
A BDI agent architecture for the GAMA modeling and

simulation platform

Patrick Taillandier, Mathieu Bourgais, Philippe Caillou, Carole Adam, Benoit

Gaudou

To cite this version:

Patrick Taillandier, Mathieu Bourgais, Philippe Caillou, Carole Adam, Benoit Gaudou. A BDI
agent architecture for the GAMA modeling and simulation platform. MABS 2016 Multi-Agent-
Based Simulation, May 2016, Singapore, Singapore. <hal-01391002>

HAL Id: hal-01391002

https://hal.inria.fr/hal-01391002

Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50529954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01391002


A BDI agent architecture for the

GAMA modeling and simulation platform

Patrick Taillandier1, Mathieu Bourgais1,2, Philippe Caillou3, Carole Adam4, and

Benoit Gaudou5

1 UMR 6266 IDEES, University of Rouen, Rouen, France

patrick.taillandier@gmail.com
2 EA 4108 LITIS, INSA of Rouen, Rouen, France

mathieu.bourgais@insa-rouen.fr
3 UMR 8623 LRI, University of Paris Sud, Paris, France

caillou@lri.fr
4 UMR 5217 LIG, University of Grenoble, Grenoble, France

carole.adam@imag.fr
5 UMR 5505 IRIT, University of Toulouse, Toulouse, France

benoit.gaudou@ut-capitole.fr

Abstract With the increase of computing power and the development

of user-friendly multi-agent simulation frameworks, social simulations

have become increasingly realistic. However, most agent architectures

in these simulations use simple reactive models. Indeed, cognitive agent

architectures face two main obstacles: their complexity for the field-expert

modeler, and their computational cost. In this paper, we propose a new

cognitive agent architecture based on the BDI (Belief-Desire-Intention)

paradigm integrated into the GAMA modeling platform and its GAML

modeling language. This architecture was designed to be simple-to-use

for modelers, flexible enough to manage complex behaviors, and with low

computational cost. An experiment carried out with different profiles of

end-users shows that the architecture is actually usable even by modelers

who have little knowledge in programming and in Artificial Intelligence.

Keywords: agent-based simulation, BDI architecture, GAMA platform

1 Introduction

Agent-based simulations are widely used to study complex systems. When the

goal is to understand or even predict the behaviour of such complex systems, the

simulation requires an accurate agent architecture to lay valid results. However,

designing the agents is still an open issue, especially for models tackling social

issues, where some of the agents represent human beings. In fact, designing

complex agents able to act in a believable way is a difficult task, in particular

when their behaviour is led by many conflicting needs and desires.

A classic paradigm to formalize the internal architecture of such complex

agents in Agent-Oriented Software Engineering is the BDI (Belief-Desire-Intention)



2 P. Taillandier et al.

paradigm. This paradigm, based on the philosophy of action [6], allows to design

expressive and realistic agents, yet it is still rarely used in social simulations, for

two main reasons. First, most agent architectures based on the BDI paradigm

are too complex to be understood and used by non-computer-scientists. Second,

they are often very time-consuming in terms of computation and therefore not

adapted to simulations with thousands of agents.

In a previous paper [7], we proposed a first architecture to overcome these

obstacles. This architecture is now fully integrated into the GAMA platform,

an open-source modeling and simulation platform for building spatially explicit

agent-based simulations [10,9,2]. GAMA’s Modeling Language (GAML) and the

integrated development environment support the definition of large scale models

(up to millions of agents) and are usable even with low-level programming skills.

Our BDI architecture was implemented as a new GAMA plug-in, and enables

the straightforward definition of BDI agents through the GAML language. Thus,

modelers have a wide range of ways to define their agents behaviors, by mixing

classic GAMA primitives with BDI concepts. Indeed, we state that there is

no unique way of defining the behavior of agents that can fit all the possible

application contexts, types of agents to define (level of cognition), and modelers’

backgrounds (programming skills, modeling habits...).

This paper describes some major improvements for the architecture, as well

as a usability study carried out with modelers. The paper is structured as follows:

Section 2 proposes a state of the art of BDI architectures and their use in

simulations. Section 3 is dedicated to the presentation of our architecture, and

more particularly the novelties from the previous work. In Section 4, we present

an experiment in which we asked modelers with different profiles to test the

architecture. Finally, Section 5 provides a conclusion and some perspectives.

2 State of the art

2.1 Agent architectures for social simulations

Balke and Gilbert [3] cite Sun as remarking that “social simulation researchers

frequently only focus on agent models custom-tailored to the task at hand. He

calls this situation unsatisfying and emphasises that it limits realism and the

applicability of social simulation. He argues that to overcome these short-comings,

it is necessary to include cognition as an integral part of an agent architecture.”

There are several options to endow agents with complex cognitive capabilities:

cognitive architectures based on cognitive sciences, such as SOAR or ACT-R, or

BDI architectures based on the philosophy of action.

2.2 BDI agents in AOSE frameworks

The BDI approach has been proposed in Artificial Intelligence [6] to represent the

way agents can do complex reasoning. It has first been formalized using Modal

Logic [8] in order to disambiguate the BDI concepts (Belief, Desire and Intention;

detailed in Section 3.1) and the logical relationships between them.



A BDI agent architecture for the GAMA platform 3

In parallel, the Agent-Oriented Software Engineering (AOSE) field designed

BDI operational architectures to help the development of Multi-Agent Systems

embedding BDI agents. Some of these BDI architectures are included in frame-

works allowing to directly use them in different applications. A classic framework

is the Procedural Reasoning System (PRS) [13], that has been used as a base for

many other frameworks (commercial, e.g. JACK [11], or open-source, e.g. JADE

[5] with its add-on Jadex [14] offering an explicit representation of goals).

2.3 BDI agents in ABMS platforms

BDI architectures have been introduced in several agent-based modelling and

simulation (ABMS) platforms. For example, Sakellariou et al.[16] have proposed

an education-oriented extension to Netlogo [19] to allow modellers to manipulate

BDI concepts in a simple language. This very simple architecture is inspired

by PRS: agents have a set of beliefs (information obtained by perception or

communication), a set of intentions (what they want to execute), and ways to

manage these two sets.

Singh and Padgham [17] went one step further by proposing a framework

acting like a middleware to connect components such as an ABMS platform

and a BDI framework (e.g. JACK [11] or Jadex [14]). They demonstrated their

framework on an application coupling the Matsim platform [4] and the GORITE

BDI framework [15] for a bushfire simulation; but it aims at being generic and

can be extended to couple any kind of ABMS platforms and BDI frameworks,

only by implementing interfaces to plug each new component to the middleware.

This approach is very powerful but remains computer-scientist-oriented, as it

requires high programming skills to develop bridges for each component and to

implement agents behaviours without a dedicated modelling language.

2.4 Previous work: BDI agents in GAMA

First attempts already exist to integrate BDI agents into the GAMA platform

[10]. Taillandier et al. [18] proposed a BDI architecture where the choice of plans

is formalized as a multi-criteria decision-making process: desires are represented

as criteria, and decisions are made by evaluating each plan w.r.t. each criterion

according to the agent’s beliefs. However, this architecture was tightly linked to

its application context (farmer’s decision making), did not offer any formalism to

model the agent’s beliefs, and was rather limited w.r.t. how plans were carried

out (e.g. no possibility to have complex plans with sub-objectives).

Le et al.[12] proposed another architecture dedicated to simulation with a

formalized description of beliefs and plans and their execution. However, the

desires and plans have to be written in a very specific and complex way that

can be difficult to achieve for some application contexts, in particular for non-

computer scientists. In addition, this architecture has a scalability problem: it

does not allow to simulate thousands of agents.



4 P. Taillandier et al.

Finally, we proposed in [7] a first simple architecture. This generic architecture

proved its interest through an application to simulate agricultural parcels dynam-

ics in Vietnam. However, the use of this architecture required to write many lines

of code, in particular to manage the perceptions of agents and the inference of

desires. Moreover, it did not allow to manage plans with different temporal scales.

All these limitations made this architecture not usable for some applications

and more complex to use by non-computer scientists. The next section therefore

presents the improvements that we propose for this architecture.

3 Presentation of the Architecture

3.1 Overview

Our architecture is defined as a GAMA species architecture. The modeler is only

required to define simpleBDI as the agent’s architecture, and to define at least

one plan and one initial desire to make it operational. After that the modeler

mostly defines plans (what the agent can do), desires (what the agent wants)

and (usually one) perception(s) (how the agent perceives its environment). Many

keywords and functions are defined to help the user updating and managing

Beliefs, Desires and Intentions bases, and creating and managing predicates.

The architecture and the vocabulary can be summarized with this simple

Gold Miner example: the Miner agent has a general desire to find gold. As it

is the only thing it wants at the beginning, it is its initial intention (what it is

currently doing). To find gold, it wanders around (its plan is to wander). When it

perceives some gold nuggets, it stores this information (it has a new belief about

the existence and location of this gold nugget), and it adopts a new desire (it

wants to extract the gold). When it perceives a gold nugget, the intention to find

gold is put on hold and a new intention is selected (to extract gold). To achieve

this intention, the plan has two steps, i.e. two new (sub)intentions: to choose a

gold nugget to extract (among its known gold nuggets) and to go and take it.

And so on.

This vocabulary is explained in more details in the next section.

3.2 Vocabulary

Knowledge. Beliefs, Desires and Intentions are described using predicates. A

predicate has a name, may also have values (a set of name-value pairs), and can

be true (by default) or false. Predicates can be easily defined through the GAML

language. For example, in Figure 1, we define a new predicate location_gold,

that represents the fact that a gold nugget is present at location (20,50). Note

that when comparing two predicates, if one of them has no value for a specific

key, the values corresponding to this key are not compared. For instance, to test

if the predicate ("location_gold") is present in the belief base will return true if

the predicate ("location_gold", ["location_value"::20,50]) is in the base.

BDI agents have 3 databases:



A BDI agent architecture for the GAMA platform 5

Figure 1. predicate definition

– belief_base (what it knows): the internal knowledge the agent has about

the world or about its internal state, updated during the simulation. A belief

can concern any type of information (a quantity, a location, a boolean value,

etc) and is described by a predicate. For example the predicate gold_location
(Figure 1) is added when the agent perceives a gold nugget at position (20,50).

– desire_base (what it wants): objectives that the agent would like to accom-

plish, also updated during the simulation. Desires can have hierarchical links

(sub/super desires) when a desire is created as an intermediary objective

Desires have a dynamic priority value used to select a new intention among

the desires when necessary.

– intention_base (what it is doing): what the agent has chosen to do. The

current intention will determine the selected plan. Intentions can be put

on hold (for example when they require a sub-intention to be achieved). For

this reason, there is a stack of intentions: the top one is the current intention,

all others are on hold.

Behavior In addition to the basic behavior structures available for all GAMA

agents, our simpleBDI architecture has three available types of behavior structures

(which are new compared to [7]):

– Perception: A perception is a function executed at each iteration to update

the agent’s Belief base, to know the changes in its environment (the world,

the other agents and itself). The agent can perceive other agents up to a fixed

distance or inside a specific geometry. For example, a miner can perceive

all the gold nuggets at a distance of 10 meters and for each of them add a

new belief concerning the gold’s location (see Figure 2). Like for many other

GAMA statements, several facets (most of them optional) can be used to

tune the perceptions:

• target (mandatory): the list of agents (or species of agents) to perceive.

• when (optional): perception condition - can be a dynamic expression.

• in (optional): can be either a radius (float) or a geometry (for instance,

definition of a cone of perception or something more complex).

– Rule: A rule is a function executed at each iteration to infer new desires or

beliefs from the agent’s current beliefs and desires, i.e. a new desire or belief

can emerge from the existing ones. For example, when the miner has a belief

about some gold nuggets at a specific location, the rule creates the desire to

extract gold (see Figure 3). Of course, if the new desire (or belief) is already

in the base, nothing is added. Rules facets are the following:

• belief (optional): required belief to activate the rule.

• desire (optional): required desire to activate the rule.

• when (optional): required condition to activate the rule.



6 P. Taillandier et al.

• new_belief (optional): the new belief to be added to the agent’s base.

• new_desire (optional): the new desire to be added to the agent’s base.

– Plan: The agent has a set of plans, which are behaviors defined to accomplish

specific intentions. Plans can be instantaneous and/or persistent, and may

have a priority value (that can be dynamic), used to select a plan when

several possible plans are available to accomplish the same intention. For

example, when the miner has the intention to find_gold, it can activate its

letsWander plan (see Figure 4) that makes it randomly move. Concerning

the facets of plans:

• intention (optional): intention the plan try to fulfill.

• when (optional): activation condition.

• finished_when (optional): termination condition.

• priority (optional): priority of the plan, 1 by default.

• instantaneous (optional): if false, no other plan can be executed after-

wards during the current simulation step; otherwise, (at least) one other

plan will be executed during the same step. By default false.

Figure 2. perception definition: when the agent perceives a gold nugget at a distance

lower than 10 meters, a new belief is added concerning the location of this gold nugget.

Figure 3. rule definition: when the agent has a belief about a gold nugget somewhere,

a desire is added to extract gold

Figure 4. plan definition: if the agent has the intention to find_gold, it can use the

letsW ander plan, which makes the agent moves randomly (uses of the wander built-in

action of GAMA)



A BDI agent architecture for the GAMA platform 7

3.3 Thinking process

At each step, the agent applies the process described in Figure 5. Roughly, the

agent first perceives the environment, then i) continues its current plan if

it is not finished, or ii) if the plan is finished and its current intention is not

fulfilled, it selects a plan, or iii) if its current intention is fulfilled, it selects a

new desire to add to its intention stack.

This process is similar to the one proposed in [7], however it introduces the

perception and rule steps. In addition, it allows to apply several plans in the

same time step in case of instantaneous plans. More precisely:

Figure 5. Activity diagram

1 - Perceive: Perceptions are executed.

2 - Rule: Rules are executed.

3 - Is one of my intentions achieved?: If one of my intentions is achieved,

sets the current plan to nil and removes the intention and all its sub-desires from

the desire and intention bases. If the achieved intention’s super-desire is on hold,

it is reactivated (its sub-desire just got completed).

4 - Do I keep the current intention?: To take into account the envi-

ronment instability, an intention-persistence coefficient ip is applied: with the



8 P. Taillandier et al.

probability ip, the current intention is removed from the intention stack. More

details about this coefficient are given in section 3.4.

5 - Do I have a current plan?: If I have a current plan, just execute it.

As for the current intention stability, the aim is both persistence (I stick to the

plan I have chosen) and efficiency (I don’t choose at each step). Similarly to

intentions, a plan-persistence coefficient pp is defined: with a probability pp, the

current plan is just dropped.

6 - Choose a desire as new current intention: If the current intention is

on hold (or the intention base is empty), choose a desire as new current intention.

The new selected intention is the desire with higher priority among those not

already present in the intention base.

7 - Choose a plan as a new current plan: The new current plan is

selected among the plans compatible with the current intention (and if their

activation condition is checked) and with the highest priority.

8 - Execute the plan: The current plan is executed.

9 - Is my plan finished?: To allow persistent plans, a plan may have a

termination condition. If it is not reached, the same plan will be kept for the

next iteration.

10 - Was my plan instantaneous?: Most multi-agent based simulation

frameworks (GAMA included) are synchronous frameworks using steps. One

consequence is that it may be useful to apply several plans during one single step.

For example, if a step represents a day or a year, it would be unrealistic for an

agent to spend one step to apply a plan like "choose a destination". This kind of

plans (mostly reasoning plans) can be defined as instantaneous: in this case a

new thinking loop is applied during the same agent step.

3.4 Properties

Persistence and priority In our architecture, the persistence of plans and

desires, as well as their priority can be dynamically defined (i.e. modified by the

agents during the simulation and/or computed from a function).

Flexibility The architecture aims at being simple-to-use and as flexible as

possible for the modeler. More advanced modelers can use its full potential (for

example dynamic coefficients as presented before), while others can rely on the

default values of most parameters to easily specify agents using only some of

the available features. In addition, in order to manipulate the different elements

of the architecture, we provide modelers with built-in actions directly usable in

their models, among which (desire related actions are not listed here):

– add_belief: add a new belief to the belief base.
– remove_belief: remove a belief from the belief base.
– has_belief: test if a belief is in the belief base.
– replace_belief: replace a belief by a new one in the belief base.
– get_belief: return the first belief corresponding to a given predicate.
– get_beliefs: return all beliefs corresponding to a given predicate.



A BDI agent architecture for the GAMA platform 9

– remove_all_beliefs: remove all beliefs corresponding to a given predicate.
– clear_beliefs: remove all beliefs.
– get_current_intention: return the current intention.
– clear_intentions: remove all intentions.
– add_subintentions: add a sub-intentions to a predicate
– current_intention_on_hold: put the current intention on hold and add

as its activation condition all its sub-intentions.

4 Experiments

4.1 Modelers feedback analysis

Context of the experiment In order to validate our claim that our architecture

is simple to use and is adapted to several types of users, we carried out an

experiment with six modelers with different backgrounds: 3 computer scientists,

and 3 geographers, all of whom knew GAMA (at least the basic concepts). Two

of them have a low level in programming (2 geographers) and four a higher level

(1 geographer and 3 computer scientists). All of them have at least a low (2) or

medium (3) level in GAMA (they know at least the basic concepts), the last one

being an expert. Only the 3 computer scientists know the BDI paradigm.

This experiment consisted in a short lesson (45 minutes) about the simpleBDI
architecture, followed by an exercise which required to use this architecture (2

hours). At the end of the exercise, each participant answered a short survey to

assess the architecture (with both open questions and closed scaled assessments).

All these documents (introduction course, exercise, models developed by the

different modelers, and their answers to the questionnaire) are available on the

project website [1].

The presentation of the simpleBDI architecture used a simple gold miner

model to present the underlying concepts. Then the exercise theme was the

evacuation of the city of Rouen (France) (see Figure 6). A technological hazard

is simulated in one of the buildings of the city center. Drivers can perceive the

hazard at a distance of 400 meters. Those who know that there is a hazard try

to reach one of the evacuation sites (shelters). A driver who sees (in a radius of

10 meters) another driver trying to evacuate has a small chance to understand

that a hazard is happening.

The participants were given a first basic model of that situation, containing

four species of agents: road, hazard, evacuation site and driver. The behavior of

the driver agents is defined by a single reflex executed at each simulation step: the

agent moves towards a random target (any point on the road network), and if it

reaches its destination, it chooses a new random target. A weighted graph is used

for the movement of drivers: they first compute the shortest path between their

location and their target, then use this path to move. The weights of the edges of

the graph (roads) are updated every 10 simulation steps to take into account the

number of drivers on each road. The agent speed on each road is a function of

the number of drivers on this road and its maximum capacity. If a driver already

has a computed path, it will not recompute it even if the weights of that path



10 P. Taillandier et al.

change. At the initialization of the model, the roads (154), evacuation sites (7)

and the hazard (1) agents are created and initialized using shapefiles; then 500

driver agents are created and randomly placed on the roads. The GAML code

for the driver species is given Figure 7. In this first basic model, drivers do not

perceive the hazard and do not try to reach evacuation sites; they just keep

moving randomly.

The exercise was composed of two steps of increasing difficulty:

– Step 1: modification of the behaviors of the driver agents, in order to:

• make them aware of the hazard: via its direct perception (with a proba-

bility of 0.2 if they are in a radius of 400m) or indirectly when they see

other driver agents trying to reach an evacuation site (with a probability

of 0.01 in a radius of 10m);

• make them try to reach the closest shelter (euclidean distance) when they

know that there is a hazard.

– Step 2: modification of the behaviors of the driver agents and of the evacua-

tion site, so that:

• if a driver agent trying to reach a shelter thinks that its road is blocked

(speed coefficient lower than 0.5), then it should test a new path (re-

computation of the path according to the current weights of the graph);

• drivers take into account the maximum capacity of the evacuation sites

(50 drivers each). To know that an evacuation site is full, drivers have to

be less than 20 meters away from it.

Figure 6. Snapshot of the city evacuation model: the red circle is the hazard perception

area, the green circles the evacuation sites and the blue triangles the drivers.



A BDI agent architecture for the GAMA platform 11

Figure 7. Initial GAML code for the driver species using reflex architecture, provided

to the modelers.

Possible solution of the exercise We present here a possible solution. We

first add the simpleBDI architecture to the driver species and 3 new variables

(Figure 8):

– escape_mode: boolean to indicate if the agent is evacuating or not
– recompute_path: boolean to indicate if the agent has to recompute its

path or not.
– current_shelter: the current evacuation site to reach.

as well as 4 predicates that will be used as the content of mental attitudes:

– at_target: the agent is at its target used as the desire to go to a specific

target.
– in_shelter: the agent is in an evacuation site used as the desire to go to an

evacuation site.
– has_target: the agent has a defined target used as the desire to define a

target.
– has_shelter: the agent has selected an evacuation site used as the desire to

choose an evacuation site.

We define 4 perceptions (Figure 9):

– hazard: perceives the hazard in a radius of 400m with a probability of 0.2.
– driver: perceives the drivers in escape mode in a radius of 10m with a

probability of 0.01.
– road: perceives the blocked roads in a radius of 1.
– shelter: perceives the full evacuation sites in a radius of 20m.

We define two rules to infer the desire to go toward an evacuation site (if

the agent perceived the hazard directly or through the observation of escaping

drivers) and an action to switch to escape mode (Figure 10):

Finally, we define four plans for the agents (Figures 11 and 12):



12 P. Taillandier et al.

Figure 8. Possible solution GAML code for the driver species and variables

– normal_move: the agent chooses a target if it has none and moves towards

it.

– choose_normal_target: the agent chooses a random target

– evacuation: the agent chooses an evacuation site if it has none and moves

towards it.

– choose_shelter: the agent chooses an evacuation site.

Results of the experiment After the exercise, each participant answered a

short survey about the BDI architecture. The survey was composed of 7 closed

questions using a 1-5 scale, 2 yes/no questions and 9 open questions/commentary

sections. The first three questions were used to assess the participant background

and the others to assess the simpleBDI architecture and the exercise performance.

Due to the low number of participants, the survey results are used as a qualitative

evaluation, and not as a statistically significant quantitative assessment.

A first analysis of the results shows that all the participants find the proposed

architecture clear (answer values of 4 or more for that question). Furthermore,

the three participants that have a background in BDI architectures find that

our architecture translates the BDI paradigm well (3+ answers). Concerning the

simplicity of use of the architecture inside GAMA, three of the participants find

it good (4) or very good (5), and two pretty good (3).

Five out of the six participants succeeded in implementing Step 1, but none of

them achieved Step 2. A tentative explanation is that two hours was a too short

time to understand what was asked in the exercise, formalize the behavior of the

agents using the simpleBDI architecture, write the GAML code, and test it. In

addition, only one of the participants knew GAMA very well, so as mentioned

in the survey, most of the others lost a lot of time searching for specific GAMA

operators (not linked with the simpleBDI architecture). Nevertheless, four of the

participants were very close to succeed in the second step of the exercise (the

three computer scientists and one of the geographers).

Concerning the comparison to other architectures, one of the modelers (the

BDI expert) preferred simpleBDI to the others, while two of them found sim-
pleBDI to be complementary to the existing ones, and mentioned that it allows



A BDI agent architecture for the GAMA platform 13

Figure 9. Possible solution GAML code for the driver perceptions

to define the behavior in a simpler way, avoiding to write many complex reflexes.

Only one modeler mentioned that they preferred the reflex architecture as they

were more used to it. The last two participants did not answer this question.

An interesting remark is that some of the participants mixed the simpleBDI
and reflex architectures, using the BDI architecture to define perceptions and

objectives (especially the agents target), and reflexes for the repetitive operational

behaviors (moving).

To conclude, this first experiment showed very promising results: all the

participants found the simpleBDI architecture clear and easy to use. After a

short 45 minutes lesson, they were able to apply it to a real model previously

unknown to them. To achieve a more complete and efficient use of the simpleBDI
architecture, they would however have needed more time, better programming

skills in GAMA, and/or a better knowledge of the BDI paradigm.

4.2 Architecture scalability

In order to test the architecture scalability, we used the two previous models

(gold miners and city evacuation) with an increasing numbers of agents.



14 P. Taillandier et al.

Figure 10. Possible solution GAML code for the driver rules and action

Figure 11. Possible solution GAML code for the normal_move and

choose_normal_target driver plans

As GAMA is often used by modelers with old computers (for social simulation

in developing countries), we chose to carry out the experiment with a 5-year old

Macbook pro (2011) with an i7 processor and 4Go of RAM.

The gold miner model was tested with 10 000 miners, 1000 golds and a square

environment of 10 x 10 kilometers. The simulation was stopped when all the gold

nuggets had been returned to the base. The average duration of a simulation

step (without any graphical display) was 140ms.

The evacuation model was tested with 1000 drivers (due to the road network

used and how the capacity of roads was defined, it was not possible to test the

model with more driver agents - all the road would have been blocked) and a

capacity for each of the evacuation sites of 200 driver agents. We stopped the

simulation when all the drivers reached an evacuation site. The average duration

of a simulation step (with no graphical display) was 70ms.



A BDI agent architecture for the GAMA platform 15

Figure 12. Possible solution GAML code for the evacuation and choose_shelter driver

plans

The results obtained in terms of performance show that the architecture can

already be used with medium-scale real world problems. However, the architecture

will still be continuously optimized and we plan to compare the results with other

GAMA architectures (especially the reflex one). We also plan in the future to

test the architecture with more complex agents having many possible desires,

sub-desires and plans.

5 Conclusion

In this paper, we have presented a new BDI architecture dedicated to simulations.

This architecture is integrated into the GAMA modeling and simulation platform

and directly usable through the GAML language, making it easily usable even by

non-computer scientists. We have presented a first experiment that was carried

out with modelers with different profiles (geographers and computer scientists).

This first experiment showed that our plug-in can be used even by modelers

that have little knowledge in programming and Artificial Intelligence, and that it

allows to simulate several thousands of agents.

If our architecture is already usable, some improvements are planned. First, we

want to improve the inference capabilities of our architecture: when a new belief is

added to the belief base, desire and intention bases should be updated in a efficient

way as well. Second, we want to make it even more modular by adding more

possibilities concerning the choice of plans and desires (beyond just choosing that

with the highest priority): user-defined selection, multi-criteria decision process,

etc. Finally, we want to add the possibility to use high performance computing

(distribute the computation on a grid or cluster) to decrease computation time.



16 P. Taillandier et al.

6 Acknowledgement

This work is part of the ACTEUR (Spatial Cognitive Agents for Urban Dynamics

and Risk Studies) research project funded by the French Research Agency (ANR).

References

1. ACTEUR website: http://www.acteur-anr.fr (2015), http://www.acteur-anr.fr
2. GAMA website: http://gama-platform.org (2015), http://gama-platform.org
3. Balke, T., Gilbert, N.: How do agents make decisions? a survey. Journal of Artificial

Societies and Social Simulation 17(4) (31 October 2014)
4. Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K., Axhausen,

K.: Matsim-t: Architecture and simulation times. Multi-Agent Systems for Traffic

and Transportation Engineering pp. 57–78 (2009)
5. Bellifemine, F., Poggi, A., Rimassa, G.: JADE–A FIPA-compliant agent framework.

In: Proceedings of PAAM. vol. 99, p. 33. London (1999)
6. Bratman, M.: Intentions, plans, and practical reason. Harvard Univ. Press, Cam-

bridge (1987)
7. Caillou, P., Gaudou, B., Grignard, A., Truong, C.Q., Taillandier, P.: A Simple-to-use

BDI architecture for Agent-based Modeling and Simulation. In: ESSA (2015)
8. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelli-

gence 42, 213–261 (1990)
9. Drogoul, A., Amouroux, E., Caillou, P., Gaudou, B., Grignard, A., Marilleau,

N., Taillandier, P., Vavasseur, M., Vo, D.A., Zucker, J.D.: Gama: multi-level and

complex environment for agent-based models and simulations. In: AAMAS. pp.

1361–1362 (2013)
10. Grignard, A., Taillandier, P., Gaudou, B., Vo, D., Huynh, N., Drogoul, A.: GAMA

1.6: Advancing the art of complex agent-based modeling and simulation. In: PRIMA

2013. LNCS, vol. 8291, pp. 117–131. Springer (2013)
11. Howden, N., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents-

summary of an agent infrastructure. In: 5th AA (2001)
12. Le, V.M., Gaudou, B., Taillandier, P., Vo, D.A.: A new BDI architecture to formalize

cognitive agent behaviors into simulations. In: KES-AMSTA. pp. 395–403 (2013)
13. Myers, K.L.: User guide for the procedural reasoning system. SRI International AI

Center Technical Report. SRI International, Menlo Park, CA (1997)
14. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:

Multi-agent programming, pp. 149–174. Springer (2005)
15. Rönnquist, R.: The goal oriented teams (gorite) framework. In: Programming

Multi-Agent Systems, pp. 27–41. Springer (2008)
16. Sakellariou, I., Kefalas, P., Stamatopoulou, I.: Enhancing NetLogo to simulate BDI

communicating agents. In: Artificial Intelligence: Theories, Models and Applications.

pp. 263–275. Springer (2008)
17. Singh, D., Padgham, L.: OpenSim: A framework for integrating agent-based models

and simulation components. In: Frontiers in Artificial Intelligence and Applications-

Volume 263: ECAI 2014. pp. 837–842. IOS Press (2014)
18. Taillandier, P., Therond, O., Gaudou, B.: A new BDI agent architecture based on

the belief theory. application to the modelling of cropping plan decision-making. In:

iEMSs (2012)
19. Wilensky, U., Evanston, I.: Netlogo. center for connected learning and computer

based modeling. Tech. rep., Northwestern University (1999)

http://www.acteur-anr.fr
http://gama-platform.org

