60,644 research outputs found

    The Current State of Normative Agent-Based Systems

    Get PDF
    Recent years have seen an increase in the application of ideas from the social sciences to computational systems. Nowhere has this been more pronounced than in the domain of multiagent systems. Because multiagent systems are composed of multiple individual agents interacting with each other many parallels can be drawn to human and animal societies. One of the main challenges currently faced in multiagent systems research is that of social control. In particular, how can open multiagent systems be configured and organized given their constantly changing structure? One leading solution is to employ the use of social norms. In human societies, social norms are essential to regulation, coordination, and cooperation. The current trend of thinking is that these same principles can be applied to agent societies, of which multiagent systems are one type. In this article, we provide an introduction to and present a holistic viewpoint of the state of normative computing (computational solutions that employ ideas based on social norms.) To accomplish this, we (1) introduce social norms and their application to agent-based systems; (2) identify and describe a normative process abstracted from the existing research; and (3) discuss future directions for research in normative multiagent computing. The intent of this paper is to introduce new researchers to the ideas that underlie normative computing and survey the existing state of the art, as well as provide direction for future research.Norms, Normative Agents, Agents, Agent-Based System, Agent-Based Simulation, Agent-Based Modeling

    Towards Social Autonomous Vehicles: Efficient Collision Avoidance Scheme Using Richardson's Arms Race Model

    Full text link
    Background Road collisions and casualties pose a serious threat to commuters around the globe. Autonomous Vehicles (AVs) aim to make the use of technology to reduce the road accidents. However, the most of research work in the context of collision avoidance has been performed to address, separately, the rear end, front end and lateral collisions in less congested and with high inter-vehicular distances. Purpose The goal of this paper is to introduce the concept of a social agent, which interact with other AVs in social manners like humans are social having the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. The proposed social agent is based on a human-brain inspired mentalizing and mirroring capabilities and has been modelled for collision detection and avoidance under congested urban road traffic. Method We designed our social agent having the capabilities of mentalizing and mirroring and for this purpose we utilized Exploratory Agent Based Modeling (EABM) level of Cognitive Agent Based Computing (CABC) framework proposed by Niazi and Hussain. Results Our simulation and practical experiments reveal that by embedding Richardson's arms race model within AVs, collisions can be avoided while travelling on congested urban roads in a flock like topologies. The performance of the proposed social agent has been compared at two different levels.Comment: 48 pages, 21 figure

    A Simple-to-Use BDI Architecture for Agent-Based Modeling and Simulation

    Get PDF
    With the increase of computing power and the development of user-friendly multi-agent simulation frameworks, social simulations have become increasingly realistic. However, most agent architectures in these simulations use simple reactive models. Cognitive architectures face two main obstacles: their complexity for the field-expert modeler, and their computational cost. In this paper, we propose a new cognitive agent architecture based on the Belief-Desire-Intention paradigm integrated into the GAMA modeling platform. Based on the GAML modeling language, this architecture was designed to be simple-to-use for modelers, flexible enough to manage complex behaviors, and with low computational cost. This architecture is illustrated with a simulation of the evolution of land-use in the Mekong Delta

    A Simple-to-use BDI architecture for Agent-based Modeling and Simulation

    Get PDF
    International audienceWith the increase of computing power and the development of user-friendly multi-agent simulation frameworks, social simulations have become increasingly realistic. However, most agent architectures in these simulations use simple reactive models. Cognitive architectures face two main obstacles: their complexity for the field-expert modeler, and their computational cost. In this paper , we propose a new cognitive agent architecture based on the BDI (Belief-Desire-Intention) paradigm integrated into the GAMA modeling platform. Based on the GAML modeling language, this architecture was designed to be simple-to-use for modelers, flexible enough to manage complex behaviors, and with low computational cost. This architecture is illustrated with a simulation of the evolution of land use in the Mekong Delta

    Application and support for high-performance simulation

    Get PDF
    types: Editorial CommentHigh performance simulation that supports sophisticated simulation experimentation and optimization can require non-trivial amounts of computing power. Advanced distributed computing techniques and systems found in areas such as High Performance Computing (HPC), High Throughput Computing (HTC), grid computing, cloud computing and e-Infrastructures are needed to provide effectively the computing power needed for the high performance simulation of large and complex models. In simulation there has been a long tradition of translating and adopting advances in distributed computing as shown by contributions from the parallel and distributed simulation community. This special issue brings together a contemporary collection of work showcasing original research in the advancement of simulation theory and practice with distributed computing. This special issue is divided into two parts. This first part focuses on research pertaining to high performance simulation that support a range of applications including the study of epidemics, social networks, urban mobility and real-time embedded and cyber-physical systems. Compared to other simulation techniques agent-based modeling and simulation is relatively new; however, it is increasingly being used to study large-scale problems. Agent-based simulations present challenges for high performance simulation as they can be complex and computationally demanding, and it is therefore not surprising that this special issue includes several articles on the high performance simulation of such systems.Research Councils U

    A BDI agent architecture for the GAMA modeling and simulation platform

    Get PDF
    International audienceWith the increase of computing power and the development of user-friendly multi-agent simulation frameworks, social simulations have become increasingly realistic. However, most agent architectures in these simulations use simple reactive models. Indeed, cognitive agent architectures face two main obstacles: their complexity for the field-expert modeler, and their computational cost. In this paper, we propose a new cognitive agent architecture based on the BDI (Belief-Desire-Intention) paradigm integrated into the GAMA modeling platform and its GAML modeling language. This architecture was designed to be simple-to-use for modelers, flexible enough to manage complex behaviors, and with low computational cost. An experiment carried out with different profiles of end-users shows that the architecture is actually usable even by modelers who have little knowledge in programming and in Artificial Intelligence

    A Simple-to-Use BDI Architecture for Agent-Based Modeling and Simulation

    Get PDF
    With the increase of computing power and the development of user-friendly multi-agent simulation frameworks, social simulations have become increasingly realistic. However, most agent architectures in these simulations use simple reactive models. Cognitive architectures face two main obstacles: their complexity for the field-expert modeler, and their computational cost. In this paper, we propose a new cognitive agent architecture based on the Belief-Desire-Intention paradigm integrated into the GAMA modeling platform. Based on the GAML modeling language, this architecture was designed to be simple-to-use for modelers, flexible enough to manage complex behaviors, and with low computational cost. This architecture is illustrated with a simulation of the evolution of land-use in the Mekong Delta

    Fine-Grained Agent-Based Modeling to Predict Covid-19 Spreading and Effect of Policies in Large-Scale Scenarios

    Get PDF
    Modeling and forecasting the spread of COVID-19 remains an open problem for several reasons. One of these concerns the difficulty to model a complex system at a high resolution (fine-grained) level at which the spread can be simulated by taking into account individual features such as the social structure, the effects of the governments’ policies, age sensitivity to Covid-19, maskwearing habits and geographical distribution of susceptible people. Agent-based modeling usually needs to find an optimal trade-off between the resolution of the simulation and the population size. Indeed, modeling single individuals usually leads to simulations of smaller populations or the use of meta-populations. In this article, we propose a solution to efficiently model the Covid-19 spread in Lombardy, the most populated Italian region with about ten million people. In particular, the model described in this paper is, to the best of our knowledge, the first attempt in literature to model a large population at the single-individual level. To achieve this goal, we propose a framework that implements: i. a scale-free model of the social contacts combining a sociability rate, demographic information, and geographical assumptions; ii. a multi-agent system relying on the actor model and the High-Performance Computing technology to efficiently implement ten million concurrent agents. We simulated the epidemic scenario from January to April 2020 and from August to December 2020, modeling the government’s lockdown policies and people’s maskwearing habits. The social modeling approach we propose could be rapidly adapted for modeling future epidemics at their early stage in scenarios where little prior knowledge is available

    Modeling gap seeking behaviors for agent-based crowd simulation

    Get PDF
    Research on agent-based crowd simulation has gained tremendous momentum in recent years due to the increase of computing power. One key issue in this research area is to develop various behavioral models to capture the microscopic behaviors of individuals (i.e., agents) in a crowd. In this paper, we propose a novel behavior model for modeling the gap seeking behavior which can be frequently observed in real world scenarios where an individual in a crowd proactively seek for gaps in the crowd flow so as to minimize potential collision with other people. We propose a two-level modeling framework and introduce a gap seeking behavior model as a proactive conflict minimization maneuver at global navigation level. The model is integrated with the reactive collision avoidance model at local steering level. We evaluate our model by simulating a real world scenario. The results show that our model can generate more realistic crowd behaviors compared to the classical social-force model in the given scenario
    corecore