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Abstract 

This thesis is dedicated to the study of technology adoption patterns and 
their prediction in space and time. 

For the case study of Continental Portugual, a combined spatial and non-
spatial framework to characterize technology adopters is presented. The 
framework is using non-parametric inference methods rooted in 
Information Theory and explorative spatial data mining techniques. 

On this ground, a rigorous analysis of various models to represent 
technology adoption dynamics is conducted.  

Providing a simulation-based spatiotemporal technology adoption model, 
studies assess the uncertainties introduced by poor representations of 
technology adoption dynamics in  electricity network planning.  

In addition, the simulation-based model was used to investigate the effects 
of energy policy changes on technology adoption patterns. Such studies 
allow to define optimized incentive designs derived from steering 
technology adoption towards reduced systemic impacs. 
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Resumo 

Esta tese é dedicada à análise de padrões temporais e espaciais de adoção 
de novas tecnologias. 

Foram analisadas metodologias baseadas em métodos espaciais e não-
espaciais combinados para caracterizar os utilizadores mais propensos à 
adoção de novas tecnologias, utilizando, como caso de estudo, Portugal 
Continental. Estas metodologias utilizam métodos de inferência não 
paramétricos provenientes do campo da Teoria da Informação e técnicas 
exploratórias de data mining. 

Diversas metodologias para caracterizar as dinâmicas de adoção de novas 
tecnologias foram analisadas de forma rigorosa, utilizando o caso de estudo 
selecionado. 

Posteriormente, o modelo espácio-temporal desenvolvido foi utilizado para 
avaliar as incertezas introduzidas por representações mais simplistas e 
menos rigorosas da dinâmica de adoção de novas tecnologias no 
planeamento de redes de elétricas.  

Adicionalmente, o modelo de simulação foi utilizado para investigar os 
efeitos que diversas políticas energéticas terão, potencialmente, nas 
dinâmicas de adoção de novas tecnologias. Este modelo de simulação 
permite também otimizar as políticas de inventivo à adoção de novas 
tecnologias, de forma a alcançar os objetivos traçados pelas entidades 
decisoras. 
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1 Introduction 

 

The adoption of new technologies such as distributed energy resources 
(DER) requires holistic frameworks to analyse, compare and predict their 
diffusion patterns in space and time. This thesis is the first contribution of a 
sophisticated framework that allows for a more accurate and reliable 
representation of technology diffusion processes in electricity network 
planning and policy decision processes.  
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 2 

1.1 BACKGROUND  

Worldwide, residential consumers have been adopting new distributed 
energy resources (DER). This concept is nowadays taken in a broad sense, 
including photovoltaics (PV), electric vehicles (EV), distributed storage, 
together with electrified heating, ventilation and air conditioning devices 
(HVAC) [1], [2]. Such appliances impact on the individual electricity 
demand profiles and thus redesign the geography of consumers and 
generation sites [3], [4]. Hence, the substantial change of electricity network 
planning techniques and energy policy tools under the large-scale adoption 
of such appliances is deemed necessary [3]–[5]. 

Electricity networks link power generation to electricity demand. Thus, the 
geography of consumer patterns, that is, their location in space, 
consumption times and magnitude, eventually determine the layout of 
electricity networks [6]. DER are changing the distributed electricity 
consumption+generation morphology and therefore impact on network 
planning [7], [8]. However, traditional network planning routines rarely 
consider the structure and propensity of consumers to adopt new 
technologies. The reason for this is that usually planning has its roots in 
forecasting, and a common forecasting assumption is that the future is 
structurally and in human behaviour similar to the past and present.  

However, new technologies may be disruptive of a sustained pattern and 
make such assumption invalid. Consequently, usual oversimplified 
representations of DER adoption dynamics are unable to capture the large-
scale technology diffusion [9] and this will result in suboptimal network 
investment decisions [3], [10], [11]. Recent studies suggest that the 
prediction of future spatial distributions of DER such as PV, EV, and HVAC 
may bring in high economic value to energy utilities. In a first case study, 
absent or existing, accurate DER adoption forecasts could decrease or 
increase network companies revenues by several millions of U.S. dollars per 
TWh consumed [12]. 

On the other hand, the installation and operation of DER at the consumer’s 
site, or their generalized use (such a with EVs) does offer potential benefits, 
including self-consumption, arbitrage trade, shifted consumption and 
flexibility provision [13]. Energy policies that stimulate the use of DER in a 
synergetic way can provide substantial value additions – both for the 
individual consumer level as well as for the electricity system as a whole 
[14]–[18]. Examples of such benefits are reduced electricity bills through 
increased self-consumption, price arbitrage, and revenues from providing 
system services like demand response. Relevant system benefits are 
reduced CO2 emissions, reduced peak loads, and less congestion and losses 
in distribution grids. At the same time, new business models are emerging 
that are also possible cause for other types of disruptions; e.g. net metering 
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introduced potential perspectives of serious unbalance in the soundness of 
the traditional financial operation of distribution utilities and storage is 
pressing business models to be supported more on CAPEX than OPEX. 

The usability of synergetic potentials requires complete understanding of 
the mechanisms that drive technology adoption and models capable of 
predicting their occurrence within electricity networks. In order to exploit 
such potential benefits and mitigate problems derived from DER, locational 
and temporal signals for DER utilization must become well-concerted [17].  

The implementation of incentive schemes to induce technology adoptions 
or behaviour changes is a common tool in public policies. Incentive designs 
affect the nature and grade of consumers’ decision to adopt a certain 
technology. Therefore, they represent the first and necessary condition for 
determining the spatial distribution of DER within a social system. 
Electricity tariffs, on the other hand, contribute to steer the temporal use of 
a technology at a location. They therefore represent the, second, sufficient 
condition to exploit DER synergies. 

This thesis is dedicated to analysing the first, necessary condition – 
spatiotemporal patterns of DER adoption, under a diversity of stimuli. The 
impacts of new technologies in the power system structure and operation 
are modelled as a diffusion process, and the spatiotemporal progressive 
impacts are observed with appropriate tools and tested in study cases, in a 
globally novel approach. 

The thesis presents a sophisticated framework that allows for a more 
accurate and reliable representation of technology diffusion processes in 
electricity network planning and policy decision processes. This study is of 
the utmost importance, in a time of change of paradigms. 

1.2 RESEARCH QUESTIONS 

 

The thesis presents a framework to characterize technology adopters as well 
as a rigorous analysis of various models to represent technology adoption 
dynamics in electricity network planning and energy policy studies. The 
presented tools enable a detailed characterization of technology diffusion 
processes in space and time and allow for both insight and foresight, having 
a high applicability both to policy analysis and electricity network planning. 

To understand the lines of investigation pursued, a set of research questions 
was identified and organized. The first block of research questions aims at 
surveying and further-developing approaches to categorize DER adopters. 
Furthermore, DER adoption drivers and descriptive analysis of resulting 
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 4 

patterns shall be investigated on, showcasing methodological advances on 
a case study (Continental Portugal). Eventually, produced outcomes are 
further used to develop a spatiotemporal model for DER adoption 
forecasting. 

Previously mentioned research gaps are addressed in Chapter 2 and 
Chapter 3. The corresponding research questions these chapters answer are: 

• How can one describe and compare technology adoption patterns? 

• How to predict technology adoption patterns in space and time? 

• Which components do spatiotemporal technology adoption models 
typically consist of? 

• Along which criteria can technology adoption models be categorized? 

Instead, Chapter 4 and Chapter 5 are directed towards research questions 
that originate in current challenges in electricity network planning and 
policy analysis and design. Those are: 

• What are the effects of different technology representations on 
electricity network planning? 

• How do different policy designs affect system expansion costs and 
distributional effects? 

• Can orchestrated incentive designs reduce such costs/effects? 

Finally, a global, guiding research question that has been followed 
throughout this thesis is: 

• How can one enhance the representation and modelling of 
technology diffusion dynamics in electricity network planning and 
policy design studies? 

1.3 THESIS CONTRIBUTIONS 

 

The thesis presents a set of conceptual and mathematical models applied to 
case studies. Such models allow to characterize, compare and predict 
technology diffusion dynamics. The resulting framework is used to explore 
a variety of current challenges present in electricity network planning and 
energy policy design throughout this thesis’ chapters. 

The thesis introduces a spatiotemporal DER adoption forecasting model 
that can mimic large-scale technology diffusion dynamics in space and time. 
Apart of a thorough validation process, it has been consecutively applied to 
explore interlinked topics in electricity network planning and energy policy 
design.  
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One of the originalities of this work lies in its multidisciplinary 
embeddedness and comprises contributions to a wide array of academic 
fields, including diffusion research, electricity network planning and 
energy policy design and markets. 

To allow a reader to understand the lines of development of the research 
reported in this thesis, the main contributions of the thesis are immediately 
referred to below, and will be further commented in the Conclusions 
chapter. They can be differentiated along conceptual, methodological and 
case study-level: 

Main conceptual advances: 

• Measuring DER adoption pattern dispersion using spatial data 

mining. 

• Establishment of a framework to compare different technology 

adoption forecasting techniques, including a thorough analysis of 

the potentials and limitations of technology diffusion models. 

Main methodological advances: 

• Extension of technology adopter characterizations to non-parametric 

approaches rooted in Information Theory. 

• Development of a flexible, census data-based spatiotemporal model 

to forecast DER adoption. 

• New metrics for measuring the uncertainty in flows between the 

transmission-distribution boundary. 

• Modelling the spatial DER adoption patterns under different policy 

designs. 

• Methodology to estimate the trade-offs of DER system integration 

cost versus adoption asymmetries. 

Main case studies: 

• Holistic description of Portuguese DER technology adopters and 

adoption drivers. 

• Network expansion cost estimates under different representations of 

the DER adoption process in Porto Municipality and Continental 

Portugal. 

• Study of the effect of various policy designs on electricity network 

expansion and technology distribution asymmetries in Continental 

Portugal. 
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1.4 THESIS STRUCTURE 

 

The thesis comprises six chapters. While this chapter provides a brief 
description of the background and scope of this thesis, Chapter 2 
systematically reviews past research that has been directed to the 
characterization of energy technology adopters. Differentiating between 
spatial and non-spatial approaches, Chapter 2 further presents a combined 
non-spatial/spatial analysis of EV, PV and HVAC adopter in Continental 
Portugal. 

Chapter 3 is dedicated to the introduction of models that are currently 
available to model technology diffusion in space and time. It introduces the 
main theoretical frameworks on technology adoption and diffusion. After 
highlighting current state-of-the-art models on energy technology diffusion, 
this section further presents the spatiotemporal discrete-state technology 
diffusion model that has been introduced in the frame of this thesis. 
Furthermore, this chapter contains a comparison of the proposed model to 
current state-of-the-art models used to forecast technology adoption 
patterns in space and time. 

Chapter 4 presents the application of the developed spatiotemporal 
technology diffusion model to electricity network planning problem. Both 
distribution and transmission network case studies have been conducted. 
This chapter shows the models relevance under a spatial perspective of 
electricity network planning. 

Building on the outcomes of Chapter 3 and Chapter 4, Chapter 5 analyses 
the effects of changes in policy designs. It introduces and discusses different 
energy policy instruments currently used to stimulate the diffusion of 
energy technologies. It further investigates how changes in energy policy 
instruments affect the spatial distribution and thus, the impact of energy 
technologies. Additionally, the effect of different incentive designs in 
adoption asymmetry and the allocation of technologies’ benefits are 
assessed. 

Finally, Chapter 6 presents the main conclusions drawn from the studies 
contained in this thesis. This chapter not only presents a thorough 
discussion on model development and simulation outcomes, but further 
provides a detailed outlook to future applications and open research 
questions. 

The wide range of contributions presented in this thesis is reflected in its 
intrinsic structure: each of the chapters is presented as a self-contained 
section. Therefore, a dedicated conceptual review and the presentation of 
previous works is placed at the beginning of each of such chapters. Such 
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introduction contextualizes the models and numerical analysis presented 
hereafter. The thesis structure and research questions addressed are shown 
in Figure 1.1. 

 

 

Figure 1.1 Thesis structure and questions addressed 
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1.5 A NOTE ON CASE STUDIES AND DATA SOURCES 

 

The proposed models and idea-sets of this thesis have been widely tested 
and applied to realistic case studies. Using openly available census data-set 
from the Portuguese Institute of Statistics [19], this thesis embraces studies 
from municipal distribution system level to analysis that spans over both 
major parts of the national distribution system and distribution-
transmission interface of Continental Portugal. 

The advancements presented especially in Chapter 2 and 3 have been made 
possible through the provision of detailed information on energy 
technology adopters. The complete set of residential EV adopters by the end 
of year 2016 could be retrieved through the Portuguese charging 
infrastructure platform operator. Further adopter data-sets including a 
subset of residential PV and HVAC adopters have been provided through 
the Portuguese energy agency (ADENE). The joint availability of adopter 
information comprising various technologies allowed for unique insights 
that have been impossible to retrieve within many other studies. 

Finally, information on the Portuguese electricity distribution system, 
notably the geographical location, installed capacity and peak-load values 
of HV/MV transformers have been publicly available under [20], [21]. 
Based on those, HV/MV transformer service areas, that is, spatial zones that 
are supplied by a given HV/MV transformer, could be computed using 
Voronoi diagrams. This process will be detailed in Chapter 4. 

All models presented in this thesis are flexible in the sense that presented 
approaches can be transferred to any other distribution or transmission case 
study in case respective input data are provided. It is assumed that for 
industrial implementation, distribution system operators can reconstruct 
and refine population information unleashing extensive customer 
information stored in their client data-bases. 

Transmission grid planners and operators, on the other hand, may exploit 
already existing data-sets such as the TIGER products [22] that cover the 
United States of America perimeter or the European census hub [23]. Such 
data-bases come with sufficient granularity that is required for transmission 
planning and can be crossed with information on the installation of energy 
technologies in each census polygon. 

Although the thesis addresses aspects of power system planning, the 
presented spatiotemporal technology diffusion model represents a 
convenient tool to build spatially resolved scenarios for many future 
technologies or other network industries such as water, ICT or 
transportation. 
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1.6 SCIENTIFIC PUBLICATIONS 

 

The scientific advancements presented in this thesis were published in five 
international journals and seven international conference contributions. 
Currently, two additional publications are prepared. All international 
publications are shown below: 

 

International journal papers 

I. F. Heymann, J. Silva, V. Miranda, J. Melo, F. J. Soares, and A. Padilha-
Feltrin, “Distribution network planning considering technology 
diffusion dynamics and spatial net-load behavior,” Int. J. Electr. 
Power Energy Syst., vol. 106, pp. 254–265, 2019. 
 

II. F. Heymann, P. Duenas, F. J. Soares, V. Miranda, I. Perez-Arriaga, R. 
Prata, “Orchestrating incentive designs to reduce adverse system-
level effects of large-scale EV/PV adoption – The case of Portugal”, 
Applied Energy, vol. 256, 113931, 2019. 
 

III. L. Rodrigues, H. M. Bolognesi, J. D. Melo, F. Heymann, and F. J. 
Soares, “Spatiotemporal model for estimating electric vehicles 
adopters,” Energy, vol. 183, 2019. 
 

IV. F. Heymann, F. J. Soares, P. Duenas, and V. Miranda, “Explorative 
Spatial Data Mining for Energy Technology Adoption and Policy 
Design Analysis,” Springer Lect. Notes Artif. Intell., vol. 11804, pp. 1–
11, 2019. 
 

V. F. Heymann, M. Lopes, F. vom Scheidt, J.M. Silva, P. Duenas, F. J. 
Soares and V. Miranda, “DER Adopters analysis with Spatial 
Autocorrelation and Information Gain Ratio under different Census-
data Aggregation Levels,” IET Renew. Power Gener., vol.  14 , issue 1, 
2019. 
 
 

International conferences 

VI. F. Heymann, P. Vilaca, J.V. Silva, P. Duenas, J. Melo, F. J. Soares and 
V. Miranda, “Vertical Load Uncertainty at the T/D Boundary under 
different spatial DER allocation techniques,” IEEE Sustainable Energy 
Systems and Technologies Conference, Porto, 2019. 
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VII. F. Silvestro, F. Pilo, F. Heymann, M. C. Alvarez-Herault, M. Braun, J. 
C. Araneda, J. Taylor, “Review of transmission and distribution 
investment decision making processes under increasing energy 
scenario uncertainty” 25th International Conference on Electricity 
Distribution (CIRED), Madrid, 2019. 
 

VIII. F. Heymann, V. Miranda, M. Lopes, F. J. Soares, and A. Dias, 
“Synergies between Electric Vehicles and Distributed Renewable 
Generation?”, 11th Mediterranean Conference on Power Generation, 
Transmission, Distribution and Energy Conversion (MEDPOWER 2018), 
Dubrovnik, 2018. 
 

IX. F. Heymann, J. Melo, P. Duenas, F. Soares, and V. Miranda, “On the 
Emerging Role of Spatial Load Forecasting in Transmission / 
Distribution Grid Planning,” in 11th Mediterranean Conference on 
Power Generation, Transmission, Distribution and Energy Conversion 
(MEDPOWER 2018), Dubrovnik ,2018. 
 

X. F. Heymann, P. Duenas, F. Soares, and V. Miranda, “Explorative ex-
ante consumer cluster delineation for electrification planning using 
image processing tools”, 11th Mediterranean Conference on Power 
Generation, Transmission, Distribution and Energy Conversion 
(MEDPOWER 2018), Dubrovnik, 2018. 
 

XI. F. Heymann, N. Neyestani, F. J. Soares, V. Miranda, “Mapping the 
impact of daytime and overnight electric vehicle charging on 
distribution grids”, IEEE Vehicle Power and Propulsion Conference 
(VPPC), Belfort, 2017. 
 

XII. F. Heymann, C. Pereira, V. Miranda, F. J. Soares, “Spatial load 
forecasting of electric vehicle charging using GIS and diffusion 
theory”, 2017 IEEE PES International Smart Grid Technologies 
Conference Europe (ISGT), Turin, 2017.  
 

Under review/ development 

 
XIII. F. Heymann, F. vom Scheidt, J. Melo, P. Duenas, F. J. Soares, V. 

Miranda, “Forecasting DER adoption in space and time: Model 
development, calibration and parameter choice”, under development, 
2019. 
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2 Technology adopter analysis 

The recent introduction of policy support schemes, legal standards and 
decreasing cost structures of distributed energy resources (DER) have 
coincided with rising market penetration levels of these resources. While a 
growing body of literature mainly specializing on one technology has been 
established, few efforts have been directed to more holistic, multi-
technology analyses and their interdependencies. In this chapter, a joint 
analysis of EV, PV and HVAC technologies in Portugal is provided. The 
analysis combined non-spatial and spatial methods to characterize current 
adopter groups. Outcomes are compared to previous literature findings and 
provide fundamental understanding of adoption drivers. These drivers are 
direct input to spatiotemporal adoption forecasting models introduced 
subsequently. 
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2.1 FROM TECHNOLOGY ADOPTION TO TECHNOLOGY DIFFUSION 

 

To understand technology diffusion processes, one must first understand 
adopters. This thesis addresses both adoption and diffusion phenomena. 
While adoption has been defined as the decision to start to use or 
discontinue to use an innovation by an individual or an organization, 
diffusion is the percolation of an innovation through the fabric of a given 
(social) system. Thus, adoption on individual or organization basis 
eventually results in system-wide diffusion of a technology, idea or 
behaviour [1].  

The predictive modeling of technology diffusion processes requires either a 
detailed understanding of the forces that drive technology adoption on the 
individual level or a reliable high-level framework that can analyse and 
forecast macroscopic diffusion patterns. 

While in-depth understanding of adopter processes can be used to model 
large-scale technology diffusion processes bottom-up, other macro-type 
diffusion forecasting models recognize and extrapolate (spatial) patterns 
from top-down. The variety of studies on energy technology adopters can 
therefore be divided into two types: 

• Micro-level non-spatial analysis (typically bottom-up) 

• Macro-level spatial analysis (typically top-down). 

While the former type of analysis does rely on georeferenced adopter 
information (e.g. household location using Longitude/Latitude coordinates) 
or empirical analysis such as surveys, latter relies on the incremental 
changes of patterns from a macroscopic “birdseye” perspective only. This 
chapter presents both perspectives, confronting consolidated literature 
findings with outcomes retrieved for the Portuguese case study. 

 

2.2 NON-SPATIAL ADOPTER CHARACTERIZATION 

Literature findings 

With the rising uptake of distributed energy resources (DER), research has 
been directed to the characterization of adopters. In this chapter, we will 
present recent outcomes on the description on a subset of DER, in particular, 
residential EV, PV and HVAC adopters. In this work, HVAC, as a potential 
demand response resource, is considered a DER technology in line with [2].  
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Studies on the diffusion of electric vehicles have been conducted 
considering different geographical perimeters. While several studies have 
covered US [3]–[5], UK [6], [7], and Germany [8], [9], other world regions 
are clearly under-represented. For example, there is a general lack of studies 
on major Asian car manufacturing nations such as China, Japan and South 
Korea, at least available in English. Some studies explicitly focus on electric 
vehicle type (e.g. plug-in hybrid or battery EV) [4], [10], while other 
consider the broader range of existing technologies [7], [9], [11].  

Most studies agree that early adopters of EV have above average income, 
are male and belong to a certain age group, mostly close to working or 
active driving age. Interestingly, subsets of these criteria are also repeatedly 
named for the adoption of domestic PV modules [12]–[15] and HVAC [16], 
[17]. Apart of the similarities among EV, PV and HVAC, studies about PV 
and HVAC technologies discovered no link to the adopter’s gender. 

Part of the studies contributes to a mixed picture, suggesting that socio-
demographic factors might be less important [7] or that there would be no 
evidence on the effect of household income to EV adoption [3]. While PV 
and HVAC adoption is sometimes associated with house ownership and 
houses being free standing or semi-detached [12], [16], [17], EVs are 
additionally associated with family households with children or home 
ownership [6], [10]. Additionally, it was suggested that EV vehicle adoption 
of smaller vehicle sizes would correlate with higher urban built-up density 
[18].  

Some studies link early adopters of EVs to environments characterized by 
high employment and population density [11], while others suggest EV 
would most probably be found in rural areas given that car-based trip 
distances are more adequate [8]. Other residential electrical appliances 
considered show a similar picture. It was found that early adopters of 
HVAC systems are expected to have similar socio-economic characteristics, 
given the above average material wealth expressed by ground values and 
their concentration in areas possessing lower population densities. In 
addition to that, the results suggest a positive correlation between HVAC 
adoption to home ownership [17]. On the other hand, there is no 
information available if HVAC adoption would correlate similarly to 
education levels or household composition (family, singles).  

There is a recent study of global scope that relied on 12,000 respondents in 
Asia, Europe, Latin America, Middle East and North America, that, in 
contrast to previous findings, covered various energy- and  resource-
efficient technologies, such as energy and water consumption and the use 
of efficient technologies, food, waste and recycling preferences as well as 
transport choice [16]. The sample was stratified along age and other socio-
demographic characteristics. Another particularity of the dataset is that it 
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further contains beliefs and attitudes of respondents, such as the 
participation in non-governmental organizations or scepticism towards 
technological progress. However, EVs are not included. 

The study confirms that above-average income, higher education 
households that live in their property are more likely to become early 
adopters of renewable energy technologies or energy efficiency programs 
than low-income, renting individuals. 

What looks as a coherent pattern across the literature and globally in this 
study, however, can be further differentiated locally. Given different 
income-to-energy technology acquisition ratios for all countries analyzed, 
income was only a decisive factor in case low-medium income households 
have had constrained access to credits or given a generally high purchasing 
power in the respective country [16].  

Interestingly, the same study further detects the importance of population 
concentration (urban, rural) for technology adoption. In line with the 
findings of [19], outcomes suggest that detached houses within household 
ownership are stronger connected to technology adoption than rented flats 
(potentially urban). These authors argue that technology adoption might, 
for many appliances, require dedicated space. This adoption discrepancy 
for rural and urban citizens has been detected for a range of technologies 
analysed in [16].  

Table 2.1 synthesizes the literature findings of residential DER adopters in 
past studies. 
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Table 2.1 Literature-based description of residential EV, PV and HVAC adopters  

 

Criteria EV PV HVAC 

Gender • Male [6], [7] - - 

Age • Below 55 [4] 

• Young middle aged [3] 

• Modus 41-50years [9] 

• Aged 18 – 64 years [10] 

• 80% of between 
30-60 years  [12] 

• Between 35-55 
years [13]; over 55 
[20] 

• Negative correlation 
with respect to older 
survey respondents 
[16] 

Household • Households with 
children [10] 

• Smaller 
households [21] 

• Families [20] 

- 

Education • Bachelor degree or 
higher [3], [10] 

• Above average 
education 
[15],[14], [21] [20] 

- 

Income • Above average income 
[6], [7], [10] 

• >35,000$/year/HH  [11] 

• Above average 
median household 
income  [13]  [21] 

• Positive correlation 
to higher income 
groups [16] 

Location • Towns with population 
less than 100,000 [8] 
Potential adopters living 
in urban properties [15] 

• Adopters living in urban 
or suburban areas with 
access to a garage, 
owning at least two cars 
[5] 

• Smaller vehicle sizes in 
higher density areas [18] 

• Suburban areas 
negatively 
correlated with PV 
uptake, higher 
diffusion in city 
centre [13] 

• Polluted areas  
[21] 

• Rural areas, as 
appliances might 
require dedicated 
space not available 
in dense-urban 
residencies [16], [19] 

 

• Low population 
density [17] 

Home 
ownership 

• Positive correlation to 
house ownership [6] 

• Positive 
correlation to 
house ownership 
[12] 

• Positive correlation 
to house ownership 
or negative 
correlation to 
renting [12], [38] 

Environ-
ment 

- • Solar irradiation 
[22] 

- 

Other • High resident worker 
density [11] 
Full time jobs [8] 

• Positive environmental 
attitude [4] 

• Household with at least 2 
cars [7], [9] 

• High average floor area 
[7] 

• Supportive social 
environment  [10] 

• High electricity 
consumption  [21] 

• Negative 
correlation to 
unemployment  
[23] 

• Negative 
correlation to new 
buildings [23] 

• Local 
organizations 
promoting PV  
[24] 

• Above average floor 
area [17] 

• Areas with higher 
home values [17] 

• Households with 
participation in non-
governmental 
organizations or 
environmental 
initiatives [16] 

• Low pop. density 
areas [17] 
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Analysis of Portuguese adopters 

This section contains thesis outcomes of the analysis of Portuguese EV, PV 
and HVAC adopters that have been presented in [25]. Here, geographical 
adopter locations have been spatially interfaced with census data on 
neighbourhood level. Given that each neighbourhood is described through 
more than 120 socio-demographic census variables, a detailed picture of 
residential EV, PV and HVAC adopters could be provided.  

The above-mentioned work constructed census variable rankings which 
have been retrieved using the non-parametric information gain ratio (IGR) 
method, that roots in Information Theory. It is computed by dividing the 
information gained (IG, in terms of Entropy reduction) through a certain 
variable (X) in relation to its output and the intrinsic information of a split 
(ISP) after an observation (Y) [26]: 

𝐼𝐺𝑅(𝑋, 𝑌) =
𝐼𝐺(𝑋,𝑌)

𝐼𝑆𝑃(𝑋,𝑌)
                           (2.1)                          

A detailed description of IGR and its comparison to other approaches is 
presented in Chapter 3. The table below (Table 2.2) lists the Top-15 ranked 
socio-demographic census criteria that have been associated with the 
occurrence of EV, PV or HVAC technology in each census cell. 

The IGR-based analysis suggests that EV adoption can be linked to the 
population share of educated, elderly citizen groups. In addition, the 
variable ranking suggests that the share of newer buildings (2006-2011) 
across census cells relates to EV adoption.  

Besides, results suggest a strong relation of family groups with younger 
children to PV adoption. Furthermore, PV adoption seems to relate to low-
rise buildings (“Buildings with 1 or 2 floors”).  On the other hand, results 
suggest that HVAC adopter households relate to a certain building 
construction period (1981-1990). Furthermore, former adopters relate to 
residencies with large apartment sizes (“Class. family acc. w/ 100-200 
m2“ and “Class. family acc. w/ 200 m2 +“) and parking availability, which 
might be explained by the general need for further space for such 
appliances as suggested by [16], [19]. 

It is important to highlight that, differently from analyses that use 
correlation coefficients, IGR provides exclusively insights in the strength of 
association (contribution to response variable) and does not allow to 
distinguish the positive or negative nature (sign) of such relation. Therefore, 
the presence of seemingly counterintuitive variables such as “Female res. 
aged 65 and +” and “Male residents aged 25-64” suggests that both 
variables relate to the presence of EV, with the former variable probably 
relating negatively to EV adoption while, in line with other outcomes, one 
might expect the latter positively relate to EV adoption. 
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Table 2.2 Top-15 socio-demographic criteria associated with adoption of each 
DER (neighborhood level) 

 

Rank EV PV HVAC 

1 Buildings mainly non-
residential 

Res. w/ 3rd cycle of 
elem. educ. 

Classical residences 

2 Residents attending high 
school 

Children aged 10-13 Female res. aged 65 and + 

3 Class. families w. people 
aged 65+ 

Residents finished high 
school 

Class. resid. w/ park. for 
1 veh. 

4 Female res. aged 65 and + Female children aged 0-4 Class. resid. w/ park. for 
3 veh. 

5 Male residents aged 25-64 Male residents over 64 
years old 

Classic buildings w/ 1 or 
2 div. 

6 Buildings built 2006-2011 Classic residence for acc. Classic buildings w/ 3 or 
+ div. 

7 Children aged 0-4 Female children aged 5-9 Buildings built 1981-1990 

8 Male residents aged 20-64 Children aged 0-4 Class. family acc. with 
3/4 rooms 

9 Residents with university 
degree 

Res. w/ 1st cycle of elem. 
educ. 

Female residents 

10 Residents without econ. 
activity 

Res. working in the 
muni. of resid. 

Classic isolated buildings 

11 Residents aged 25-64 Male children aged 0-4 Class. resid. w/ park. for 
2 veh. 

12 Male res. aged 65 and + Male children aged 15-19 Class. family acc. w/ 100-
200 m2 

13 Employed residents Groups with 2 children, 
not married 

Buildings with 1 or 2 
floors 

14 Residents aged 20-64 Groups with 1 child, not 
married 

Male residents aged 20-24 

15 Residents over 64 years old Residents without econ. 
activity 

Class. family acc. w/ 200 
m2 + 
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2.3 EFFECTS OF DATA AGGREGATION 

Previous studies on data aggregation effects 

 
As many previously cited works (e.g. [6], [17], [11], [27]–[28]) rely on census 
data that aggregated individual observations, effects of spatial scale should 
be considered.  

Aggregation of information to spatial units such as neighbourhood-, 
borough-, municipal- or even district-level has been extensively discussed 
in spatial science context [29]–[32]. All these works highlight that 
conclusions drawn from statistical analysis applied to aggregated data need 
to be treated carefully. The work of [31] analyses statistical dependencies 
using regression analysis on a georeferenced census dataset that covers the 
Buffalo Metropolitan area. Results show that the standard errors of 
parameter estimates increase as data are spatially aggregated.  

Likewise, it has been observed that the goodness of fit increases with data 
aggregation. As mentioned by [32], a common drawback of aggregated 
census data might lie in the smoothing of observations, that, as a result, 
cannot provide sufficient variance to draw meaningful conclusions. 
Furthermore, multi-collinearity might rise with aggregation levels. 

Such effects have been reported in [30], [32]. For example, [31] finds highly 
unreliable results given the strong deviations under each aggregation level. 
The authors find that an increase of the share of elderly in each household 
by 10% can result in a family income decrease estimate ranging from $308–
$2,654. Likewise, results suggest accuracy of the multi-linear regression can 
simply be increased by aggregating data. 

In [28], three statistical phenomena are discussed and synthesized that may 
negatively impact the reliability of drawn conclusions using spatially 
aggregated data. 

• The ecological fallacy describes the attempt to draw conclusions 
from aggregated macro-level data to individual observations; 
 

• The individualistic fallacy, on the other hand, is linked to efforts that 
try to infer macro-level coherences from individual observations; 
 

• Cross-level fallacy implies drawing conclusions from one subgroup 
of a population to another subgroup. 

However, researchers might need to rely on aggregated data. Authors of 
[32] present a discussion of the advantages of both aggregated and 
disaggregated observations for population analysis. 
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Aggregated information is typically easier to retrieve and requires less 
computational resources for analysis. Disaggregated data on the other hand 
might better reflect individual behaviour and should be the default option 
especially when policy efficacy is investigated. However, its access is 
limited and costly (e.g. using surveys). 

As the work of [32] on the correlation of census variables to vehicle 
ownership  suggests,  using the lowest aggregation level might lead to the 
best model fit with the highest correlation values. That is in line with the 
suggestions of [31] on coping with spatial aggregated data. Herein, the 
authors suggest the following: 

• Avoiding the use of aggregation whenever possible; 

• Analyzing various aggregation levels and report results and 
respective deviations. 

Curiously, none of the reviewed works (Table 1) that analyse EV, PV or 
HVAC adopters with aggregated census data explicitly mention or 
investigate such phenomena (e.g. [9], [12], [17], [24]).  

In contrast, this work compares the retrieved results (rankings of socio-
demographic census variables) across three different spatial aggregation 
levels – municipal-level, borough-level, neighborhood-level – to gain 
insight into the stability of retrieved rankings in case different census 
aggregation levels would be used. 

Hence, above mentioned results (Top-15 census rankings) have been 
differentiated for all three considered spatial data aggregation levels 
(municipalities, boroughs (blocks of houses), neighbourhoods). Results will 
provide insights in the stability of such rankings across census aggregation 
levels. 

 
 

Variable rankings considering aggregated census data 

 
In this section, the Top-15 census variable rankings using an IGR approach 
are compared. While the IGR approach is presented in more detail in 
Chapter 3, the changes in rankings across aggregation levels itself receive 
undivided attention in this subchapter. 

 

The tables below (Table 2.3 and Table 2.4) show the variable rankings 
retrieved using census data aggregated to borough and municipal census 
units. At the borough level, the presence of PV adopters is now strongly 



…
…

…
…

…
 

 

 22 

associated to census variables related to age. The presence of various similar 
census variables such as “Male children aged 10-13”, “Female children aged 
14-19“, “Female children aged 5-9” or “Female children aged 0-4” suggests 
a (likely positive) link of PV adoption to families with children and adults. 

Table 2.3 Top-15 socio-demographic criteria associated with adoption of each 
DER (borough level) 

 
Rank EV PV HVAC 

1 Buildings mainly non-
residential 

Female residents aged 25-
64 

Male residents aged 20-24 

2 Residents aged 65 and + Male children aged 10-13 Class. family acc. occ. by 
landlord 

3 Pensioners and retired 
residents 

Female children aged 14-
19 

Residents aged 20-24 

4 Children aged 0-4 Female children aged 5-9 Class. family acc. rented 

5 Residents aged 25-64 Male residents aged 20-24 Children aged 15-19 

6 Groups with children 
under 15 

Residents aged 20-64 Employed residents 

7 Employed residents Classic families w/ 1 or 2 
people 

Residents attending high 
school 

8 Resident attending 
university 

Class. families w/ people 
aged 65+ 

Male children aged 0-4 

9 Resid. w/ 2nd cycle of 
prim. educ. 

Groups with children 
under 15 

Residents aged 65 and + 

10 Residents wo/ econ. 
activity 

Residents unable to read 
or write 

Residents aged 20-64 

11 Residents aged 20-64 Resident employed Groups w/ child below 6 
years 

12 Class. families w/ 
people aged 65+ 

Class. family acc. rented Residents wo/ econ. 
activity 

13 Residents w/ university 
degree 

Residents aged 25-64 Classic buildings w/ 1 or 
2 div. 

14 Male children aged 5-9 Children aged 15-19 Pensioners and retired 
residents 

15 Male res. aged 65 and + Female children aged 0-4 Residents unable to read 
or write 

 
The Top-15 variable subset associated to EV adoption shows a more mixed 
presence of census variables related to basic and higher education (“Resid. 
w/ 2nd cycle of prim. Educ”, “Residents with university degree” or 
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“Resident attending university”). Furthermore, the presence of children 
and older people (latter such as “Class. families w/ people aged 65+”, 
“Residents aged 65 and +” or “Pensioners and retired residents“) show a 
strong association to EV adoption.  

Table 2.4 Top-15 socio-demographic criteria associated with adoption of each 
DER (municipal level) 

 

Rank EV PV HVAC 

1 Male residents aged 25-64 Class. family acc. w/ 3/4 
rooms 

Class. family acc. with 
3/4 rooms 

2 Buildings with 5 or more 
floors 

Buildings built between 
1961-1970 

Employed residents 

3 Residents unable to read 
or write 

Female residents Residents w/ econ. 
activity 

4 Residents w/ university 
degree 

Male residents aged 25-64 Res. working in the muni. 
of resid. 

5 Residents wo/ econ. 
activity 

Male residents aged 20-64 Classic buildings built for 
3+ acc. 

6 Resident employed Residents without econ. 
activity 

Buildings w/ 5 or more 
floors 

7 Residents aged 25-64 Class. family acc. occ. by 
landlord 

Res. studying in the muni. 
of resid. 

8 Female residents aged 20-
64 

Res. working in the tert. 
sector 

Residents w/ university 
degree 

9 Class. families w/ people 
aged 65+ 

Resident employed Res. w/ post high school 
educ. 

10 Res. working in the tert. 
sector 

Residents aged 25-64 Pensioners and retired 
residents 

11 Residents aged 65 and + Female children aged 5-9 Female res. aged 65 and + 

12 Pensioners and retired 
residents 

Residents finished high 
school 

Female residents aged 0-4 

13 Male res. aged 65 and + Class. family acc. rented Residents unable to read 
or write 

14 Residents aged 20-64 Class. family acc. with 
1/2 rooms 

Class. families w/ people 
aged 65+ 

15 Class. family acc. w/ 3/4 
rooms 

Residents aged 20-64 Female residents 

 
The top-ranked variable “Buildings mainly non-residential” seems 
counterintuitive as residential EV adoption is concerned. However, given 
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the absence of association sign of the IGR method, the association may be 
of negative nature.  

Census variables related to HVAC adoption show very diverse variable 
ranking, mixing adults and family-with-children type variables (“Male 
residents aged 20-24”, “Residents aged 20-24” or “Children aged 15-19“) 
with building ownership variables (“Class. family acc. occ. by landlord“ or 
“Class. family acc. Rented”). Such findings are very in line with the 
literature that suggest home ownership being strongly associated with 
HVAC adoption.  

Comparing such findings to the coarsest data aggregation level (municipal), 
the Top-15 subsets of census variables strongly reorder and substitute again. 
Eventually, one finds the Top-15 variable rankings for each technology and 
aggregation level rarely similar and highly unstable. Such effects will be 
quantified in the following section. 

 

Ranking stability under census data aggregation 

 
Table 2.5. shows the rank similarity or overlap of two data aggregation 
levels. Interestingly, highest overlap is achieved for EV, with 10 census 
variables listed in both Top-15 level for boroughs and neighbourhoods. 
Likewise, nine census variables are contained in the Top-15 rankings for 
municipal and borough aggregation levels. The Top-15 ranked census 
variables associated to PV and HVAC adoption, on the other hand, share 
only two variables across borough and neighbourhood aggregation level 
and five respectively four variables across municipal and borough census 
data aggregation. However, the former analysis is complementary to the 
high rank instability and rank substitution observed across all tables 
concerned (Table 2.4, 2.5 and 2.6). For all three technologies, variables show 
strong shuffling comparing census aggregation to municipality, borough 
and neighbourhood level.  

Table 2.5 Top-15 rank similarity across aggregation levels 
 

 

In general, rank similarities seam to vary less across data aggregation levels 
if more observations are available. For example, for EV, there where by far 

 EV PV HVAC 

Municipalities - 
Boroughs 

0.60 0.33 0.27 

Boroughs - 
Neighbourhoods 

0.67 0.13 0.13 
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more observations where available then for PV or HVAC. Therefore, EV 
Top-15 ranks have a higher similarity across data aggregation levels. 

The are several reasons why the similarities of Top-15 census variables 
associated to EV, PV and HVAC adoption are of high interest: 

• In case technologies are adopted by the same adopter groups (and 
thus, in the same locations), synergies behind the meter or on 
neighbourhood level might be exploited. Such parallel adoption 
behaviour is, for example, assumed under a microgrid paradigm. 
 

• If the subset of technologies that may be used synergistically (e.g. 
EV-PV [32])  occurs in within the same location or in geographic 
proximity, such synergies might be exploited without crossing 
higher electricity network hierarchies. 
 

• The adoption of various electrical appliances such as EV, PV and 
HVAC in the same or close geographical location (mixed adoption 
clusters) might adversely affect electricity network planning and 
operation.  
 

• Under the presence of support schemes that foster technology 
adoption, a highly congruent characterization of EV, PV and HVAC 
adopters might ground on very concentrated and unequal 
participation in such subsidy schemes. 

A comparison of the top-ranked census criteria for each technology 
suggests small overlap of EV, PV and HVAC adopters (Table 2.6).  

Table 2.6 Top-15 rank similarity across technologies 
 

 EV-PV EV-HVAC PV-HVAC 

Municipalities 0.40 0.53 0.27 
 
Boroughs 

 
0.20 

 
0.27 

 
0.13 

 
Neighbourhoods 

 
0.20 

 
0.07 

 
0.13 

 

It is noteworthy that household preferences for EV-PV are more frequent 
that PV-HVAC or EV-HVAC, while the former is generally assumed 
beneficial for synergetic use [33]. However, analysis under higher census 
data aggregation levels (Boroughs and Municipalities) surprisingly 
suggests that EV-HVAC are more common than EV-PV. 

Such results, again, display the high instability aggregated census data 
introduces in such kind of analysis. 
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2.4 SPATIAL ADOPTER CHARACTERIZATION 
 

Geostatistical analysis tools 

This subchapter is dedicated to the question, if DER adoption would follow 
a spatially homogeneous pattern. Hence, the aim at this step is to determine 
the degree or absence of autocorrelation that DER adopter patterns expose, 
given that strong positive autocorrelation (e.g. DER adopter clusters) might 
potentially impact the planning of electricity networks. One of the most 
common metrics for spatial autocorrelation is Moran’s I [34].  

Moran’s I reveals the tendency of polygons having similar (linear correlated) 
values when compared to their neighbors. It is a global autocorrelation test 
similar to Geary’s C or the global Getis-Ord G [35]. It is a dimensionless, 
appealing metric, because like linear (non-spatial) regression, it produces 
outputs within [-1,1], where a value of 1 represents absolute spatial 
autocorrelation, 0 spatial randomness with no distinct pattern and -1 
complete dissimilarity similar to a checkerboard pattern [36]. Latter occurs, 
if all spatial objects are neighbored by the most dissimilar values of the 
population. As major input serves a weight matrix 𝒘𝒊𝒋 that represents the 

distance structure of the polygon under analysis and its neighboring 
structure. 

In the simplest case, the neighbourhood structure incorporates the degree 
of adjacency, taking values of “0” (is not neighbour) or “1” (is neighbour). 
The formula sums the differences between each polygon (i) value yi and its 
neighbourhood polygons’ (j) values yj with respect to the global mean 𝒚̂ 
(the so-called lagged mean or spatial lag). This is then divided by the 
variance of each value yi with respect to the global average 𝒚̂  and 
consecutively multiplied with the number of observations NO by the spatial 
weight matrix 𝒘𝒊𝒋.  

Although Moran’s I can also be retrieved analytically (it represents the 
value of the Ordinary-Least-Squared fitted slope plotting polygon values 
against their lagged correspondents), it is typically computed as stated 
below: 

                𝐼 =
NO

∑ ∑ 𝑤𝑖𝑗
𝑁𝑂
𝑗=1

𝑁𝑂
𝑖=1

 
∑ ∑ 𝑤𝑖𝑗(𝑦𝑖−𝑦̂)(𝑦𝑗−𝑦̂)

𝑁𝑂
𝑗=1

𝑁𝑂
𝑖=1

∑ (𝑦𝑖−𝑦̂)
2𝑁𝑂

𝑖=1

                     (2.2) 

While the output gives a first indication of the spatial autocorrelation 
structures, respective significance levels (p-values) can be either obtained 
by comparing the variances to predefined distributions or through 
simulation approaches, with latter having been widely advocated in [34]. 
The previously introduced analysis of spatial autocorrelation (Moran’s I) 
provides insight in the global dispersion/concentration of spatial patterns. 
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In addition, attempts have been made to break geographical variation down 
to study local situations. 

In this light, Luc Anselin suggested a new type of model, namely the so-
called “local indicators of spatial association (LISAs)“ [37]. Such should 
comply with two requirements: 

- The LISA value of each observation should provide insights to the 

spatial clustering around that value 

- The sum of all LISA observations should be proportional to a global 

metric of spatial autocorrelation (e.g. all LISA values should sum to 

a global autocorrelation value). 

The latter requirement can be met using index decomposition techniques. 
In the same work [37], Anselin suggested a LISA based on the 
decomposition of Moran’s I, to retrieve a Local Moran I. Here, the 
autocorrelation value associated to each observation is Ii, whereas ai are the 
mean-centred values and bj are the means for all neighbour values of 
polygon i. Thus, Ii can be retrieved following: 

𝐼𝑖 = 𝑎𝑖 ∑ 𝑤𝑖𝑗𝑏𝑗𝑗                     (2.3) 

Using a permutation Monte-Carlo sampling approach as in the test-statistic 
approach of Eq.2.3, a significance test may be conducted using [38]: 

    𝑧(𝐼𝑖) =  
𝐼𝑖−𝐸[𝐼𝑖]

√𝑉𝑎𝑟[𝐼𝑖]
                     (2.4) 

Here, values of Ii > 0 indicate that a cluster of similar values (higher or lower 
than average) is present. Likewise, values of Ii < 0 indicate a combination of 
dissimilar values (e.g. high values surrounded by low values). In R 
programing language, LISAs can be computed using the “localmoran” 
command of the “spdep” package. This command returns the local Moran’s 
I statistic for each polygon, the expected value E(Ii) and variance Var(Ii)  
under the randomization hypothesis, the test statistic (Eq. 2.4) as well as the 
p-value of the above statistic assuming approximate normal distribution 
[34].  

 

Results for Portuguese adopters 

The EV, PV and HVAC adopter coordinates have been plotted and 
interfaced with the Portuguese 2011 census dataset provided by the 
Portuguese National Institute of Statistics (INE). Using total EV, PV, HVAC 
quantities and total resident numbers in each municipality, adoption shares 
for all 279 municipalities have been obtained (Figure 2.1). Given the 
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availability of adopter datasets, only municipalities on Continental Portugal 
have been considered.   

A first visual inspection (Figure 2.1) suggests EV adoption clusters mainly 
along the shorelines and specifically around Lisbon and Porto metropolitan 
areas. The municipality groups with higher shares of PV and HVAC 
adopters on the other hand locate particularly around the southern border 
and towards the country’s interior parts. 

After the retrieval of Moran’s I values using the equation provided above 
(Eq. 2.2), p-values are computed. In this work, the p-value (pval) is 
approximated using a simulation-based approach firstly presented in [37]. 
Here, the probability of obtaining Moran’s I values above the observed one 
is calculated using the following formula: 

     𝑝𝑣𝑎𝑙 =
𝑠𝑚𝑖 +1

𝑆𝑀𝐼+1
                                    (2.5) 

 

Here, smi is the number of simulated Moran’s I values above the 
determined one, while SMI represents the total number of simulations. 
While Fig. 2.1 shows the distribution of EV, PV and HVAC in Portugal, the 
figure below (Fig. 2.2) shows the one-sided exceedance probability 
distributions for obtaining values larger than the retrieved Moran’s I values 
determined. Thus, the simulation draws a predefined number of Moran’s I 
values that would occur if observed polygon values under spatial 
randomization (null hypothesis). 

 

Figure 2.1 Residential adoption patterns for EV, PV and HVAC technologies 

(shown in quintiles) 
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Figure 2.2 Exceedance probability density of estimated Moran’s I 
values of EV, PV and HVAC 

The distribution of the exceedance probability was generated while 
randomly alternating observed values among polygons during 600 
permutations under randomization with equal probability and no 
repetition. It is important that the number of permutations is smaller than 
the possibilities to rearrange the polygon values in order to avoid double 
counting effects that may skew results eventually. 

 

Figure 2.3 Spatial distribution of Local Moran I (a, b, c) and respective p-values 
(d, e, f). 
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Table 2.7 Moran’s I results for each technology 
 

Technology/ Value EV PV HVAC 

Moran’s I 0.42346 0.37526 0.39532 

p-value <0.01 <0.01 <0.01 

 

Results suggest strong evidence for the rejection of the Null hypothesis of 
spatial randomization with p-values smaller than 0.1% in across all 
technologies. The vertical bar in Fig. 2.2 indicates the realized Moran’s value 
and the estimated Moran’s I value for each technology on Municipal 
aggregation level.  

It should be noted that Moran’s I’s outcome dependency on the predefined 
neighbourhood structure and situation of boundary polygons without a 
complete neighbourhood matrix has been criticized in [34]. However, 
authors of the same work admitted that no optimal treatment of these cases 
has been found so far. 

Regarding local patterns of spatial association, outcomes show spatial 
hotspots along the Southern cost (PV, HVAC) and Western costs (EV) as 
well as in some isolated areas in Northern-central Portugal (EV, PV, HVAC). 
Furthermore, all technologies adopter distributions suggest cold spots in 
the Northern or Central areas of Continental Portugal (EV, PV, HVAC). 
Taking the test statistics analysis into account, the hotspots along the urban 
centres at Portugal’s Western coastline (EV) and the Southern costal 
hotspots (PV; HVAC) suggest being significant at levels <1%. 

Several techniques to extend the local autocorrelation analysis, considering 
common critiques on the necessary normality assumption (of Iis) and 
multiple hypothesis tests have been proposed. The interested reader might 
find an extensive overview of such extensions together with case study 
applications in [35]. 
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Chapter summary and conclusions 

 

The chapter presented mixed non-spatial and spatial analysis of residential 
EV, PV and HVAC adopter groups in Portugal. While outcomes provide 
insights in the spatial patterns current DER support schemes cause, on the 
one hand side, a deep understanding of adoption patterns and its drivers 
are fundamental to forecast future dynamics on the other hand. 

As major outcome, findings suggest such adopters represent different 
population subgroups. This has major implications on network planning 
and political attempts to exploit synergies of joint technology adoption (e.g. 
EV-PV, PV-HVAC) behind the meter. The main conclusions of this chapter 
can be summarized in the following way: 

• A fine delineation of consumer preferences is required in order to 
model technology diffusion while considering the spatial and socio-
demographic structure of a study area. 
 

• Previous studies analysed DER georeferenced adopters often with 
census data. Mostly, regression models were fitted to detect the 
“driving forces” behind technology adoption. 
 

• Although Portuguese EV, PV and HVAC adopter characterizations 
show strong discrepancies, domestic adoption of appliances may 
coincide at the geographical location. Under current adoption, 
especially EV-PV may be found co-located, which may be due to the 
strong similarity of early adopter groups in Portugal. 
 

• The spatial study of DER adoption patterns, e.g. using geostatistical 
tools (Moran’s I), has so far been neglected. This work came first to 
compare spatial autocorrelation of DER.  
 

• Analysing Portuguese EV, PV and HVAC adopters using spatial 
autocorrelation, the outcomes reveal a strong spatial clustering of the 
mentioned technologies.  
 

• The comparison of three census data aggregation levels revealed a 
strong instability once census variables where ranked according to 
their association strength to DER adoption.  
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3 Models for technology 
adoption forecasting 

With the ongoing adoption of new technologies, there has been a growing 
interest in forecasting such dynamics in space and time. This interest has 
been strengthened by the need of network planners and policy makers to 
assess the effects of large-scale adoption of energy technologies. This 
chapter presents spatiotemporal DER adoption forecasting models, their 
components and limitations. Then, focusing on one deterministic 
simulation model variant developed within this thesis, a calibration 
considering most sensitive model parameters is performed. Finally, the 
presented model is compared to other models that can be found in the 
emerging literature on DER adoption models. 
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3.1 TECHNOLOGY DIFFUSION MODELING 

 

Why we need technology diffusion modeling 

 

The transformation towards low-carbon, decentralized power systems 
coincide with a strong uptake of new distributed energy resources (DER). 
While it has been observed that, during the initial stage, small-scale 
renewable energy technologies and EV adoption patterns differed both in 
space and time  [1], [2], the previous chapter strongly suggested that DER 
adoption patterns are indeed autocorrelated.  

Such evidence has important implications to power system planning. Given 
their accountability for the system security, both electricity network 
planners and operators as well as policy makers have a high interest in DER 
diffusion modelling [3]. Strong deviations of the realized DER diffusion 
process can lead to system disturbances and additionally increase the utility 
(or distribution and transmission system operators – DSO/TSO) capital and 
operation costs. 

A recent report of the U.S. National Renewable Energy Laboratory (NREL) 
has been the first to provide a systematic quantification of the DER adoption 
forecast errors [4]. Results suggest that for an electric utility (or DSO) with 
1 TWh delivered to its client-base, DER adoption forecasts can decrease the 
companies’ capital and operational costs by up to 7 million US dollars. Such 
figures are assuming a 15-year planning horizon. Hence, besides the 
necessity of network planners to design a cost-efficient and reliable system, 
the abovementioned research outcomes suggest the value that improved 
DER adoption forecasts may provide. 

In a recent study [5] on electricity network planning requirements, a list of 
10 major pressing challenges to power system planning have been 
formulated. Such challenges included a finer spatial and temporal 
granularity of DER adoption patterns, DER adoption location forecasting 
and an improved accountancy of uncertainty sources in the planning 
process. 

Likewise, the need for improved representations of DER adoption processes 
in transmission and distribution network planning has been expressed in 
[5]–[8].  

First studies showed that the use of different DER allocation techniques in 
a municipal distribution network can lead to strong expansion cost over-
/underestimation. In the respective case study, forecast errors could 
account to 4 million Euros over a 15-year horizon for a typical municipal 
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distribution network [9]. On transmission planning level, a comparison of 
the DER allocation techniques resulted in DER installation forecast 
variations of roughly about 100 MW installations for some service areas [10]. 

Therefore, this chapter thoroughly addresses diffusion models that are 
applied to predict several small-scale energy technologies that are likely to 
change the spatial morphology of residential peak demand [6].  

As one core innovation, this work analyses the effect of a variety of different 
DER allocation techniques currently used in the literature and industry. As 
shown below, most of these allocation techniques are rather coarse and do 
not include modifiable temporal or spatial differentiations. Given the 
previously stated need for such increase in data resolution/finer 
granularity, we will shortly discuss how a perfect DER diffusion model 
could look like and then show how a flexible spatial DER diffusion model 
can be built. 

 

The ideal technology diffusion model 

 

This subchapter provides some reflection on a potential ideal shape of a DER 

diffusion forecasting model to be developed, stretching both on spatial and 

temporal dimension as well as desirable input/output formats. 

• Input data: Spatiotemporal diffusion models rely on spatial and 
temporal data. Spatiotemporal data consists of so-called spatial 
objects. Such objects can be uniquely determined (and thus, 
separated) by the following five dimensions: Space, time, scale, 
attributes and relationships [11]. 
 
DER diffusion modelling under ideal conditions would require the 
complete description and full availability of the collection of spatial 
objects that represent the study area. Recognizing that diffusion 
occurs in social systems, an accurate and detailed description of the 
respective social system under analysis grounded on individual or 
household level would be required. 
 
Furthermore, under ideal conditions, a flexible model would adjust 
to likely situations of missing data as well as dynamically 
incorporate changing system variables (e.g. population structure, 
large-scale trends in technology preference or cost structures). 
 

• Spatial scale: Considering DER diffusion forecasting for the 
residential sector, the targeted spatial resolution is the household or 
consumer level. Under an optimal modelling framework, this 
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requires locational information of households/individuals that 
could turn DER adopters. Alongside, the availability of information 
that allows to infer their adoption preference is fundamental. 
Eventually, spatial predictions on the future distributions of 
adopters and adopter preferences under demographic changes or 
other societal trends would be required. 
 

• Temporal scale: Depending on the application domain (network 
planning, policy analysis, economic analysis), DER diffusion 
forecasting time steps of quarters or years ahead are common 
practice [12]–[14]. Under ideal conditions, one could envision time 
horizons of months or weeks. However, under current conditions, 
there lies little use in such improvements. 
 

• Output and validation: Results of an ideal DER forecasting model 
would be easily interpretable and ready to interface with network 
planning or other, e.g. market modelling, tools. Taking multi-
temporal DER adoption observations, such model would be 
calibrated accounting for spatiotemporal covariance structures, even 
considering non-stationary conditions as outlined in [15].  

This sketched, ideal model has not been developed within this thesis. From 
the current standpoint of model developments [3], it is questionable if such 
model could be implemented within the next decade due to computational 
burden and data privacy.  

Moreover, it is not clear if an ideal model would be desirable, and, more 
importantly, how to prove a given model being ideal. As stated in [16], 
models cannot be proven to be true. This is because models are closed 
systems (real systems are open), data inputs are typically already 
contaminated with inference and assumptions and many different models 
can produce the same results (non-uniqueness/under-determination). 

Today, DER diffusion models are far from the Ideal, mainly due to the 
following reasons: 

1) DER adoption observations with multiple time steps have not been 
widely accessible. That limits a potential, step-wise validation of the 
technology diffusion model using observations stretching over a 
longer time period. 
 

2) Official population information and census data on individual level 
are not publicly available due to consumer data protection and 
privacy concerns. That renders a multi-year observation of structural 
population changes intractable. 
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3) Due to the described lack of multi-temporal adopter observations, it 

is extremely difficult to model adoption-interdependency structures 
among neighbouring observations or considering several technology 
diffusion processes. 

The availability of adopter observations for multiple time-steps represents 
a fundamental requirement for assuring model quality. Especially in the 
starting phase of adoption processes, adopter numbers are minimal and 
observations scarce. Paradoxically, large-scale technology diffusion 
eventually brings substantial adopter observations with different time steps. 
Likewise, rising availability of open source data allows for data-driven 
model building and allows to eventually improve the representation of 
technology diffusion processes. 

However, with increasing maturity of the diffusion process, the knowledge 
on adopters is likely to have consolidated and interest from policy maker or 
network planner’s perspective would fade away.  

Still, the reader should be reminded with the words of Box: “Models, of 

course, are never true, but fortunately it is only necessary that they are 

useful” [17]. Therefore, the use of DER diffusion models can be found in 

their application as “heuristic tools for learning about the world and 

generating (and testing) interesting hypotheses“ [18]. While certain 

abstractions both on spatial and temporal dimensions had to be made 

during the model development process, the resulting model still represents 

a strong improvement in granularity to current DER representations used 

in industry and academia practices [9]. 

3.2 DIFFUSION MODEL COMPONENTS AND KEY PARAMETERS  

 

Technology diffusion theory introduces a set of basic assumptions that have 
been formulated in the major work on diffusion research by Everett Rogers, 
first published in 1962. Such assumptions have been extracted from Roger’s 
latest version of the Diffusion of Innovations [19] and are listed below: 

• Diffusion processes are non-repetitive and therefore unique for each 
innovation and social system considered; 
 

• Diffusion processes are influenced both by the time and social 
network structure that accommodate the diffusion process; 
 

• Only complete diffusion processes are considered. Incomplete or 
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backward diffusion processes are therefore neglected. In fact, 
backward diffusion processes could be modelled as diffusion of the 
negative practice. 

Therefore, any technology diffusion model should consider the previously 
stated assumptions, translating such into model type, parameters choice, 
that is, the overall model architecture. For example, the technology 
diffusion model to be developed should be flexible and transferable to other 
social systems, building on datasets that are typically largely available for 
various social systems. Hence, dataset types that can be exploited to 
characterize the social system under analysis are required. 

Furthermore, given the different diffusion speeds of technology adoption 
(e.g. such as described for EV in [20]), the diffusion model to be developed 
requires an adjustable temporal domain. 

The presented model is a spatial simulation model, meaning that “models 
that represent the change in spatial patterns through time” [18]. It is a 
simulation model since the underlying relationships are, through equations 
and iterations, embedded into a computational framework. 

 

 

Figure 3.1 Trade-off of diffusion simulation model building (inspired by [18]) 

 

Simulation models are used to mimic changes in space through time. A 
major difficulty is to integrate different process rates in spatial simulation 
models. While limitations under asynchronous updating rules might be 
light, major difficulties arise for simultaneous updates under different 
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process rates. Another way to differentiate updating processes is with 
discrete time steps or following event-driven timelines [18]. 

The proposed model developed within the frame of this thesis consists of 
three large major modules that work independently but constantly update 
and exchange information. All modules are embedded in one programming 
language (R-Studio). The functioning of the three modules are briefly 
described below, while their construction is explained in dedicated chapters 
hereafter:  

• Global DER forecast module: This module computes global 
DER diffusion forecast curves for each technology under 
analysis. Model calibration grounds on historical DER growth 
or stock rates; 
 

• Cellular adopter module: Once DER adopter quantities have 
left the global DER forecast module, they enter the cellular 
adopter module. Here, through a predefined definition of cell 
states (or adoption stages), and, assuming an adoption 
sequence along adopter’s innovativeness scores, the globally 
forecasted DER quantities are translated into spatial patterns; 

 

• Adoption pattern mapping: Eventually, adoption patterns 
are mapped for each time step using Geographic Information 
Systems (GIS), that serve as a visual interface and provide 
ready-available map stacks for decision makers and network 
planners. 

A well-described drawback on the way to link pattern and process is the 
fact that the same process might produce different patterns or different 
processes might result in the same pattern [18]. Furthermore, the 
importance of the chosen scale of space and time needs to be highlighted, 
as this choice has a strong impact on the pattern and process analysis [18], 
[21], [22]. 

However, it is understood that the building process of models does require 
a constant trade-off between generality, precision and realism [18] (compare 
Fig. 3.1). While the effects of spatial data aggregation have been presented 
in the former chapter, a latter chapter presents an investigation on the 
effects of temporal discretization to model outputs.  
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Figure 3.2 Components of the proposed spatiotemporal DER diffusion model. 

 

3.3 TEMPORAL: BUILDING GLOBAL TECHNOLOGY DIFFUSION FORECASTS 

 

Temporal adoption forecasts can be derived with the well-established Bass 
model. The Bass model was proposed in 1969 and represents a 
mathematical diffusion model similar to an S-curve model used for load 
growth studies [23]. The model originates in the field of marketing [24] and 
has been applied across a variety of disciplines, such in the fields of 
medicine and energy engineering [25]–[27].  

It is a widely used, appealing model due to: 

• A relatively low model complexity; 

• The provision of product/appliance adoption curves without costly 
and time-consuming empirical surveys; 

• Its descriptive results that are comprehensive and intuitive rather 
than relying on a deep analysis of the underlying processes [20]. 



…
…

…
…

…
 

 

  45 

The model relies on a few parameters that are determined beforehand. As 
input, it uses an estimation of the total market potential (M) of the analyzed 
technology. It further requires two coefficients (p, q) that are commonly 
described as innovation and imitation coefficients [20].  

The number of first time purchases nt can be expressed by the following 
formula [20]: 

 

𝑛𝑡 = 
𝑑𝐴𝑃𝑡

 𝑑𝑡
 = 𝑝(𝑀 − 𝐴𝑃𝑡) + 𝑞

1

 𝑀
𝐴𝑃𝑡(𝑀 − 𝐴𝑃𝑡)      (3.1) 

 

Here, APt represents the accumulation of products (e.g. DER technologies) 
adopted until period t. Given the technologies’ respective p, q values 
together with the estimated final adopter market M, the total cumulative 
fraction of the analysed product that is adopted at time t can be estimated 
using the integration of the density function of Eq. 3.1 [20]: 

 

 𝑁𝑡  = 𝐹(𝑡) × 𝑀 = (
1− 𝑒−(𝑝+𝑞)𝑡

    1+ 
𝑝

𝑞
𝑒−(𝑝+𝑞)𝑡

) ×𝑀                  (3.2) 

 

Here, the two coefficients (p, q) and the estimated market potential (M) 
eventually determine the evolution of the diffusion rate, and thus, the shape 
of the aggregated adoption curve. The current literature provides a wide 
array of adoption scenarios with diverse sets of p, q and M value tuples 
across markets and technologies (including EV and PV that will be analysed 
in subsequent thesis chapters) [27][20].  

The work of [20] has demonstrated the sensitivity of model parameter 
choice (p, q, M) to achieved results, showing that different model parameter 
sets might result in strong forecast deviations. For example, [20] recorded 
that variations of the p, q parameters could result in 10-100 fold deviation 
of technology quantities forecasting under a given time horizon. 

Therefore, model parameters should be chosen carefully and the impact of 
potential estimate errors (e.g. over/under-estimated market potential M) 
thoroughly assessed [20]. 
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3.4 SPATIOTEMPORAL: DEVELOPMENT OF THE CELLULAR MODEL 

 

The proposed model consists of a spatial module. It runs a discrete-state, 
deterministic simulation, where technology adopters from a forecasted 
global stock are annually allocated into census cells (consumers). That 
global stock is direct output of the previously introduced Bass DER 
adoption forecast for each year under analysis. 

As a discrete, spatial model, the modelled diffusion process is broken down 
into spatial census cells with a determined cell size and cell state at a given 
time step. Cell states are built discrete, considering 4-year intervals (or one-
year, two-year and 20-year periods in the model calibration study later in 
this chapter). That way, each cell passes through a pre-defined development 
pathway, that is expressed through the share of residents adopting a given 
technology for each time step. Given the previously introduced 
assumptions of diffusion processes hold, only forward adoption behaviour 
to a maximum adoption state (100% of residents/ potential adopters) is 
considered.  

Currently, the representation of the temporal adoption behavior is 
constrained for adoption states for the sake of a reduced computational 
burden. In future simulation embedding an increased availability of 
computational power, the presented workflow can easily be broken down 
into even smaller time periods (years, quarter years or months). The census 
cells consecutively fill up (consumers adopt DER) until reaching a 
saturation point - the maximum potential of DER that can be adopted in 
each census cell. As for many other diffusion processes, such behavior can 
be modelled using S-curves – an approach also used for load growth studies 
[23].   

Neighbour or peer effects are important factors that can accelerate the 
uptake of technologies. Studies for PV have shown that residencies in the 
direct vicinity (e.g. 100m) of PV installations have a positive correlation to 
adopt such technologies next [13], [28]. On the other hand, absence or even 
negative influence of energy technology adopters outside this 100m radius 
has been documented [13]. Therefore, the states presented as part of 
diffusion model can be also understood as an implicit form to consider the 
positive effect of neighbour influence. Through the discretization of 
adoption behaviour, each census cell increases its adoption share from state 
to state and, therefore, automatically produces adopter clusters within each 
cell.   
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Figure 3.3 Spatial cellular adoption module for 5 adoption states 

 

The adoption module relies on the following inputs: It first uses the 
innovativeness scores and global, annual DER forecasts (GFEV, GFPV) of the 
Bass model detailed in the previous subchapter. It passes the following 
three steps: 

• As first step, all census cells are ranked according to their 
innovativeness scores (IS) under each policy design considered. As 
shown in Figure 3.3., each of those predefined policies see census cells 
in a predefined order that is established through the innovativeness 
scores. The number in each cell correspond to the resource quantity 
adopted at each state. Throughout the allocation of resources within 
a chosen energy policy design, the order remains unchanged. 
 

• Secondly, given an annual, global adoption forecast, cells are filled 
always starting from the highest to lowest ranked cell. That is, cell 
states (States 1-5) are actualized (+1) and respective adopters per each 
technology determined.  
 
o If global forecasts allow to change all census cells to proceed 

one stage, the allocation jumps to the top ranked cell and re-
starts until depleting the EV/PV stock of a year. 
 

o The DER adopters are allocated each year along the 20-year 
time horizon. Once a census cell reached its final stage (State 
5), it is excluded from further allocation.  
 

• Eventually, DER adopter numbers are aggregated to the electricity 
network service area considered using spatial aggregation tools.  
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A scheme of the change in adoption states of each cell along the years (20) 
is shown in Figure 3.3. The 20-year timespan of this work was chosen to be 
in line with a typical distribution planning horizon [23].  

However, at this development stage of the model, enhanced 
neighbourhood interaction beyond the above-mentioned mechanism (e.g. 
between the census cells) is not considered. This is due to the fact that there 
are currently mixed results on peer influence over larger distances (>100m) 
in [13], [29], and the scope of this study, which is the analysis of policy 
frameworks and not optimizing DER adoption forecasts.  

Furthermore, there is increased difficulty in modeling peer-interaction 
through real social networks. As observed by [30], contagious spread 
through social networks in socio-demographic context does not necessarily 
imply that diffusion does occur in the agent’s direct neighbourhood. 
However, modelling realistic social networks is an arduous task that 
requires extensive data collection for each study area as well as additional 
theoretical advancements that lie outside the scope of this thesis. 

We expect such extension might be valuable once diffusion models are 
applied using data of finer granularity just like disaggregated consumer 
locations and their connection to distribution feeders. Once such level of 
granularity and multi-temporal adoption observations are available, peer-
to-peer interaction modelling will become implementable.  That way, works 
can further validate the results of [13], [28], [31] that quantified the influence 
on households adoption behaviour of neighbours, however, on much more 
granular scale than pursued in this work.   

 

3.5 SPATIAL: ESTABLISHING ADOPTION PREFERENCE MAPS 

 

The idea that technologies are differently embedded in societies as a result 
of intrinsic differences in their social structure and the spatial distribution 
thereof has drawn increasing attention on technology diffusion research 
[19].   

In this context, the theory of Diffusion of Innovations by Everett Rogers ranks 
among the most prominent works that provide a rigorous and extensive, 
theoretical backbone to the analysis of technology diffusion processes. 
Rogers defines diffusion as “the process in which an innovation is 
communicated through certain channels over time among the members of 
a social system” [19].  
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As innovation, he describes an item such as an idea, project or practice, that 
is perceived as new by a potential adopter such as an individual or 
household. According to this definition, it becomes clear that while electric 
vehicles is generally assumed as an innovative technology, although the 
technology itself has been used for more than 100 years [32], if the social 
system perceives and reacts towards a given technology as something new, 
innovation theory can be applied.  

The social structure is expected to necessarily affect the diffusion process as 
the diffusion of innovations takes place in the social system. Rogers 
characterized adopters into five groups.  

1) Innovators; 

2) Early adopters; 

3) Early majority; 

4) Late majority; 

5) Laggards. 

Innovativeness is used for categorization in diffusion research. Empirical 
results suggest that each of the following adopter categories are 
characterized by a strong homophily inside each group. Homophily is the 
degree to which individuals share certain social, demographic or economic 
characteristics [19]. In Roger’s work, adopter categories are delineated by 
their “innovativeness”, a continuous variable that aims to reflect the 
individual’s characteristic to adopt an innovation earlier than its peers 
inside a social system [19]. 

As shown in Figure 3.4.a, Rogers defined each adopter group as a distinct 
area under the adoption curve. As mentioned above, adopters have been 
differentiated relying on the innovativeness concept that allows to grouped 
individuals/households into groups given a predefined innovativeness 
score interval. 

In Figure 3.4.b, the translation of such division into the adoption process is 
shown. Here, the position of adopter groups along the cummulative 
adoption curve suggests that Innovators and Early adopters are the first 
adopting a given innovation. Then, once a critical mass has reached, the 
uptake accelerates during the diffusion through Early and Late majority 
groups.  

Another pillar of Rogers theory states that adoption is a dynamic process, 
thus its rates possess temporal variability. Incomplete or non-adoption is 
generally not included in Diffusion theory [19]. Although Rogers does not 
provide a mathematical framework to predict the diffusion speed and 
adoption rates of innovations which would be applicable to the modelling 
of energy technologies, his framework of ranking consumer groups along 
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innovativeness can serve as an allocation formula for a given innovation 
that spreads inside a population structure [19]. 

 

 

Figure 3.4 Adoption dynamics according to Rogers. 
 

Therefore, in the context of DER diffusion forecasting, Roger’s theory itself 
is not directly applicable. It rather can serve to discriminate 
neighbourhoods or census tracts along a virtual innovativeness score that 
is used to establish the adoption order of all census cells.  

That given, a global forecast can be allocated over a district/city or quarter 
while identifying regions of preference (early adopters) and inertia (late 
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adopters, laggards). Here, innovativeness is a key concept that originates in 
the field of marketing. The basic idea is that individuals or groups of 
individuals can be ranked according to their preference to adopt an 
innovation earlier than their peers inside a social system [19]. 

The construction of cell-wise innovativeness scores is therefore the third 
step in development of the proposed spatiotemporal DER diffusion forecast 
model. To build innovativeness scores for each spatial census unit, we used 
a subset of the socio-demographic census variables that reportedly have an 
established causal link to DER adoption.  

It is important to highlight two characteristics that such cell-wise adoption 
modelling brings. On the one hand, it should be noted that cell states 
changes can be updated sequentially or simultaneously, with different 
results in case of cell state interdependence [18]. The presented model 
implemented a sequential state actualization. However, the thorough 
testing of both forms and the impact on their results lie outside the scope of 
this thesis. 

Another important issue is the boundary determination of the technology 
that is analysed. This point is related to the definition where one 
innovation/technology starts and ends. For example, in PV technology, 
typical multi-crystalline modules have lately been joined by products that 
exploit thin film technology [33]. Although the same technological PV 
backbone is concerned, the two products might attract different adopter 
groups and it could be argued that they should be studied separately. 

Rogers notes that “a technology cluster consists of one or more 
distinguishable elements of a technology that are perceived as being closely 
interrelated” [19]. Thus, the study of each innovation independently of 
others may be misleading. 

We model the positive response of a certain adopter group to a determinate 
energy policy design. That is, we relate a predefined, numeric adoption 
factor to each socio-demographic variable that was associated to an 
adoption of DER under each energy policy design. Modelling the 
innovativeness scores assumes that a certain population subgroup, based 
on its socio-demographic characteristics, has a specific, predefined, 
likelihood to adopt a certain technology.  

Thus, sequential modelling of the adoption process follows a black-box 
approach, where it is assumed that certain socio-demographic census 
variables would trigger DER adoption stronger than the remaining 
variables. Given the census dataset with about 120 socio-demographic 
criteria (c) and over 17,000 spatial census tracts (r=17,337), a vector with 
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innovativeness scores (IS) for each technology and incentive design was 
retrieved following:  

    𝐼𝑆 =  (

𝑥1,1 ⋯ 𝑥1,𝑐
⋮ ⋱ ⋮
𝑥𝑟,1 ⋯ 𝑥𝑟,𝑐

) × (

𝑎𝑓1
𝑎𝑓2
…
𝑎𝑓𝑐

)                      (3.3) 

Here, the census dataset, consisting of a matrix of c columns which 
represent a number of census criteria and r rows, that correspond to spatial 
cells/neigborhoods, is multiplied with a predefined vector of adoption-
influence (af). An earlier implementation of innovativeness scores in a 
similar use case based on census data can be found in [34]. The next 
subchapter will shed some light on several ways to construct such 
adoption-influence vectors, applying mathematical parametric and non-
parametric techniques to a set of DER adopter observations. 

3.5. Calibration of temporal and spatial model parameters 

 

Global technology adoption forecast scenarios 

 

For the development of global DER forecasts, we use technology adoption 
forecasts contained in [35]. The report presents three storylines: 
“Sustainable Transition”, “Distributed Generation” and “Global Climate 
Action”, that are considered within this thesis. The three storylines resprent 
three distinct potential futures of European power systems which have a 
high internal consistency. It is an appealing set of scenarios to use due to 
the strong involvement of policy makers, industry experts and external 
stakeholders during the scenario development process. 

Table 3.1 Storylines for Portugal towards 2035 used within this thesis 
(modified after [35], [36]). 

 

 
Storyline/ 
Technology 

Sustainable 
Transition 

Distributed 
Generation 

Global Climate 
Action 

EV (adopters) 999,917 114,324 688,270 

PV (in MW) 10,452 3,060 9,824 

The DER forecasts within these reports are direct input to the DER diffusion 
model, that relies on two DER estimations: the global adoption forecasts for 
every year and the estimation of the potential amount of DER that could be 
adopted by all spatial census cells (the theoretical upper adoption boundary 
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of a given DER technology in a system). In general, such theoretical upper 
boundary can be computed using: 

𝑇𝐷𝐸𝑅 = 𝑇𝑃𝑃 ×  𝑝𝑐𝑑𝑒𝑟                           (3.4) 

Here, TDER represents the maximum potential of DER to be accomodated 
within all spatial census cells, whereas TPP and pcder are the total 
aggregated population contained in all census cells and the allowable per-
capita share of DER respecively. 

Given the various technologies that have been considered as DER as well as 
exponentially increasing interactions, a pre-selection has been made. In [37], 
DER have been defined as distributed, small-scale resources located within 
the electricity distribution system. Such definition embraced a variety of 
technologies, such as distributed generation (PV, CHP), energy storage (e.g. 
batteries) or energy efficiency/ controllable loads (e.g. EV, HVAC).  

As the following part of this thesis involves increasing combinatorial 
analysis of DER adoption patterns, we will focus on two DER technologies 
that have received most attention. Such technologies under analysis have 
been EV and PV modules. This is in line with other studies that have been 
dedicated to analyse strong potential synergies of EV and PV technologies, 
especially in residential environments [38]–[41]. However, it should be 
noted that all modules presented in this thesis are flexible in the sense that 
every given technology can be analysed, given that spatial adopter locations 
and census data is provided. 

Looking now at the case of the selected two technologies, the maximum EV 
and PV potential (TEV, TPV) can be calculated as following: 

 

𝑇𝐸𝑉 = 𝑇𝑃𝑃 × 𝑝𝑐𝑐𝑠                       (3.5) 

 

𝑇𝑃𝑉 = 𝑇𝑃𝑃 ×  𝑝𝑐𝑝𝑣                         (3.6) 

Here, TPP is the total population of continental Portugal where pccs 
represents the current car-share ratio (approximately 0.45) that has been 
derived using the ratio of light private passenger cars to the overall 
Portuguese population [42], [43] (assuming perfect substitution). Likewise, 
the total PV potential is derived using the per-capita PV share pcpv. As this 
report aggregates both large-scale and dispersed PV installations in 
residencies, the forecast was corrected using the current ratio of dispersed 
PV (0.5) to overall PV installations in Portugal as stated in [44]. The 
calculation of the total EV and PV potentials at all residencies were based 
on [42] and [9]. 
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For the calculation of the roof-top-based PV potential at consumers 
residencies, the total roof-top area (r.area) multiplies the average per-capita 
rooftop area with the total resident number TPP. Multi-cristalline PV cell 
technology with 200 W per panel and a 1.5 m² cell size is assumed. Together 
with an estimated usable roof fraction (u.fract) of 0.3 similar to [45], an 80% 
performance ratio (pr) and a per capita rooftop area of 13 m² [46], we 
retrieve a potential per capita PV capacity of 0.4 kW. Other conversion 
technologies (mono-christalline, thin-layer) or installations (ground-based, 
building envolope integrated) have been neglected. However, given the 
structure of the established methodology, such technologies may be 
integrated in future extensions. 

The respective pcpv and pccs values have been established as the following: 

   𝑝𝑐𝑐𝑠 = 0.45                      (3.7) 

        𝑝𝑐𝑝𝑣 =
𝑟.𝑎𝑟𝑒𝑎 × 𝑢.𝑓𝑟𝑎𝑐𝑡

𝑐𝑒𝑙𝑙.𝑠𝑖𝑧𝑒 ×5
× 𝑝𝑟                  (3.8) 

Here, the per-capita PV potential included the previously estimated total 
rooftop area (r.area) at all Portuguese residencies multiplied with the usable 
fraction (u.fract). Their product has been divided by a typical cell size of 1.5 
m² and the conversion factor from a 200 W cell to 1 kW (5). The resulting 
theoretical EV and PV adoption potentials on Continental Portugal are 
shown below (Table 3.2.). 

Table 3.2 Total theoretical adoption potential for EV and PV 
on Continental Portugal 

Theoretical 
potential/ 
Quantity 

TPP  
(in residents) 

TEV 
(in adopters) 

TPV 
(in kW) 

Value 10,047,621 4,522,000 5,023,811 

 

Obviously, technical parameters had been fixed before for model 
simulation runs, while sensitivities were eventually assessed for alterations 
of the DER technical parameters.  

Likewise, technical characteristics such as technology sizes, efficiencies and 
cost structures will evolve through time. Therefore, the presented model 
integrates an interface to conveniently replace such values for future model 
extensions or actualizations.  
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Choosing the spatial input data substrate 

 

The spatiotemporal diffusion model relies on accessible spatial data. Spatial 
data are data that have a stated relation to space. Shi suggested that over 
70% of real-world phenomena can be related to and described with spatial 
data [47]. 

However, compared to data that lack spatial reference, spatial data are 
inherently different from any other data given that the typical 
independence assumption for observations does not hold as well as 
patterns of spatial heterogeneity [48]. 

Spatial data consist of spatial objects. Any of such spatial objects can be 
uniquely determined (and thus, separated) by the following five 
dimensions: 1) Space, 2) Time, 3) Scale, 4) Attribute and 5) Relationships 
[11]. The figure below shows the division between spatial and non-spatial 
data together with typical data attributes used in spatial science [49]. 

 

 

Figure 3.5 Spatial data and spatial analysis (inspired by [49]). 
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While common spatial data formats are spatial points, vectors (lines or 
polygons) and raster (cell lattices), latter two are most commonly used in 
spatial simulation models (e.g. in [9], [12], [13], [50]). Spatial point data are 
commonly neglected due to the computational burden of distance pattern 
analysis such data type implies. The number of computations increase with 
n(n-1)/2 for a given number of objects (n). For example, equal distance 
calculations between 100 spatial point objects require roughly 5,000 
calculations, whereas 1,000 objects imply approximately 500,000 
calculations [18]. The following table sums up the major characteristics of 
spatial cell lattice and vector formats, building on findings described in [18]. 

Table 3.3 Advantages and drawbacks of spatial vector and raster data formats 

 

 Vector format  
(spatial polygons) 

Cell lattice format 
(raster cells) 

Advantages 
• Polygon delineations 

typically match with 
census or other political, 
administrative or socio-
demographic entities. 
 

• Mostly, lossless data 
handling as no data 
transformation required. 
 

• Realistic neighbourhood 
structure. 
 

• Fast processing of equal-
sized cells. 
 

• Wide arrange of 
applications existing (e.g. 
Cellular Automata). 
 

• Once transformed into a 
global lattice model, it is 
straightforward to fusion 
data from various sources.  

Drawbacks 
• Slower processing if 

compared to cell lattice. 
 

• Difficulties to match or 
merge spatial data of 
different polygon extents. 
 

• Difficulties to incorporate 
distance-relations that 
possess isotropic 
character due to typically 
heterogeneous polygon 
sizes. 

• Loss of information due to 

conversion of 

inhomogeneous spatial 

input data. 

 

• Difficulties to incorporate 

distance-relations that 

possess anisotropic 

character, that is directed, 

non-homogeneous effects 

in space. 

 

• Mostly deterministic 

applications. Probabilistic 

extensions produce highly 

variable patches.  
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Discretization of the adoption processes 

 

The adoption potential of each census cell is discretized into adoption stages, 
in order to allow for the dynamic modeling of technology adoption. In our 
work, we  define 4 variations of discrete state configurations.  

Such discretizations are achieved through multiplying the theoretical 
adopter potential with respective adoption share values per cell. 
Discretization states have been generated extracting the adoption shares per 
year given using an S-curve model. Adopter numbers per cell are rounded 
to integer. The four modifications considered four different state intervals 
(20-year interval,  4-year interval, 2-year interval and 1-year interval). 
Such, with respect to adoption shares, are stated below: 

                      𝑆𝑇(20) = {100%}                        (3.9) 

                  

  𝑆𝑇(4) = {5%, 27%, 73%, 95%, 100%}          (3.10) 

 

𝑆𝑇(2) = { 2%, 5%, 12%, 27%, 50%, 73%, 88%, 95%, 98%, 100%}           (3.11) 

 

 𝑆𝑇(1) = {
1%, 2%, 3%, 5%, 8%, 12%, 18%, 27%, 38%, 50%, 62%,
 73%, 82%, 88%, 92%, 95%, 97%, 98%, 99%, 100%

}            (3.12) 

 

 

 

Figure 3.6 Schematic discretization of DER adoption behavior in the cellular 

model to 20-year (a) and 5-year time steps (b). 
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Fig. 3.6. shows the diffusion process cut in different adoption states (red 
lines) considering two of four exemplary temporal discretization forms that 
have been considered in this thesis. While (a) shows a discretization 
equivalent to a binary adoption behaviour model (not adopt/ full adopt), 
(b) displays discretization with finer temporal granularity using 4-year 
intervals.  

Thus, a) and b) result in one and five adoption stages that each census cell 
can achieve, respectively. Temporal resolution has consecutively become  
finer to 2-year and 1-year time-steps. The discretization to 20 one-year and 
10 two-year steps is shown below (Figure 3.7).  

 

Figure 3.7 Schematic discretization of DER adoption behavior in the cellular 

model to 2-year (c) and 1-year time steps (d). 

 

Establishing the adoption order 

 

The proposed spatiotemporal model relies on cell rankings that are built 
using innovativeness scores. Such scores result from variable rankings, that 
is, vectors that weight the census variables of each census cell. In this work, 
such weight vectors are retrieved using outputs of variable ranking 
methodologies. 

Various methodologies have been proposed to do variable ranking and 
variables selection, especially in machine learning [51]–[53]. Although the 
authors of [51] highlight the difference between variables (original) and 
feature (constructed from variables), most works use variables and features 
interchangeably (e.g. [54], [55]). Aware of this difference, we adopted the 
term feature only in the case synthetically manufactured variables are 
concerned. 
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The main goal of these routines is to define the amount of information 
provided by each variable and discard irrelevant or redundant variables to 
eventually minimize computational efforts [53], [55]. The variable selection 
algorithms are divided into two main categories: (a) subset selection, and 
(b) ranking of features [56].  

Both parametric and non-parametric methodologies that can establish 
variable rankings have been used. In the following, a subset of commonly 
used methodologies is listed below. 

Simple variable ranking with literature values 

A simple implementation of such variable rankings can be achieved 
manually. Herewith, previously defined (e.g. literature-based) weights are 
allocated to each census variable. Given the sum of a weighting vector with 
all variable values, a cell ranking can be achieved.  

For example, if literature results suggest education, income and age play a 
major role in the adoption of a certain technology, such variables (“adoption 
favouring criteria” – afc) could receive a higher associated weight than 
other census criteria (occ) or subsets that have been negatively linked with 
technology adoption. In the latter case, negative weights can be given. The 
example below shows the case, where a 20-fold higher importance to 
variable subset has been given (afc) 

 

 𝑎𝑓𝑛 = {
  1.00   𝑓𝑜𝑟 𝑛 ∈ {𝑎𝑓𝑐}

  0.05   𝑓𝑜𝑟 𝑛 ∈ {𝑜𝑐𝑐}
}                 (3.13) 

 

Such weight vector should numerically discriminate the importance 
(expressed as numeric weight) of adoption favouring criteria (afc) and all 
other census criteria (occ). Eventually, afn can be substituted by values 
derived from enhanced inference tools (such as in [13], [57]). Such tools, 
along multiple linear regression, will be explained in the following. 

 

Variable ranking with Linear Regression models 

This section addresses multi-linear regression models (MLR). These are 
linear regression models with multiple input parameters [58] that are 
widely used. Commonly named advantages include simple 
implementation, good interpretability and small computational effort, 
compared to other techniques. On the downside, MLR can only model 
linear relationships within the data [58]. 
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In this work, we are especially interested in the variable weights that are 
established once a model is calibrated. Therefore, the data set is split into 
training set (75%) and test set (25%). The model is fitted in R version 3.5., 
using glm.fit, which minimizes iteratively reweighted least squares. Note 
that in our data set, 28 input variables are not linearly independent. 
Following [58], such variables have been dropped. This led to a matrix with 
all variables being linearly independent. As a result, model inputs do not 
mutually influence parameter estimates anymore [58]. 

 

Variable ranking with Artificial Neural Networks and the Olden approach  

Artificial neural networks (ANN) are universal function approximators. 
They resemble the shape and wiring of neural connections of the human 
brain and typically consist of multiple layers of neurons. ANN can 
outperform certain other methods such as linear regressions due to their 
ability to capture non-linear relationships [58]. One key drawback of ANN 
is that they have no direct explanatory power, an issue addressed by Olden 
[59]. While ANN weights have been transferred to rule-based reasoning in 
[60], latter approach is not suitable to quantify the relative weighting of 
input variables required for variable ranking. 

Building on a former attempt to illuminate the relation of neural weights to 
input variables presented in [59], a variable weighting methodology that 
outperforms all former implemented attempts has been introduced in [61]. 
Latter methodology consists of a consecutive multiplication of neuron 
weights of each predictor throught the “input - hidden layer - output” 
typology chosen. Predictor variables’ aggregated weights are added up and 
ranked eventually. Given that this approach provides positive and negative 
importance values, such approach can be adapted to achieve variable 
ranking (e.g. from highest to lowest importance value). 

The composition of such ANN weights vectors can be used to achieve 
census cell ranking required in the technology diffusion model presented 
in this work.  

The ANN typology employed in this work consists of one input layer, one 
output layer and one hidden layer. The input layer consists of neurons for 
each of the 122 sociodemographic attributes. The consecutive layer, also 
known as hidden layer, instead contains 12 neurons and has been 
determined after a testing period. Furthermore, different activation 
functions for the hidden neurons are tested. The non-linear, hyperbolic 
tangent (tanh) function is selected eventually. The cost function used is the 
sum of the squared errors (SSE). Resilient backpropagation with weight 
backtracking (rprop) is set as adaptive optimization algorithm to minimize 
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SSE. Rprop is a supervised learning algorithm that is faster than training 
with backpropagation and does not require additional free parameter 
values [62]. 

Before training the ANN, the input data is transformed using min-max 
transformation. Furthermore, the data set is balanced by retaining 
approximately the same number of negative observations than positive 
observations. Balancing data sets have shown to improve predictive 
performance of ANN [61]. It has been performed for all three 
methodologies (MLR, ANN, IGR).  

 

Variable ranking with Information-Theoretic Criteria 

In this work, variable ranking based on mutual information (MI) was tested 
as well. This approach measures the MI of a variable associated to a class 
label (dependent variable). MI measures the mutual dependency between 
the two variables and is intrinsically linked to entropy [63]. Entropy 
measures the level of impurity in a group of examples and thus represents 
a measure of system’s unpredictability. The use of Information Theoretic 
(IT) criteria does not rely on normality assumptions and dependency 
discoveries can go beyond linear relationships, unlike most of the other 
models currently used to identify drivers of DER adoption. In direct 
comparison to linear regression models, the IT approach displays the 
strength of association of a given variable to the outcome variable in 
absolute terms. That is, IT-based analysis does not provide information on 
the sign (positive/negative character) of such association. 

Shannon introduced the notation of Information Entropy in 1948 in his 
work on Information Theory (IT) ( see [63]). He defined the entropy H (in 
bits) of a discrete random variable X as: 

 

𝐻(𝑋) = −∑ 𝑃(𝑥𝑖) 𝑙𝑜𝑔2 𝑃(𝑥𝑖)
𝑁

𝑖=1
        (3.14) 

 

Here, xi is a possible value of X. If any observation about the given data is 
made, new information can then be recomputed. The difference between 
the two information values is called Information Gain (IG), a measure that 
has been introduced in the context of decision trees [64]. Here, IG is used to 
detect the variable for the decision tree root node.  
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The entropy change represents the information that is gained by the 
observation and can be used to identify the branch node that provides most 
information for a decision tree. IG can be written as: 

 

                            𝐼𝐺(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)                             (3.15) 

 

Here, H(X,Y) is the joint entropy of X and Y. As observed by [52], IG is 
biased towards choosing attributes with large number of values. This can 
cause overfitting, resulting in selecting variables as root-nodes that are non-
optimal. Information gain ratio (IGR) attempts to correct the information 
gain calculation by introducing a split information value (𝑰𝑺𝑷), in order to 
reduce its bias. After calculating the split information as described in [52], 
IGR can be computed. 

 

The IGR represents the relation between IG and the intrinsic information of 
a split after an observation (Y): 

 

𝐼𝐺𝑅(𝑋, 𝑌) =
𝐼𝐺(𝑋,𝑌)

𝐼𝑆𝑃(𝑋,𝑌)
                                              (3.16) 

 

An overview of other IT-based variable selection procedures and an 
approach that compares rankings based on their compressibility have been 
discussed or presented in [54] and [65]. 
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3.6 RESULTS OF THE SPATIAL DIFFUSION MODEL CALIBRATION 

 

Accuracy metrics 

 

The predictive power of the proposed diffusion model has been tested 
considering two aspects: 

• Quantification of DER adoption per HV/MV service areas; 

• Identification of the HV/MV service areas that receive DER 
adopters.  

As described above, model configurations include four temporal 
discretizations as well as different cell rankings are compared to the real 
occurrence of DER using the Mean Absolute Error (MAE) [66] and 
contingency tables in order to retrieve accuracy measures (ACC) [67].  

Furthermore, the average deviation of EV adopters per HV/MV substation 
service area is calculated. As the adoption of DER is at early stage and our 
model uses discrete adoption steps (e.g. States 1-5), we chose the Mean 
Absolute Error (MAE) metric over Mean Square Error, as latter is overly 
penalizing outliers that are likely as we use discretized stages. MAE is 
retrieved using following formula: 

 

𝑀𝐴𝐸 =
1

𝑁𝑂
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑁𝑂
𝑖=1                  (3.17) 

 

This metric evaluates the average deviation of EV adopters per each 
HV/MV substation service area, dividing the absolute, summed deviation 
of the estimated number of EV/PV (𝐲̂) from the real observed quantities (y) 
by the number of observations (NO). Similarly, the Root Mean Square Error 
(RMSE) is calculated. Different to the MAE, the RMSE represents an 
aggregated, squared summation of the differences of all paired 
observations. Eventually, the summation is subject to root extraction as 
shown below: 

𝑅𝑀𝑆𝐸 =  [ 
1

𝑁𝑂
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁𝑂
𝑖=1  ]

1/2

       (3.18) 

 

On the other hand, the accuracy metric provides insights in the performance 
of the spatiotemporal DER forecast globally (e.g. compared to a perfect 
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accuracy of 1.0) and in comparison to current standard approaches in use. 
Hence, during the first evaluation, we transform the evaluation of the 
adoption forecast into a classification problem, as available adopter datasets 
used in this work have only one time-stamp, and given their quantity being 
very small (EV <3,000) with regard to the total population (>10 million 
inhabitants). However, such value should be carefully analysed, given that 
a wrongly forecasted census cell can already turn a HV/MV service area 
from a non-adopter into an adopter.  

The accuracy can be retreived counting all correctly predicted positives 
(true positives – TP), all wrongly predicted positives (FP) and all truly 
identified negatives (TN), all wrongly predicted negatives (FN) while 
applying the following formula [68]: 

 

     𝐴𝐶𝐶 = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                           (3.19) 

 

In the presented case, positives are HV/HMV substations classified as 
adopter substations and negatives are non-adopter HV/MV substations. 
All three metrics will provide insights that allow for the optimization of the 
spatiotemporal model parameters. 

 

Outcomes 

 

As the presented model consists of several, adaptable modules, the 
performance of different model configurations is of interest. Outcomes will 
indicate: 

i) Which model configurations outperform others given a pre-
established set of performance indicators (absolute, global 
performance); 
 

ii) Which model parameters are likely to bring further, potential 
improvements (relative, localized performance). 
   

Thus, the technology diffusion model was tested comparing outcomes of 16 
model configurations, resulting from a combination of four cell ranking 
techniques as well as four temporal discretization intervals (Eq. 3.09. – Eq. 
3.12.). The 16 model configurations are visualized below (Figure 3.8). 
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Figure 3.8 Technology diffusion model configurations 

 

Results show that neither temporal full discretization or the finest 
granularity (1-year intervals) achieve the highest performance in both MAE 
and RMSE. While such discretization results in MAE values well below 10 
adopters per HV/MV service area, configurations with 2-year and 4-year 
intervals produce deviations equivalent to 6-8 adopters per HV/MV service 
area. Curiously, error levels for 20-year and 1-year intervals are similar as 
well as 2-year and 4-year intervals (Figure 3.9).  

Interestingly, a high similarity of outcomes gained by using the first three 
cell ranking techniques can be detected. This is noteworthy, as such 
techniques (simple literature-based weight allocation, regression weights 
and artificial intelligence-based analysis) differ in complexity. One 
explanation may lie in the similarity of our study cases’ variable weight 
vectors to previous literature findings. The interested reader may find an 
extensive analysis in [29]. 

On the other hand, IT variable ranking resulted in the highest RMSE and 
MAE errors. This is not surprising as ANN and MLR indicated several 
criteria being negatively associated to EV adoption. However, the IT 
method used (Gain Ratio), as all IT approaches, cannot discriminate 
between positive and negative association. Furthermore, the implemented 
approach suffers in case multiple correlated input variables are present. 
Such variables can skew the resulted ranking. 
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Figure 3.9 Results of error analysis of all 16 configurations. 

 

The classification accuracies of all 16 model modifications strengthens 
drawn conclusions from the error analysis. Please note that Figure 3.9. 
shows both MAE and RMSE respectively (a, b). 

Again, a strong effect of temporal model configurations to model accuracies 
are discovered. Looking across all performance terms, MLR is the 
outperforming method for construction variable weight vectors. As the 
literature-based (LB) approach is only slightly behind MLR accuracy and 
error values, it provides a robust way to merge judgmental knowledge of 
the planning outputs with mathematical frameworks from similar case 
studies. 
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Figure 3.10 Results of error analysis of all 16 configurations. 

 

Discussion of the calibration process 

 

All 16 configurations have been implemented on a 64-bit Windows setup 
with 2.0 GHz, using R version 3.5.1. Before model validation, the input data 
set has been transformed using min-max transformation. Although 
numerous normalization methods do exist (z-transform, min-max, etc.), the 
effect of different techniques lies outside the scope of this work.  

Another important aspect is the ratio of positive to negative observations. 
As DER adoption processes are in an early phase with low overall 
penetration levels, adopter to non-adopter observations tend to be 
unbalanced. In this work, the data set has been balanced by retaining 
approximately the same number of negative observations than positive 
observations.  

Balancing data sets has shown to improve predictive performance of ANN 
[62]. It has been performed for all three methodologies (MLR, ANN, IGR). 



…
…

…
…

…
 

 

 68 

As discussed in [69]–[71], balancing can have strong effects on modelling 
outcomes. While several strategies to cope with unbalanced data have been 
presented (e.g. in [69]), it is still a strongly debated topic whose deeper 
analysis represents a promising research avenue of future work. Therefore, 
it is not further discussed in this work. 

The performances of different model configurations have been presented 
above. Outcomes suggest that trade-off between granularity and model 
complexity can be made. Especially, it has been observed that the 
construction techniques of census cells’ weight vectors add little to model 
performance if compared to the simplest case (manual literature-based, 
weight allocation). 

On the other hand, model performance increases with finer temporal 
granularity. However, using a granularity equivalent to less than 2 years 
seems to decrease model performance both in terms of errors and accuracy. 
Given little real-world observations and the unknown adoption time that 
has been aggregated to the base year, an explanation of such behaviour 
remains fully speculative. 

In general, 2-year or 4-year adoption intervals seem most suitable, with the 
latter demanding significantly less computational resources (roughly half 
than for 2-year intervals). 

 

3.7 UNCERTAINTY IN SPATIAL DIFFUSION MODELS 

 

Uncertainty in spatial data 

 

All spatiotemporal technology diffusion models rely on spatial data. Given 
that spatial data-sets typically arise from various sources (e.g. census 
institutes, utilities, urban planners) with varying capturing methods (air-
borne laser, satellite, field surveys), uncertainty is introduced. In order to 
fully understand the predictive accuracy of spatiotemporal forecasting 
methods, such uncertainty needs to be addressed. While in technology 
diffusion models, uncertainty in both spatial and temporal data exists, latter 
is mainly concerned with the uptake rates of a given technology. As such 
rate is (as in e.g. [13], [14] and this work as well) calibrated separately 
against real observations, further analysis on temporal inaccuracies lies 
outside the scope of this work. 

According to [18], uncertainty in spatial data can occur because of:  
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• Classification errors; 

• Locational errors; 

• Errors in nature/magnitude of value/relation. 

As research on spatial data quality is dynamically emerging, there is no 
widely accepted definition on spatial data uncertainty. It has been 
characterized in different ways, considering either the effects of uncertainty 
on modelling processes [18] or the origin of spatial data uncertainty [11]. 
Former work divides uncertainty into effects on: 

• Location (the position of spatial points, lines, polygons, raster cells 

and values); 

• Level (the occurrence of certain attributes in a specific region); 

• Nature (the relationship among spatial attributes and spatial data 

typologies). 

 

Apart from a lack of agreement on the definition of spatial data uncertainty, 
in [18] it is stated that modellers rather struggle to correctly represent 
uncertainty then removing it. Obviously, given the simplifying character of 
models in general, latter is never possible. It should be remembered that 
uncertainty is handled differently, if deterministic or stochastic models are 
used. Deterministic models typically do not integrate uncertainty. On the 
other hand, within specified boundary conditions, stochastic models 
include a random component. 

Former produce the same outcomes for the same input. Deterministic 
models thus assume that given a sufficiently granular description of states 
(current, past), perfect forecasts on future states would be possible. In a way, 
realistic models buy “tractability, but at the cost of realism” [18]. 

Stochastic models on the other hand, recognize that many natural processes 
(and measurement processes as well), possess a variability in process rates 
or measurement systems among others. Stochasticity can be introduced 
artificially by adding a random variable, that, e.g. could follow a predefined 
distribution (Gaussian, Binomial, Poisson, etc.). Using probabilistic 
approaches (Monte Carlo) further implies a change in verbal expression of 
the results. Typically, results are expressed in the probability to exceed a 
certain value.  
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Uncertainty modelling in technology diffusion models 

 

As stated in [11], one of the fundamental reasons for the existence of spatial 
data inaccuracies is the difference between a complex, dynamically 
evolving world that can only be described through continuous numerical 
representations and the discrete, simplified computer environment.  

It originates from processes such as data conversion, interpolation methods, 
digitization of cartographic material, field surveys, airborne and terrestrial 
laser scanning as well as remote sensing methods among others [47]. An 
overview of spatial data capture methods and their reported accuracies is 
listed below. While ground station surveys are the most accurate methods 
until today, spatial data production using laser scanner or remote sensing 
technologies have been becoming increasingly accurate during the past 
decades [11]. 

 

Table 3.4 Spatial data capture methodologies and typical accuracies 

(based on [47])  

 

Spatial data capture method Accuracy  

Map digitization NA 

Aerial Photogrammetry NA 

Ground station survey 1mm – 1ppm 

Global Positioning System (GPS) 10 – 20 m 

Laser scanner  mm-cm (terrestrial) 

0.1 m (aerial) 

Remote Sensing (Satellite images) 60 – 0.5m  

(strong, recent improvements) 

In spatial models, uncertainties can be modeled in different ways. In [47], 
Shi presents three approaches that relate to different modules within a 
given spatial analysis task. According to this division, uncertainty can be 
assessed in the spatial data itself, in the spatial model that is built on the 
input data and links input to output, eventually, in the spatial analysis 
(compare Fig. 3.11). Latter includes all spatial operations conducted during 
modeling.  



…
…

…
…

…
 

 

  71 

The three categories with exemplary subcategories are listed below: 

1) Modelling Uncertainties in Spatial Data (Input to model) 

 

a. Modelling Positional Uncertainty in Spatial Data; 

b. Modelling Attribute Uncertainty; 

c. Modelling Integrated Positional and Attribute Uncertainty. 

 
2) Modeling Uncertainties in Spatial Model (relation of inputs to 

outputs) 

 

a. Modelling Uncertain Topological relationships; 

b. Modelling Uncertainty in DEM. 

 
3) Modelling Uncertainties in Spatial Analyses  

(model building blocks – routines) 

 

a. Modelling Uncertainty in Overlay Analysis; 

b. Modelling Uncertainty in Buffer Analysis; 

c. Modelling Uncertainty in Line Simplification. 

 

This work considers uncertainties in the spatial model (topological 
relationships) only (Figure 3.11). However, under the presented layout of 
the spatiotemporal technology diffusion model, such topologies (the 
allocation of spatial census cells to HV/MV transformer locations) are 
directly linked to aspects of positional uncertainty in spatial data, and, 
attribute uncertainty (spatial cell is supplied by transformer A or B). 
Likewise, uncertainties in the spatial model incorporate spatial analysis 
uncertainties as the DER adopters that have been spatially superimposed 
with the spatial census data-set.  

Uncertainty can also be introduced due to fusion of data from different 
sources or spatial data models. However, the analysis of combinatorial 
uncertainty generation due to data fusion lies outside the scope of this work 
and is therefore not considered. Furthermore, uncertainties in census data, 
adopter locations and spatial operations are not considered. 
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Figure 3.11. Uncertainties assessed in the proposed methodology within this 
thesis 

 

However, from an electricity network planner or energy policy officer 
perspective, it is the understanding of the effects of such uncertainties on 
model outcomes that is fundamental. This is the domain of error analysis 
methods that can assess model-based uncertainty. According to [18], 
commonly used error analysis methods are the error analysis, sensitivity 
analysis, uncertainty analysis and robustness analysis that are described 
below (Table 3.5). 

The approach pursued during this thesis is twofold: First, uncertainties in 
the development of the spatiotemporal technology diffusion model are 
assessed. Here, the spatial simulation model is calibrated considering 
topological spatial data uncertainty while shuffling various methodological 
configurations.  

Secondly, uncertainty of external, global conditions is translated into sets of 
discrete scenarios that are used to hedge the risk inaccurate results can pose 
to decision makers. 
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Table 3.5 Error analysis methodologies (based on [18]) 
 

Error analysis method Description  

 

Error analysis 

 
Considers error propagation and checks if added 
uncertainty of used data sources amplify or compensate 
on aggregated model basis (error amplification or error 
compensation) 

Sensitivity analysis Is often used as a local analysis where one parameter is 
varied within a predefined interval (e.g. +/- 10%) while 
holding all other parameter values constant. 

Typically, the sensitivity analysis relies on the 
proportional change of the analysed variable; 

If the ratio of change in output given the input is 
exceeding 1.0, we call this “sensitive”, while changes 
below 1.0 are associated with a “robust” parameter. 

Uncertainty analysis The basic goal of uncertainty analysis (UA) is to isolate the 
most sensitive variables and rank them according to their 
sensitivity for the model output. Compared to sensitivity 
analysis, UA is a more general approach that considers 
the interaction of multiple variables. 

A common approach is to identify the most sensitive 
variables and then associate a probability distribution to 
each variable (the choice of the probability distribution is 
crucial). As the UA as a multivariate analysis includes 
parameter interaction, parameter space sampling 
becomes crucial to reduce computational costs.  

Robustness analysis The structural uncertainty of models (or model 
uncertainty) is defined as the way the models’ structure 
affects its outcomes. 

It was proposed by Jansen (1998) to coarsen 
spatial/temporal resolutions or reducing model 
complexity to assess the effects of model uncertainty. As 
extreme, the model structure could be completely 
replaced by another representation (robustness analysis). 
It should be noted that the repetitive checking and 
running of model simulations during its development 
and refinement stages is an informal way of conducting a 
robustness analysis. 
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Uncertainty estimation in spatiotemporal diffusion models 

 

The spatiotemporal technology diffusion model proposed in this thesis is a 
deterministic model. However, for the analysis of model outcomes, it is very 
helpful to assess the uncertainty due to measurement methodologies and 
uncertainties that are produced and propagated through spatial analysis 
processes [11].  

As mentioned above, uncertainty of topological relationships has been 

considered within this work. This is achieved through the analysis of 

positional uncertainty in spatial input data (the relation of census cells to 

HV/MV transformers). In other words, the uncertainty of HV/MV 

transformer locations with respect to the position of spatial census cells is 

modelled. Such relation contains both positional aspects (the distance of 

census cells to HV/MV transformers) and attribute aspects (each census cell 

is assigned to one transformer area). 

To assess the impact that erroneous positional information has on model 
outcomes, projected HV/MV substation coordinates (in meters) are 
synthetically altered. Using a random distribution with equal probability 
and replacement, HV/MV substation transformer positions have been 
permutated considering positional 10 – 100m errors along both latitude and 
longitude axis.  

 

 

 
Figure 3.12 Simulated evolution of Mean Average Error (MAE) along growing 

positional error 
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The figure above (Fig. 3.12) shows the simulated evolution of the MAE of 
population counts that are contained in each HV/MV service area after and 
before permutation. As seen, the MAE grows with the error introduced.  

Given an average population of roughly 26,000 residents within one 
HV/MV service area and considering the smallest service area with 
approximately 3,200 residents, it becomes clear that errors until 20m will 
have even under worst case conditions only minor impact (<6%) on the 
model outcomes. This is especially noteworthy, recalling 20m being the 
maximum error that may be introduced under global positioning systems 
(GPS) which also ranges among the largest uncertainty sources (Table 3.4.). 

 

Reducing uncertainty in spatial data with data quality management 

 

Given the previously described ways that can impact on the accuracy of 

spatial data and the reliability of spatial models, spatial data quality 

management is a crucial process for spatial models. A list of spatial data 

quality elements has been presented by [72]. Such quality elements include: 

• Lineage;  

• Positional accuracy;  

• Completeness; 

• Logical consistency;  

• Semantic accuracy;  

• Temporal information; 

 

Recently, the growing use of spatial data and rising concerns to handle 
inaccuracies have led to standardization efforts. As such, ISO 19113 2005, 
an industry norm on Geographic Information – Quality principles has been 
developed and recently actualized (ISO 19157 2013). ISO 19157:2013 
established a set of definition and standard processes to assess the quality 
of geographic data in a standardized way. It includes [73]: 

• A definition of data quality components; 

• Specifications of data quality measures; 

• Detailed description of the general procedures for evaluating 
geographic data quality; 

• Development of principles for reporting data quality. 
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3.8 COMPARISON TO OTHER MODEL IMPLEMENTATIONS 

 

The scientific method requires validation. While one way to achieve 
validation is the confrontation of modelling outcomes with real 
observations, another way to accomplish validation is through comparison 
with other methodologies. In the following, first, other attempts to model 
DER diffusion in space and time will be presented. Eventually, such models 
are compared to the presented approach. 

Former developed models include popular agent-based models (ABM) 
[74]–[77], spatial regression models [13], [78], [79] and simulation-based 
approaches other than ABM [9], [14]. It is noteworthy, that all works are 
very recent and have been simultaneously developed within the last 5-10 
years. 

A recent report differentiates existing DER diffusion models into eight 
categories: 1) Time series, 2) Regression, 3) Machine Learning, 4) Bass 
Diffusion Models, 5) Customer Behaviour, 6) ABM, 7) Combined Market 
Penetration and 8) Macroeconomic models. Although the importance of 
sufficient spatial granularity is mentioned, a model delineation along 
spatial dimension is not presented [4]. Furthermore, research on spatial 
regression or simulation has not been included.  

 

 

Figure 3.13 An overview of technology diffusion models. 
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Figure 3.13 displays all diffusion model types presented in [4], current 
practices in grid integration studies [9] as well as spatial regression and 
spatial simulation model families. It can be observed, that most models 
consider the temporal aspect of technology adoption, while spatial aspects 
are commonly neglected. Only spatial simulation studies (other than ABM), 
agent-based models and spatial regression models can be used to forecast 
the spatial patterns of technology adoption. In this work,  ABM have been 
separately analyzed from spatial simulation models as former have the 
particularity to model single individuals or agents which is typically not the 
case for spatial simulation models. 

As shown in [9], current studies that assess the grid impact of electrical 
appliances to electricity networks commonly neglect the temporal and 
spatial dimension of technology adoption, rather relying on fixed capacity 
extrapolations or random allocations. 

The model family of the top-right corner will be discussed in more detail in 
the following. 

As one of the most cited works on technology diffusion using agent-based 
modelling, the work of [80] includes theoretical considerations within an 
empirically driven, agent-based model to forecast technology adoption (PV) 
on household level. Model validation was delivered though predictive 
accuracy, RMSE of marginal adoption rates (temporal dimension with 
changing price and subsidy patterns), spatial accuracy and demographic 
accuracy. Spatial prediction errors were analysed with fuzzy numerical 
similarity and wavelet verification. However, the authors state that model 
results heavily relied on expensive, household-level survey data. In 
addition, social relationships had to be modelled relying on the small world 
algorithm that randomly assigns influence links throughout the population 
under analysis. 

A similar ABM approach to model EV diffusion was developed in [77]. 
Using the models uniquely for modeling large-scale interactions of EV with 
the distribution grid infrastructure, the authors integrated agent-based 
traffic simulation software MATSim (Multi Agent Transportation 
Simulation) together and a Vehicle Technology Assessment Model), and 
eventually, power system simulation software. The latter includes as well 
routines to manage the grid interactions with plug-in electric vehicles [77]. 
While the work provides insights in the joint modelling of transport and 
electricity network flows, it does not consider the structure of the social 
system in which these interactions are embedded.  

The study by [76] models EV diffusion with ABM approaches, where the 
utility to adopt for each agent rises by the increasing popularity of the 
technology as well as the rising numbers of peers which adopt EV. As basic 
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assumption, income was inversely correlated with risk-averse behaviour. 
Low income groups are therefore especially constrained to adoption. The 
model outcomes could not exploit real observations to support model 
validation. Due to lack of data, the authors have been exploring different 
patterns produced rather than matching outcomes with real EV adoption 
data. Results showed that dense clusters could be generated even if mild 
per-effects are at work. The authors stretch on the difficulty to model social 
interactions and the need of further calibration, e.g. to validate the 
synthetically established social network typologies employed [76]. 

A study on PV diffusion using agent-based modelling was conducted by 
[81]. The study focused on the Italian residential sector, simulating PV 
diffusion with ABM for yearly adoption increments. Sub-modules 
represented the Italian social system and the agents’ individual investment 
decision (household level) using census data. The study displayed another 
drawback of agent-based models. A major limitation noted during the 
implementation of the model was the need of computational resources. 
Looking at country-level, the study included about 10 million Italian 
households of a total of 23.9 million households, living in one- or two-family 
houses. The computation was speeded up by aggregating households 
together. Calculation efforts without aggregation would have required 8 
bytes of hard-drive memory for the 20 attribute values of each agent and a 
total of about 1.5 GB for one simulation step. Additionally, the whole 
simulation would have lasted about 12 hours and required 30 GB hard-
drive storage capacity [81]. 

Spatial regression models represent another popular model type that is 
applied to forecast technology diffusion processes in time and space. The 
most recent work has been developed in [13]. Here, the authors developed 
a two-stage process to estimate the adoption of residential EV, PV and 
HVAC appliances. After starting with an empty logistic regression model, 
census variables from a data-set partly crossed with real observations have 
been consecutively selected. Then, for each technology, a final model has 
been established given predefined performance criteria. Eventually, such 
models where used to forecast technology adoption over a 10-year horizon. 
Using a non-spatial regression model, the developed model neglects spatial 
interaction. A further drawback mentioned by the authors is the reliance on 
expensive survey data and adopter observations that are often not available 
(e.g. the authors in this work model HVAC adoption using literature 
values). 

On the other hand, authors of work [78], [79] present geographically 
weighted local regression models (GWR) that are applied to predict spatial 
adoption patterns of load growth and household appliances with high 
power demand (electric stoves). Both studies show both advantages of 
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spatial regression techniques (ease to implement) and limitations (relatively 
high error of 50-60%). 

Further typical limitations of spatial regression models lie in the reliance of 
mostly simplified (e.g. binary) neighbourhood structures [82], difficulties to 
predict hotspots with values far above local averages [83] and 
multicollinearity of predictor variables. In addition, such models are 
bounded to detect linear dependencies among spatial data-sets.  

The work in [79] presents a hierarchical Bayesian model that has been 
developed to generate spatiotemporal PV adoption patterns in a Brazilian 
city. The paper includes a forecast for residential uptake of PV panels, 
considering different energy policy developments. However, in the 
presented way, such model relied heavily on sets of parameters, synthetic 
distributions of model variables and globally set hyperparameters that are 
chosen beforehand and fixed. Thus, they cannot track dynamic changes of 
model parameters.  

As previously shown, the model presented within this work [9] uses a 
cellular module build on adoption stages that is sequenced through an 
innovativeness score-based ranking. Such simulation models use 
discretized uncertainty, that is, predetermined scenarios that are translated 
into spatial adoption patterns. Thus, the spatial simulation model takes 
advantage of a deterministic model typology that is most suitable in case 
discrete scenario sets are used. 

However, the deterministic model can be seen as a building block of a 
stochastic model. Combining a distribution of scenarios with Monte-Carlo 
methods, stochastic processes can be simulated. Furthermore, it is obvious 
as the census-based nature of the presented simulation model requires 
reliable census data that is openly accessible. In fact, there is a rising 
availability of census data (e.g. census data is freely available covering all 
European countries [84], and many other, such as the United States [85], and 
Brazil [86] among others). Thus, census data represents a convenient source 
to build such models. 

An alternative, spatial simulation model that relies on little population 
information only, has been introduced by [14]. The presented approach 
includes a threefold process. Building on a spatial model that produces 
global PV adoption time series, the authors use a support-vector based 
model to estimate the adoption probability in each cell for a given time 
horizon. Eventually, the global PV adoption forecast is allocated among the 
cells that are classified as growth cells. While the model provides a 
framework that does not rely on census data and census polygons, the 
authors arbitrarily chose a cell lattice with 800-meter resolution that was 
enriched with information of six predictor variables. Such arbitrary 
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aggregation, as shown in Chapter 2, may negatively impact on the studies 
explanatory power.  

 

Table 3.6 Advantages and limitations of spatiotemporal 
 technology diffusion models 

 Spatial regression 
models  

Simulation-based 
models 

Agent-based models 

Advantages  
• Can fully capture 

social system of 
rich census data 
 

• Simple to 
implement  

• Can fully capture 
social system of 
rich census data 
 

• Simple to 
implement  
 

• Flexible adoption 
of new features 

• Enhanced 
modeling with 
detailed 
representation of 
decision processes 
 

• Neighbourhood 
interaction 

 

Limitations 

 

• Relies on census 
data availability 
 

• Neighbourhood 
interaction 
assumed static 
 

 

• Relies on census 
data availability 
 

• Computationally 
demanding 
 

• Neighbourhood 
interaction 
requires cell 
lattices or 
simplified 
neighborhood 
structures (if in 
vector format) 
 

 

• Relies on census 
data availability 
 

• Requires costly 
empirical survey 
data 

 

• Computationally 
demanding 

 

• Neighbourhood 
interaction requires 
cell lattices or 
simplified 
neighbourhood 
structures (if in 
vector format) 

 

Previously presented diffusion model typologies require complex error 
calculations that account for the spatial and temporal interdependency of 
adoption behaviour. Such stage-wise analysis can only ground on multi-
year adoption observations that are still rare to find (one exception with 
detailed, quarterly adoption time series is presented in [14]). An 
implementation of all diffusion model types presented for a joint case study 
could provide further insights in the relative performance of technology 
diffusion models. Until today, such comparison has not been conducted 
and the realization of such experiment remains future work, not covered 
within this thesis. 
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As discussed in [9], current techniques in industry and academia tend to 
avoid the use of technology diffusion models, relying mostly on 
randomized or very simplified extrapolation techniques. Such approaches 
take a few network parameters into account (e.g. installed transformer 
capacities) and do not rely on a model that possesses both spatial and 
temporal dimension.  

A comparison of the developed model to current industry standards is 
therefore presented in a dedicated chapter on the interface of electricity 
network planning and technology diffusion (Chapter 4). 

Finally, for the frictionless implementation of a spatiotemporal diffusion 
model in utilities’ departments and for energy policy makers, Occam’s 
razor rule can serve as a guiding principle: The concept conveys the idea 
that in case of multiple, competing models that are used for inference, the 
simplest/least complex one should be used [18]. The spatial simulation 
model that has been presented in this chapter satisfies this requirement, 
providing a very flexible forecasting tool that relies on inexpensive 
minimum input data and little computational resources. 
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Chapter summary and conclusions 

The chapter introduced spatiotemporal DER adoption models. Such models 
typically consist of a global DER forecast, a cellular module, consisting of 
cell states and an activation order, as well as a module for adoption pattern 
mapping. In the model presented within this thesis, the cellular module 
builds on granular census data. Using elements of Roger’s theory on the 
Diffusion of Innovations, an activation order is built on innovativeness scores, 
that allow to rank census cells along the adoption process. Comparing 
different model modifications (e.g. time discretization or ranking 
estimations), the trade-off between data granularity, model complexity and 
model accuracy can be identified. Outstanding results can be summarized 
as the following: 

• Highly accurate spatiotemporal technology diffusion models are 
currently impossible given the, by definition, reduced amount of 
adopter observations. 
 

• Likewise, adoption forecasts under mature technology diffusion are 
eventually of little use given that market penetration is already close 
to saturation. 
 

• Currently, few approaches that integrate spatial to temporal 
diffusion forecasts are available. Developed models can be grouped 
into 1) Spatial simulation models, 2) Spatial regression models, and 
3) Agent-based models. 
 

• Compared to other model families, simulation models possess both 
the highest flexibility and simplicity, which make them attractive for 
implementation in network planning or energy policy design. 
 

• As in the proposed model, all spatiotemporal technology diffusion 
model families do possess a temporal model, a spatial model and a 
spatiotemporal linkage that determines the activation order of 
spatial cells. 
 

• Model calibrations need to consider both spatial (resolution of the 
cellular model and adoption sequencing) and temporal 
(discretization of adoption process and forecasting intervals) 
variations.  
 

• Uncertainty is present in all spatial data and analysis processes. 
Therefore, acknowledging and documenting inaccuracies is 
fundamental to assess the impact of uncertainty to model outcomes.  

 



…
…

…
…

…
 

 

  83 

Chapter references 

[1] IEA, World Energy Outlook 2016. Paris, 2016. 

[2] European Commission, EU Reference Scenario 2016: Energy, Transport 
and GHG emissions trends to 2050. 2016. 

[3] S. Coley et al., “Guidance on Solar PV Adoption Forecast Methods for 
Distribution Planning,”, 20 pp, Palo Alto, USA, 2018. 

[4] P. Gagnon, B. Stoll, A. Ehlen, G. Barbose, and A. Mills, “Estimating 
the Value of Improved Distributed Photovoltaic Adoption Forecasts 
for Utility Resource Planning,” Denver (CO), 2018. 

[5] EPRI, “Developing a Framework for Integrated Energy Network 
Planning (IEN-P),” Palo Alto, California, 2018. 

[6] K. Bell, “Methods and Tools for Planning the Future Power System: 
Issues and Priorities,” Model. Requir. GB Power Syst. Resil. Dur. Transit. 
to Low Carbon Energy, no. Paper 5, pp. 1–35, 2015. 

[7] ICF, “Integrated Distribution Planning,”, USA, 2016. 

[8] F. Pilo, S. Jupe, , F. Silvestro, C. Abbey et al., “Planning and 
optimization methods for active distribution systems,” CIGRE 
Brochure number 591, Paris, France, Aug. 2014. 

[9] F. Heymann, J. Silva, V. Miranda, J. Melo, F. J. Soares, and A. Padilha-
Feltrin, “Distribution network planning considering technology 
diffusion dynamics and spatial net-load behavior,” Int. J. Electr. Power 
Energy Syst., vol. 106, pp. 254–265, 2019. 

[10] F. Heymann et al., “Vertical Load Uncertainty at the T/D Boundary 
under different spatial DER allocation techniques,” in IEEE 
Sustainable Energy Systems and Technologies Conference, 2019, Porto, pp. 
1–6. 

[11] W. Shi, Principles of Modeling Uncertainties in Spatial Data and Spatial 
Analyses. CRC Press, 2009. 

[12] S. A. Robinson and V. Rai, “Determinants of spatio-temporal patterns 
of energy technology adoption: An agent-based modeling approach,” 
Appl. Energy, vol. 151, pp. 273–284, 2015. 

[13] R. Bernards, J. Morren, and H. Slootweg, “Development and 
Implementation of Statistical Models for Estimating Diversified 
Adoption of Energy Transition Technologies,” IEEE Trans. Sustain. 
Energy, vol. 9, no. 4, pp. 1540–1554, 2018. 



…
…

…
…

…
 

 

 84 

[14] T. Zhao, Z. Zhou, Y. Zhang, P. Ling, and Y. Tian, “Spatio-Temporal 
Analysis and Forecasting of Distributed PV Systems Diffusion: A 
Case Study of Shanghai Using a Data-Driven Approach,” IEEE Access, 
vol. 5, pp. 5135–5148, 2017. 

[15] B. Finkenstädt, L. Held, and V. Isham, Statistical Methods for Spatio-
Temporal Systems, vol. 45, no. 1972. New York: Taylor & Fancis Group, 
LLC, 2007. 

[16] N. Oreskes, K. Shrader-Frechette, and K. Belitz, “Verification, 
validation, and confirmation of numerical models in the earth 
sciences,” Science (80-. )., vol. 263, no. 5147, pp. 641–646, 1994. 

[17] G. E. P. Box, “Some problems of statistics and everyday life,” J. Am. 
Stat. Assoc., vol. 74, no. 365, pp. 1–4, 1979. 

[18] D. O’Sullivan and G. L. W. Perry, Spatial Simulation: Exploring Pattern 
and Process, 1st ed. Wiley-Blackwell, 2013. 

[19] E. M. Rogers, Diffusion of innovations, 5th Edition, New York Free 
Press, USA,2003. 

[20] J. Massiani and A. Gohs, “The choice of Bass model coefficients to 
forecast diffusion for innovative products: An empirical investigation 
for new automotive technologies,” Res. Transp. Econ., vol. 50, pp. 17–
28, 2015. 

[21] W. A. V Clark and K. L. Avery, “The Effects of Data Aggregation in 
Statistical Analysis,” Geogr. Anal., vol. 8 (4), no. October, 1976. 

[22] A. S. Fotheringham and D. W. S. Wong, “The modifiable areal unit 
problem in multivariate statistical analysis,” Environ. Plan. A, vol. 23, 
1991. 

[23] H. L. Willis, Power distribution planning reference book, Second Edi. New 
York, 2004. 

[24] F. M. Bass, “A New Product Growth for Model Consumer Durables,” 
Manage. Sci., vol. 5, no. 16, pp. 215–227, 1969. 

[25] L. M. M. Benvenutti, A. B. Ribeiro, F. A. Forcellini, and M. U. 
Maldonado, “The Effectiveness of Tax Incentive Policies in the 
Diffusion of Electric and Hybrid Cars in Brazil,” 41st Congr. Latinoam. 
Din. Sist. São Paulo, no. November, 2016. 



…
…

…
…

…
 

 

  85 

[26] T. W. Valente, S. R. Dyal, K. H. Chu, H. Wipfli, and K. Fujimoto, 
“Diffusion of innovations theory applied to global tobacco control 
treaty ratification,” Soc. Sci. Med., vol. 145, pp. 89–97, 2015. 

[27] H. Duan, G. Zhang, S. Wang, and Y. Fan, “Peer interaction and 
learning: Cross-country diffusion of solar photovoltaic technology,” 
J. Bus. Res., vol. 89, no. August 2017, pp. 57–66, 2018. 

[28] B. Bollinger and K. Gillingham, “Peer Effects in the Diffusion of Solar 
Photovoltaic Panels,” Mark. Sci., vol. 31, no. 6, pp. 900–912, 2012. 

[29] F. Heymann et al., “DER Adopters analysis with Spatial 
Autocorrelation and Information Gain Ratio under different Census-
data Aggregation Levels,” IET Renew. Power Gener., vol 14 (1), 2019. 

[30] L. Bian, “A conceptual framework for an individual-based spatially 
explicit epidemiological model,” Environ. Plan. B Plan. Des., vol. 31, 
no. 3, pp. 381–395, 2004. 

[31] M. Graziano and K. Gillingham, “Spatial patterns of solar 
photovoltaic system adoption: The influence of neighbors and the 
built environments,” J. Econ. Geogr., vol. 15, no. 4, pp. 815–839, 2015. 

[32] VW, “Basics of Electric Vehicles Design and Function,” Report of Self 
Study Program 820233, p. 62, Herndon (VA), 2013. 

[33] KEMA, “Report - Study on the Impact of Distributed Generation on 
the National Electricity System,”Arnhem, 2011. 

[34] F. Heymann, C. Pereira, V. Miranda, and F. J. Soares, “Spatial load 
forecasting of electric vehicle charging using GIS and diffusion 
theory,” 2017 IEEE PES Innov. Smart Grid Technol. Conf. Eur., Turin, 
pp. 1–6, 2017. 

[35] ENTSO-E, “TYNDP 2018: Scenario Report,” Brussels, 2018. 

[36] ENTSO-E, “ANNEX II : Methodology of Scenario report,” Brussels, 
2018. 

[37] H. Jiayi, J. Chuanwen, and X. Rong, “A review on distributed energy 
resources and MicroGrid,” Renew. Sustain. Energy Rev., vol. 12, no. 9, 
pp. 2465–2476, 2008. 

[38] A. Chaouachi, E. Bompard, G. Fulli, M. Masera, M. De Gennaro, and 
E. Paffumi, “Assessment framework for EV and PV synergies in 
emerging distribution systems,” Renew. Sustain. Energy Rev., vol. 55, 
pp. 719–728, 2016. 



…
…

…
…

…
 

 

 86 

[39] M. H. Moradi, M. Abedini, S. M. R. Tousi, and S. M. Hosseinian, 
“Optimal siting and sizing of renewable energy sources and charging 
stations simultaneously based on Differential Evolution algorithm,” 
Int. J. Electr. Power Energy Syst., vol. 73, pp. 1015–1024, 2015. 

[40] D. B. Richardson, “Electric vehicles and the electric grid: A review of 
modeling approaches, Impacts, and renewable energy integration,” 
Renew. Sustain. Energy Rev., vol. 19, pp. 247–254, 2013. 

[41] P. Nunes, T. Farias, and M. C. Brito, “Day charging electric vehicles 
with excess solar electricity for a sustainable energy system,” Energy, 
vol. 80, pp. 263–274, 2015. 

[42] ACAP, “Estatísticas do Sector Automóvel,” Assoc. Automóvel 
Port.(Portuguese Automotive Association), Lisbon, 2013. 

[43] INE, “População residente em cidades (N.o) por Local de residência,” 
Lisbon, 2016. 

[44] Portuguese General Direction of Energy and Geology (DGEG), 
“Rapid Statistics - Renewables No.168,” Lisbon, 2018. 

[45] S. Izquierdo, M. Rodrigues, and N. Fueyo, “A method for estimating 
the geographical distribution of the available roof surface area for 
large-scale photovoltaic energy-potential evaluations,” Sol. Energy, 
vol. 82, no. 10, pp. 929–939, 2008. 

[46] J. Melius, R. Margolis, and S. Ong, “Estimating Rooftop Suitability for 
PV: A Review of Methods, Patents, and Validation Techniques,” 
Denver (CO), 2013. 

[47] W. Shi, Principles of Modeling Uncertainties in Spatial Data and Spatial 
Analyses, 1st Editio. CRC Press, 2009. 

[48] P. Ardilly et al., Handbook of Spatial Analysis - Theory and Application 
with R, no. October. Montrouge Cedex, 2018. 

[49] A. Bhardwaj, “Spatial Data Mining,” in Data Mining Techniques and 
Tools for Knowledge Discovery in Agricultural Datasets, IASRI, 2012, pp. 
153–166. 

[50] J. Melo, E. Carreno, A. Padilha-Feltrin, and C. Minussi, “Grid-based 
simulation method for spatial electric load forecasting using power-
law distribution with fractal exponent,” Int. Trans. Electr. ENERGY 
Syst., no. 26, pp. 1339–1357, 2016. 



…
…

…
…

…
 

 

  87 

[51] I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature 
Selection,” J. Mach. Learn. Res., vol. 3, no. 3, pp. 1157–1182, 2003. 

[52] A. G. Karegowda, A. S. Manjunath, G. Ratio, and C. F. Evaluation, 
“Comparative study of attribute selection using Gain Ratio and 
correlation based Feature Selection,” Int. J. Inf. Technol. Knowl. Manag., 
vol. 2, no. 2, pp. 271–277, 2010. 

[53] G. Doquire, M. Verleysen, “Feature Selection for Multi-label 
Classification Problems,” IWANN 2011: Advances in Computational 
Intelligence pp 9-16, 2011. 

[54] G. Brown, “A New Perspective for Information Theoretic Feature 
Selection,” in 12th International Conference on Artificial Intelligence and 
Statistics (AISTATS), 2009, no. 1, pp. 49–56. 

[55] M. Bennasar, Y. Hicks, and R. Setchi, “Feature selection using Joint 
Mutual Information Maximisation,” Expert Syst. Appl., vol. 42, no. 22, 
pp. 8520–8532, 2015. 

[56] J. Pohjalainen, O. Räsänen, and S. Kadioglu, “Feature selection 
methods and their combinations in high-dimensional classification of 
speaker likability, intelligibility and personality traits,” Comput. 
Speech Lang., vol. 29, no. 1, pp. 145–171, 2015. 

[57] T. Islam and N. Meade, “The impact of attribute preferences on 
adoption timing: The case of photo-voltaic (PV) solar cells for 
household electricity generation,” Energy Policy, vol. 55, pp. 521–530, 
2013. 

[58] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical 
Learning, Springer, 2nd Edition, USA2009. 

[59] J. D. Y. J. Olden D. A., “Illuminating the ‘black box’: a ramdomization 
approach for understanding variable contributions in artificial 
neuronal networks.,” Ecol. Modell., vol. 154, pp. 135–150, 2002. 

[60] A. R. G. Castro and V. Miranda, “An interpretation of neural 
networks as inference engines with application to transformer failure 
diagnosis,” Int. J. Electr. Power Energy Syst., vol. 27, no. 9–10, pp. 620–
626, 2005. 

[61] J. D. Olden, M. K. Joy, and R. G. Death, “An accurate comparison of 
methods for quantifying variable importance in artificial neural 
networks using simulated data,” Ecol. Modell., vol. 178, no. 3–4, pp. 
389–397, 2004. 

https://link.springer.com/book/10.1007/978-3-642-21501-8
https://link.springer.com/book/10.1007/978-3-642-21501-8


…
…

…
…

…
 

 

 88 

[62] M. Riedmiller, Heinrich Braun, "A Direct Adaptive Method for Faster 
Backpropagation Learning: The RPROP Algorithm", Proc. of the IEEE 
Intl. Conf. on Neural Networks, pp. 586 - 591, 1993. 

[63] J. C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel 
Perspectives, 1st ed. Springer Publishing Company, Incorporated, 2010. 

[64] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, vol. 1, 
pp. 81–106, 2007. 

[65] J. H. Collier and A. H. Konagurthu, “An information measure for 
comparing top k lists,” arXiv, vol. October, 2013. 

[66] R. M. Forte, Mastering predicitive analysis with R. , 414 pp, Packt 
Publishing, 2015. 

[67] R. G. Congalton, “A review of assessing the accuracy of classifications 
of remotely sensed data,” Remote Sens. Environ., vol. 37, no. 1, pp. 35–
46, 1991. 

[68] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., 
vol. 27, pp. 861–874, 2006. 

[69] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, 
“A review on ensembles for the class imbalance problem: Bagging-, 
boosting-, and hybrid-based approaches,” IEEE Trans. Syst. Man 
Cybern. Part C Appl. Rev., vol. 42, no. 4, pp. 463–484, 2012. 

[70] Y. Sun, A. K. C. Wong, and M. S. Kamel, “Classification of Imbalanced 
Data: a Review,” Int. J. Pattern Recognit. Artif. Intell., vol. 23, no. 04, pp. 
687–719, 2009. 

[71] Q. Wei and R. L. Dunbrack, “The Role of Balanced Training and 
Testing Data Sets for Binary Classifiers in Bioinformatics,” PLoS One, 
vol. 8, no. 7, 2013. 

[72] J. L. Morrison, “Spatial Data Quality,” in Elements of spatial data quality, 
S. Guptill and J. Morrison, Eds. 1995, pp. 1–13. 

[73] International Organization for Standardization, “ISO 19157:2013 - 
Geographic information -- Data quality,” 2013. [Online]. Available: 
https://www.iso.org/standard/32575.html. 

[74] S. A. Robinson, M. Stringer, V. Rai, and A. Tondon, “GIS-Integrated 
Agent-Based Model of Residential Solar PV Diffusion,” 32nd 
USAEE/IAEE North Am. Conf. July 28-31, 2013, pp. 1–19, 2013. 



…
…

…
…

…
 

 

  89 

[75] M. D. Galus, M. Zima, and G. Andersson, “On integration of plug-in 
hybrid electric vehicles into existing power system structures,” 
Energy Policy, vol. 38, no. 11, pp. 6736–6745, 2010. 

[76] D. McCoy and S. Lyons, “Consumer preferences and the influence of 
networks in electric vehicle diffusion: An agent-based 
microsimulation in Ireland,” Energy Res. Soc. Sci., vol. 3, no. C, pp. 89–
101, 2014. 

[77] M. D. Galus, “Agent-based modeling and simulation of large scale 
electric mobility in power systems,” Doctoral thesis ETH Zurich, no. 
20288, p. 314, 2012. 

[78] J. D. Melo, “Spatial Pattern Recognition of Urban Sprawl Using a 
Geographically Weighted Regression for Spatial Electric Load 
Forecasting,” 18th International Conference on Intelligent System 
Application to Power Systems (ISAP), Porto , 2015. 

[79] J. Villavicencio Gastelu, J. D. Melo Trujillo, and A. Padilha-Feltrin, 
“Hierarchical Bayesian Model for Estimating Spatial-Temporal 
Photovoltaic Potential in Residential Areas,” IEEE Trans. Sustain. 
Energy, vol. 9, no. 2, pp. 971–979, 2018. 

[80] V. Rai and S. A. Robinson, “Agent-based modeling of energy 
technology adoption: Empirical integration of social, behavioral, 
economic, and environmental factors,” Environ. Model. Softw., vol. 70, 
pp. 163–177, 2015. 

[81] J. Palmer, G. Sorda, and R. Madlener, “Modeling the Diffusion of 
Residential Photovoltaic Systems in Italy : An Agent-based 
Simulation Johannes Palmer , Giovanni Sorda and Reinhard 
Madlener May 2013 Institute for Future Energy Consumer Needs and 
Behavior ( FCN ),” no. 9, pp. 1–48, 2013. 

[82] E. Gómez-Rubio, Virgilio; Bivand, Roger; Pebesma, Applied Spatial 
Data Analysis with R, Springer, 2nd Edition, USA, 2013. 

[83] G. Hoek et al., “A review of land-use regression models to assess 
spatial variation of outdoor air pollution,” Atmos. Environ., vol. 42, no. 
33, pp. 7561–7578, 2008. 

[84] EUROSTAT, “2011 Census data-base,” 2011. [Online]. Available: 
https://ec.europa.eu/eurostat/web/population-and-housing-
census/census-data/2011-census. 



…
…

…
…

…
 

 

 90 

[85] United States Census Bureau, “Census data,” 2019. [Online]. 
Available: https://www.census.gov/programs-
surveys/geography/data.html. 

[86] Brazilian Institute for Geography and Statistics, “Census micro data,” 
2018. [Online]. Available: 
https://ww2.ibge.gov.br/home/estatistica/populacao/censo2010/
resultados_gerais_amostra/resultados_gerais_amostra_tab_uf_micr
odados.shtm. [Accessed: 08-Nov-2019]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



…
…

…
…

…
 

 

  91 

4 Electricity network planning 
under technology diffusion 

 

The large-scale adoption of DER impacts on the load profiles of residential 
consumers. Therefore, electricity network planning methodologies need to 
be updated, incorporating models that can realistically represent DER 
adoption dynamics within connected consumer groups. After introducing 
common, current simplifications to model DER adoption in electricity 
network impact studies, this chapter presents the application of a 
spatiotemporal DER adoption model to distribution and transmission 
planning study cases. Results show the range of uncertainties network 
planners face from applying different DER allocation techniques. 
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4.1 A BRIEF INTRODUCTION INTO ELECTRICITY NETWORK PLANNING 

 
Electricity networks are typically large-scale, capital-intensive 
infrastructures. Therefore, independent system operators (ISOs), 
distribution or transmission system operators conduct short-, medium- and 
long-term planning exercises that aim to reduce the risks associated to 
investment decisions. Such risks may arise from changes in influencing 
factors that are endogenous to electricity planning (component costs, 
demand and generation patterns) or exogenous (capital costs, policy 
changes). 

This section introduces general electricity network planning aspects while 
showing how newly introduced electrical appliances such as DER might 
impact on the planning of large electricity infrastructures. After presenting 
traditional approaches that are currently used to reduce the spatial and 
temporal uncertainty in network expansion planning, two case studies are 
presented. 

The case studies compare DER representations currently used to model 
technology diffusion to a diffusion model with higher temporal and spatial 
resolution. This spatiotemporal model has been discussed in Chapter 3. 
Through the application to real world problems, the chapter allows to 
quantify uncertainties that arise if different technology uptake 
representations are used. 

 

Central aspects of distribution system planning 

 

Distribution networks are recognised as the lower, mostly radial networks 
that connect most of consumers, commercial or residential but also 
industrial (when not of large scale) to the power grid. In Europe, 
distribution system operation, maintenance and planning are typically 
carried out by distribution system operators (DSO). The design and 
exploitation of a reliable and safe network at a worthy profit and at 
reasonable cost for all consumers connected is achieved through 
distribution network planning (DNP).  

The planning exercise is subject to many constraints but also must be 
undertaken considering a diversity of alternative functions, not in the sense 
of multiple criteria, but derived from distinct market designs, which 
condition the corporate purpose of the builder and owner of the system. For 
instance, while in some countries the owner of assets is also the 
commercializer of energy, in other countries these functions are unbundled. 
Also, the growing presence of new renewable sources at consumer level is 
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questioning the traditional planning paradigms, by changing the nature of 
the network, from provider of energy to provider of backup support service.  

Different types of distribution network planning can be identified [1]: 

• Expansion planning; 

• Operation planning; 

• Greenfield planning. 

The latter represents the design of electrical distribution networks from 
scratch, e.g. for new developing areas. Greenfield planning possesses the 
highest complexity among planning types due to the multitude of network 
components, interdependent cost structures and feasible designs [1]. 

Distribution network planners rely on spatial and temporal load and 
generation forecasts that serve as input to various planning tools. Such tools 
may include trade-off analysis of a set of reinforcement or non-wires 
alternatives and eventually inform investment decisions [2], [3]. 

Historically, distribution network expansion has been driven by demand 
growth [4]. Nowadays, such growth is expected to be driven by new load 
types or generator instalments [5]. Therefore, it has been argued that 
commonly used distribution grid planning tools lag behind the current 
requirements of networks which see high shares of DER [5]–[7]. Particularly, 
EV charging, distributed PV and electrified heating systems are foreseen to 
change future demand patterns and thus affect distribution network 
planning [5]. Furthermore, distributed storage, especially at consumer level, 
threatens to be a sort of game changer, if the drop in costs that is currently 
being witnessed opens a window of economic feasibility for such option. 

Power flow analysis, fault analysis, dynamic analysis, and power quality 
analysis and advanced optimization are typical tools that interface with the 
load and generation forecasts. The interested reader may find a 
comprehensive overview over distribution network planning aspects and 
evolving planning requirements in restructured power industries in [3], [6], 
[8], [9]. 

 

Central aspects of transmission system planning 

 

A principal aim of transmission planning is the addition of transmission 
lines and substations at the lowest possible cost without compromising 
security of supply [10], [11]. Furthermore, transmission system operators 
(TSO) are typically legally obliged to provide non-discriminatory network 
access. Thus, they enable the efficient functioning of wholesale markets [12]. 
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If compared to distribution network assets, transmission network assets 
possess a higher capital intensity while asset lifetime may extend to 40 years 
and beyond [11]. 

Likewise, transmission network planning is typically a decade-long process, 
where upfront negotiation and licensing periods of 10 years are usual [11]. 
Transmission network planners forecast the evolution of demand, framing 
uncertainties even with scenarios that consider different, potential future 
market frameworks [5]. 

It should be highlighted that investment decision processes on transmission 
assets can strongly differ given the diverse jurisdictions those processes are 
embedded in. For example, in regulated markets, the transmission 
expansion problem (TEP) may consist of minimizing investment costs while 
assuring to meet demand and reliability target levels defined by a regulator 
or other state authority [10]. 

In a deregulated, unbundled market context, transmission companies may 
be incentivized to reduce investment costs while considering non-wires 
alternatives. Later market environments complicate transmission network 
planning as planners need to anticipate load evolution and generation 
expansion under limited information exchange between formerly 
integrated activities. In addition, non-overlapping planning horizons under 
market integration and sector coupling increase the complexity of 
respective optimization approaches [5], [11]. 

Other relevant aspects of transmission planning are listed below (as in [11]):  

• Most countries use interactive transmission expansion 
methodologies. In the most common (e.g. European) case, a TSO 
submits a plan that is subsequently evaluated and approved by a 
regulatory authority. 
 

• The construction/reconfiguration of lines or substations might be 
open to a competitive bidding process. For example, in Europe, 
project developers and investors can build merchant lines that 
connect regions. Such projects require authorization through the 
European Energy Regulatory Agency (ACER). 
 

• From a modelling perspective, transmission expansion planning 
(TEP) is a multi-stage process with decision being taken at several 
time steps. 

Although many studies use deterministic forecasts for the transmission 
expansion planning, generation expansion and generation cost 
uncertainties are usually incorporated in non-deterministic models. 
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Generally, TEP is a problem that can be addressed either through static, 
sequential static and dynamic planning models. Although dynamic 
planning represents the ideal approach for a long-term horizon, sequential 
static models are implementable at lower computational cost, data input 
and complexity. 

With deregulation and the separation from power generation and delivery, 
further challenges to transmission companies appear. Market integration 
efforts (e.g. the European Energy Union) make interdependency 
assessments necessary and thus increase the system variables under 
optimization [11]. 

In addition, the consideration of DER in transmission planning becomes 
increasingly important. This is due to the impact of such resource on 
transmission network flows that can heavily influence the techno-economic 
optimality of TEP (e.g. through the temporal load reduction of HV/MV 
substations or changes in transmission lines losses, among others) [10]. 

Currently, recent literature surveys revealed that the majority of 
transmission studies do not include DER-related uncertainties [10], [13]. 
Likewise, transmission planning remains often constrained to the 
consideration of peak conditions and a single scenario for generation 
expansion [5]. 

 

Comparison of transmission and distribution planning aspects 

 

Table 4.1. showcases differences between distribution and transmission 
planning. Those can be found in the cost of individual projects, the typical 
amount of assets to be examined as well as project selection practices and 
commissioning processes. 

While distribution planners are concerned with assets that tend to serve 
relatively few customers, a major uncertainty lies in the prediction of spatial 
load patterns for a given time horizon. For transmission planners, there is a 
lower concern for spatial uncertainty, given that the longer project lead-
times cause higher temporal uncertainty if compared to distribution 
planning. This is reflected in the coarser spatial resolution typically 
considered in transmission planning [4], [13]. 

 

 

 



…
…

…
…

…
 

 

 96 

 

 

 

 
Figure 4.1 Planning horizon and spatial granularity in T/D planning 

(extracted from [4]). 

 

The difference in transmission and distribution project lead-times and 
spatial resolutions considered for both planning processes are shown in 
Figure 4.1. Interestingly, the cited source suggests generation planning 
relying on the coarsest spatial resolution with the lowest lead-time (up to 
25 years).  

It should be expected that recent uptake dynamics of renewable power 
generators with relatively smaller generation capacities and unit costs (if 
compared to large fossil-fuel based power plants) [14] decreases average 
project lead-times and spatial planning resolutions. 

The growing research dedicated to spatial aspects of generation planning 
might provide additional evidence to this hypothesis (e.g. [15]–[17]). 
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Table 4.1. Comparison of major transmission and distribution system 
characteristics (from [13]) 

 

 Transmission grid Distribution grid 

Primary drivers 
of system 
expansion 

• Non-discriminatory access 
provision 

• Reliability 

• Reduce congestion  

• System stability constraints 
 

• Non-discriminatory access  

• Reliability  

• Thermal and voltage 
constraints 

Forecast horizon  15-20 years 1-10 years 

Spatial forecast 
granularity  

5 – 10 km² 0.25 – 2.5 km² 

Typical number 
of customers 
served by 
primary assets 

Billions to hundreds of 
thousands 

Tens of thousands to single loads 

Load flow Balanced three-phase Unbalanced three-phase 

Investment cost 
per component 

Relatively high Relatively low 

Commissioning 
process 

Single projects with public 
hearings, env. impact assesses. 
and regulatory approval  

Aggregated asset evaluation or 
indirect rate case evaluation by 
regulatory authority  

 

 

Current challenges in power system planning 

 

As the power sector is evolving, new challenges require the adjustment of 
traditional network planning and operation principles. In [5], the key 
challenges for power system planning separated along systemic boundaries 
have been summarized. 

Such main findings for distribution and transmission planning are listed in 
the following: 

• For distribution networks, rising levels of DER might trigger reverse 
flows (e.g. through PV during midday) or branch overloading (e.g. 
through EV charging), which require remedial actions [7], [18], [19]. 
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• Both transmission and distribution system operators require new 
tools to hedge uncertainty in generation and load patterns. Former 
may arise under the variability of renewable generation under 
limited controllability [5], [7], [20]. 
 

• For both transmission and distribution system planners, the fusion 
of new data from various sources and formats and their feed-in into 
powerful analytical tools are required [7], [21]. 
 

• Additional cooperation to improve net-load forecasts at 
transmission-distribution interfaces is required [7], [22], [23]. 

In addition to the above-mentioned, the dynamic evolution of new 
generation and demand technologies on the consumer side add additional 
uncertainty to electricity network system planners [7]. 

In another study [7], the Electric Power Research Institute (EPRI) has listed 
10 urgent challenges to electric power system planning. Such includes the 
incorporation of operational detail; increasing modelling resolution/ finer 
granularity; integrating generation, transmission, and distribution 
planning; addressing uncertainty and managing risk; improving 
forecasting methodologies; and improving modelling of customer 
behaviour and interaction, among others. Interestingly, most of the above-
mentioned aspects are linked to the representation and modelling of 
uncertainty under DER adoption and its impact on investment decisions 
and risk. 

The following sections of this chapter address such DER adoption 
uncertainty in electricity network planning. 

 

 

4.2 UNCERTAINTY THROUGH DER ADOPTION REPRESENTATIONS  

 

Sources of uncertainty in electricity network planning 

 

In electricity network planning, uncertainty may be defined as the 
(unknown) divergence between a system state and a modeller’s 
representation of that state. Uncertainty potentially grows, if future and 
past system states are to be represented - that is, if a temporal evolution to 
the system representation is added. 
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As the main function of electricity networks is to link electricity generators 
to consumers, the evolution of the generation as well as the demand side 
are of fundamental interest. While foresight of the technical and economic 
evolution of electricity network components themselves is relevant as well, 
latter aspects lies outside the scope of this work. 

In general, power system-related uncertainty can be rooted to different 
aspects. Such are [24]: 

• Fossil fuel price uncertainty; 

• Environmental regulation and energy policy uncertainty; 

• Load forecast uncertainty; 

• Renewable power generation forecast uncertainty; 

• Cost evolution of power system components; 

• Distributed generation and storage business model evolution 
uncertainty. 

Apart of such developments, unbundling and liberalization triggered a shift 
from fuel price to market price risks [24]. Deregulated markets tend to bring 
an increasing number of stakeholders that complicate system planning as 
conflicting interests and limited information flows are ubiquitous. 

The above-mentioned restructuring of power systems saw dynamic 
increase in renewable energy installations across the world [14]. These 
resources heterogeneously impact on load profiles in time and space and 
such variable patterns tend to decrease certainty for system planners [5]. 

Eventually, new legislations (e.g. incentive programs) often trigger 
behavioural changes both at supply and demand side. With regard to the 
adoption of DER and other technologies, legislative changes represent 
another form of uncertainty as patterns of resource utilization may change. 
The position of uncertainty sources within electricity network processes is 
shown below (Figure 4.2). 

In electricity network studies, it is sometimes argued that uncertainty is 
typically addressed in two ways [9]: 

• Through scenarios; 

• Through sensitivities. 

Scenarios represent discretized load and generation forecasts and may 
summarize different political measures (e.g. low-carbon emission-oriented 
policy). In this case, it is usual to associate each scenario with a weight 
sometimes denoted as “subjective” probability, estimated from the 
judgment of experts. 
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Scenarios may also derive from a discretized representation of continuous 
probability density functions. This option is becoming more relevant with 
the need to represent new renewable generation such as wind or 
photovoltaic, but also the emerging phenomenon of electric mobility. In this 
case, actual scenario probabilities derive from the discretization process and 
true stochastic programming models may be built. 

Sensitivities are analysed observing changes in model outputs after 
changing key constraints or data. These variables are determined 
beforehand and their effect on final outcomes is estimated keeping the other 
model parameters constant. Sensitivities represent constrained partial 
derivatives and may be associated, in mathematical models with 
derivatives, to dual variables of Lagrange multipliers. If no derivatives are 
available or one is trying to assess the effect of major changes, then 
sensitivities may be associated to discrete step changes. 

 

 

 
Figure 4.2 Uncertainty sources in T/D planning and investment decisions 

(based on [13]). 

 

Alongside the adoption of DER, new uncertainties occur. They relate to the 
evolution of load and generation patterns in space and time. Until recently, 
electricity network planners had few tools to describe such patterns. Even 
more, attempts to model the impact of DER on electricity networks have 
widely neglected data-sets from other areas (e.g. economics , demography, 
human geography) relevant to DER adoption. 

While the development of spatiotemporal DER adoption models have been 
presented earlier within this thesis, the following section summarizes 
current approaches employed in research and industry. It will be shown 
that such standards cannot capture the planning uncertainties introduced 
by DER adoption dynamics. 
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Current representation of DER adoption dynamics in T/D planning 

 

From the perspective of an electricity network planner, location and 
adoption time of DER are important inputs to estimate the grid impact of 
such technologies. As the peak-load estimate is a fundamental planning 
criterion [6], the planner further needs to assess the likely impact of adopted 
resources on such peak value [25]. Consequently, a rising amount of 
research has been dedicated to studying the potential impact of DER. 
Especially, distribution networks have been assessed [26]–[31], as these 
have been more vulnerable to adverse effects that DER may bring [32][9]. 

Until today, very simplified techniques to represent DER uptake dynamics 
across test networks have been in use. Such approaches relied either on 
random allocation or extrapolation techniques (Table 4.2.). 

For example, the contributions of [29], [30] assessed the impact of the 
utilization of EV and PV on test distribution systems. While the effects on 
distribution networks largely depend on the quantity and position of such 
resources along distribution feeders [18] resources have been allocated 
equally across the case studies’ network. Likewise, there have been 
presented some studies that assessed the grid impact of distributed PV 
generation using completely randomized allocations of PV systems across 
the test network under study [31]. 

Similar approaches have been developed, simplifying DER adoption 
dynamics through linear extrapolations using installed capacities or peak 
loads at busbar or transformer locations. Such studies have been conducted 
for both EV and PV technologies [26]–[28]. 

The mentioned studies show that, currently, DER are modelled using 
randomization or very simplified methods that rely on extrapolations, 
equal shares or synthetic probability distributions. Consequently, such grid 
impact studies cannot properly represent non-linear adoption behaviour 
across time and space. This is especially noteworthy as first studies suggest 
DER adoption clusters during an early uptake phase [33]. 

Therefore, due to the static character of current approaches to model DER 
adoption, heterogeneous adoption patterns that relate to underlying socio-
demographic structures cannot be represented. Hence, the use of more 
granular geodata (e.g. georeferenced census data-set), allows to enrich 
network data with very granular consumer information that could 
complement circuit-based power flow analysis with spatial forecasts. 
Consequently, DER adoption scenarios can be enhanced while uncertainty 
decreases. 
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Table 4.2 DER allocation methods in distribution networks 
 

Methodology Technology Reference 

Deterministic: 
 

 
 

 - Extrapolation using busbar capacities 
 - Extrapolation using peak demand 
 

EV 
EV/PV 

[27]  
[28],[26] 

Randomized: 
 

 

 - Single-step random allocation  
  (e.g. equal assignment) 

 - Multi-step iterative allocation 
  (e.g. using Monte Carlo) 

EV/PV 
 
 

PV 

[29], [30] 
 
 

[31] 
 

The hierarchical dimension of DER representations is shown in Figure 4.3. 
In general, the input data requirements increase towards consumer-level 
DER adoption forecasts. For example, relevant consumer data may consist 
of census information (social and demographic structure), house value or 
income information (purchasing power) and electricity consumption data 
(contracted power, annual consumption, peak demand). Given the 
multitude of data sources to be combined and model alignment to such 
specific source, model transferability is expected to decrease. 

Until now, representations that consider the network’s underlying 
population structure or even consumer structure have been mostly 
neglected. Noteworthy exceptions are the spatiotemporal models presented 
in Chapter 3 (e.g. [34]–[37]). 

 

Figure 4.3 Granularity levels of DER adoption representations in T/D planning. 
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4.3 DISTRIBUTION SYSTEM PLANNING UNDER TECHNOLOGY DIFFUSION 

 

Introduction 

 

The strong uptake of DER connected to distribution networks calls for an 
actualization of the planning tools currently in use [6]. Therefore, research 
has been dedicated to enhanced distribution system expansion models in 
the past decades. The aim of most of these tools is to address the growing 
need for planning tools that can cope with the uncertainties introduced by 
DER adoption. 

Proposals to adopt multi-stage distribution network expansion planning 
under multiple criteria and resorting to meta-heuristics may be identified 
as early as 1993, with the seminal paper [39]. The actual industrial 
implementation of such techniques waited for advancement in 
geographical representations and more computing power. An excellent 
example is referred to in [40], for a model adopted by the Portuguese 
distribution utility EDP Distribuição. Recent advancements in distribution 
network expansion included planning models stretching over multi-stage 
horizons, incorporating load growth and energy prices uncertainties [25], 
[38], using probabilistic approaches or search algorithms (e.g. Genetic 
Algorithms) [41], [42]. In addition, new models that integrate optimized 
DER placement in distribution networks have been proposed [43]–[45]. 

However, missing knowledge about technology diffusion processes and 
partially, limited data availability, have hindered the development of 
realistic DER diffusion forecast models. 

As shown earlier, electricity network planners still rely on very randomized 
or equal-share allocations of DER in distribution grids. It should be 
expected that the use of these approaches result in very misleading 
conclusions as DER are adopted by well-studied, distinct population 
groups [46]–[49] – a fact that explains why research found clustered, 
heterogeneous spatial DER adoption patterns [50] [33]. 

Hence, electricity distribution planners should use planning models that 
can provide spatiotemporal DER adoption forecasts. Results of these 
models should take into account potential clustering of early DER adopters 
while providing insights in the net-load effects of new appliances in 
residential environments. 

Such tools would allow grid planners to screen all HV/MV substation 
service areas of a given distribution network service area for potential 
overloading, before detailed power-flow analysis would be required. 
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Model architecture and input data 

 

The methodology presented in this chapter compares the developed 
spatiotemporal DER diffusion forecast model to traditional approaches that 
have been used to allocate such resources in distribution networks. 
Exploiting a very granular census data, a set of alternative peak-net-load 
scenarios has been developed. 

it is important to assess the distribution network planner’s risk to over- or 
underestimate the grid impact triggered by the adoption of distributed 
energy resources. The proposed methodology consists of five subroutines, 
identified in Figure 4.4..  

In order to understand the essence and the application of the methodology, 
it will be described through its application to a case study: the distribution 
network in the city of Porto, Portugal. This will be done without loss in the 
generality of the methodology proposed. 

The coarse steps of the methodology  are summarized below: 

i. A spatial routine computes HV/MV substation service areas (eight, 
in the case of Porto Municipality), using transformer locations (XY 
coordinates). HV/MV transformer service areas are retrieved using 
Voronoi diagrams. 
 

ii. A geolocation routine relates census polygons with varying spatial 
extent and population characteristics to HV/MV service areas. 
 

iii. The spatiotemporal DER diffusion forecast model that generates EV 
and PV adoption patterns using census data as input. 
 

iv. A net-load analysis that considers hourly load, EV charging and PV 
generation time series. 
 

v. A risk analysis routine compares the outputs for different DER 
adoption forecast techniques, analysing hourly net-load time (NL) 
series (8760 h) for each HV/MV transformer. 
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Figure 4.4 Distribution grid expansion planning using 

spatial net-load forecasting 

It is expected that the proposed methodology can contribute to a better 
understanding of the way DER adoption will affect distribution grid 
expansion decisions. Given that the model consists of flexible sub-routines, 
a high transferability to any other appliance or modelling time horizon of 
interest is guaranteed. Regarding the spatiotemporal DER adoption model 
introduced earlier (Chapter 3), the analysis presented in this chapter relies 
on additional data sources. Such are: 
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• Demand growth and DER adoption scenarios. Former load growth 
values (𝜶) have been extracted from the national distribution system 
operators’ investment plan [51]. The plan foresees load to grow 
around 1-2% annually. As some service areas in Porto Municipality 
receive new Metro connections in the coming years, load growth 
values at the upper boundary of that range have been allocated (**). 

Likewise, global DER forecasts have been provided in [52]. This report 
contains consistent storylines that have a European scope and have 
been defined considering multiple stakeholders from the electricity 
industry, politics and other organizations. 

The three scenarios used in this work (Baseline, High growth and Very 
High growth) resemble the scenarios Sustainable Transition, Global 
Climate Action and Distributed Generation of the mentioned report. 
Values have been downgraded to Porto municipality given the 
population share calculated from [53]. It is assumed that population 
count and structure will remain stable over the analysis horizon (ys). 
The resulting scenarios for Porto municipality are shown below (Table 
4.3). 

 

Table 4.3 Scenarios towards 2035 
 

 

 

** Higher values applied to service areas that expect additional Metro connection 
(Campo Alegre, Vitoria). As has been shown in [4], [54], access to mobility 
infrastructure tends to increasing load growth. 

 

 Baseline High Growth Very High Growth 

Annual peak load 
growth** 

0% /1% 1.5% /2% 1.5% /2% 

Added EV [in 1000] 5 (6%) 31 (34%) 45 (50%) 

Added PV [MW] 26 (20%) 41 (33%) 78 (70%) 
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Figure 4.5 Approximated HV/MV transformer service areas in Porto  

 

 

• HV/MV substation service areas. The spatial extent of high voltage/ 

medium voltage (HV/MV) substation service areas have been 

approximated through a Voronoi diagram. That way, service areas 

are built around each service area centre (HV/MV substation). The 

underlying algorithm maximizes the spatial extent of each service 

area until interfering with the neighbouring substations’ service area. 

For Porto Municipality, the resulting diagram for its eight HV/MV 

substation is shown in Figure 4.5. 

 
A more detailed explanation of the underlying mathematical model 
as well as an earlier application to HV/MV substation planning is 
available in [55], [56]. All substation characteristics (coordinates, 
winter peak loads’ and installed transformer capacities (TCAP)) were 
retrieved online [57]. Confronting retrieved service areas to their real 
extent [51] suggests a high congruence of the developed approach, 
which shows its adequacy. 

 

• Time series and other model parameters. Hourly load profiles in a 
typical Portuguese MV network and PV generation profiles have 
been retrieved from [58] and normalized using max-min value ranges. 
An EV charging profile has been obtained by a Portuguese mobility 
solution developer. MV load, EV and PV time series are stretched to 
the forecasted peak load and residential EV charger and PV module 
capacities in each service area (in MW). For the EV model, the analysis 
considers two virtual charging power rates: First, for overnight 
charging events, an average of 5.89 kW per EV connected is assumed. 
This value aggregates 30% of EV adopters that would charge with 
12kW and a vast majority (70%) with 3.7kW. On the other hand, 
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midday charging is assumed with 9.82 kW per EV connected 
(assuming 10% charge with 40kW, 30% with 12kW and 60% with 
3.7kW). 
 

 

 

Figure 4.6. Hourly MV-load, EV charging and PV generation time series  
covering 14 days. 

 

Forecasted DER adoption patterns 

 

At this this step of the analysis, the outcome of the spatiotemporal DER 
adoption forecast model is employed. It should be recalled that the result of 
this model is a set of maps which represent spatial distributions of newly 
added loads/generators in a given population. Figure 4.7. displays added 
EV charging power (in kW) and PV module capacities (in installed kW) per 
census cell. EV charging patterns differentiate midday charging (a), 
considering charging at the workplace as well as incoming commuters [50] 
and overnight charging at the adopter’s residences (b). Outcomes show 
results for Porto Municipality using the proposed diffusion forecast 

methodology (Baseline scenario) by 2035 and suggest divergent spatial patterns 
for both EV and PV adoption (c) and EV midday (a) and overnight charging 
events (c).  
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Figure 4.7. Expected midday EV charging peak (a), overnight EV charging peak 
(b) and roof-integrated PV peak generation (c). 

 
As a general tendency, residential PV and overnight residential EV 
charging show a more dispersed pattern. In contrast, midday charging 
events concentrate around commercial zones in the inner-city centre. 
Because of the strong spatial difference in overnight and midday EV 
charging patterns, increases in HV/MV substation peak loads will occur in 
a very heterogeneous way. PV adoption patterns demonstrate a more 
homogeneous distribution similar to EV overnight charging events instead. 
It is noteworthy that PV and EV adoption patterns do not fully overlay, 
suggesting asymmetric effects on the net-load of each service area (Figure 
4.7.). Given the additional imbalance of EV/PV capacities forecasted, very 
different absolute spatial EV/PV concentrations (in kW) are achieved. 
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Net-load calculation 

 

As in [19], this work assesses netting effects of DER. In our study, we 
consider EV charging and PV generation as addition and subtraction to the 
natural load respectively. We define the natural load as the utilized load 
pattern of a medium voltage (MV) network curve unaffected by future DER 
adoption. 

Aggregating forecasted DER capacities and natural load profiles as a single 
curve per substation service area, we retrieve the net-load combining EV 
charging (EV), PV generation (PV) and natural load (L) (Eq. 7) for each time 
step. Therefore, the net-load (NL) for each hour (h) in a given service area 
(sa) is: 

 𝑁𝐿𝑠𝑎,ℎ = 𝐿𝑠𝑎,ℎ + 𝐸𝑉𝑠𝑎,ℎ − 𝑃𝑉𝑠𝑎,ℎ (4.1) 

Ideal load flow conditions are assumed, given that the purpose of this work 
is to analyse the impact of large-scale technology adoption. Therefore, LV 
or MV network losses or other constraints are neglected. Typical hourly 
load profiles of a representative Portuguese MV network (lph) and PV 
generation (gph) were normalized and stretched to installed PV capacities, 
EV charger capacities and peak demand in each service area (Figure 4.5). 

EV (cph) time series was multiplied with the aggregated EV charging power 
(in MW) of all census cells in a given service area. Different charging 
behaviour for midday (at work) and overnight (at the residence) have been 
assumed. While a truncated charging curve for the period between 6am and 
8pm was used for midday charging, the remaining hours were truncated 
for overnight charging time series. Eventually, hourly natural load (Lsa,h), 
EV charging (EVsa,h) and PV generation (PVsa,h) time series (t), all in MW, 
were derived for each service area (sa): 

    𝐿𝑠𝑎,ℎ = 𝑙𝑝ℎ ×  𝑃𝐿 × (1 +  𝛼)
𝑦𝑠 (4.2) 

    𝐸𝑉𝑠𝑎,ℎ =  𝑐𝑝ℎ × (𝑁𝐸𝑉 × 𝑠 ×  𝑐𝑟)/1,000 (4.3) 

 𝑃𝑉𝑠𝑎,ℎ  =  𝑔𝑝ℎ × (𝑁𝑃𝑉 ×  𝑝𝑟) (4.4) 

Natural peak loads have been updated from the studied reference year 
(2015) using load growth factor (𝜶) over the forecasted time horizon of 20 
planning years (ys). Natural load time series originated in the 
multiplication of a normalized hourly load profile (lph) with peak load 
values (PL) per HV/MV transformer. Added EV charging load per service 
area (𝑬𝑽𝒔𝒂,𝒉) was retrieved through the multiplication of EV adopters (𝑵𝑬𝑽) 
with a charging simultaneity factor of (s), overnight (5.89 kW) or midday 
(9.82 kW) charging rate (cr) and the normalized EV charging profile (cph). 
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On the other hand, PV generation times series of each service area (𝑷𝑽𝒔𝒂,𝒉) 
were constructed by multiplying panel capacities (𝑵𝑷𝑽 ) with a typical 
performance ratio of 0.8 similar to [59] (pr) and a normalized generation 
profile. 

As this study considered the netting effects of DER on each service area’s 
natural load curves, this work introduced the peak-net-load (PNL) as 
planning criteria. For each service area (sa) and scenario (sc), PNL is 
calculated such as: 

 𝑃𝑁𝐿𝑠𝑎,𝑠𝑐 = max𝑁𝐿𝑠𝑎,𝑠𝑐,ℎ      (4.5) 

Illustrative results of the net-load analysis are shown in Figure 4.8. It 
displays load duration curves for all scenarios (a) and comparing four DER 
allocation techniques earlier discussed (b). Figure 4.8.a shows how 
increasing DER adoption towards the Very High Growth (VHG) scenario 
shift the net-load duration curve upwards. Furthermore, outcomes suggest 
overloading for the VHG scenario. On the other hand, comparing the 
evolution of net-load behaviour among all DER allocation techniques 
(diffusion model, extrapolation of DER quantities using relative ratios of 
HV/MV transformer capacities and peak-loads or equal shares) unveils a 
strong difference of the spatiotemporal diffusion model to the remaining. 

While one expects more than 500 hours of HV/MV transformer overloading 
by 2035 using a spatiotemporal DER diffusion model, DER allocation based 
on extrapolation would suggest no capacity constraints. This is significant 
risk to network planners that rely on simplified extrapolation-based DER 
allocation, as such techniques might level-out adverse effects that 
concentrated DER adoption might cause. 

 

Figure 4.8. Net-load duration curves for the Vitoria area in Porto by 2035, using 
diffusion forecasts (a) and the discussed methods for Very High Growth 

conditions (b). 
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Network expansion analysis 

 

Furthermore, we are interested in assessing the effect of different DER 
allocation techniques on expansion cost estimates. In order to assess the 
network expansion cost, we calculate the cost of HV/MV transformers that 
would require capacity expansion/replacement under each scenario. A 
standard threshold of the Portuguese distribution system operator to 
upgrade HV/MV substations has been considered. If the ratio of peak-net-
load (PNL) to installed transformer capacity (TCAP) exceeds 0.9, network 
upgrades are triggered. For the Portuguese case study, a typical upgrade 
cost of roughly 2 million € per HV/MV transformer is used [51]. Thus, the 
cost required for network expansion (in the following called investment 
costs (IC)) for each HV/MV substation service area (sa) within all scenarios 
can be approximated with the following formulation: 

  𝐼𝐶𝑠𝑐,𝑠𝑎 {
2,000,000€  𝑓𝑜𝑟 max

𝑠𝑎,𝑠𝑐
𝑃𝑁𝐿  ≥ 0.9 ∗ 𝑇𝐶𝐴𝑃𝑠𝑎

         0€ 𝑓𝑜𝑟 max
𝑠𝑎,𝑠𝑐

𝑃𝑁𝐿  < 0.9 ∗ 𝑇𝐶𝐴𝑃𝑠𝑎
}  (4.6) 

Given the sum of all HV/MV service area’s investment costs for a given 
scenario (sc), one can now calculate the value of the investment plan (IP) 
that would address each scenario’s investment needs. Thus, transformer 
upgrade cost is seen equivalent to overall network expansion cost, although 
the former typically represent only a share of investment needs [60]. 

 𝐼𝑃𝑠𝑐 = ∑ 𝐼𝐶𝑠𝑐
8
𝑠𝑎=1   (4.7) 

In the presented analysis, a radial network configuration has been assumed 
while effects of line losses and detailed power flow calculations are 
excluded from the scope of analysis. It should be further noted that the 
presented investment analysis does not intend to fully replace a detailed 
cost analysis, but rather provides indication on the effects of various DER 
adoption dynamics. Comparing the expansion costs under a base case (s = 
0.5) and using a spatiotemporal DER diffusion model, one would plan for a 
4 and 6 million € IP for High growth and Very High growth scenarios, 
respectively. In case the system would have evolved according to this 
forecast, network planners using extrapolation-based DER allocation 
would have underspent 2 and 4 million €, respectively (Figure 4.9.b). 

If investment costs are compared for higher simultaneity factors, which is 
equivalent to higher EV charging rates or higher adopter numbers per 
HV/MV transformer, equal-share or extrapolation-based DER allocation 
overestimate network expansion costs. A reasonable explanation is that 
spatiotemporal DER models predict adoption patterns based on population 
structure.  
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Figure 4.9. Investment costs using different DER allocation methods and 
charging simultaneity rates, with a) s=0.25, b) s=0.5, c) s=0.75, d) s=1.0. 

 

Typically, urban, population-dense HV/MV service areas (such as in Porto 
municipality) possess higher capacity overheads, which allow for higher 
DER penetration before upgrades are necessary. On the contrary, equal-
share or extrapolation-based DER allocation fills service areas with DER 
disregarding the internal demand structure, and potentially, lower 
overcapacities installed. 

As a general outcome, results show that the spatial variability of the 
technology adoption processes leads to underestimations of the grid impact 
of DER. For peak-net-load situations, current state-of-the-art uptake 
forecasts of EV chargers and roof-integrated PV panels lead to too 
conservative net-load estimates if compared to the proposed diffusion 
forecast (Figure 4.8). In fact, due to clustering of early EV and PV adopters, 
installed transformer capacities might be surpassed in certain 
neighbourhoods where current state-of -the-art DER deployment forecasts 
based on extrapolation would still indicate available excess capacity. 

Finally, the peak-net-load of all service areas, considering the three 
scenarios, have been analysed. Results suggest that conventional 
approaches are incapable to predict adoption clusters (e.g. Vitoria or 
Campo 24 de Agosto) that are foreseen if a spatiotemporal DER adoption  
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Figure 4.10. Comparison of HV/MV transformer loading using the presented 
approaches and across all substations, methodologies and scenarios analyzed 

(with s=0.5). 

 

model is used. If latter models are more accurate (as suggested in Chapter 
3), conventional extrapolation-based or equal-share DER allocation models 
tend to underestimate network expansion costs (Figure 4.10). Instead, if 
stronger EV uptakes (or higher charging rates/simultaneity factors) are 
considered, such approaches might overestimate expansion needs (Figure 
4.9.). 

 

Uncertainty assessment 

 

As the presented approach consists of the forecasting of spatiotemporal 
technology adoption patterns under limited historical observations, 
traditional forecasting validation is not convenient. In Chapter 3, different 
approaches to assess locational uncertainty in the spatial module and 
temporal uncertainty (time-step discretization) have been presented.  

While the focus of this chapter lies on the interaction of DER adoption and 
network planning, EV and PV generation uncertainties have been 
additionally assessed. By altering parameters that impact their time series a 
sensitivity analysis can be provided. 



…
…

…
…

…
 

 

  115 

 

Figure 4.11. Net-load variability for all three scenarios (diffusion forecast) 

 

To assess the sensitivity of PNL (PNL is the peak-net-load) to EV module 
parameters (e.g. simultaneity rate, charging rate), these have been altered 
and outcomes compared. Changes in the simultaneity rate (0.5) to 0.25 and 
0.75 result in a change of approximately 30% in net-peak-load. Furthermore, 
the effects of PV module inclination changes to the evolution of peak net-
loads have been assessed. Here, simulations suggest very light impact on 
PNL estimates, showing that panel orientation changes (full North or full 
South) may result in roughly 30% changes in the PV peak generation 
upwards and downwards, respectively. A detailed comparison of different 
module technologies and the likely evolution of efficiency lay outside the 
scope of this work. 

Finally, the net-load variability for Vitoria service area has been assessed. 
Figure 4.11 provides evidence that load variability will rise during the 20-
year planning horizon, which strong increases under High growth and Very 
high growth scenarios. Considering the 95% confidence interval, load 
variability rises from less than 10 to over 30 MW respectively. 

According to the analysis, variability is expected to reach roughly 25 MW 
under the “Very High Growth” scenario. Comparing peak-net-load 
evolution along scenarios with or without PV (in case of a temporary 
unavailability due to a weather event) provide insights in the origin of the 
variability. Here, outcomes suggest only a minimal increase in net-loads of 
approximately 5% in case of PV unavailability (Figure 4.11.). This could be 
explained by the non-coincidence of PV generation time series and EV 
charging time series and the charging behaviour considered (dumb 
charging). Therefore, increased EV charging and load growth remain most 
likely influencing factors for the in net-load variability observed. 
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4.4 TRANSMISSION SYSTEM PLANNING UNDER TECHNOLOGY DIFFUSION 

 

Vertical load flows at the transmission/distribution interface 

 

One important challenge to transmission and distribution system operators 
under strong DER uptake is the development of new tools that can hedge 
uncertainty in generation and load patterns [5]. As DER tend to be installed 
at distribution grid level, an improved cooperation to improve net-load 
forecasts at transmission-distribution interfaces is required. 

As centralized generation usually connected to higher voltage levels 
(transmission) is progressively complemented by low-/medium voltage- 
level DER installations, a strong DER uptake is assumed to impact on the 
vertical load exchange at the distribution-transmission interface [11]. 

As argued in [61], [62], such uptake of DER that embeds in distribution 
networks may require increasing coordination of distribution and 
transmission expansion planning. Fostering data exchange between TSOs 
and DSOs may eventually reduce planning uncertainties [61]. An outlook 
how concerted transmission and distribution planning could be conducted 
is shown in Figure 4.2 (based on [61]). It is noteworthy that under 
unbundling, such integration of transmission and distribution planning is 
facing additional, institutional and legal complications that may be absent 
in vertically integrated electricity businesses as present in the US. 

 

Figure 4.12 Integrating distribution and transmission system planning 

(inspired by [61]). 
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Recently implemented unbundling policies led to a separation of vertical 
integrated utilities. Therefore, transmission and distribution system 
planning has been separated. Consequently, transmission system planners 
do not have full oversight of distribution network configurations and 
development plans, resulting in additional uncertainty in transmission grid 
planning [5]. 

In this chapter, the proposed spatiotemporal DER diffusion model is 
applied to a use case on transmission network expansion planning under 
DER diffusion. The reader may recall that the proposed spatiotemporal 
DER diffusion model grounds on a high-resolution census data-set with 
over 17,000 census cells for Continental Portugal. The spatiotemporal model 
produces forecasted EV and PV adoption on a 20-year horizon. Model 
outcomes are net-load curves for each of the distribution network’s 
HV/MV transformer service areas. In this chapter, these HV/MV 
transformer service areas are aggregated into transmission service areas, 
which are the areas served by one distinct transmission entry point. These 
outcomes allow transmission system planners to analyse the vertical load 
diagram between the distribution and transmission interfaces under 
various DER adoption scenarios. 

In order to understand how uncertainties of the representation of DER 
adoption patterns propagate from HV/MV substation service areas 
towards transmission service areas, we analyse retrieved DER forecasts 
across four typical DER allocation techniques commonly applied for grid 
impact studies. These allocation techniques have been previously 
introduced (Chapter 4.1.2). 

Finally, the chapter presents two new planning criteria that can provide 
transmission system planners additional indication, providing insights into 
the system’s net-load behaviour at the transmission/distribution interface 
(T/D). 

 

A spatial model of the transmission/distribution interface 

 

One innovation provided in this chapter is the geometric approximation of 
transmission service areas. This is achieved through combining the 
following two data-sets: A georeferenced HV/MV transformer positions 
(Figure 4.13.a) that is accessible through the major Portuguese distribution 
system operator [57] and tabular information of the linkage of the HV/MV 
substation transformers to transmission entry points (retrieved from [60]). 
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The HV/MV transformer service areas have been calculated passing the 
following steps: 

• As first step, HV/MV substation service areas are approximated 
through a Voronoi diagram as in [56] (Figure 4.13.b) ); 

• Retrieved spatial service area polygons are merged into transmission 
service areas, based on the information of their connection to each 
transmission entry point, available in [60]; 

• Resulting polygons are related to the Portuguese census data-set 
through spatial intersection (Figure 4.13.c). 

This way, each transmission entry service area is linked to detailed 
information of the population subgroup, assumed fed by each specific 
transmission entry node. 

 

 

Figure 4.13. Retrieval of spatial T/D network service areas 

 

In the continental Portuguese Distribution network system, there are 391 
HV/MV substations that can be linked to 63 transmission entry points [57], 
[60]. Former data-set provides detailed information that allows for a 
characterization of HV/MV substations that is sufficient to support long-
term network expansion planning (e.g. the location, peak load, installed 
capacity are provided). 
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Estimating vertical load flows at the T/D interface 

 

The developed methodology is again illustrated with the Portuguese case 
and consists of five steps. Outcomes are vertical load diagrams that are 
computed and analysed for each of the 63 entry points to the transmission 
network. The first four steps are similar to the methodology presented in 
Chapter 4.3. 

i. First, a geolocation routine relates census polygons with varying 
spatial extent and population characteristics to HV/MV service areas. 

ii. Second, a spatial routine computes 391 HV/MV substation service 
areas using transformer locations (XY coordinates). HV/MV 
transformer service areas are aggregated to each T/D connection 
point. 

iii. The spatiotemporal DER diffusion forecast model generates EV and 
PV adoption patterns using census data as input. 

iv. A net-load analysis that considers hourly load, EV charging and PV 
generation time series. 

v. Vertical load flow analysis routine that uses the hourly net-load time 
(NL) series (8760 h). 

A flowchart of the process is provided in Figure 4.14. 
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Figure 4.14. Transmission grid expansion planning 

using spatial net-load forecasting. 
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Vertical load diagram analysis under various DER allocation techniques 

 

Inspired by previous work presented in [35], the netload (NL) is calculated 
using the following expression: 

  𝑁𝐿𝑠𝑎,ℎ = 𝐿𝑠𝑎,ℎ + 𝐸𝑉𝑠𝑎,ℎ − 𝑃𝑉𝑠𝑎,ℎ (4.8.) 

Here, the hourly (h) netload for each HV/MV transformer service area (sa) 
results from subtracting a scaled PV curve (PV) from the addition of 
transformer load (L) and aggregated EV charging (EV). The net load of each 
transmission service area is retrieved through the addition of individual 
HV/MV transformer NL values. It should be noted that peak-load 
coincidence behaviour is neglected. Therefore, resulting values represent 
boundary upper estimates. 

The assessment of DER uptake on transmission system planning is 
conducted using time-series analysis. In particular, changes of transmission 
grid entry point load diagrams, including the change in flow directions 
have been analysed. Likewise, the peak-load behaviour at each T/D 
connection point has been analysed. 

A principal component of this chapter is the comparison of four large-scale 
DER allocation techniques (at) and the effect of their use on vertical load 
flow retrieved estimates. Eventually, the presented approach quantifies 
such effects for the resulting load flow estimates at the T/D boundary of the 
continental Portuguese power system. The following metrics are analysed: 

The reverse flow hours (RF) is the sum of hours at a given transmission 
system entry point that sees reverse flows. That way, RF provides insights 
in the hours each transmission system service area would see PV generation 
surpassing consumption (including EV charging additions). RF are 
calculated for each transmission service area as well as the four DER 
allocation techniques considered: 

 𝑅𝐹𝑎𝑡 = ∑ {
1 𝑖𝑓 𝑁𝐿ℎ < 0
0 𝑖𝑓 𝑁𝐿ℎ ≥ 0

}8760
ℎ=1  (4.9.) 

Here, at is the set of DER allocation techniques typically used in grid impact 
studies (equal-share, random assignment, extrapolated with peak demand, 
extrapolated with installed transformer capacity). It should be noted that 
the metric sums all hours with a net load below zero, disregarding the 
magnitude of the deviation. 

As second indicator used in this work, the peak load added (PA) is 
estimated under each DER allocation technique and across all 63 
transmission system service areas. 
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The principal goal of this metric is to provide a rough indication of 
estimated peak load addition under each of the four DER allocation 
techniques. A PA of zero serves as the reference value (peak load in year 
zero of the natural load). The formula considers the peak load difference 
before and at the end of 20 years of EV/PV adoption. Again, PA is retrieved 
for each transmission service area (sa) and across all DER allocation 
techniques (at). 

 𝑃𝐴𝑎𝑙 = ∑ (𝑃𝐿𝑌𝑒𝑎𝑟 20 −
63
𝑠𝑎=1 𝑃𝐿𝑌𝑒𝑎𝑟 0) (4.10.) 

 

Input data sources to the vertical load analysis 

 

Apart from the previously introduced spatiotemporal DER adoption model 
and the spatial model of the T/D interface, this analysis relies on two 
additional data sources: 

1) Global values of EV/PV adoption scenarios for 2035, corresponding 
to a 20-year planning horizon pursued in this work. For the sake of 
this study, the Distributed Generation scenario has been chosen 
(compare Table 4.4). Electricity consumption levels and EV/PV 
installation rates from 2015 served as base year [52]. 

The global EV/PV adoption time series was established with the 
Bass model [63]. The Bass model and its formulas have been 
introduced in Chapter 3. The model’s coefficients p and q have been 
retrieved, calibrating the model with historical uptake values [64], 
[65]. Final coefficients are shown in Table 4.4. 

The distributed PV capacity adoption forecast in residencies (in kW) 
was adjusted taking into account the current ratio of dispersed PV to 
overall PV installations in Portugal reported in [65]. Furthermore, 
total EV and PV potentials (M) at Portuguese residencies have been 
estimated using inputs from [66] and [35]. 
 

2) Typical values for load, EV charging and PV generation subroutines. 
As in subchapter 4.2., natural load is assumed to include installed 
EV/PV at residencies. Again, normalized MV, EV charging and PV 
generation time series have been used. A per capita PV potential of 
0.4 kWpeak/capita was estimated. Furthermore, an EV adopter 
charging rate of 5.9 kW with a 0.5 simultaneity rate has been chosen. 
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Table 4.4. Bass model parameters of the proposed methodology. 
 

 

Outcomes of the vertical load flow analysis 

 

The results of the analysis are shown in Figure 4.15 and Figure 4.16. 
Outcomes suggest that large differences in the estimation of EV charger or 
PV installations in each transmission service area might occur, depending 
on the DER allocation technique employed. In other words: The choice of 
which technique is used to allocate DER across the 63 transmission system 
service areas may result in very different net-load estimations. 

With regard to installed capacities allocated into each service area, 
maximum deviations of up to 48 MW for EV charging and 97 MW of 
residential PV installations per service area can be observed (Figure 4.15, 
Figure 4.16). Likewise, large differences in minimum, maximum and 
installed capacity ranges of both EV charging and PV installation forecasts 
are visible. Their regional differences are displayed in Figure 4.15 and 
Figure 4.16 respectively.  

A comparative analysis of the effect of DER allocation techniques to the 
previously introduced metrics PA and RF is shown in Figure 4.17. Showing 
the aggregated reverse flow hours (from distribution to transmission) (a) 
and peak-load increments (b) over the Portuguese transmission system, it 
becomes clear that the four DER allocation techniques might result in very 
different RF values. 

While all allocation techniques predict similar peak load additions, a strong 
variation of reverse flow hour estimates can be observed. While former 
range between 1,200 and 1,400 MW peak load addition only, RF hours vary 
in between 5,000 and 30,000 hours. 

The differences in PA are summing added capacities over all transmission 
system service areas. As such capacity expansion is exclusively due to EV 
charging added to the natural load profiles (demand growth has been 
neglected in this study), similar peak load addition estimates under all four 
DER allocation techniques come unsurprising. Assuming that the diffusion 
forecast provides most accurate DER diffusion forecasts (as indicated by 

Technology p q M 

Electric vehicles 0.000618 0.873600 999,917 

Photovoltaics 0.000618 0.873600 3,867,000 
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outcomes of Chapter 3), estimates suggest that equal share DER allocation 
might lead to overestimate RF hours. 

 

 
 

Figure 4.15. EV diffusion for different EV allocation techniques, where a) max, b) 
min and c) maximum difference. 

 

 
 

Figure 4.16. PV diffusion for different PV allocation techniques, where a) max, b) 
min and c) maximum difference. 
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Figure 4.17. Estimated reverse flow hours (a) and peak-load increments (b) 
over the transmission system under different DER allocation techniques. 

In our simulation, results show a roughly doubled RA hours estimate under 
equal share extrapolation if compared to the diffusion forecast. On the other 
hand, peak-load or installed transformer capacity extrapolations tend to 
strongly underestimate RF hours. 

In the following, such effects have been showcased for two specific 
transmission system service areas. In Figure 4.18., load curves for the two 
transmission service areas that possess either the maximum amount of 
reverse flow hours (a) or the maximum addition to existing peak load (b) 
are shown. Situation a) could be observed under an equal-share of DER 
allocation in a service area within Northern Portugal. Here, the application 
of the equal DER allocation technique leads to a strong amplification of the 
initial load curve (Figure 4.18.a). For the considered time horizon, 
approximately 20 MW of EV charging and almost 60 MW of PV installations 
have been added to the respective transmission service area. The low initial 
demand level (less than 5 MW peak), imbalanced EV/PV adoption and low 
temporal charging/generation complementarity are resulting in frequent 
reverse flows (Figure 4.18.a). 
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Figure 4.18. Load curves for transmission service area with most frequent reverse 
flows (a) and maximum peak increment (b). 

 

 

Figure 4.19. Load duration curves for transmission service area with most 
frequent reverse flows (a) and maximum peak increment (b). 

 

In contrast, situation b) represents a transmission service area that locates 
in a southern, densely populated zone inside Lisbon Metropolitan area. This 
service area experiences the maximum peak load addition under all DER 
allocation techniques and service areas considered. In this specific case, the 
highest PA occurs under the DER forecast, which is sensitive to population 
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counts within each transmission service area. Results of the time series 
analysis further validate the intuition, that reverse flows are less likely 
under high load level regimes (Figure 4.19). 

The outcomes highlight the importance of carefully selecting a DER 
diffusion model that allows to understand the uncertainty range different 
technology uptake representations might add to a modelling process. In 
addition, assessing the sensitivity of DER model choice on transmission 
network expansion decisions is a prerequisite for economically efficient 
network planning. 
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Chapter summary and conclusions 

In the profound transition of power systems, electricity network planners 
require tools to forecast the evolution of demand patterns affected by DER 
adoption. Currently, equal-share or extrapolation-based DER allocation are 
commonly used approaches to model DER uptake in grid impact studies. 

Instead, this chapter presents a comparative analysis, relying on the 
spatiotemporal DER adoption model developed in Chapter 3. The 
presented methodologies allow for distribution planners to screen HV/MV 
substation service areas with a robust, transferrable impact analysis tool 
that is capable to assess the impact of any new grid-connected appliance. 

For transmission planners, the methodology presented introduced two new 
planning criteria: The reverse flow hours (RA) and peak-load added under 
each DER allocation technique (PA). Both criteria can be calculated for each 
transmission service area. The resulting approach allows to show the 
uncertainty of vertical load flows, that is, the flows between transmission 
and distribution networks, under a given DER allocation technique. 

The highlights of this chapter can be summarized in the following: 

• The adoption of new technologies such as DER alters load patterns 
in residential environments and shifts the focus from peak-load to 
peak-net-load as a planning criterion. 
 

• The currently used DER allocation models tend to underestimate 
distribution network expansion costs during light DER uptake and 
overestimate such costs under very high penetration of DER. 
 

• The use of simplified DER allocation models further propagate 
uncertainty into vertical load diagrams at the transmission-
distribution interface. For example, considering the analysed 
scenario, EV and PV adoption forecast per transmission service area 
can vary up to 60 MW or 100 MW, respectively. 
 

• Although the presented tool has been applied to distribution 
expansion planning, the presented approach is applicable to similar 
analysis in any other network industries such as water, ICT or 
transportation. 
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5 Optimal policy design using 
spatiotemporal DER adoption 
forecasts 

Technology adoption is often accelerated through what has been called 
support schemes or incentive designs. It has been found that programs 
directed to residential users tend to favour high-income, above-average 
educated adopter groups, who receive twofold benefits. On the one hand, 
the adoption of an innovation allows reducing operational costs. On the 
other hand, the upfront price may be decreased by direct financial 
incentives born by all remaining taxpayers. In order to avoid widening 
socio-economic gaps as a result of DER adoption, DER incentive designs are 
currently under review. This chapter investigates the system-level effects of 
different incentive-design combinations for EV and PV. Exploiting the 
capabilities of the previously introduced spatiotemporal technology 
adoption forecasting model, incentive design effects on distribution 
network expansion costs and spatial adoption asymmetries are evaluated. 
Outcomes provide indication to policy makers on how potential synergies 
under orchestrated EV and PV incentive designs may be exploited. For 
example, outcomes suggest that, at system level, distribution network 
expansion costs can be reduced while minimizing DER adoption 
asymmetries, if specific incentive designs are combined. 

 

 

 



…
…

…
…

…
 

 

 136 

5.1 INCENTIVE SCHEMES AND THEIR DESIGN 

 

Accelerating technology diffusion through incentive schemes 

 

The perceived attributes of innovations are decisive factors that influence 
the individual or collective attitude towards an appearing technical or non-
technical novelty [1]. Recalling Roger’s five stages of the innovation-
decision process (Knowledge of the innovation, Persuasion, Decision to adopt, 
Implementation and Confirmation), it is obvious that the perception of the 
innovation attributes and its relative advantage over the existing 
technology/process is especially relevant to the stages that precede the 
decision to adopt. 

According to Rogers [1], potential adopters thrive for information in order 
to decrease the uncertainty of consequences that are related to the adoption 
of the innovation. They further try to understand to which degree the 
innovation is outperforming existing solutions or alternatives. 

The perception of ”relative advantage” is supposed to possess the highest 
influence on the adoption rate. It is defined as “the expected benefits and 
the costs of adoption of an innovation (p.233)” [1]. Constituting factors are 
profitability, upfront costs, expected increase in comfort, a decrease in work, 
financial expenses or time spent, and the instantaneous reward. This 
assumption is well in line with the observations that the decline in the 
innovations price accelerates the adoption rate of a technological innovation 
(e.g. for EV/PV in [2], [3]). 

Many political stakeholders or change agents use financial incentives or 
subsidies to accelerate the adoption rate of an innovation. Such are [1]: 

1) Adopter versus diffuser incentives; 
2) Individual versus system incentives; 
3) Positive versus negative incentives; 
4) Monetary versus nonmonetary incentives; 
5) Immediate versus delayed incentives. 

As stated by Rogers [1], the provision of incentives or subsidies can come 
along with ethical issues (such as distributional justice). Subsidies are 
necessarily payments or tax reductions for the benefit of the adopter, while 
incentives can also include non-financial means such as status 
improvements or positive reinforcement. For example, in Norway, 
individual passenger EV are allowed to use bus lanes and can therefore 
avoid congestion during rush hours [4]. 
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According to [1], individual status and innovation acquisition costs are 
among the strongest influencing criteria that shape adoption rates. 
Financial upfront payments or non-financial incentives can increase the 
relative advantage of one technology over the other and thus, foster 
adoption. On the other hand, it was argued that complexity of the use or 
functioning of innovations would negatively correlate with adoption rates. 

Figure 5.1. displays the various factors that have been associated to 
adoption rate changes. Although Rogers does not provide a mathematical 
framework to predict the diffusion speed and adoption rates of innovations 
which would be applicable to the modelling of energy technologies, his 
framework of ranking consumer groups along innovativeness can serve as 
an allocation formula for a given innovation that spreads inside a 
population structure [1]. 

 

Figure 5.1. Web of factors that influence the innvoation adoption rate  
(inspired by [1]). 

 

Various studies found that incentive design schemes have, mostly through 
the decrease of investment and operational costs, accelerated the uptake of 
DER. Such link has been modelled and documented in [2], [3], [5], [6]. 
Likewise, an increasing number of works has been dedicated to study the 
technology adoption process with increasing detail of consumer choice and 
adopter characterizations. Latter has been modelled using spatial and 
temporal, or other non-spatial models. 
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In the following, common mechanisms that intend to increase the spread of 
a given energy technology are discussed. In this work, incentive design is 
defined as a set of financial and non-financial instruments that policy 
makers can use to increase the attractiveness of a certain technology. 
Incentive design combinations (IDC), instead, are a mix of several incentive 
designs covering a multitude of different technologies. A short introduction 
of most frequent incentive designs per technology of interest is provided 
below. 

 

Incentive designs for energy technologies  

 

Incentive designs, or, as in [7], [8], support mechanisms or support policies, 
are policy initiatives aimed to increase the attractiveness of a certain 
innovation. Such incentive designs can be divided into direct and indirect 
support methods [7]. Direct methods can be further divided into quantity- 
and price-driven methods [7], [9]. An exemplarily overview of such direct 
and indirect support methods for the case of renewable energy technologies 
is shown below (Table 5.1.). 

Table 5.1. Renewable energy technologies support scheme classification [9]. 
 

Method type Specific incentive design 

Direct incentives 

a) Quantity-driven 

 
 

b) Price-driven 

 

 

 

Green certificates 
Tendering schemes 
 
Feed-in-tariffs (FITs) 
Capital grants 
Fiscal incentives 
Green loans 

Indirect incentives R&D subsidies 
Net metering 
Standards (RES share in new housing) 

 

Here, the aim of direct incentives is to increase the attractiveness of the 
technology under question. Direct means may include financial support to 
technology acquisition (capital grants, fiscal incentives, green loans), as well 
as measures that reduce operational costs (feed-in-tariffs) or investment 
uncertainties (green certificates, tendering schemes). Latter represent a 
quantity-driven incentive, where in the case of renewable energy 
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technologies, a fixed amount of capacity is procured, leaving the price-
building process to market forces.  

On the other hand, indirect methods have mostly no tangible impact on the 
attractiveness of a given technology but tend to decrease the attractiveness 
of other alternatives or provide intangible support that may increase the 
technologies’ attractiveness at a later time step (e.g. R&D subsidies). 

While this incentive characterization has been presented for the case of 
renewable energy technologies, it can be applied to programs for electric 
mobility or electrified heating adoption as well.  

In the following, common incentives for renewable energy technologies and 
electrified mobility and heating in European markets are presented. 

 

Renewable energy technologies  

According to [6], the main four instruments that are used to promote 
renewable energy technology adoption in Europe are feed-in tariffs, feed-in 
premiums, green certificates and investment grants. Such options have 
been detailed in [10] and are introduced below: 

• Feed-in tariffs (FITs). Under this incentive design, deployment of RES 
is fostered providing a guaranteed, regressive remuneration to 
power plant owners for electricity fed into the system. This 
mechanism has been attractive as it is an investment freed from any 
market-risk (e.g. selling price volatility) 
 

• Feed-in premiums (FIPs). Feed-in premium, on the other hand side, 
provides RES power plant owners with a market premium that is 
paid on top of the market revenue. Different design options include 
fixed, floating, cap or a floor type premium. Importantly, under this 
scheme, less variable generators with a stronger generation control 
or less variable input sources (biomass, hydro) can respond to short-
term market price signals. 
 

• Green Certificates (GCs): A market-based support mechanism where 
market actors (such as TSOs, generation owners or suppliers are 
obliged to buy a predetermined number of certificates) in order to 
comply with a specific renewable energy target. Parties that install 
and operate renewable generation falling under the GC scheme are, 
in return, remunerated once they sell the certificate, thus receiving 
additional income over the market revenue.  
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• Investment grants or externality accounting. These incentive design 
options either account for additional externalities that have not been 
integrated in the price formation process (e.g. CO2 tax) or 
significantly reduce the upfront price of the desired technology. 
Investment grants can be differentiated along technological maturity 
and efficient values. However, little control of the adoption rate may 
result in over- or under-investment. 

A detailed overview of all current policy instruments that support the 
adoption of renewable energy technologies is provided in [7]–[9]. An 
overview of current renewable energy incentive designs in Europe is 
provided in [6]. 

 

Electrified mobility and heating applications 

With rising adoption of electric vehicles, research has been dedicated to the 
study of EV incentive designs and the effectiveness of certain policy 
measures. Given its per-capita share of private passenger EV, Norway is the 
current frontrunner of EV adoption [11], [12]. It provides a wide array of 
direct and indirect incentives that increased the attractiveness of EV in 
Norway. Such are: 

• Direct incentives: Purchase tax, reducing the price of EV almost to 
conventional cars. Exemption from value added tax (VAT), vehicle 
registration tax as well as a reduced vehicle licensing fee; 
 

• Indirect incentives: Allowance to use bus lanes, free parking on most 
municipal parking spots, exemption from ferry fees and road tolls.  

Similar measures have been applied across most European countries. A 
detailed, country-wise overview of incentive designs for electric mobility 
can be found in [13]. A global review on policy instruments that aim to 
foster electric mobility is provided in [14]. 

As in the mobility sector, European legislations foster the use of energy 
efficient appliances in houses and apartments through the setting of strong 
standards. The respective, recently amended directive [15], states that all 
newly constructed buildings should reduce net energy consumption to 
nearly zero by the end of 2020. For new, public buildings, such situation 
should be reached even from 2018 onwards. However, the encouragement 
of electrified heating and cooling appliances is limited to the compliance 
with building codes, with little financial support or indirect, additional 
incentives. 
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Incentive designs for DER in Portugal 

 

In the following, a condensed overview of Portuguese support schemes for 
EV, PV modules and electrified heating and cooling appliances is provided. 
The focus lies in the residential sector for all technologies concerned.  

With regard to EV, Portugal has provided for several years attractive 
conditions to early EV adopters [12], [16], that lead to EV adoption shares 
that are among the highest in Europe [12], [13]. Currently, direct incentives 
include purchase subsidies (e.g. 2,250 Euros per BEV), while indirect 
incentives include free charging at public EV charging stations or parking 
in some municipalities. 

On the other hand, the application of a feed-in-tariff scheme represents the 
sole direct incentive for the acquisition and installation of PV modules in 
Portugal. Indirect incentives include the legislation for self-consumption as 
well as guaranteed acquisition of the generated energy by the DSO. For 
larger producers, that indirect incentive is replaced by a preference within 
the merit order process of wholesale markets.  

Table 5.2. Incentive designs in Portugal: The case of EV, PV and  
electrified heating and cooling. 

 

DER/ 
Incentive 
types  

Electric vehicles Photovoltaic 
modules 

Electrified 
heating/cooling 

systems 

Direct 
incentives 

• Purchase subsidies, 

e.g. 2,250€ per BEV 

and 1,125 € per PHEV 

 

• Exemption/reduction 

from taxes 

(ownership tax, 

circulation tax, VAT) 

• Feed-in tariff 

(existing 

contracts) 

 
 

 
- 

 
Indirect 
incentives 

 

• Free parking (e.g. in 

Lisbon) 

 

• Free or subsidized 

charging rates 

 

• New vehicle 

standards set 

maximum emission 

levels per fleet 

 

• Self-

consumption 

regulation  

 

• Priority in 

merit order 

 

• New 

building 

standards  

 

• New 

building 

standards  
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For electrified heating and cooling appliances, no direct incentives could be 
found. Instead, indirect incentives include requirements for newly 
built/refurbished buildings minimum coverage of endogenous demand 
with RES (which is applicable in case of PV, solar thermal or heat pumps). 

It is noteworthy that, in principle, most indirect incentives root back to 
standards and specifications set in European directives. Such directives 
include the Regulation (EU) No 443/2009 setting emission performance 
standards for new passenger cars, the Renewable Energy Directive (revised, 
2018/2001/EU), the Energy Performance of Buildings Directive 
( (2018/844/EU). 

 

Incentive designs and distributional justice 

 

Alongside increasing adoption of DER in power systems across the world, 
a growing amount of research has been dedicated characterizing early 
adopter households. A majority of such socio-demographic 
characterizations found young, well-educated, materially better-off 
households being among the first to adopt DER [17]–[21] (compare Chapter 
2 as well). These population groups were also the principal recipients of 
financial support through governmental programs [22].  

Furthermore, research has been directed towards the analysis of potential 
barriers that may hinder a widespread adoption of DER [23]–[25]. 
Outcomes suggest that lack of information, consumer perceptions, 
investment costs or unattractive incentive schemes compared to other 
technological alternatives represent hindrances to a wide adoption of DER. 
Given that consumer groups possess different levels of access to 
information and financial resources, studies started to look at participation 
and benefit allocation of household groups in DER incentives [26]–[29]. 
These works opened the path to further investigations on the link of 
incentive designs in place to distributional justice and the socio-economic 
impact of DER employment [22], [26]–[30].  

The work in [4] and [31] highlight the importance of EV incentives to the 
adoption behaviour in Norway. Both studies find that both direct incentives 
(various tax exemptions) and indirect incentives (allowance to use bus lanes, 
access to charging infrastructure) have been responsible for fostering EV 
adoption. The work of [4] delineated population groups and their responses 
to the same incentives. While the Norwegian studies investigate on EV 
adoption behaviour to a specific constrained set of incentives in place, 
several studies analyse in large the interaction of governmental incentive 
design schemes and macro-scale DER diffusion (e.g. [2], [5], [32]).  
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The effects of current PV incentive design (FITs) for England and Wales on 
social equity has been investigated in [26]. Crossing spatial census data with 
domestic PV installation records, authors found moderate to high level 
inequality in the access to benefits provided under FITs. Other 
contributions addressed complementary aspect,s such as the distributional 
effects of network charges in Portugal [33] and the cost-benefit allocation 
under net-metering from consumers to the prosumers using power flow 
simulations in synthetic US distribution networks [30]. In addition, studies 
have been directed to study DER incentive’s design using system dynamic 
modelling [28] or time series of the Spanish power system [29]. A similar 
study has been conducted comparing the cross-subsidization by non-
adopters of PV or air-conditioner (AC) systems in Australia [27]. Like the 
previously cited works, this study concludes that non-adopters tend to 
subsidize early DER adopters, estimating cross-subsidy payments of 300-
350 Australian dollar per non-adopter. 

The study presented in [34] represents the only attempt to link DER 
incentive designs to spatial patterns of technology adoption. Conducting a 
spatial adoption forecast for residential PV in a mid-sized Brazilian city, the 
model is constrained to one technology (roof-top PV) and a test-network. 
Furthermore, it does not assess the grid impact of a set of DER incentive 
designs.  

Likewise, there is a growing amount of research dedicated to analyse the 
uptake of DER onto electrical distribution networks [35]–[40]. Although 
some authors rely on spatiotemporal adoption forecasting models (e.g. [39], 
[42]) for such studies, most neglect underlying socio-demographic structure 
and adoption likelihood structures.  

Granqvist and Grover [41] illuminate the distributional justice aspects for 
cross-subsidies in energy infrastructures from an ethical perspective. They 
differentiate four principles for distributive fairness, stretching on the fact 
that the perspective followed by each principle has put different burdens 
on consumer groups. The principles are polluter pays, ability to pay, 
beneficiary pays, and grandfathering. 

Finally, it should be noted that the scope of this chapter is constrained to 
distributional aspects of DER adoption and does not address large scale 
market distortions that incentive designs may introduce (see [7], [8] for 
further details). 

Concluding, studies suggest that subsidizing the acquisition of DER 
potentially leads to social inequalities through two mechanisms: 

• Early DER adopters tend to benefit from financial incentive schemes. 
These reduce DER investment costs of early adopters which are, 
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however, borne by all taxpayers. Therefore, recipients of DER incentives 
profit from typically lower total system costs (investment and running 
costs) along the products’ lifetime [26]. If DER incentives are not equally 
distributed, social inequality may increase [1], [22]. 
 

• In addition, for the case of power systems, early DER adopters also tend 
to pay a disproportionally lower contribution to network investments 
that are needed to accommodate these resources [28], [29]. As a result of 
this, late adopters’ risk to cross-subsidize early DER adopters through 
their participation in rising costs that may be lower for early adopters 
(e.g. as with net metering tariffs).  

 

Given first evidence that the design of incentive schemes may have strong 
effects on distributional justice through asymmetrical benefit allocation, 
policy makers and researchers started reviewing DER incentive schemes. 
First programs that intend to enable an equally strong participation of low- 
and medium-income groups in DER incentive programs have been already 
designed [42], [43]. In this light, the current chapter investigates on three 
research questions from a system perspective: 

• How can one model the effect of different DER incentive designs on 
technology diffusion patterns? 
 

• What is the likely effect of different DER incentive designs on 
electricity network planning and investments? 
 

• Given previous outcomes, how could optimal incentive designs be 
identified that both minimize system-level expansion costs while 
diminishing adoption asymmetries across population groups?  

 

In this chapter, the previously introduced spatiotemporal DER adoption 
model is used to obtain insights into policy and technical aspects of 
incentive designs.  

As main contribution, this chapter illuminates system-wide effects of 
various DER incentive design combinations for EV and PV on distribution 
network expansion costs and adoption asymmetries. Such insights possess 
a high utility both for governmental policy makers or distribution network 
companies. While latter can use the methodology to screen their service area 
and anticipate network expansion, policy makers can use the model to 
assess large-scale social and economic impacts of current and potential 
future DER incentive designs. 
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Eventually, the overarching goal is to identify a way to orchestrate DER 
incentive schemes so that, on a system level, network expansion costs and 
adoption inequality are minimized.  

It should be highlighted that the present analysis does not take in account, 
in line with previous studies, the role of cultural differences across societies 
in technology adoption processes. While the adoption behaviour of 
unknown innovations is obviously linked to the tendency in each society of 
risk-taking or risk avoidance, differences in technology uptake tend to be 
explained by rational profit-seeking behaviour of individuals, only [9]. 

 

5.2 COMPREHENSIVE INCENTIVE DESIGN ANALYSIS  

 

Overall model architecture 

 

Given the interdisciplinary character of the presented methodology, its 
building blocks cover multiple disciplines that relate to the topic addressed 
in this chapter (Figure 5.2), such are: 

• Social science and marketing: DER adopter characterizations based 
on census data. 
 

• Energy engineering: Spatiotemporal DER adoption forecasting 
techniques. 
 

• Power system planning: Impact assessment of DER and their effects 
onto the planning and operation of electricity distribution networks. 
 

• Energy policy and law: DER incentive designs and their impact to 
distributional justice. 
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Figure 5.2. Research areas addressed in this chapter 

 

The developed methodology consists of six, linked subroutines (Figure 5.2): 

• Steps i) – v) are identical to the ones described in Chapter 4 and 

include the geolocation of DER adopters, the construction of HV/MV 

transformer service areas, net-load analysis and the calculation of 

transfomer loadings.  

 
In this chapter, the one difference lies in the activation order of DER, 
which is driven by synthetic incentive designs for EV and PV. Such 
are bundled to incentive design combinations (IDC). Another 
difference is the consideration of peak-load reduction potentials 
through optimized use of EV-PV, in case certain conditions are met. 
 

• Step vi), instead, compares the estimated network expansion costs 

with adoption pattern asymmetries. Latter is analyzed using the 

Information-Theoretic inequality index Theil’s T (TT). Eventually, for 

each EV-PV incentive design combination, the estimated network 

expansion cost (considering peak-load reduction potentials) and the 

impact adoption asymmetries are compared. 

 

In the following, a detailed descpription of the three new aspects (synthetic 
incentive designs, peak-load reduction potential and adoption 
asymmetries) covered in Chapter 5 (compared to the approach presented in 
Chapter 4), is provided. 
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Figure 5.3. Developed methodology 
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Modelling adoption patterns under DER incentive designs 

 

In Chapter 3, it has been shown how innovativeness scores are used to build 
the cellular activation order in spatiotemporal DER adoption forecasts. The 
main idea behind innovativeness was that population subgroups or 
individuals can be ranked according to their preference to adopt a given 
innovation. That way, innovativeness is an endogenous characteristic of 
individuals or population subgroups that allows comparing adoption 
behaviour in a social system [1]. While in Chapter 3, innovativeness scores 
were inferred using real DER adoption observations intersected with 
census data, in this chapter, innovativeness scores are synthetically built for 
each spatial census unit. Using outcomes of first studies that reported socio-
demographic census variables with a causal link to DER adoption (Figure 
5.3), three different incentive designs for both EV and PV have been 
constructed. Mainly two types of studies have been informative for this 
process: 

1) Research dedicated to analyse the responsiveness of population 
subgroups to DER incentive schemes [4], [18], [44], [45]. 

2) Research that investigated the relation of socio-demographic 
population characteristics and DER adoption behaviour using 
census data [4], [17], [20], [39], [44], [46]–[49]. 
 

Using the outcomes of such studies, the adoption positive response of a 
certain population subgroup to a future, synthetic incentive design can be 
modelled. As presented in Chapter 3, a predefined, numeric adoption factor 
is set for each socio-demographic variable, representing the adoption 
preference of a given census cell to EV/PV technology (Figure 5.3).  

 
 

Figure 5.4. Adopter response model using synthetic incentive designs with 

household characterization based on selected census criteria. 
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It should be noted that modelling technology adoption using synthetic 
innovativeness scores follows a black-box approach, where assuming 
certain socio-demographic census variables triggers EV/PV adoption 
stronger than other variables.  

As described in Chapter 3, innovativeness scores (IS) are constructed using 
over 120 socio-demographic criteria (c=120) of the census data-set 
containing roughly 17,000 spatial census tracts (r=17,337).  

 𝐼𝑆 =  (

x1,1 ⋯ x1,c
⋮ ⋱ ⋮
x𝑟,1 ⋯ xr,c

) × (

af1
  af2
…
  af𝑐

) (5.1) 

Here, the census dataset is multiplied with a predefined vector of adoption-
influence (af). Under each incentive design combination (IDC), this vector 
is different, considering literature findings on the relation of socio-
demographic census variables and DER adoption preference.  

In this chapter, we build three distinct EV/PV incentive designs using 
different innovativeness scores (compare also Figure 5.3): 

• A low-or-medium income (LMI), which allocates stronger weights to 
census variables that have been associated with groups with lower 
average education levels, smaller apartment sizes and housing 
renting. 

• A high performance (HP) incentive design, where preference is given 
to households/individuals that possess privileged access to 
education and above-average financial resources.  

• A completely randomized allocation (RN), which intends to mimic 
equal chance to adopt DER across all population subgroups and is 
used for benchmarking purpose.  

For the construction of HP incentive scheme, high adoption-influence 
values where linked to criteria mentioned in [49]. Furthermore, HP 
adopters were differentiated into HP-EV and HP-PV adopters, allocating 
higher weights to parking space at the residency (HP-EV) and independent-
standing, and occupier-owned family houses (HP-PV), respectively. LMI 
adopters were designed identical for EV and PV, linking higher weights to 
lower education levels, higher unemployed rates and households living in 
small apartment. In the following, the weight allocation process to the 
census variables is further explained (compare also Eq. 5.2). Eventually, the 
causal “incentive design - DER adoption” link is modelled using predefined 
vectors with census variable weights (afn). These weight vectors intend to 
numerically discriminate the adoption propensity (expressed as numeric 
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value) of adoption favouring criteria (afc) compared to all other census 
criteria (occ).  

 𝑎𝑓𝑛 = {
 1.00  𝑓𝑜𝑟 𝑛 ∈ {𝑎𝑓𝑐}

 0.05  𝑓𝑜𝑟 𝑛 ∈ {𝑜𝑐𝑐}
} (5.2.) 

While the numerical values are fixed ex ante under the current 
methodological framework, it is expected that under increasing EV/PV 
adoption observations, afn can be eventually substituted by values derived 
from enhanced inference tools (such as in [39], [44]). 

Under the scope of the presented analysis, nine EV-PV incentive design 
combinations were assessed, crossing HP, LMI and RN incentive designs 
for both EV and PV. An overview of the nine incentive design combinations 
analysed is shown in Table 5.3.  

 

Table 5.3. Incentive design combinations. 
 

IDC EV PV 

1 HP HP 

2 LMI HP 

3 RN HP 

4 HP LMI 

5 LMI LMI 

6 RN LMI 

7 HP RN 

8 LMI RN 

9 RN RN 

 

Synergetic use of EV and PV for peak-load reduction 

 

If a sufficiently large capacity of DER is present within a HV/MV 
transformer service area, potential synergies might be exploited. First 
studies investigated the potential interplay of optimzed use of HVAC [50], 
EV [36] or coordinating PV and battery systems for peak-load reduction [51], 
[52]. In this Chapter, we will consider outcomes of studies on optimized PV-
battery utilization, as the presented case study investigates EV-PV only. 
However, the presented approach might be extended to analyze any other 
DER interplay.  

Recent studies investigated the synergetic use of residential batteries 
bundled with PV systems to reduce household’s peak demand. For example, 
one study suggested that an aggregated PV capacity of 1 MW can achieve 
peak-load reductions of 6% - 51% [52] or 8% - 32% [51]. The studies 
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considered a battery (in kWh) to PV system capacity (in kW, nameplate) 
ratio of roughly two. Interestingly, the above-cited studies were conducted 
on multiple neighbourhood level (e.g. 99 households in [51]), which is well 
in line with the scope of the analysis. In fact, under the Portuguese case 
study, even 1,000 households might be connected to a HV/MV transformer, 
with additional peak-shaving benefits. Previous findings are integrated in 
the presented model as follows: 

 

{
 
 
 

 
 
 

 𝑖𝑓 (𝑁𝑃𝑉 × 𝑝𝑐𝑝𝑣 >  1 𝑀𝑊)     𝑎𝑛𝑑 
𝑖𝑓 (𝑁𝐸𝑉 × 𝑠 × 𝑏𝑠 > 2 × 𝑁𝑃𝑉 × 𝑝𝑐𝑝𝑣)

→ 𝑃𝑁𝐿 = 0.94 × 𝑃𝑁𝐿𝑡0

 𝑖𝑓 (𝑁𝑃𝑉 × 𝑝𝑐𝑝𝑣 >  10 𝑀𝑊)     𝑎𝑛𝑑 

  𝑖𝑓 (𝑁𝐸𝑉 × 𝑠 × 𝑏𝑠 > 2 × 𝑁𝑃𝑉 × 𝑝𝑐𝑝𝑣)
→ 𝑃𝑁𝐿 = 0.80 × 𝑃𝑁𝐿𝑡0 }

 
 
 

 
 
 

        (5.3) 

Here, the number of EV and PV adopters connected to each HV/MV 
transformer are 𝑵𝑬𝑽 and 𝑵𝑷𝑽, where s is again the simultaneity rate of EV 
connected, bs the typical battery size (24 kWh as in [53]) and 𝒑𝒄𝒑𝒗 is the per 
capita capacity of PV (0.4, as derived in Chapter 3 and 4). PNL is the peak-
net-load of each HV/MV transformer.  

In case at a given HV/MV transformer, the installed PV potential exceeds 1 
MW and the ratio of the aggregated EV battery storage (NEV x s x bs) to the 
installed PV capacity is at least two, then a peak reduction of 6% is assumed. 
In a high PV penetration scenario, where the installed PV capacitiy exceeds 
10 MW, a peak-reduction potential of 20% is assumed (Eq. 5.3). 

 

Assessing the asymmetry of technology adoption patterns 

 

In order to estimate the impact of DER incentive designs on social welfare 
distribution, DER adoption patterns are spatially assessed using an 
Information-Theoretic inequality metric.  

In the past decades, several inequality measures (indices and ratios) have 
been proposed, mainly within social and economic sciences. Mostly these 
measures are applied to questions of economic development. Popular 
inequality metrics are the Gini-coefficient, the 20/20 ratio, Atkinson’s 
inequality measure, the Hoover index or Theil index (Theil’s T) [54]. As 
explained in [55], Theil’s T (TT) is commonly preferred over the former ones, 
as it satisfies all desirable properties of inequaltiy measures. Such properties 
are the independence to population size, symmetry and decomposability. 
TT has been widely applied, for example, in the assessment of income 
equality in European countries [56].  
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This chapter presents the first application of an inequality metric, namely 
TT, to DER adoption patterns. The main idea behind that is to investigate 
the equality/inequality of consumer participation in DER incentive 
programs. TT is caculated as follows [55]: 

 𝑇𝑇 =
1

𝑁𝑂
∑

𝑦𝑖

𝑦̅
𝑙𝑛 (

𝑦𝑖

𝑦̅
)𝑁𝑂

𝑖=1      (5.4) 

Here, 𝑦̅ is the mean value of the variable concerned – in the presented case, 
the DER adoption ratio – while NO is the total number of observations yi. 
In the presented approach, we use TT to assess the distribution of DER 
across all HV/MV substation transformers. In order to account for the 
differences of individuals connected to each HV/MV transformer, DER 
adoption values have been set in relation to population within each 
HV/MV service area. The detailed analysis of population structure across 
all HV/MV service areas and the effect of each IDC onto various population 
subgroups lie outside the scope of this work. 

For the analysis of change in inequality over time, we define the coefficient 
of change in Theil’s T (CT) as the inequality of DER adopted with relation 
to the inequality of population distributed under each HV/MV transformer. 
As TT is relying on the natural logarithm, a direct comparison of TT for DER 
adoption shares at the base year and after a 20-year horizon is intractable, 
given that multiple HV/MV service areas have had zero DER adopters in 
2015. Hence, we compare the population shares at each HV/MV 
transformer under the status quo (year 2015) with the DER adoption state 
after 20 years of DER uptake given a chosen EV/PV incentive design 
combination.  

Therefore, the change in TT under each incentive design combination is 
calculated as follows: 

 𝐶𝑇 =
(𝑇𝑇20−𝑇𝑇0)

𝑇𝑇0
     (5.5) 

Thus, one can estimate the increase/decrease of DER per capita connected 
to a HV/MV transformer under each IDC. This way, policymakers, who 
would desire equal adoption behaviour of DER across all population 
groups, can check as a first approximation if similar per capita shares within 
each HV/MV transformer service area are achieved. In other words, a 
balanced participation of all population subgroups in DER incentive 
programs would result in the minimum CT value. Thus, the methodology 
presented in this Chapter provides policy analysts with a tool that can 
estimate distributional effects of single incentive schemes and incentive 
design combinations. This is achieved through the analysis of spatial 
distribution of adoption ratios across all HV/MV transformer service areas.  
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However, the outcomes of the presented methodology cannot replace 
sound analysis of the detailed reasons of inequality structures and their 
change, but rather serve as a starting point to consolidate further empirical 
and micro-economic evidence. 

 

5.3 OPTIMIZED INCENTIVE DESIGN CHOICE 

 

One major outcome of the presented methodology is the provision of a tool 
to compare the effects of different policy designs on system expansion costs 
and adoption asymmetries. Such goals are translated into two objectives: 
The reduction of network expansion costs, approximated through HV/MV 
transformer upgrade costs and expressed through TTC as well as the 
reduction of asymmetries in spatial DER adoption patterns. Latter objective, 
i.e. its change over time, is expressed through the change in CT. In this 
chapter, we assume that policy makers want to minimize both objectives. 
Furthermore, the trade-offs between both objectives shall be analysed.  

The study of efficient (non-dominated) solutions and the study of the trade-
offs between objectives is part of multi-objective optimization and decision 
making [57]. As we assume that policy makers seek to minimize a function 
of both system costs and adoption asymmetries, the optimization problem 
statement can be formulated in the following way: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑇𝑇𝐶, 𝐶𝑇), 𝑇𝑇𝐶, 𝐶𝑇 ∈ 𝑂𝑆      (5.6) 

A theoretically optimal solution, usually not feasible and thus called “Ideal”, 
that is, the IDC that would be outperforming all other IDC, can be identified 
within the attribute or objective space by independently minimizing TTC or 
CT. The objective space (OS)  is the result of all possible realizations of the 
objective values. The decision space (DS) is the space defined by all the 
variables of the problem. In this work, the attribute space (OS) and the 
decision space (DS) are discrete, because only nine solutions, in the form of 
discrete incentive design combinations, will be compared.  

In a multiple criteria problem, a decision maker is predominantly interested 
in discriminating dominated solutions, mostly in the interior of the domain 
representation in the attribute space, from efficient or non-dominated 
solutions constituting the Pareto set. Dominated solutions are worse in both 
objectives than other solutions, therefore they are usually of little interest to 
decision makers. Pareto dominating solutions are preferred, the ones for 
which one cannot find another solution better in one criterion and not worse 
in the other criterion. 
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If a continuous solution space is considered, the subset of Pareto 
dominating solutions spans a surface, which is commonly referred to as the 
Pareto frontier. In order to further assess and compare solutions that lie on 
the Pareto front, the distance from the Ideal (in the OS) may be calculated. 
In this work, two common distance metrics have been used for such 
calculation. Utilized metrics are the Euclidean distance (ED) and the 
Manhattan distance (MD). Distances (D) between two solutions (including 
the Ideal) can be calculated with the following equation: 

  𝐷 = [(𝑥𝑖  − 𝑥𝑦)
𝑑𝑝
+ (𝑦𝑖  −  𝑦𝑦)

𝑑𝑝
]
1/𝑑𝑝

   (5.7) 

In a two-dimensional decision space, each solution can be represented 
through a unique coordinate pair given both objectives to be minimized 
(TTC, CT). In order to determine the distance from the Ideal, Eq. 5.8. is 
applied. In the presented formulation, (dp) represents the generic distance 
parameter. The Euclidean distance (metric L2) is calculated replacing dp 
with 2, whereas, the Manhattan distance (metric L1) can be retrieved by 
setting dp equal to one.  

The Manhattan metric introduces a linear compensation between objective 
values, while the Euclidean metric tends to balance smaller objective values 
by overcompensating in the larger objective values. Other metrics could be 
adopted, the choice of a metric being intimately linked to the nature of the 
problem and the decision making process – it is an external decision and 
not a consequence of the mathematics of the method.  

 

Input data 

 

Compared to the approach presented in Chapter 4, the presented model in 
this Chapter relies on the following additional data input. 

• Scenario analysis and DER diffusion forecast. As in Chapter 4, the 

presented model is applied to a fixed reference scenario considering 

a 20-year time horizon. As before, global EV/PV adoption forecasts 

have been extracted from [59], correcting for the current ratio of 

dispersed PV to overall PV installations in Portugal as stated in [60]. 

Total EV and PV potentials (TEV, TPV) per census cell and Bass 

model coefficients p, q and M and discretization of the adoption 

process (4 stages) are chosen as in Chapter 4.  

 

• HV/MV Substation Service Areas. As introduced in Chapter 4, 

HV/MV substation transformer service areas have been 
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approximated using geometrical operations available in GIS [61]. 

Inaccuracies in the spatial HV/MV service area model (e.g. 

misalignment) are neglected.  

 
As discussed earlier, the Voronoi diagrams which represent HV/MV 
service areas represent geometric simplification of the real service 
areas, disregarding the historically grown structure and 
interconnectivity of the real-world feeder system. Therefore, the 
estimated service areas have not been adopted to geographical 
limiting factors (rivers, mountain, ranges, transport infrastructure), 
which could be included in future works. However, it should be 
reminded that eventually, distribution system operators possess 
detailed knowledge on the service boundaries supplied by each 
HV/MV substation and can therefore redraw/replace service area 
boundaries where needed.  

All approximated 391 HV/MV transformer service areas are shown in 
Figure 5.5. 
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Figure 5.5. Approximation of HV/MV substation service areas. 
 

• Sensitivities. The model outcomes are assessed estimating the 

sensitivities for parameters that positively affect the peak load (and 

thus, network expansion) under the chosen model architecture 

(Table 5.3.). Therefore, two charging rates are compared – with 5.89 

kW per EV connected (30% with 12kW and 70% with 3.7kW) is 

assumed under light conditions, while 9.82 kW per EV connected  

(10% charge with 40kW, 30% with 12kW and 60% with 3.7kW) are 

considered as upper boundary. These extreme conditions also 

consider a higher simultaneity rate of 0.75. The PV model remained 

fixed, as further technology improvements (e.g. other PV module 

materials) that may bring improved conversion efficiencies lie 

outside the scope of this work. 

 
Eventually, a larger battery size (35 kWh) and peak-load reduction 
potentials are investigated (-20%/ -50%) to estimate the effect of 
increased demand flexibility. 

 

Table 5.4. Standard model parameters and sensitivities for the EV and PV model. 
 

Technology Standard 
parameters 

Sensitivity 
analysis 

EV Car ownership ratio 0.45 0.45 

 Charging power (kW) 5.89 9.82 

 Battery size (kWh) 25 35 

 Simultaneity factor 0.5 0.75 

PV Capacity/capita (kW) 0.4 0.4 

 Usable roof fraction 0.3 0.3 

 Peak-load reduction - 6%/- 20% - 20%/-50% 
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5.4 NETWORK EXPANSION COSTS UNDER LARGE-SCALE DER ADOPTION 

 

Estimating network expansion costs without DER adoption 

 

As first step, the network expansion costs considering only load growth and 
neglecting DER adoption are estimated. Such base case scenario assumes a 
peak-load growth at 0.5% annually, close to the major Portuguese 
distribution system operator (DSO) investment plan [62]. This major 
national DSO supplies around 99% of the customers that constitute the 
Portuguese Continental distribution system.  

The load growth is equally applied to all 391 HV/MV substations, which 
possess an aggregated installed capacity of 15.447 MW. HV/MV substation 
characteristics (installed capacity, peak-load values and coordinates) have 
been extracted from [62], [63], while some values have been corrected after 
consulting with the major national distribution company. Likewise, typical 
HV/MV transformer upgrade costs (TC) were identified in the same DSO’s 
investment reports [62], [63]. Those reports also stated the network 
expansion threshold applied on Continental Portugal for upgrading 
HV/MV transformers upgrades.  

As a rule, reinforcement is triggered if the transformer peak-load (or peak-
net-load PNL) surpasses 90% of the installed transformer capacity (Eq. 5.6). 

 𝑇𝐶 = {
 2.5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝐸𝑢𝑟𝑜  𝑓𝑜𝑟 𝑃𝑁𝐿 ≥  0.9
 0.0 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝐸𝑢𝑟𝑜 𝑓𝑜𝑟 𝑃𝑁𝐿 <  0.9

}    (5.8) 

For the base case, model outcomes suggest system expansion costs, 
approximated through aggregated HV/MV transformer costs, totalling 22.5 
million Euros over a 20-year time horizon. It is noteworthy that roughly one 
third of these costs (7.5 million Euros) is invested in the first 10 years. The 
remaining 15 million Euros are needed for the second planning horizon. 
The summed investment costs and investment timing under the base case 
(only load growth) are further considered in the comparison of investment 
requirements under different incentive design combinations (Figure 5.6.), 
which is detailed in one of the following subchapters. 
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Figure 5.6. Investment time series of each incentive design combination. 

 

Please note that the investment cost used in this chapter is slightly above 
the values used in Chapter 5 and reflects the evolution of costs under the 
most recent DSO development plan. 

 

Mapping HV/MV transformer expansion under IDC  

 

A major outcome of the presented model are map stacks that display 
HV/MV transformer loadings under different energy policy designs. In this 
way, the presented case study enlightens spatial HV/MV expansion 
patterns under different EV and PV incentive design combinations. 

The presented model computes 180 maps in an automated way that 
correspond to the combination of 20 analysed years and 9 IDC. These maps 
can be read and combined with DSO’s asset management system, exploiting 
a GIS-based decision support tools used by network planners.  

Like in the base case (only load growth), analysis outcomes under DER 
adoption suggest again high investments during years 7-12 ahead of the 
base year (2015). This is expected as the global DER forecast suggests the 
largest share of DER being adopted within this time horizon. It is 
noteworthy that, under most IDC, a major network expansion is foreseen, 
expressed through investments of 10 - 15 million Euros in years 9 and 10 
(Figure 5.6.). On the other hand, under certain incentive designs, more 
concentrated investment requirements can be observed (e.g. for IDC2 or 
IDC6). In contrast, other IDC show investments needs being stretched 
across several years (IDC8 and IDC 9). Latter IDC might be favoured by 
network operators and regulation agencies which would probably allow for 
a more constant spending (and thus, more distributed weight on the 
network tariff) over a given regulation period.  
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Figure 5.7. Spatial network expansion patterns for High-performer EV – High-
performer PV (IDC1) and Low-Medium-Income EV – Low-Medium-Income PV 

(IDC5) incentive designs. 
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Mapping HV/MV transformer loadings reveals a trend towards higher 
peak-net-loads along the adoption process (Figure 5.7). Under IDC1, higher 
HV/MV transformer loadings are observed along the coastline. On the 
other hand, stronger loadings in the interior areas of Continental Portugal 
(e.g. areas close to the continental Spanish border) can be observed under 
IDC5. Latter can be explained by a stronger geographical concentration of 
household shares classified as LMI (IDC5 is the LMI-EV and LMI-PV 
incentive design combination). Likewise, transformer loadings under IDC1 
are in line with expectations as high-income households with above-
average education levels (HP groups) spread stronger along the coast lines 
that accommodate most urban areas with a higher access to higher 
education institutions.  

In the following, the impact of PV and battery induced peak-load shaving 
on network expansion costs is analysed (Figure 5.7.). Here, results for the 
two extreme incentive designs (IDC1 – HP-HP and IDC5 – LMI-LMI) are 
displayed. As a general outcome, results suggest that reduced peak-loads 
(and thus, reduced investment), can be achieved for both cases (IDC1 and 
IDC5). Results further show that higher investment reduction is achieved 
under orchestrated incentive designs that target HP groups (IDC1). Under 
this IDC, global network expansion costs can be reduced by more than 50% 
(from 55 to 25 million Euros). Likewise, a potential network expansion cost 
reduction of 15 million Euros (from 47.5 to 32.5 million Euros) can be 
realized under LMI-oriented DER incentive designs (IDC5).  

One explanation of the differences in IDC1 and IDC5 may be that HP 
adopters mostly locate in urban HV/MV service areas along the coast-line. 
Such areas tend to be densely populated and therefore rapidly reach the 
expansion thresholds (PNL of 0.9) with EV adopters driving peak-net-loads 
upwards. Therefore, such zones would possess relatively higher reduction 
potential under HP schemes that consider peak-load reduction programs.  

Another explanation could lie in a higher concentration of HP adopters in 
HV/MV service areas with a lower hosting capacity for added EV charging. 
However, an extensive, case-by-case analysis of load growth patterns and 
evolution PNL in all 391 HV/MV service areas lies outside the scope of this 
analysis and remains future work.  
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Figure 5.8. Mapping of IDC under different scenarios for modeling year 20. 

5.5 ADOPTION ASYMMETRIES AGAINST EXPANSION COSTS 

 

The estimation of network expansion costs and adoption asymmetries 
further allows to visualize the analysed IDC in a Cartesian coordination 
system (Figure 5.8). Given that value pairs of CT and overrun cost estimates 
are available at this step, trade-offs can now be calculated. The overcost 
factor is defined as the ratio of the aggregated expansion costs of each IDC 
for 20 modelling years divided by expansion costs under baseline 
conditions (load growth only). In addition, the Pareto frontier, which is the 
line delineating the most efficient IDC under the criteria considered, can be 
plotted. 

The nine IDC are further analysed considering four sensitivities. As shown 
in Fig. 5.8., Case a) displays a situation of non-controlled EV charging 
(dumb charging). On the other hand, Case b) shows model outcomes for 
peak-shaving using PV and batteries (compare also Eq. 5.3). Cases c) and d) 
show results assuming an increased average charging rate of 9.82 kW EV 
and 35 kWh battery size (c), whereas Case d) analyses a potential HV/MV 
transformer peak-load reduction of -20% respectively -50%. 
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For all four sensitivities considered (normal conditions, optimized with EV-
PV bundling, high EV charging, high PV & EV battery coupled peak-load 
shaving), absolute performance and their relative differences strongly vary 
among all IDC for each scenario analysed. Explanations may be found in 
the difference of spatial HP group and LMI group distributions.  

Under the base cases (a) and (c), IDC1 and IDC6 are the dominating of 
Pareto-efficient solutions. They are dominating the remaining IDC in terms 
of both asymmetries and overrun costs. According to the model outcomes, 
IDC1 (HP groups-oriented EV and PV incentives) introduces the lowest 
asymmetries into DER adoption patterns. IDC1 also dominates all other 
IDC under sensitivities b) and d), which correspond to situations under 
light and strong peak-load reduction. In(a), IDC5 (LMI groups-oriented EV 
and PV incentives) is typically dominated by IDC6. Under sensitivities a) 
and c), IDC9 (double random allocation) introduces smaller overrun costs 
than IDC1 but is dominated by IDC6.  

Future work could consider the influencing role of initial transformer 
loadings (t=0) or spatial correlation metrics to analyse the spatial evolution 
of PNL over time. In addition, established geostatistical metrics (e.g. 
Moran’s I) could be used to link DER adoption patterns to system expansion 
needs. 

Table 5.5. IDC rankings across scenarios for the original census dataset. 
 

IDC 1 2 3 4 5 6 7 8 9 

Scenarios  
a) - d) 

         

Euclidean 1 9 8 7 3 2 4 6 5 

Manhattan 1 9 8 7 4 2 5 6 3 

 

Eventually, in order to rank the analysed IDC, a single criterion is 
developed for each policy design. In other words, the IDC’s performance in 
terms of system expansion overrun costs and distributional effects is 
assessed through an aggregation of both into a single metric. While the 
decision maker can in practice allocate predefined weights to each criterion 
that reflect the preference of one criterion over the other, an equal-weight 
scheme has been used in this analysis. Therefore, the search for the IDC that 
has the minimum expansion overrun cost as well as introduces least DER 
adoption pattern asymmetries is conducted using the Euclidean and 
Manhattan distance to the Ideal. Here, the Ideal is defined as the virtual 
point with the lowest overrun cost and asymmetry change observed for a 
set of IDCs, that is, the point where the change in Theil’s T and expansion 
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overrun cost are minimal. Distances are averaged for all four sensitivities 
considered. 

Outcomes in Table 5.5. suggest that IDC1 is clearly the incentive design 
combination that is the closest to the Ideal under the defined criteria and 
distance functions. In other words, the compromise set resulting from 
choosing any metric from L1 to L2 is comprised of a single solution, IDC1, 
which may therefore be considered as a very robust solution regarding the 
choice of metric (the decision does not change, regardless o metric choice), 
so metric choice is a non-issue. This would not be the case if the closest-to-
Ideal solution would have changed with a change in metric, leading to the 
need of further considering a diversity of aspects in the decision-making 
process in this specific problem, in order to build arguments in favour of 
one choice or the other. 

The examination of the second-best solutions is also usually revealing. For 
instance ID6, which is EV incentives for RN consumer groups and LMI-
targeting PV incentives, is the second closest to the Ideal. Furthermore, 
depending on the distance function, IDC9, which represents randomized 
EV and PV adoption across all consumer groups, can rank third position. 
These outcomes confirm again that under an equal weighting of network 
expansion over-cost and DER asymmetry changes, IDC targeting HP for 
both EV/PV or randomized adoption may be attractive both to energy 
policy designers and network planners. While former comes unexpected (as 
discussed above), latter (IDC6) is well in line with the intuition that 
maximally different spatial adoption patterns of DER, that is, non-
overlapping EV and PV adoption patterns, would not allow to exploit 
potential synergies (e.g. peak-load shaving). Instead, almost uniform DER 
patterns may, in return, reduce network expansion costs.. 

 

Robust incentive design choice through census data permutation 

 

Under the current socio-demographic population structure and its spatial 
distribution IDC1, followed by IDC6 and then by IDC5 and IDC9, are 
attractive policy choices to decision maker. However, the question arises if 
this holds for other population compositions or different spatial 
distributions of LMI and HP consumer groups. Therefore, the impact of 
changes in the underlying socio-demographic population structure on 
optimal incentive designs has been analysed. 
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Table 5.6. IDC rankings across scenarios and permutated census datasets. 
 

IDC 1 2 3 4 5 6 7 8 9 

Permutated. 
census data 

         

Euclidean 1 7 9 8 4 3 5.5 5.5 2 

Manhattan 1 7 9 8 4 3 5.5 5.5 2 

 

In order to assess the influence of structural changes in the population 
structure, the allocation key that links census cells to HV/MV transformers 
is randomly modified. In total, 20 of such permutations are computed, 
while comparing the performance and ranking of all nine IDC. Outcomes 
show that under such conditions, IDC1 would be again the optimal 
incentive design under which both expansion overrun cost and adoption 
asymmetries are minimized. In addition, IDC9 (the randomized 
distribution of DER) becomes a high-ranked incentive scheme combination, 
in position 2 right after IDC1. Such ranking is unchanged for both Euclidean 
and Manhattan distances (Table 5.6.).    

A comparison of the IDC rankings across all 20 scenarios shows that indeed, 
IDC1 and IDC9 are the highest ranked IDC, with a mean rank of 3.7 and 
4.15 respectively, if Euclidean distance is considered. The same analysis 
using Manhattan distance reveals a very similar pattern with only minor 
deviations in mean rank values <10%. However, retrieved mean rank 
vaules also suggest that IDC1 and IDC9 are not always the outperforming 
policy options. Both IDC are among Top-3 ranks in half of the simulations, 
although there are a few permuations where these two IDC would obtain 
ranks 4-9. This highlights the outcomes’ reliance on the distribution of 
population groups in each case study. Policy makers or decision makers 
may extend the presented studies to a Monte-Carlo approach, realising 
more extensive permutations and decision framework coupled with risk 
analysis and regret value optimization. Such studies are outside the scope 
of this thesis and represent future work. 

Furthermore, the outcomes of 20 census data permutations (assuming equal 
probability of realization) show that IDC 2, IDC3, IDC4, IDC7 and IDC8 
shall be of little interest to energy policy makers that envision reduced 
expansion overrun cost and low DER adoption asymmetries (Figure 5.9). 

All such incentive design combinations are dominated options due to an 
uneven attribution of both EV and PV within all HV/MV service areas 
which tend to lead to relatively pronounced global system expansion costs.  
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Figure 5.9. Solution space under 5 permutated census datasets. 

 

While the presented model allows to simulate effects of incentive designs 
on network expansion costs and DER adoption asymmetries, a real-world 
implementation of the methodology would require further improvement. 

One vision is that distribution companies, governmental agencies or 
regulatory authorities might further improve the accuracy of the 
spatiotemporal DER adoption forecasting model. This might be achieved 
by replacing the weight vectors (innovativeness scores) with methods that 
exploit recent advances in data science. Furthermore, the spatial simulation 
model could be extended to include neighbourhood interaction, that is, the 
way DER adoption is influenced by adjunct households. 

In addition, extensions could include a more detailed expansion cost model 
that would consider different transformer sizes and costs as well as other 
network elements (e.g. lines) that drive expansion costs.  

Finally, the impact of various IDC on distributional justice aspects shall be 
further analysed, breaking down the impact of DER adoption on different 
population subgroups (e.g. HP, LMI) while considering different 
dimensions on distributional fairness [41].  
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Chapter conclusions 

 

This chapter presented a methodology to assess the impact of future EV/PV 
incentive design combinations onto network expansion costs and the 
dimension of distributional justice. After reviewing recent studies on the 
interplay of technology incentive designs and electricity network planning 
and incentive designs in place, the chapter introduces nine IDC. Such 
combinations represent a mix of three different incentive designs that are 
applied to both EV and PV: Incentives that trigger adoption of high-
educated, above-average income groups (HP), lower education levels and 
low-medium income groups (LMI) and randomized adoption (RN). These 
synthetic incentive designs allow to analyse the effects that result from 
different spatial adoption patterns under large-scale DER adoption. This 
way, outcomes allow decision makers to weight estimated network 
expansion costs against DER adoption asymmetries. The analysis of trade-
offs, and the identification of Pareto optimal solutions, further allows to 
discard incentive designs that would be dominated by other solutions. The 
research outcomes presented in this chapter can be summarized in the 
following way: 

• DER adoption is accelerated by incentive designs in place. 
 

• Orchestrated incentive design schemes could facilitate the 
realization of prosumer paradigm. 
 

• A system-wide study of the grid investment needs of various DER 
incentive designs that are currently discussed among researchers 
and policymakers is presented. 
 

• The analysis is based on the spatiotemporal DER adoption 
forecasting model that uses high-resolution census data. 
 

• The presented methodology allows to simulate adoption patterns 
under different, synthetic incentive designs (high-performer, low-
medium income, randomized). 
 

• Outcomes from simulating various EV/PV IDC suggest that 
estimated network expansion costs can be reduced without adverse 
effects on DER adoption asymmetries. 
 

• Eventually, the presented work opens a path to analyse network 
expansion cost estimations and distributional effects of DER 
incentives based on spatial adoption patterns. 
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6 Conclusions 

This final section provides a condensed overview of the innovations 
presented in this thesis. In addition, answers to the research questions 
initially stated are presented, whereas newly emerging, open questions and 
future research avenues are discussed. 
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6.1 INNOVATIONS OF THIS THESIS 

 
The thesis presented a holistic framework to characterize, compare and 
predict technology adoption patterns in space and time. After introducing 
a spatiotemporal DER adoption forecasting model, a rigorous comparison 
of various models to represent technology adoption dynamics in electricity 
network planning and energy policy studies were presented. Eventually, a 
system-level analysis on policy designs was constructed on previous 
findings. 

The thesis presented innovations on a broad range of subjects. Such are: 

• The development of a holistic technology adopter analysis, 

merging spatial and non-spatial analysis tools. In Chapter 2, DER 
adopters have been assessed using spatial autocorrelation metrics 
(Moran’s I) and census-based inference algorithms (Information 
Gain Ratio). The innovative approach allowed to characterize 
adoption drivers and incentive designs while linking them to spatial 
adoption patterns.  
 

• Building on the developed inference tools, Chapter 3 introduced a 
census data-driven spatiotemporal DER adoption forecasting 
model. Relying exclusively on population data and DER 
observations, the forecasting model can also easily incorporate 
different policy designs. That way, the proposal allows bridging the 
gap of spatial analysis, energy policy design and network planning. 
 

• Merging locational information of HV/MV transformers and tabular 
information on transmission-to-distribution connectivity, Chapter 4 
presents a fast and automatable way to approximate transmission 
service areas through HV/MV HV/MV distribution polygons. The 
spatial distribution and transmission network models are useful 
inputs for capacity expansion screening, uncertainty assessment or 
the spatial decomposition of scenario forecasts. 
 

• A straightforward way to estimate the trade-offs between 

distributional justice and network expansion costs was presented 
in Chapter 5. The approach numerically assesses adoption 
asymmetry patterns, using an Information Theoretic inequality 
measure, and allows decision makers to weight economic costs 
against inequality reduction measures. 

The innovations of this thesis are complemented by further, principal 
research outcomes that are detailed in the following section. 
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6.2 PRINCIPAL RESEARCH OUTCOMES 

 

The research that culminated into this thesis has brought a variety of 
outcomes that respond to the initial research questions (compare Chapter 
1). While a detailed overview of retrieved results is annexed to each chapter, 
a condensed summary of the responses to the stated research questions is 
provided in the following. 

 

Chapter 2:   

How can one 
describe and 
compare tech-
nology adoption 
patterns? 

 

 Technology adoption may be described by 
diffusion patterns, which can be represented 
using non-spatial analysis tools together with 
adopter data, crossed with census or survey 
information. Given that such information allows 
characterizing population groups, adoption 
drivers can be inferred.  

Convenient approaches to infer such drivers are 
algorithms that combine multi-linear regression 
and relative importance, artificial neural 
networks and e.g. the Olden approach or 
information theoretic measures such as the 
Information Gain Ratio.  

While such inference methods allow estimating 
the propensity of consumer groups to adopt a 
certain technology, the technologies’ distribution 
in space is fundamental to fully understand 
diffusion phenomena. Given that population 
groups distribute heterogeneously in space, 
different strengths in adoption drivers result in 
varying DER adoption patterns. Therefore, 
analyses that combine spatial and non-spatial 
methods are preferred. 

Eventually, the analysis outcomes are strongly 
affected by data aggregation. Therefore, decision 
makers shall carefully select data aggregation 
levels. Given the scope of analysis, such 
aggregation levels shall preferably be closest to 
ground truth of observations.  
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Chapter 3:   

How to predict 
technology 
adoption patterns in 
space and time? 

 Spatiotemporal DER adoption models are a 
recent, emerging family of DER adoption 
models. Main model typologies are spatial 
regression models, simulation-based models and 
agent-based models. The latter two model types 
are more computationally demanding but allow 
modelling dynamic behaviour at cellular level.  

While agent-based DER adoption models usually 
rely on cell lattice data, simulation-based DER 
adoption models allow to flexibly adjust to the 
spatial data substrate. On the downside, 
neighbourhood interaction is typically 
constrained to strong simplifications.  

Mostly, such models incorporate detailed data on 
socio-economic population structure, which can 
be found in census data or in geocoded, empirical 
surveys. In addition, some spatiotemporal DER 
adoption models build their prediction on data-
driven analysis of spatial DER adoption patterns. 

Which components 
do spatiotemporal 
technology 
adoption models 
typically consist of? 

 

 

 All spatiotemporal technology adoption models, 
such as DER adoption models, consist of three 
main components.  

First, technology quantities (e.g. EV) for a given 
time horizon are predicted using a global stock 
forecasting module.  

Then, the aggregated amount of a defined 
technology is then fed into a cellular adopter 
module. Such module determines the uptake 
behaviour inside a given spatial cell, considering 
population, propensity of population groups, 
and maximum adoption levels. The uptake is 
typically modelled through a S-curve model, 
considering discretized adoption states. 

Finally, the temporal dynamics are translated 
into spatial distributions with the help of an 
adoption pattern mapping module. Such module 
usually sequences cells along a determined 
adoption order. 



…
…

…
…

…
 

 

  177 

Along which criteria 
can technology 
adoption models be 
categorized? 

 

 

 Spatiotemporal adoption forecasting models are 
the most recent added category of technology 
adoption models that received major attention 
throughout this thesis. However, a variety of 
representations of DER adoption dynamics could 
be identified. Such models have been built on 
time series, Bass diffusion, combined market 
penetration or macroeconomic approaches. 

All technology adoption models can be 
categorized along their spatial and temporal axis. 
Depending on the character of the technology 
adoption model, one can separate non-spatial 
and non-temporal models, spatial and non-
temporal models, non-spatial and non-temporal 
models and spatial and temporal (herein named 
“spatiotemporal”) models. 

Chapter 4:   

What are the effects 
of different 
technology 
representations on 
electricity network 
planning? 

 

•  Currently, transmission and distribution 
planners rely on mostly very simplified 
approaches to represent DER adoption 
dynamics. Such include extrapolations based on 
installed busbar capacities, peak-load or 
equal/random allocations across the networks. 

As such approaches do not consider the 
underlying population characteristics and the 
adoption propensities by different social groups 
and structures, such representations add 
additional uncertainty to the planning process.  

Model outcomes presented in Chapter 4 show 
that such simplified approaches may 
underestimate the impact of DER on the peak 
load in early adoption phase, while overestimate 
their effect for late adoption phases. Especially in 
transmission studies, simplified DER allocation 
techniques result in large uncertainties at T/D 
boundary that can reach DER forecast variations 
of over 100 MW per transmission service area 
(e.g. for the example of residential PV module 
capacities). 
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Chapter 5:   

How do different 
policy designs affect 
system expansion 
costs and distribu-
tional effects? 

 

 The model proposed in Chapter 5 shows a way 
to model spatial DER adoption patterns for 
different policy designs. This, eventually, allows 
comparing system expansion costs with 
adoption asymmetry patterns. 

The results obtained suggested that, due to the 
geographical dispersion of population groups, 
different incentive designs lead indeed to 
different spatial DER adoption patterns. In 
return, this does result, depending on the spatial 
concentration of DER adopters, in a variety of 
system expansion cost estimates and adoption 
asymmetries.  

Can orchestrated 
incentive designs 
reduce such costs/ 
distributional 
effects? 

 

 The results suggest that orchestrated incentive 
designs, depending on the decision makers’ 
weight allocation, can either reduce system 
expansion costs or effects of DER adoption 
asymmetry. In fact, outcomes of the analysed 
case study suggest that current incentive design 
schemes lead to relatively concentrated adoption 
patterns. On the contrary, policy designs that 
favour randomized DER adoption or uptake 
through low- and medium-income groups may 
reduce system expansion costs.  

 

Finally, all the above-listed research outcomes together show how, on 
global level, the representation and modelling of technology diffusion 
dynamics in electricity network planning and policy design studies can be 
enhanced to address emerging challenges. 

6.3 FUTURE WORK 

 

The innovations brought by this thesis, tested and applied to a set of case 
studies, not only produced valuable results and insight, but also opened the 
way to further improvement and model extensions. A short overview of 
current model limitations and a flavour of such foreseen extensions is 
provided below. 
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Throughout this thesis, we assessed the adoption dynamics and, in 
particular, their representation in electricity network studies and policy 
design. While this thesis has covered how incentive designs and different 
adoption drivers of population groups drive the spatial diversity of DER 
utilization, more focus may be put on the temporal utilization patterns of 
DER. 

In fact, while adoption patterns have been spatially differentiated, the 
underlying models were based on  deterministic load, EV charging and PV 
generation profiles that assume similar user behaviour across all HV/MV 
substation service areas. Consequently, the extension to a probabilistic 
simulation-model represent a logical, following step. This would both 
include the modelling of stochastic time series (e.g. different EV arrival 
times, PV generation patterns) as well as stochasticity in spatial adoption 
behaviour. Given an increased amount of DER adopter observations, the 
stochastic representation should further include the interaction of 
neighbouring DER adopters, modelling what has been called the “peer 
effects” of DER adoption. For example, the adoption of the same technology 
in the neighbourhood would likely increase the adoption likelihood of that 
same (or other) technologies in the neighbouring cells. 

In addition, it can be argued that, while incentive designs drive spatial DER 
adoption patterns, electricity tariffs largely steer temporal DER utilization 
behaviour. Future studies should, from a system view, compare both 
instruments (incentive designs vs. tariffs) in their effectiveness to reduce 
system expansion costs or maximize self-consumption. Furthermore, their 
comparison to other “non-wires” alternatives such as demand side 
management represent a very promising and timely research direction. 

In fact, this thesis has largely focused on the interaction of EV/PV 
technologies in residential environments. While this has been in line with 
extensive literature that suggest potential synergies between them, further 
technologies may be included in the future. As one example, the current 
electrification of the heating sector may require the integration of 
HVAC/heat pumps adoption behaviour into future model extensions. 
Furthermore, household-level battery employment could be further added 
to the scope of analysis. While such additional technologies increase the 
complexity of scenario building (in case, different uptake paths for each 
technology shall be maintained), their integration in the presented model 
framework is straightforward. 

Finally, four different research pathways are outlined, suggesting potential 
evolutions of the methodological framework of this thesis under different 
application focusses.  

 



…
…

…
…

…
 

 

 180 

A self-adaptive, integrated DER adoption forecasting model  

One foreseen evolution of the presented modelling framework may further 
enhance the presented spatiotemporal DER adoption forecasting model. 
However, model improvement shall be driven by model testing and 
validation, which require additional observations. Given that the current 
level of adoption of the technologies included in the frame of this work is 
still low, calibration was based mainly on aggregated rather than cell level. 
This drawback is strongly linked to the difficulties of error calculation for 
highly unbalanced data-sets, which represents a research area by itself. 

Crossing smart-meter data, surveys or mobile application data with high-
resolution satellite imagery may eventually result in a household-level 
representation in space. While such development raises questions of 
personal data confidentiality and protection, resulting data-sets allow for 
an improved validation of forecasting models.  

 

3D load modelling for accurate network planning  

One of the major contributions of this thesis is an improved representation 
of residential load patterns under DER adoption dynamics. A 
straightforward extension lies in the inclusion of commercial and industrial 
utilization patterns. However, the inclusion of these sectors poses, as most 
greenfield planning exercises, additional challenges to the planning 
exercise. Information on the magnitude and location of industrial or 
commercial activities is seldom available and hard to retrieve. In addition, 
access to some information on energy consumption may be constrained due 
to the risk of losing a competitive advantage of a specific business process. 

However, with the help of typical load profiles and increasingly available 
open geodata and remote sensing imagery, different activity levels 
(industry, commercial, residential, agriculture) can be merged to create 
spatiotemporal, 3D net-load models.  

In addition, detail of network analysis could be increased, using, if available, 
real network information (including lines) or relying on reference network 
models (as the RNM developed by IIT Comillias). In fact, such models are 
appealing as they can both create greenfield or bownfield network models 
under absence of the real network. Such synthetic network models can be 
complemented with the outputs of the spatiotemporal diffusion model and 
satellite information on the exact consumer location and class. 
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Optimized policy design choice with human-machine interfaces 

The approach presented in Chapter 5 allows understanding the effects of 
policy designs. Thus, the provided tools can support a careful weighting of 
decision makers objectives such as decreased system expansion costs or 
adoption asymmetries for improved energy policy design.  

Future extensions of the methodological backbone may enable to estimate 
the global trade-off of centralized, state-level welfare gains against 
distributed household level (residential, commerce, industry) welfare gains, 
under different policy designs, considering expansion costs, welfare gains, 
welfare distribution, and total expansion cost 

In addition, the creation of an interactive, human-machine interface that 
allows energy policy makers to adjust their objective weightings after 
understanding the likely impacts of a specific policy design can be 
envisaged.  

 

Transferable model to other technologies and infrastructures 

Finally, the model framework developed possesses a high potential to be 
transferred to other contexts. On the one hand, the modelling framework is 
suitable to be applied to other technology diffusion processes that are 
embedded in social systems such as heat pumps, electricity storage systems, 
energy efficiency programs, or HVAC systems.  

On the other hand, the models could be applied together with rural 
electrification planning, to estimate peak load evolution under the adoption 
of electrified cooking systems, refrigerators or other household appliances. 
Finally, the use of the developed models might go beyond challenges of the 
energy sector, extending to any other infrastructure planning exercises that 
require the estimation of demand through consumers’ characterisation. 
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Annex  
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ANNEX I:   Census data of Continental Portugal 

 

a) 

 

The presented models used the census information provided by the 
Portuguese National Institute for Statistics (INE). This institution publishes 
every 10 years detailed census data-sets with extensive population 
information. For the smallest data resolution considered (subsections), 
around 280,000 units with over 120 socio-demographic criteria are reported. 
In addition, the census data-set contains spatial polygons that can be 
manipulated to retrieve different administrative levels (e.g. region, 
municipality, neighborhood, section and subsection). The polygons can be 
linked to the population characteristics. Municipal polygons are shown 
above (a). 

The data for the latest survey from 2011 is accessible online 
(http://mapas.ine.pt/download/index2011.phtml, last accessed on 4th of 
September 2019).  

In our work, unpopulated cells have been removed. A stable population 
with unchanged population characteristics has been assumed.  

http://mapas.ine.pt/download/index2011.phtml


…
…

…
…

…
 

 

  185 

ANNEX II:   Georeferenced DER adopter data-set 

 

EV, PV and HVAC adopter data has been retrieved from CeiiA and ADENE, 
the Portuguese Energy Agency. Provided data included the position of 
adopters and, for PV and HVAC, further technology characteristics and the 
sector of its user (industrial, commercial, residential). For PV and HVAC, 
other than residential users have been removed from the data-set. On the 
other hand, EV entries have been eliminated if several EV have been 
registered under the same address. Investigations using Google maps 
suggested that most of these locations were car selling offices or commercial 
users. 

In general, it was assumed that all individual observations correspond to 
one household each. Furthermore, it was expected that one household had 
one appliance registered. Multiple entries for the same address have been 
removed. 

All DER adopters have been georeferenced. In the following, resulting 
spatial point data-sets were intersected with Continental Portugal to 
exclude observations for Portuguese islands. The final data-set included 
2,632 EV, 474 PV and 2111 HVAC adopter households (as shown in a) ). 

 

a) 
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ANNEX III:  Spatial distribution and transmission 
network representation 

 

EDP Distribuição manages a major part of the Portuguese Continental 
distribution system, supplying more than 6 million clients. Consumers are 
supplied through 392 HV/MV substations that possess an aggregated, 
installed capacity of 15.447 MW. One substation that is not actively used has 
been excluded. The figures below show histograms of the HV/MV 
transformer capacities (a) used throughout the continental distribution 
system, peak load occurrences (b) and the maximal loading for each 
HV/MV transformer (c). 

 

a) 

 

b) 
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c) 

 

 

HV/MV substation transformer characteristics (geographical coordinates, 
peak-load, installed capacity) have been retrieved from the EDP 
Distribuição webite and latest system planning reports , whereas some 
values have been corrected in discussion with the distribution company. 
Natural peak-load growth is estimated at 0.5% annually in line with the 
estimates provided in the latest investment report of EDP Distribuição 
(PDIRD-E 2018) . 

The average transformer upgrade cost estimation (TC) has been retrieved 
through a comparison of past upgrades that are listed in the same 
investment report. A conservative expansion cost of 2.5 million € per 
upgrade is obtained.  

Likewise, the companies typical network expansion threshold that is 
applied to HV/MV transformer expansion has been retrieved. In the 
Portuguese distribution system, typical expansion threshold for HV/MV 
transformers is a maximal loading of 0.9. In other words, transformer’s 
replacement or capacity addition is triggered once peak-load (or PNL – 
peak-net-load) surpasses 90% of the installed HV/MV transformer capacity. 
Therefore, expansion can be modelled with the following equation: 

 

   𝑇𝐶 = {
  2.5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝐸𝑢𝑟𝑜   𝑓𝑜𝑟 𝑃𝑁𝐿 ≥  0.9
  0.0  𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝐸𝑢𝑟𝑜  𝑓𝑜𝑟 𝑃𝑁𝐿 <  0.9

}              (1) 
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It is important to note that technical problems in LV networks are neglected. 
LV networks are modelled as a single net-load downstream the HV/MV 
substation. Substation feeder reconfigurations are not considered as well. 

The approximated HV/MV transformer service areas and the respective 
installed capacities (in MW) are shown below (d). The approximated 
substation service areas are equivalent to the Voronoi diagram for all 
continental substations, resulting from purely geometrical calculations. 
However, in reality, we expect that DSOs possess detailed knowledge on 
the areas served by each transformer.  

 

d) 
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