption.
In a datacenter, other devices are consuming significant amount of power, with the most
important being generally networking devices and cooling systems. Several extensions of
the proposed approaches may be considered to take their power needs into account. A
first possibility is to simply model them as part of the overall IT infrastructure. Simplistic
modeling of cooling consumption may be added through Power Usage Effectiveness (PUE)
factor, for instance. More advanced approaches may be used to allow the cooling system
to leverage its temporal flexibility, i.e. by cooling slightly more than necessary when
renewable energy is available to reduce the consumption afterwards [120].

The second possibility is to consider each other system as a partially-independent
black-box. As for the cooling system, it needs to interact both with the IT task and
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machine management (to provide the required cooling) and with electrical infrastructure
(to take energy availability into account).

Co-simulation of datacenters and electrical sources

As of today, it is difficult for researchers working on RES integration to datacenters to
have an access to real testbed. Hence the design and validation of approaches is usually
performed by simulation. However, no single generic simulation platform emerged in the
community, leading to many works being evaluated using ad-hoc numerical simulation. In
addition to taking precious time to researchers in software development and debugging, it
makes more difficult to reproduce approaches and their results.

The work on DCworms presented in section 3.1 showed it is possible to extend existing
datacenter simulators, which are already heavily used and supported by the energy-aware
datacenter management community, to support rich electrical infrastructure simulation.
Unfortunately, this simulator extension has been poorly diffused and it was difficult to
merge the modifications in the main codebase maintained by the PSNC laboratory. To
be really useful, such an integration must be similarly supported by a significant part of
the renewable-aware community. This requires primarily to identify the most important
needs, which is a difficult task when considering the variety of existing works in terms of
used models. This variety is mainly explained by the different trade-off choices between
accuracy and ease of use of the models, but also by the youth of the research area.

Therefore, a common effort from different actors of the community seems critical to
design, develop and support a comprehensive simulation platform. While the initial cost
to invest is currently perceived as too high for each researcher or team, the overall benefit
seems to justify the effort. We argue that such simulation platform is the next important
step in the maturation of the renewable-aware datacenter management area. Such a
common platform is critical for the quality of future research, for making it easier to
setup realistic models and reducing the current burden of re-implementing the simulation
process used by existing works for comparing with them.

Many objectives and sequential decision making

A large proportion of the existing works tackles the renewable-powered datacenter man-
agement as a single objective problem, after considering either the quality of service or
some environmental criteria as a hard constraint. We argued in the manuscript the intrin-
sically multi-objective aspect of the overall problem: even if the service level agreement
incorporates economical compensation in case of QoS violation, this should be considered
in the trade-off with ecological impact. The contribution detailed in chapter 5 showed the
feasibility of multi-objective power planning optimization resulting in a comprehensive
set of Pareto-optimal trade-offs. However, the choice of a specific solution has not been
explored and is let to an abstract decision maker.

When multiple decision epochs are considered, the overall problem becomes a multi-
objective sequential decision making problem. Future works may explore this long-term
variant, for instance through multi-objective reinforcement learning [189] or using multi-
objective Monte-Carlo tree search [196]. It is worth noting that these approaches require,
in addition to the reward on each objective associated with a possible decision, information
on the current state of the overall system, e.g. the state of charge of the various ESD or
the waiting and running workload. Oppositely, black-boxes as formulated in chapter 5
are designed to prevent state-related information to be accessible. Hence additional study
should explore how some aspects of the internal IT and electrical states could be exposed
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while preserving as much as possible the benefits of a black-box design. Formulated
differently, it means finding minimal representation of internal states for these “gray-
boxes” to provide enough information for inferring the impact of a decision (implementing
a possible power profile) on their future capabilities and constraints.

Another perspective is the extension to more objectives. The cooperative multi-
objective optimization presented here used two objectives, one per decision module: eco-
logical impact and quality of service. The approach may be extended to handle more
objectives, some of them being shared between decision modules. For instance, the eco-
nomical aspect of a public datacenter depends both on energy cost and revenue from users
submitting the workload. Taking the economical objective into account, without ignor-
ing the others, is a promising perspective to improve the acceptance of such approach by
existing datacenter operators.

Other sources of uncertainty

Renewable source production is certainly an important, but not the only source of uncer-
tainty. The workload of the datacenter contains many uncertain dimensions, even outside
the context of renewable-aware management. First, whatever the workload type is (batch-
like, services or mix of them), its arrival is rarely known with precision. Similarly, the
resource consumption of a given task or of a given service is seldom known with certainty,
especially if the users that submit the workload are exteriors from the datacenter opera-
tor (public and hybrid clouds for instance). Finally, for batch workload specifically, the
duration of a task is usually estimated by the user, but with a large margin of error.

As we showed in section 3.2, the different aspects of a given workload obey to some
distribution laws. In some contexts, such as interactive services for end users in a geograph-
ically limited area, cyclic patterns due to time of activity (daily work hours, week-end...)
can also be used to predict expected future load. By taking into account both prediction
and its uncertainty, the computing resources and the ESD may be used more efficiently
by anticipating the most likely scenarios as well as some less probable ones. The method
used to study the problem in chapter 6 is not easily extendable to some complex mod-
els, specifically if they require to maintain many state information as high dimensional
states MDP are especially hard to analyze. Large states may be need for instance to keep
track of long tasks requiring several decision epochs to be completed. Other methods can
be used to increase the robustness of existing approaches while increasing the outcome
in most probable scenarios, such as Monte Carlo simulations techniques and stochastic
programming.

7.1.2 Long-term directions

Towards cooperative datacenters on the smart grid

Along this thesis, we focused on the management of a single datacenter with its own
micro-grid including RES and ESD. Many works show the benefits of considering multiple,
geo-distributed datacenters cooperating or competing when RES are used. Doing so adds
a new mechanism to handle intermittent production, which is the spatial distribution of
weather conditions. It also provides better models of datacenter integration in a large
(global or national) electrical grid: these energy-hungry facilities are promising candidates
for demand-response scheme designed by the smart grid community.

Nowadays, works are almost hermetically partitioned between single datacenter with
on-site renewable production and geo-distributed datacenters management. In the former
setting, the research focuses usually on realistic computing resources and workload models,
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at the cost of simplified power production and storage devices representation, often without
modeling the complex behaviors of a smart grid. Oppositely, the latter geo-distributed
works rely generally on more realistic models of electrical sources and grid behaviors, but
ignore many important aspects of the workload and of the machines.

In a near future, with the rise of distributed small and medium-scaled RES power
plants and the modernization of regional electrical infrastructure, the smart grid will
likely become a more and more tangible concept. The IT area is also evolving towards
more distributed vision instead of huge centralized datacenters, as shown by the recent
interest in concepts such as the Edge Computing [173]. In this context, a promising
research direction is a closer integration of datacenter management with the smart grid.
The existing geo-distributed works give many clues on the challenges and opportunities of
this model. Future works should focus on using more realistic demand-response schemes
together with detailed IT models and study cooperative mechanisms to distribute the
workload among distributed datacenters.

Questioning the humans behind the machines: users and developers

Current researches on sustainable datacenters usually assume an implicit hypothesis: com-
pared to current usage, the same service is expected from users, with few or no modifi-
cations of existing software providing it. Hence, few works study how end-users accept
potential lower service quality if they are helping RES integration. Similarly, taking into
account intermittency and uncertainty of RES at the application level is rarely studied,
with the notable exception of embedded systems area [83].

Meanwhile, the ecological awareness is growing, with more and more people under-
standing (or at least trying to understand) the implications of their actions on the environ-
ment and accepting some trade-offs between their desire and the ecological consequences.
To avoid the increased energy efficiency of datacenters from leading into a greater overall
energy consumption due to the rebound effect [69], the behaviors of users and develop-
ers must be taken into account. Future works should investigate the trade-offs between
performances and environmental impact accepted by users in the context of computing
services, which is a central aspect of a global sustainability. Some real-world, empirical
experiments may be pointed out, such as the website of Low-tech Magazine1 running on
a small server powered only by photovoltaic panels and a battery. Instead of sizing the
electrical infrastructure for the needs of the existing, always-available website, they re-
designed it entirely to minimize its power need (using low-resolution illustrations and less
modern-looking style for instance) and accept occasional disruptions when several days of
unfavorable weathers occur in a row.

Two complementary axes appear therefore interesting. The first is to give more ways
for the end users to adapt their trade-off between quality or reliability and environmental
impact. This requires both to understand the expectations of these users, which involves
sociological studies, and providing enough information to help them to do a choice with
all required knowledge. The second axis is the modification of the software, from the
operating systems to the development frameworks and applications themselves, in order
to make them more sustainable and to take into account user preferred trade-offs. Making
applications more sustainable may mean first taking energy consumption into account
during development phases. But in the context of interactive services running on machines
powered by intermittent RES, the applications could also be designed to integrate well with
a variable energy availability: supporting degraded, low-consumption modes or handling

1Low←tech Magazine website: https://solar.lowtechmagazine.com/about.html
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temporary failures in some cases.
Obviously, some of the datacenter use-cases are more difficult to adapt in this way than

others. However, these possibilities are still largely unexplored as of today, at a time where
a sustainability without significant changes of behaviors seems more difficult to envision
than ever.
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Appendix A

Full proofs of Chapter 6:
imperfect batteries

A.1 Unbounded batteries and workload

A.1.1 Partial differentiates Qt(b, a)
Case a ≥ b We recall that if a ≥ b, Qt(b, a) = rt(b, a) +∑3

i=1Qt,3(b, a), and we already
computed

∂Qt,1
∂b

(b, a) =
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

∂Qt,2
∂b

(b, a) = −Vt+1(0) · qt(a− b).

∂Qt,3
∂b

(b, a) =
∫ 1

0
qt(a− be) · Vt+1(b(1− e))de

+ b

(∫ 1

0

(
(−e) · q′t(a− be) · Vt+1(b(1− e))

+ (1− e) · qt(a− be) · V ′t+1(b(1− e))
))
de

∂Qt,3
∂b

(b, a) =
∫ 1

0
qt(a− be) · Vt+1(b(1− e))de+ b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

+
∫ 1

0

(
e · (−b)q′t(a− be) · Vt+1(b(1− e))

+ e · qt(a− be) · (−b)V ′t+1(b(1− e))
)
de

We integrate by parts the last integral, differentiating e 7→ e and integrating e 7→ (−b)q′t(a−
be) · Vt+1(b(1− e)) + qt(a− be) · (−b)V ′t+1(b(1− e))

∂Qt,3
∂b

(b, a) =
∫ 1

0
qt(a− be) · Vt+1(b(1− e))de+ b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

+ [e · qt(a− be) · Vt+1(b(1− e))]10 −
∫ 1

0
qt(a− be) · Vt+1(b(1− e))de

∂Qt,3
∂b

(b, a) = b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de+ qt(a− b) · Vt+1(0)
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Altogether

∂Qt
∂b

(b, a) = (c+ + c−) · Ft(a− b) +
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

− Vt+1(0) · qt(a− b) + b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

+ qt(a− b) · Vt+1(0)
∂Qt
∂b

(b, a) = (c+ + c−) · Ft(a− b) +
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

+ b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

We obtain ∂Qt

∂a (b, a) similarly.

∂rt
∂a

(b, a) = c+ − (c+ + c−) ·
( ∫ 1

0
Ft((a− b)e)de

+ (a− b) ·
∫ 1

0
eqt((a− b)e)de

)
Then we integrate by parts the second integral, differentiating e 7→ e and integrating
e 7→ (a− b)qt((a− b)e)

∂rt
∂a

(b, a) = c+ − (c+ + c−) ·
( ∫ 1

0
Ft((a− b)e)de

+ [eFt((a− b)e)]10 −
∫ 1

0
Ft((a− b)e)de

)
∂rt
∂a

(b, a) = c+ − (c+ + c−) · Ft(a− b)

∂Qt,1
∂a

(b, a) =
∫ ∞

0
q′t(a+ e) · Vt+1(b+ ηe)de

We get rid of the q′t to keep only expressions where qt is not differentiated. To do that,
we integrate by parts, integrating q′t(a+ e) and differentiating Vt+1(b+ ηe).

∂Qt,1
∂a

(b, a) = [qt(a+ e) · Vt+1(b+ ηe)]∞0 − η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

∂Qt,1
∂a

(b, a) = −qt(a) · Vt+1(b)− η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

We also have

∂Qt,2
∂a

(b, a) = Vt+1(0) · qt(a− b)

and

∂Qt,3
∂a

(b, a) = b ·
∫ 1

0
q′t(a− be) · Vt+1(b(1− e))de
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We integrate by parts, integrating e 7→ bq′t(a− be) and differentiating e 7→ Vt+1(b(1− e)).
∂Qt,3
∂a

(b, a) = [−qt(a− be) · Vt+1(b(1− e))]10 − b
∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

∂Qt,3
∂a

(b, a) = qt(a)Vt+1(b)− qt(a− b)Vt+1(0)− b
∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

Finally
∂Qt
∂a

(b, a) = c+ − (c+ + c−) · Ft(a− b)

− qt(a) · Vt+1(b)− η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

+ Vt+1(0) · qt(a− b)

+ qt(a)Vt+1(b)− qt(a− b)Vt+1(0)− b
∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

∂Qt
∂a

(b, a) = c+ − (c+ + c−) · Ft(a− b)− η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

− b
∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

We compute now the second order differentiates.
∂2rt
∂a2 (b, a) = −(c+ + c−)qt(a− b)

The differentiate along a of the first integral in ∂Qt

∂a (b, a) can be obtained through the same
techniques that we use to compute ∂Qt,1

∂a (b, a) with V ′t+1 instead of Vt+1. In addition, for
similar reasons, all partial differentiates exist and are continuous, which makes Qt of class
C2.
∂

∂a

(∫ ∞
0

qt(a+ e) · V ′t+1(b+ ηe)de
)

= −qt(a) · V ′t+1(b)− η
∫ ∞

0
qt(a+ e) · V ′′t+1(b+ ηe)de

The differentiate along a of the second integral is also similar to the differentiation
along a of Qt,3.

∂

∂a

(
b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))

)
= qt(a)V ′t+1(b)− qt(a− b)V ′t+1(0)

− b
∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de

This finally leads to

∂2Qt
∂a2 (b, a) = −(c+ + c−)qt(a− b)

− η ·
(
−qt(a) · V ′t+1(b)− η

∫ ∞
0

qt(a+ e) · V ′′t+1(b+ ηe)de
)

−
(
qt(a)V ′t+1(b)− qt(a− b)V ′t+1(0)− b

∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de

)
∂2Qt
∂a2 (b, a) =

(
V ′t (0)− (c+ + c−)

)
· qt(a− b)− (1− η) · qt(a) · V ′t+1(b)

+ η2
∫ ∞

0
qt(a+ e) · V ′′t+1(b+ ηe)de

+ b

∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de
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We compute now ∂2Qt

∂b2 (b, a).

∂2rt
∂b2 (b, a) = −(c+ + c−)qt(a− b)

∂

∂b

(
b ·
∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

)
= b

∫ 1

0
qt(a+ be) · V ′′t+1(b(1− e))de

+ qt(a− b) · V ′t+1(0)

Therefore

∂2Qt
∂b2 (b, a) = −(c+ + c−)qt(a− b)

+
∫ ∞

0
qt(a+ e) · V ′′t+1(b+ ηe)de

+ b

∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de+ qt(a− b) · V ′t+1(0)

∂2Qt
∂b2 (b, a) =

(
V ′t+1(0)− (c+ + c−)

)
· qt(a− b)

+
∫ ∞

0
qt(a+ e) · V ′′t+1(b+ ηe)de

+ b

∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de

Finally,

∂2Qt
∂a∂b

(b, a) = ∂

∂a

(
∂Qt
∂b

(b, a)
)

= (c+ + c−) · qt(a− b)

+ ∂

∂a

(∫ ∞
0

qt(a+ e) · V ′t+1(b+ ηe)de
)

+ ∂

∂a

(
b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

)
= (c+ + c−) · qt(a− b)

− qt(a) · Vt+1(b)− η
∫ ∞

0
qt(a+ e) · V ′′t+1(b+ ηe)de

+ qt(a)Vt+1(b)− qt(a− b)Vt+1(0)− b
∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de

∂2Qt
∂a∂b

(b, a) =
(
(c+ + c−)− V ′t (0)

)
· qt(a− b)

− η
∫ ∞

0
qt(a+ e) · V ′′t+1(b+ ηe)de

− b
∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de
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Case a ≤ b

∂Qt,4
∂a

(b, a) =
∫ ∞

0
q′t(a+ e) · Vt+1(b+ ηe)de

= [qt(a+ e) · Vt+1(b+ ηe)]∞0 − η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

∂Qt,4
∂a

(b, a) = −qt(a) · Vt+1(b)− η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

∂Qt,5
∂a

(b, a) =
∫ 1

0
qt(ae) · Vt+1(b− a(1− e))de

+ a

∫ 1

0

(
eq′t(ae) · Vt+1(b− a(1− e))de+ qt(ae) · (e− 1)V ′t+1(b− a(1− e))

)
de

=
∫ 1

0
qt(ae) · Vt+1(b− a(1− e))de

+ [eqt(ae)Vt+1(b− a(1− e))]10 −
∫ 1

0
qt(ae) · Vt+1(b− a(1− e))de

− a
∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

∂Qt,5
∂a

(b, a) = qt(a)Vt+1(b)− a
∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

All put together

∂Qt
∂a

(b, a) = c+

− qt(a) · Vt+1(b)− η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de

+ qt(a)Vt+1(b)− a
∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

∂Qt
∂a

(b, a) = c+ − η
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de− a

∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

∂2Qt
∂a2 (b, a) = η2

∫ ∞
0

qt(a+ e) · V ′′t+1(b+ ηe)de+ a

∫ 1

0
qt(ae) · V ′′t+1(b− a(1− e))de

∂Qt
∂b

(b, a) =
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de+ a

∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

∂2Qt
∂b2 (b, a) =

∫ ∞
0

qt(a+ e) · V ′′t+1(b+ ηe)de+ a

∫ 1

0
qt(ae) · V ′′t+1(b− a(1− e))de

203



A.1. Unbounded batteries and workload

∂2Qt
∂a∂b

(b, a) =
∫ ∞

0
q′t(a+ e) · V ′t+1(b+ ηe)de

+
∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

+ a

∫ 1

0
(eq′t(ae) · V ′t+1(b− a(1− e))− (1− e)qt(ae) · V ′′t+1(b− a(1− e)))de

=
[
qt(a+ e) · V ′t+1(b+ ηe)

]∞
0 − η

∫ ∞
0

qt(a+ e) · V ′′t+1(b+ ηe)de

+
∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

+
∫ 1

0
(eaq′t(ae) · V ′t+1(b− a(1− e)) + eqt(ae) · aV ′′t+1(b− a(1− e)))de

− a
∫ 1

0
qt(ae) · V ′′t+1(b− a(1− e))de

= −qt(a) · V ′t+1(b)− η
∫ ∞

0
qt(a+ e) · V ′′t+1(b+ ηe)de

+
∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

+
[
eqt(ae) · V ′t+1(b− a(1− e))

]1
0 −

∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))

− a
∫ 1

0
qt(ae) · V ′′t+1(b− a(1− e))de

∂2Qt
∂a∂b

(b, a) = −η
∫ ∞

0
qt(a+ e) · V ′′t+1(b+ ηe)de− a

∫ 1

0
qt(ae) · V ′′t+1(b− a(1− e))de
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A.1.2 Extension of the proof of lemma 12

Let (b, a, h) ∈ B ×A× R+. We have that

∂Qt
∂a

(b+ ηh, a+ h)− ∂Qt
∂a

(b, a)

=c+ − (c+ + c−) · Ft(a− b+ (1− η)h)

− η
∫ ∞
a+h

qt(e) · V ′t+1(b+ η(e− a))de

−
∫ a+h

a−b+(1−η)h
qt(e) · V ′t+1(b+ e− a− (1− η)h)de

− c+ + (c+ + c−) · Ft(a− b)

+ η

∫ ∞
a

qt(e) · V ′t+1(b+ η(e− a))de

+
∫ a

a−b
qt(e) · V ′t+1(b+ e− a)de

=−
∫ a−b+(1−η)h

a−b
qt(e)(c+ + c−)de

+ η

∫ a+h

a
qt(e) · V ′t+1(b+ η(e− a))de

−
∫ a+h

a
qt(e) · V ′t+1(b+ e− a− (1− η)h)de

−
∫ a

a−b+(1−η)h
qt(e) ·

(
V ′t+1(b+ e− a− (1− η)h)− V ′t+1(b+ e− a)

)
de

+
∫ a−b+(1−η)h

a−b
qt(e) · V ′t+1(b+ e− a)de

=−
∫ a−b+(1−η)h

a−b
qt(e)

(
(c+ + c−)− V ′t+1(b+ e− a)

)
de

−
∫ a+h

a
qt(e) ·

(
V ′t+1(b+ e− a− (1− η)h)− ηV ′t+1(b+ η(e− a))

)
de

−
∫ a

a−b+(1−η)h
qt(e) ·

(
V ′t+1(b+ e− a− (1− η)h)− V ′t+1(b+ e− a)

)
de

A.1.3 Corollary of lemma 12

Corollary 1. If (Ht+1) is true and if there exists (b0, a0, a
′
0) ∈ B ×A2 such that a0 < a′0

and

∀a ∈ [a0, a
′
0], ∂Qt

∂a
(b, a) = 0

then

∀b ∈ [b0, b0 + η · (a′0 − a0)], ∀a ∈ [a0 + η−1 · (b− b0), a′0], ∂Qt
∂a

(b, a) = 0

and

∀b ∈ [b0 − η · (a′0 − a0), b0], ∀a ∈ [a0, a
′
0 − η−1 · (b0 − b)],

∂Qt
∂a

(b, a) = 0
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Proof. We assume that (Ht+1) is true and that there exists (b0, a0, a
′
0) ∈ B×A2 such that

a0 < a′0

∀a ∈ [a0, a
′
0], ∂Qt

∂a
(b, a) = 0,

and we will show that

∀h ∈ R+, h ≤ a′0 − a0 ⇒
∂Qt
∂a

(b0 + η · h, a0 + h) = 0.

Let h ∈]0, a′0 − a0]. According to eq. (6.21), we have ∂Qt

∂a (b + ηh, a + h) ≤ ∂Qt

∂a (b, a).
By hypothesis, ∂Qt

∂a (b, a + h) = ∂Qt

∂a (b, a), thus ∂Qt

∂a (b + ηh, a + h) ≤ ∂Qt

∂a (b, a + h). Since
we know that ∂2Qt

∂b∂a (b, a) ≥ 0, we get ∂Qt

∂a (b+ ηh, a+ h) ≥ ∂Qt

∂a (b, a+ h). As a consequence,
∂Qt

∂a (b+ ηh, a+ h) = ∂Qt

∂a (b, a+ h) = 0.
This holds for any h ∈]0, a′0 − a0], hence the first part of the corollary. The same line

of reasoning with (b − h, a − h) instead of (b + h, a + h) and (b − ηh, a − h) instead of
(b− ηh, a+ h), leads to the second part of the corollary.

A.1.4 Extension of the proof of lemma 14

We assume that (Ht+1) is true. Let b ∈ B such that ∂2Qt

∂a2 (b,m(b)) = 0. We show that V ′t
is differentiable in b by demonstrating that for any ε ∈ R+

? , there exists r ∈ R+
? such that

for all b′ ∈ B,

|b− b′| < r ⇒

∣∣∣∣∣∣
Qt(b,m(b))−Qt(b′,m(b′))

b−b′ − ∂Qt

∂b (b,m(b))
b− b′

− ∂2Qt
∂b2 (b,m(b))

∣∣∣∣∣∣ < ε.

Let ε ∈ R+
? . Qt is twice differentiable, hence for all a ∈ A there exists r1 such that

∀b′ ∈ B, |b− b′| < r2 ⇒

∣∣∣∣∣∣
Qt(b,a)−Qt(b′,a)

b−b′ − ∂Qt

∂b (b, a)
b− b′

− ∂2Qt
∂b2 (b, a)

∣∣∣∣∣∣ < ε

2 .

In addition, for all (b′, a′) ∈ B ×A there exists r2 such that

∀a ∈ A, |a− a′| < r2 ⇒

∣∣∣∣∣∣
Qt(b′,a)−Qt(b′,a′)

a−a′ − ∂Qt

∂a (b′, a)
a− a′

− ∂2Qt
∂a2 (b′, a)

∣∣∣∣∣∣ < η2ε

2 .

Especially, for all (b′, a′) ∈ B ×A

|m(b′)− a′| < r2 ⇒

∣∣∣∣∣∣
Qt(b′,m(b′))−Qt(b′,a′)

m(b′)−a′ − ∂Qt

∂a (b′,m(b′))
m(b′)− a′ − ∂2Qt

∂a2 (b′,m(b′))

∣∣∣∣∣∣ < η2ε

2

⇒
∣∣∣∣Qt(b′,m(b′))−Qt(b′, a′)

(m(b′)− a′)2

∣∣∣∣ < η2ε

2 ,

which means for all b′ ∈ B

|m(b′)−m(b)| < r2 ⇒
∣∣∣∣Qt(b′,m(b′))−Qt(b′,m(b))

(m(b′)−m(b))2

∣∣∣∣ < η2ε

2 .

We have seen in the proof of lemma 13 that, according to lemma 12,

∀(b1, b2) ∈ B2, |b1 − b2| < η · r2 ⇒ |m(b1)−m(b2)| < r2.
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This leads to

∀b′ ∈ B, |b− b′| < η · r2 ⇒
∣∣m(b)−m(b′)

∣∣ < r2

⇒
∣∣∣∣Qt(b′,m(b′))−Qt(b′,m(b))

(m(b′)−m(b))2

∣∣∣∣ < η2ε

2 .

Altogether, for all b′ ∈ B, if |b− b′| < η ·min(r1, r2) then∣∣∣∣∣∣
Qt(b,m(b))−Qt(b′,m(b′))

b−b′ − ∂Qt

∂b (b,m(b))
b− b′

− ∂2Qt
∂b2 (b,m(b))

∣∣∣∣∣∣ < ε

2 + η2ε

2 ×
1
η2

< ε.

As this holds for any ε ∈ R+
? , V ′t is differentiable in b.

A.1.5 Extension of the proof of lemma 15

We know that there exists a neighborhood containing (b0,m(b0)) where m is of class C1.
Within this neighborhood, the function b 7→ ∂Qt

∂a (b,m(b)) is null, its differentiate is null as
well, therefore

∂2Qt
∂b∂a

(b,m(b)) +m′(b) · ∂
2Qt
∂a2 (b,m(b)) = 0.

We can then add freely the left member to the expression of V ′′t (b0).

V ′′t (b0) = ∂2Qt
∂b2 (b0,m(b0)) +m′(b0) · ∂

2Qt
∂a2 (b0,m(b0)) + (1 +m′(b0)) · ∂

2Qt
∂a∂b

(b0,m(b0))

=
(
m′(0)− (c+ + c−)

)
· qt(a− b0) +

∫ ∞
0

qt(a+ e) · V ′′t+1(b0 + ηe)de

+ b

∫ 1

0
qt(a− b0e) · V ′′t+1(b0(1− e))de

+m′(b0) ·
((

m′(0)− (c+ + c−)
)
· qt(a− b0)− (1− η) · qt(a) · V ′t+1(b0)

+ η2
∫ ∞

0
qt(a+ e) · V ′′t+1(b0 + ηe)de+ b

∫ 1

0
qt(a− b0e) · V ′′t+1(b0(1− e))de

)

+ (1 +m′(b0)) ·
((

(c+ + c−)−m′(0)
)
· qt(a− b0)

− η
∫ ∞

0
qt(a+ e) · V ′′t+1(b0 + ηe)de− b

∫ 1

0
qt(a− b0e) · V ′′t+1(b0(1− e))de

)
= −(1− η) · qt(a) · V ′t+1(b0) ·m′(b0)

+ (η2 + V ′t+1(b0)− (1 +m′(b0)) · η) ·
∫ ∞

0
qt(a+ e) · V ′′t+1(b0 + ηe)de

= −(1− η) · qt(a) · V ′t+1(b0) ·m′(b0)

+ (1 + η2 ·m′(b0)− (1 +m′(b0)) · η) ·
∫ ∞

0
qt(a+ e) · V ′′t+1(b0 + ηe)de

V ′′t (b0) = −(1− η) · qt(a) · V ′t+1(b0) ·m′(b0)

+ (1− η)(1− η ·m′(b0)) ·
∫ ∞

0
qt(a+ e) · V ′′t+1(b0 + ηe)de
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A.1.6 Extension of the proof of theorem 3

If πt(b) ≤ b, then according to eq. (6.18),

a

∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de = c+ − η

∫ ∞
0

qt(a+ e) · V ′t+1(b+ ηe)de

and according to eqs. (6.20) and (6.22),

V ′t (b) =
∫ ∞

0
qt(a+ e) · V ′t+1(b+ ηe)de+ a

∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de,

hence
V ′t (b) = c+ + (1− η) ·

∫ ∞
0

qt(πt(b) + e) · V ′t+1(b+ ηe)de.

A.2 Bounded batteries and unbounded workload
We develop here the Imperfect-BatteryBounded model, in which the battery has a
maximum capacity, i.e. B = {0, . . . , Bmax}. The model includes two gears, whether the
battery contains energy to cover the accepted work or not.

Case a ≥ b We decompose Qt(b, a) almost in the same way as in the Imperfect-
Unbounded model, according to the renewable energy e:

• the reward remains unchanged,
• if b + e < a, there is not enough energy, and the battery will be empty at the next

decision,
• if a− b < e < a, the renewable energy is not sufficient, and the battery is discharged

to run the accepted work,
• if a < e < a + (Bmax − b)/η, the accepted work can be fully run with renewable

energy, and the whole excess energy is stored in the battery,
• if b + η(e − a) > Bmax, the battery cannot store all the energy, and the battery is

subsequently full.
We employ the same techniques as before to obtain

Qt(b, a) = a · c+ − (c+ + c−) · (a− b) ·
∫ 1

0
Ft((a− b)e)de+ Vt+1(0) · Ft(a− b)

+ b ·
∫ 1

0
qt(a− be) · Vt+1(b(1− e))de

+ η−1(Bmax − b)
∫ 1

0
qt
(
η−1(Bmax − b)e+ a

)
Vt+1(b− (Bmax − b)e)de

+ (1− Ft(a+ η−1(Bmax − b)))Vt+1(Bmax).

The same arguments that we used when the battery was not bounded still hold and
prove that Qt is of class C2. In addition, we can differentiate under the integral, and obtain
the following similar partial differentiates.

∂Qt
∂b

(b, a) = (c+ + c−) · Ft(a− b) + b

∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

+ η−1(Bmax − b)
∫ 1

0
qt
(
η−1(Bmax − b)e+ a

)
V ′t+1(b− (Bmax − b)e)de
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∂Qt
∂a

(b, a) = c+ − (c+ + c−) · Ft(a− b)− b
∫ 1

0
qt(a− be) · V ′t+1(b(1− e))de

− (Bmax − b)
∫ 1

0
qt
(
η−1(Bmax − b)e+ a

)
V ′t+1(b− (Bmax − b)e)de

When it comes to the demonstration of the bounds, either on the differentiate of Vt
(lemmas 16 and 17) or on our optimal policy (lemma 12), the following expression shall
be preferred

∂Qt
∂a

(b, a) = c+ − (c+ + c−) · Ft(a− b)−
∫ a

a−b
qt(e) · V ′t+1(b+ e− a)de

− η
∫ a+η−1(Bmax−b)

a
qt(e)V ′t+1(b+ (e− a)η)de

∂2Qt
∂a2 (b, a) =

(
V ′t (0)− (c+ + c−)

)
· qt(a− b)− (1− η) · qt(a) · V ′t+1(b)

− η · qt(η−1(Bmax − b) + a) · V ′t+1(Bmax)

+ η

∫ 1

0
qt(η−1(Bmax − b)e+ a)V ′′t+1(b− (Bmax − b)e)de

+ b

∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de

∂2Qt
∂b2 (b, a) =

(
V ′t+1(0)− (c+ + c−)

)
· qt(a− b)

− η−1qt(η−1(Bmax − b) + a) · V ′t+1(Bmax)

+ η−1(Bmax − b)
∫ 1

0
qt(η−1(Bmax − b)e+ a)V ′′t+1(b− (Bmax − b)e)de

+ b

∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de

∂2Qt
∂a∂b

(b, a) =
(
(c+ + c−)− V ′t (0)

)
· qt(a− b)

+ qt(η−1(Bmax − b) + a) · V ′t+1(Bmax)

− (Bmax − b)
∫ 1

0
qt(η−1(Bmax − b)e+ a)V ′′t+1(b− (Bmax − b)e)de

− b
∫ 1

0
qt(a− be) · V ′′t+1(b(1− e))de

Case a ≤ b The accepted work is certainly executed. The battery is discharged only
when e < a, and part of the renewable energy is lost when e > a+ η−1(Bmax − b).

Qt(b, a) = a · c+ + a

∫ 1

0
qt(ae) · Vt+1(b− a(1− e))de

+ η−1(Bmax − b)
∫ 1

0
qt
(
η−1(Bmax − b)e+ a

)
Vt+1(b− (Bmax − b)e)de

+ (1− Ft(a+ η−1(Bmax − b)))Vt+1(Bmax)
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∂Qt
∂a

(b, a) = c+ − (Bmax − b)
∫ 1

0
qt
(
η−1(Bmax − b)e+ a

)
V ′t+1(b− (Bmax − b)e)de

− a
∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

∂Qt
∂b

(b, a) = η−1(Bmax − b)
∫ 1

0
qt
(
η−1(Bmax − b)e+ a

)
V ′t+1(b− (Bmax − b)e)de

+ a

∫ 1

0
qt(ae) · V ′t+1(b− a(1− e))de

∂2Qt
∂a2 (b, a) = qt(η−1(Bmax − b) + a) · V ′t+1(Bmax)

− (Bmax − b)
∫ 1

0
qt(η−1(Bmax − b)e+ a)V ′′t+1(b− (Bmax − b)e)de

+ a

∫ 1

0
qt(ae) · V ′′t+1(b− a(1− e))de

∂2Qt
∂b2 (b, a) =

∫ ∞
0

qt(a+ e) · V ′′t+1(b+ ηe)de+ a

∫ 1

0
qt(ae) · V ′′t+1(b− a(1− e))de

A.3 Approximations
For a given (b, a) ∈ B ×A, we find an approximation of

Pt(b, a) = V app
t+1 (0) · Ft(a− b) + (1− Ft(a+ η−1(Bmax − b)))V app

t+1 (Bmax)

+
∫ a

a−b
qt(e) · V app

t+1 (b+ e− a)de+
∫ a+η−1(Bmax−b)

a
qt(e) · V app

t+1 (b+ η(e− a))de.

We define φ a bijective function from [a− b, a+ η−1(Bmax − b)] to [0, Bmax] as

φ(e) =
{
b+ e− a if e < a
b+ η(e− a) otherwise

so that

Pt(b, a) = V app
t+1 (0) · Ft(a− b) + (1− Ft(a+ η−1(Bmax − b)))V app

t+1 (Bmax)

+
∫ a+η−1(Bmax−b)

a−b
qt(e) · V app

t+1 (φ(e))de

We assume that we have a piecewise constant discretization of V app
t+1 : there exist ε(2),

(ui)i∈{0,...,NV } and (Ṽi)i∈{0,...,NV } such that for all i ∈ {0, . . . , NV }, Ṽi = V app
t+1 (ui) and if

i < NV , then 0 < Ṽi+1 − Ṽi < ε(2).
Let `alg

t defined as

`alg
t (b, a) = Ṽ0 · Ft(a− b) + (1− Ft(a+ η−1(Bmax − b)))ṼNv

+
NV −1∑
i=0

(Ft(φ−1(ui+1))− Ft(φ−1(ui)))Ṽi.
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We show that `alg
t is not further than ε(2) from V app

t+1 . We can first let appear the dis-
cretization steps in Pt

Pt(b, a) = V app
t+1 (0) · Ft(a− b) + (1− Ft(a+ η−1(Bmax − b)))V app

t+1 (Bmax)

+
NV −1∑
i=0

∫ φ(ui+1)

φ(ui)
qt(e) · V app

t+1 (φ(e))de,

which leads by changing the variables with e← φ(e)

Pt(b, a) = V app
t+1 (0) · Ft(a− b) + (1− Ft(a+ η−1(Bmax − b)))V app

t+1 (Bmax)

+
NV −1∑
i=0

∫ ui+1

ui

1
φ′(φ−1(e)) · qt(φ

−1(e)) · V app
t+1 (e)de.

The distance between the approximation and Pt is

|Pt(b, a)− `alg
t (b, a)| =

NV −1∑
i=0

∫ ui+1

ui

φ′(e) · qt(φ−1(e)) · |V app
t+1 (e)− V app

t+1 (ui)|de

< ε(2)(Ft(a+ η−1(Bmax − b))− Ft(a− b))
|Pt(b, a)− `alg

t (b, a)| < ε(2)
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