Enhancement of Charging Resource Utilization of Electric Vehicle Fast Charging Station with Heterogeneous EV Users

Abstract

This thesis presents innovative charging resource allocation and coordination strategies that maximize the limited charging resources at FCS with heterogeneous EV users. It allows opportunistic EV users (OEVs) to exploit available charging resources with dynamic event-driven charging resource allocation and coordination strategies apart from primary EV users (PEVs) (registered or scheduled EV users). Moreover, developed strategies focus on the limited charging resources that are allocated for primary/ registered EV users (PEVs) of the FCS who access the FCS with specific privileges according to prior agreements. But the available resources are not optimally utilized due to various uncertainties associated with the EV charging process such as EV mobility-related uncertainties, EVSE failures, energy price uncertainties, etc. Developed strategies consider that idle chargers and vacant space for EVs at the FCS is an opportunity for further utilizing them with OEVs using innovative charging resource coordination strategies. This thesis develops an FCS-centric performance assessment framework that evaluates the performance of developed strategies in terms of charging resource utilization, charging completion and the quality of service (QoS) aspects of EV users. To evaluate QoS of EV charging process, various parameters such as EV blockage, charging process preemptage, mean waiting time, mean charging time, availability of FCS, charging reliability, etc are derived and analyzed. In addition, the developed innovative charging resource allocation and coordination strategies with resource aggregation and demand elasticity further enhance the charging resource utilization while providing a high QoS in EV charging for both PEVs and OEVs.publishedVersio

    Similar works