
Modeling Gap Seeking Behaviors for Agent-based
Crowd Simulation

Linbo Luo
School of Cyber Engineering

Xidian University
Xi’an, China

lbluo@xidian.edu.cn

Cheng Chai
School of Cyber Engineering

Xidian University
Xi’an, China

cchaixd@yahoo.com

Suiping Zhou
School of Science and

Technology
Middlesex University

London, United Kingdom
s.zhou@mdx.ac.uk

Jianfeng Ma
School of Cyber Engineering

Xidian University
Xi’an, China

jfma@mail.xidian.edu.cn

ABSTRACT
Research on agent-based crowd simulation has gained tre-
mendous momentum in recent years due to the increase of
computing power. One key issue in this research area is to
develop various behavioral models to capture the microsco-
pic behaviors of individuals (i.e., agents) in a crowd. In
this paper, we propose a novel behavior model for modeling
the gap seeking behavior which can be frequently observed
in real world scenarios where an individual in a crowd pro-
actively seek for gaps in the crowd flow so as to minimize
potential collision with other people. We propose a two-
level modeling framework and introduce a gap seeking be-
havior model as a proactive conflict minimization maneuver
at global navigation level. The model is integrated with
the reactive collision avoidance model at local steering level.
We evaluate our model by simulating a real world scenario.
The results show that our model can generate more realistic
crowd behaviors compared to the classical social-force model
in the given scenario.

Keywords
agent-based modeling, collision avoidance, crowd simulation,
gap seeking behavior

1. INTRODUCTION
Human crowd is an intriguing social phenomena in nature.

To simulate crowd dynamics, different modeling paradigms
have been proposed including flow-based approach, entity-
based approach and agent-based approach [23]. Among dif-
ferent paradigms, agent-based crowd modeling has emerged
as the most popular and powerful one, due to its capability

to model heterogeneous individual behaviors. It is also flex-
ible to incorporate various behavioral factors in agent-based
model, which is helpful to improve the realism of simulation.
In recent years, many agent-based crowd models have been
proposed for a wide range of applications in digital game de-
sign, military training, crowd evacuation planning, etc., [17,
19, 15, 20, 22].

The agent-based crowd modeling is a bottom-up approach
that models microscopic-level behaviors of individuals. By
simulating the individual’s interactions with other agents
and environment at such level, it is expected that global
crowd patterns are emerged which can match the crowd
patterns in real-life situations. Therefore, it is essential for
agent-based crowd model to realistically and comprehensi-
vely capture various microscopic behaviors of individuals in
a crowd. While the existing work has focused on the mo-
deling of many microscopic behaviors such as path planning,
collision avoidance, group movement, etc. [17, 10, 21, 12, 18],
little work has been done to the modeling of the behavior as
shown in Fig. 1, which we refer to as gap seeking behavior.
This behavior occurs when a gap (i.e., empty space in crowd
flow) is formed due to asynchronized movement of individu-
als in a crowd flow. When an individual observes such gap
close to her/his walking path, she/he may make a detour to
the gap in order to minimize the effort to avoid potential
conflict with other people in the crowd. Such gap seeking
behavior is especially prominent in medium to high-density
crowds, such as the ones shown in Fig. 1.

Although the purpose of gap seeking behavior (i.e., mi-
nimize potential conflicts) is similar to collision avoidance
behavior, we consider them as two different types of behavi-
ors. The collision avoidance behavior is to reactively respond
to the oncoming collisions with nearby agents and obstacles,
whereas the gap seeking behavior is to proactively redirect an
agent’s path so as to minimize potential collisions. The gap
seeking behavior may cause an individual to change her/his
moving direction and/or speed in a more apparent manner,
which often leads to the deviation of individual’s intended
path. Moreover, the individual performing gap seeking be-
havior may create additional gaps for other people to seek
and this may cause new lanes to be formed in crowd flow.
Thus, the occurrence of gap seeking behaviors can greatly



(a) Bidirectional crowd flow (b) Perpendicular crowd flow

Figure 1: Gap seeking behaviors observed in two real world scenarios. Snapshots for scenario (a) and (b) are
captured from the crowd experiment videos for the Hermes project [1] and SMDPC project [2] respectively.

affect the global movement patterns of a crowd.
In this paper, we aim to provide a computational model

to capture the gap seeking behaviors observed in human cro-
wds and investigate how the incorporation of such behaviors
in agent-based crowd simulation can improve the realism of
simulation results. To this end, we first propose a modeling
framework which depicts an individual’s motion planning at
two levels - i.e., global navigation and local steering. The gap
seeking behavior is incorporated as a high-level navigation
behavior in the proposed framework. We further decompose
the gap seeking behavior into three steps: gap detection, gap
selection and gap seeking. To evaluate the effectiveness of
the proposed model, we simulate a real world scenario using
our model and the social-force model separately. The simu-
lation results have demonstrated that the proposed modeling
framework can generate crowd behaviors that are closer to
the real world data.

The remainder of this paper is organized as follows. Section
2 provides an overview of related work. Section 3 descri-
bes our modeling framework and provides details of the mo-
deling steps for gap seeking behavior. In Section 4, we pre-
sent a case study. Section 5 discusses the conclusion and
future work.

2. RELATED WORK
To build an effective agent-based crowd simulation, one

key issue is how to develop various behavioral models to cap-
ture the microscopic behaviors of individuals in a crowd [9].
The work on behavior modeling for agent-based crowd simu-
lation can be generally classified into two categories: global
navigation and local steering.

Global navigation models are concerned with how to ge-
nerate high-level navigational decisions for agents to select
next target location to move to in a given environment.
These models are usually in the form of path planning where
some classical planning algorithms (e.g., A* algorithm [4])
can be adopted. To support navigation in a complex envi-
ronment, Shao and Terzopoulos [17] proposed a hierarchal
environment model to achieve long-range and short-range
path planning with A*. Ozcan and Haciomeroglu [11] pro-
posed a modified A* algorithm that considers the flow di-
rections of other agents. Patil et al. [13] proposed to use
guidance fields that can be specified by a user or imported
from video data, which are then converted into navigation
fields to direct agent’s movement.

Local steering models deal with the locomotion of agent

with the consideration of agent’s interactions with nearby
agents and objects. Physically-inspired models proposed by
Helbing et al. [5] use the physical and socio-psychological
forces to model the interactions between agents. Pelechano
et al. [14] combined a rule-based system with the force-based
model to model heterogenous agents. Karamouzas et al. [8]
presented a local avoidance method based on collision pre-
diction. Kapadia et al. [7] proposed a novel egocentric pe-
destrian steering framework. They introduced affordance
fields in an egocentric manner for local planning and steer-
ing. More recently, Reciprocal Velocity Obstacles (RVO)
model [21] was introduced to generate collision-free locomo-
tion of agent based on velocity space sampling.

Mid-term planning is a new kind of steering method pro-
posed by Bruneau and Pettré [3]. The method models the
navigation process between global navigation and local steer-
ing. The n next interactions occurring in time are explo-
red and several navigation strategies within such period are
identified. An agent will choose the strategy with the least
cost which is defined by agent’s energy consumption.

The modeling framework proposed in this paper is a lay-
ered architecture that contains both global navigation and
local steering. The main difference between our work and
previous work is that we introduce a new type of navigation
behavior(i.e., gap seeking) which leads agent to temporally
switch to a new target location (i.e., gap) in response to a
dynamic crowd. The most similar approach to ours is pro-
bably the one by Bruneau and Pettré [3]. However, they
considered empty tunnel existed in a crowd flow and used
mid-term planning to navigate agent through such tunnel.
However, in reality, such tunnel may not often be obser-
ved because of the arbitrariness and domino effect of human
movements. Besides, they did not validate the model with
real cases. Our method (i.e., gap seeking) is to proactively
navigate towards the small holes in a crowd (i.e., gap) for
minimizing potential conflicts. We believe such gap seeking
behavior is more commonly observed in real scenarios and
our model can generate such behaviors which may lead to
simulation closer to real crowd behaviors.

3. MODELING FRAMEWORK
Fig. 2 shows our proposed modeling framework for incor-

porating gap seeking behavior in agent-based crowd simu-
lation. The framework is composed of two major modules:
global navigation and local steering.

The global navigation module is responsible for producing



Move towards target 
location

Detect gap(s)?

Yes

Seek to the selected 
gap

Select target location

Adjust?

Select gap

No

Yes

No
Determine the actual 
velocity of agent for 
collision avoidance

Desired Velocity

Desired Velocity

Global Navigation

Local Steering

Figure 2: The framework of our model.

the desired velocity of an agent in order to navigate in the
environment. In normal situations, the desired velocity is
set based on the target location that the agent aims to re-
ach. The target location can be the final destination of the
agent or the intermediate way-points of a path that the agent
follows. Here, we assume some existing path planning algo-
rithms (e.g., A* algorithm) can be used to produce a series
of way-points as target locations. Once the target location
is selected, the agent will move towards it (i.e., setting the
desired direction towards the target location).

In our model, besides moving towards the target location,
an agent will opportunistically look for possible gaps (i.e.,
empty space in crowd flow) where the agent can detour so
as to minimize its effort to avoid potential collisions. There-
fore, our model first provides a gap detection mechanism to
detect the nearby gap(s) within an agent’s detection area.
Given that multiple gaps are detected, a gap selection me-
chanism is then proposed to select the most desirable gap
for agent to seek. The agent will then move to the selected
gap by setting its desired velocity towards the center of the
selected gap. Depending on the crowd dynamics, the agent
will decide when to stop the gap seeking behavior and adjust
its behavior back to moving towards the target location.

The global navigation module will set the desired velocity
based on either the target location that the agent aims to
reach or the location of selected gap while the agent per-
forming gap seeking behavior. In either case, the desired
velocity will be sent to the local steering module where the
actual velocity will be determined for agents to steer ac-
cording to the desired velocity while avoiding collisions with
other agents and obstacles. In our model, we do not restrain
the choice of the collision avoidance algorithms to be used
for local steering. In our current implementation, we use
the force-based algorithm based on the social-force model.
Note that other collision avoidance algorithms (e.g., RVO
model) can be used to further enhance the performance of
simulation.

The detailed steps of gap seeking behavior modeling are
described in the following sub-sections.

3.1 Gap Detection
In the first step, an agent needs to detect available gaps

in its surrounding area. In our framework, agents move in a
continuous space. However, it is inefficient to represent a gap
in such environment representation. Therefore, we introduce

a two-layer virtual world representation for gap detection as
shown in Fig 3. The bottom layer is a continues space where
agents perform local steering behavior. The top layer is a
grid map which is used for gap detection. In our current
implementation, the grid cell size is set to 0.1m× 0.1m and
each agent can occupy multiple grid cells.

Continuous Space

Grid Map

Detection Area

Gap

Figure 3: Layered virtual world representation.

In the grid map, we use a rectangle shape to represent
a gap (see green rectangles in Fig. 3). To detect the gaps
near an agent, we first define an detection area D (dashed
blue rectangle in Fig. 3) within which the agent performs
the gap detection. The detecting agent (i.e., the grey circle
in Fig. 3) is located in the center of the detection area. Here,
for ease of computation, we detect all the gaps surrounding
the detecting agent without considering the agent’s moving
direction. In the gap selection step described later on, we
will filter out the gaps that are out of agent’s vision accor-
ding to its moving direction. Given the detection area D,
we specify the occupancy area O as the area within D which
is occupied by other agents. The gap detection operation is
thus performed within an exploration area E which is defi-
ned as:

E = D −O (1)

In the grid map, the exploration area E contains the grid
cells in the detection area D which are not occupied by other
agents.

To detect all available gaps within the exploration area
E, a randomized algorithm is proposed as shown in Algo-
rithm 1. The algorithm works similar to crystal nucleation
and a gap is detected by expanding a random seed (like a
crystal seed) in a greedy manner by consuming nearby un-
crystallized cells. A set of seed cells are first uniformly picked



Algorithm 1 Gap Detection Algorithm

1: G← ∅ . G is a set of detected gaps
2: P ← UniformlyPick(E) . find a set of growth seeds

uniformly in E
3: while P is not empty do
4: p← PopRandom(P ) . randomly select a seed from P
5: x← NewRectangle(p.x, p.y) . nucleate at p
6: F ← {UP, DOWN, LEFT, RIGHT} . allowed gro-

wth directions
7: while F is not empty do
8: x ←Expand(x, F,E) . expand the rectangle as

much as possible
9: end while

10: Insert(G, x) . Add the detected gap to G
11: end while
12: RemoveDuplicate(G) . Remove the duplicate gaps
13: return G

from the exploration area E (line 2 in Algorithm 1). Then, a
seed cell is randomly selected and expands from one of four
directions by one cell every time until it reaches the bounda-
ries of area E or the cell occupied by other agent (lines 4-8
in Algorithm 1). The gap is detected through such rectangle
expansion and it is added to the set of all detected gaps G
in every iteration (line 10 in Algorithm 1). Due to the rand-
omness of our algorithm, the algorithm may yield duplicate
gaps from different seed cells. Therefore, the algorithm re-
moves duplicate gaps in the end (line 12 in Algorithm 1).

3.2 Gap Selection
In the second step, an agent needs to select the most de-

sirable gap from all the detected gaps in G. In case that
G is empty (i.e., no detected gap), the agent will not pro-
ceed to the gap selection step. To select the most desirable
gap, we propose three constraints with given priorities. The
constraint with a higher priority is examined first and if the
detected gap does not satisfy the constraint, the gap is dis-
carded without checking the lower priority constraints. This
can help to save the computational cost of our model. The
proposed three constraints with the priorities from high to
low are described as follows.

Constraint 1: A gap should be within the vision of the
detecting agent. As mentioned previously, all surrounding
gaps are detected in the gap detection step without consi-
dering agent’s moving direction. In reality, a person’s vision
is usually limited to a fan-shape region centered along per-
son’s moving direction as shown in Fig 4. Thus, we need to
filter out the gaps that are out of the vision of the detecting
agent.

We check whether a gap is within the agent’s vision using
the following rules:

‖ ~pki )‖ ≤ R (2)

where ~pki is the vector pointing from agent i’s current loca-

tion to the center of kth detected gap, ‖ ~pki ‖ computes the

magnitude of ~pki , R is the vision radius of an agent.

angle(~di, ~pki ) ≤ θ (3)

where ~di is the vector denoting agent i’s moving direction,
angle() computes the angle between two vectors in 2D space
and θ is half of the vision angle of an agent. In our model,

Agent_i

vision regiongap in vision

gap out of 
vision

Moving 
direction division radius R

pki

α

θ

Figure 4: Selecting gap(s) based on agent’s vision.

we select gap(s) as within agent’s vision only when both
equations 2 and 3 are satisfied.

Constraint 2: A gap should be big enough for the de-
tecting agent to move in. In our model, if the detected gap
is too small, the detecting agent will not consider it as a
desirable gap. Since we use rectangle to represent a gap, the
following rule is used to determine whether the size of gap
is appropriate:

min{wk
i , l

k
i } ≥ 2ri (4)

where wk
i is the width of kth gap detected by agent i, lki is

the length of kth gap detected by agent i and ri is the radius
of agent i.

Constraint 3: A gap should not deviate too much from
the detecting agent’s intended moving direction towards fi-
nal destination. In our model, we assume that an agent will
not choose a gap whose direction from agent’s current po-
sition deviates too much from agent’s direction towards its
destination (i.e., the final goal agent aims to reach). This is
because it may take greater effort for an agent to reach its
destination if seeking to such gaps. To avoid such gaps, the
following rule is used:

angle(~ui, ~pki ) ≤ ϕ (5)

where ~ui is the vector pointing from agent i’s current loca-

tion to its destination, ~pki is the vector pointing from the
center of agent i to the center of kth detected gap and ϕ is
a user-defined threshold angle.

Given that all the above three constraints are satisfied, it
is still possible that multiple detected gaps are selected. In
such cases, the final selection of the most desirable gap is
performed according to the following rule:

k∗ = arg min(angle(~ui, ~pki )) (6)

This means we select the k∗th gap whose direction ~ui has
the minimum angle with agent’s direction towards its desti-
nation. Here, we assume that an agent selects the gap whose
direction is most consistent with the direction towards the
agent’s destination.

3.3 Gap Seeking
In the last step, an agent needs to update the desired

velocity ~vdi so as to move to the selected gap. In our current

implementation, the direction of ~vdi is set to be from an
agent’s current location towards the center of the selected

gap. The magnitude of ~vdi (i.e., the speed of agent) is set



according to the following rule:

‖ ~vdi ‖ =
Vmax

1 + exp[−β(s− αsmin)]
(7)

where Vmax is the maximum speed of an agent, s is the area
of the selected gap, smin is the area of the smallest gap we
can select (i.e., smin = 4 ∗ r2i in our model), and α ∈ (0, 1]
and β > 0 are bounding coefficients.

According to equation 7, the speed of the agent increases
when the area of the gap increases. Here, we consider a
larger gap attracts agent to move at a higher speed. The
highest speed an agent can take is Vmax and the lowest speed
is taken when the area of the gap is smallest (i.e. smin). For

example, ‖ ~vdi ‖ = Vmax/2 when s = smin and both α and β
are set to 1.

Once ~vdi is determined, the agent will move according to
the new desired velocity for a period of T s time. T s is cal-
culated as follows:

T s =
‖ ~pk∗

i ‖
‖ ~vdi ‖

(8)

where ‖ ~pk∗
i ‖ is the magnitude of the vector pointing from

agent i’s current location to the center of the selected gap
(i.e., the distance between the detecting agent and the se-

lected gap) and ‖ ~vdi ‖ is the desired speed of the agent de-
termined based on equation 7. After T s has elapsed, the
agent will adjust its desired velocity according to the target
location it aims to reach. In our model, an agent always
performs the collision avoidance behavior at local steering
level. Thus, it is not necessary that the agent will reach to
the center of the selected gap after T s.

4. CASE STUDY
To evaluate the effectiveness of the proposed model, we

conduct a case study by applying our proposed model to si-
mulate a real world scenario. For comparison purpose, the
classical social-force model [5] is also applied to simulate the
same scenario. The simulation outputs generated by both
models are compared against the real world data extracted
from the scenario video. In this section, we first give the
scenario description. Then, the simulation settings are des-
cribed. Finally, we present our simulation results.

4.1 Scenario Description
The scenario we simulate is a real world scenario where

two crowd flows move with an intersecting angle of 90 degree
(see Fig. 5). The scenario was conducted by Plaue et al. at
Technische Universität Berlin during the Long Night of the
Sciences 2010 in Berlin [16].

In this scenario, one group of 54 individuals moves from
left to right on a plain ground. Another group of 46 indi-
viduals moves from bottom to top starting at 1.81m wide
staircase. The region where two crowd flows intersect is
about 3m×3m. From the recorded videos of the scenario, we
can observe that the gap seeking behaviors occur among the
crowd. To initialize and validate our simulation of the sce-
nario, we obtain the individuals’ trajectories data from [2].
The trajectory data are captured at 15 fps, that is with a
time step of 0.067 seconds.

4.2 Simulation Settings

Figure 5: A sample frame of perpendicular crowd
scenario. Snapshot is obtained from [2].

Our agent-based crowd simulation is implemented in Re-
past Simphony1 and 3D visualization is realized in Unity3D2.
As the environment of the simulated scenario is relatively
simple, we do not use any path planning algorithm to ge-
nerate a path for global navigation. The target location of
an agent is directly set to its corresponding individual’s lo-
cation at the last frame in the trajectories data. The initial
location of an agent is set based on the corresponding indi-
vidual’s first position in the trajectories data and the initial
speed of an agent is set to be the average speed of the cor-
responding individual in the first three recorded frames.

In our current framework, the local steering behavior for
avoiding oncoming collisions is implemented using a force-
based model (i.e., the repulsive interaction force defined in
the social-force model). At the global navigation level, the
direction of desired velocity is usually set towards the target
location. In the case that an agent detects a gap, the gap
seeking model is triggered and the desired velocity is upda-
ted accordingly. The parameters related to the gap seeking
model are set as follows. The detection area D is 3m×3m.
The vision radius and angle of an agent is set to 2.5m and
120 degree respectively. α and β values in equation 7 are set
to be 0.5 and 0.75 respectively. Vmax of an agent is 1.34m/s
and the radius of agent is 0.25m. The simulation time step
is set to be the same as the frame rate in the trajectories
data (i.e., 0.067s).

4.3 Results
To visually observe the individual behaviors in the sce-

nario, we have visualized the real world data and simula-
tion results produced by our model and social-force model
in Unity3D. Fig. 6 shows the snapshots of the 3D visualiza-
tions at the 250th and the 270th time steps respectively. It
can be observed that the red-circled agent in the real world
data is performing a gap seeking behavior during this period
of time. Our model is able to replicate such gap seeking be-
havior similar to the real world data. However, the same
agent in the social force model ignores the gap and moves
directly towards its target location (i.e., a location close to
the top right pillar).

To quantitatively evaluate the performance of our pro-
posed model, we adopt the relative distance error metric

1http://repast.sourceforge.net/repast simphony.php
2http://unity3d.com/



(a) 250th time step

(b) 270th time step

(c) 250th time step

(d) 270th time step (f) 270th time step

(e) 250th time step

Real Data Visualization Our Model Social-force Model

Figure 6: Snapshots of 3D visualizations of real world data and simulation results from our model and
social-force model.

proposed in [6], which is calculated as follows:

δerr =
‖xsimi (t+ T )− xreali (t+ T )‖
‖xreali (t+ T )− xreali (t)‖

) (9)

where xreali (t) is the position of individual i in real world
data at time t, T is a user-defined time period and xsimi (t+
T ) is the position of corresponding agent i after it moves
according to the simulation model for a period of T with
the simulation starts at time t. δerr is a progressive error
metric that measures the absolute difference between the
simulated agent and the real world data when the simulation
is re-initialized at each starting time t. To obtain the model
performance over entire simulation, evaluations according to
equation 9 are conducted at several different starting times
t (for every 15 time steps in our implementation) and the
average of δerr (i.e., δerr) over all the agents and starting
times t are obtained.

Table 1: The average of δerr and its standard devia-
tion (in parentheses) over 50 independent runs

Social-force Our model p-value

T = 1.675 0.43(0.018) 0.29(0.021) <0.0001
T = 2.68 0.49(0.031) 0.25(0.034) <0.0005

For model evaluation based on δerr, we first perform the
simulations using our model and social-force model3 for 50
independent runs respectively and each run is set with dif-
ferent random seed. We then calculate the average of δerr
over 50 runs in two cases: T=1.675s (i.e., 25 simulation time
steps) and T=2.68s (i.e., 40 simulation time steps). Table 1
shows the results of our evaluation. It can been seen that

3Note that before the evaluation, we have calibrated the
parameters of social force model using the evolutionary al-
gorithm as described in [6]

our proposed model has yielded smaller δerr value against
real world data for both cases, compared to the social-force
model. This shows that our model can generate crowd be-
haviors closer to the real world data.

To test the statistical significance of our results, we also
conduct one-tailed two-sample t-test at 0.05 significance le-
vel. Our research hypothesis (i.e., the alternative hypothesis
in t-test) is that the simulation using our proposed model
can generate crowd behaviors which have smaller δerr value
compared to the one using the social-force model. The small
p-values from t-tests as shown in Table 1 strongly suggest
that our research hypothesis is supported.

5. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a novel behavior model

for gap seeking behavior, which is a microscopic behavior
that we often observe in real world crowd scenarios. Unlike
collision avoidance behavior, we consider gap seeking beha-
vior as a proactive conflict minimization behavior when an
individual navigates in a crowd. Thus, a two-level modeling
framework is proposed which integrates a gap seeking beha-
vior model at the global navigation level and uses collision
avoidance algorithm at the local steering level. Specifically,
the gap seeking behavior is modeled with three steps as gap
detection, gap selection and gap seeking. Our simulation re-
sults have shown that our proposed model can replicate the
gap seeking behavior as observed in real world scenario. The
model is also able to generate crowd behaviors that are clo-
ser to real world data, compared to the classical social-force
model.

We will continue to work on the development of our sce-
nario generation framework along several directions. First,
the design of the behavior model can be enhanced by consi-
dering the moving dynamics of the selected gap in the gap
seeking step of the proposed model. The gap detection and
selection step of the model may also be improved so as to



generate more reasonable gaps. Second, we will apply the
model to other crowd scenarios to evaluate the generality
and scalability of our model.

Acknowledgement
This work is supported by National Natural Science Founda-
tion of China (Grant No. 61502370), China 111 Project (No.
B16037) and Fundamental Research Funds for the Central
Universities (Grant No. JB150305).

6. REFERENCES
[1] Hermes project:. http://www.asim.uni-

wuppertal.de/en/research/hermes.html.

[2] Simulation of Multi Destination Pedestrain Crowds
(SMDPC) project:.
http://www.math.tu-berlin.de/projekte/smdpc/.

[3] J. Bruneau and J. Pettré. Energy-efficient mid-term
strategies for collision avoidance in crowd simulation.
In Proceedings of the 14th ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 119–127. ACM, 2015.

[4] R. Dechter and J. Pearl. Generalized best-first search
strategies and the optimality of A*. Journal of the
ACM (JACM), 32(3):505–536, 1985.

[5] D. Helbing, I. Farkas, and T. Vicsek. Simulating
dynamical features of escape panic. Nature,
407(6803):487–490, 2000.

[6] A. Johansson, D. Helbing, and P. Shukla. Specification
of the social force pedestrian model by evolutionary
adjustment to video tracking data. Advances in
complex systems, 10(supp02):271–288, 2007.

[7] M. Kapadia, S. Singh, W. Hewlett, and P. Faloutsos.
Egocentric affordance fields in pedestrian steering. In
Proceedings of the 2009 symposium on Interactive 3D
graphics and games, pages 215–223. ACM, 2009.

[8] I. Karamouzas, P. Heil, P. van Beek, and M. H.
Overmars. A predictive collision avoidance model for
pedestrian simulation. In Motion in Games, pages
41–52. Springer, 2009.

[9] L. Luo, S. Zhou, W. Cai, M. Low, F. Tian, Y. Wang,
X. Xiao, and D. Chen. Agent-based human behavior
modeling for crowd simulation. Computer Animation
and Virtual Worlds, 19(3-4):271–281, 2008.

[10] M. Moussäıd, N. Perozo, S. Garnier, D. Helbing, and
G. Theraulaz. The walking behaviour of pedestrian
social groups and its impact on crowd dynamics. PloS
one, 5(4):e10047, 2010.

[11] C. Y. Ozcan and M. Haciomeroglu. A path-based
multi-agent navigation model. The Visual Computer,
pages 1–10, 2015.

[12] S. Park, F. Quek, and Y. Cao. Simulating and
animating social dynamics: embedding small
pedestrian groups in crowds. Computer Animation
and Virtual Worlds, 24(3-4):155–164, 2013.

[13] S. Patil, J. Van den Berg, S. Curtis, M. Lin, and
D. Manocha. Directing crowd simulations using
navigation fields. IEEE Transactions on Visualization
and Computer Graphics, 17(2):244–254, 2011.

[14] N. Pelechano, J. Allbeck, and N. Badler. Controlling
individual agents in high-density crowd simulation. In
Proceedings of the 2007 ACM

SIGGRAPH/Eurographics symposium on Computer
animation, pages 99–108, San Diego, USA, 2007.

[15] N. Pelechano, C. Stocker, J. Allbeck, and N. Badler.
Being a part of the crowd: towards validating vr
crowds using presence. In Proceedings of the 7th
international joint conference on Autonomous agents
and multiagent systems, pages 136–142, Estoril,
Portugal, 2008.

[16] M. Plaue, M. Chen, G. Bärwolff, and H. Schwandt.
Trajectory extraction and density analysis of
intersecting pedestrian flows from video recordings. In
Photogrammetric Image Analysis, pages 285–296.
Springer, 2011.

[17] W. Shao and D. Terzopoulos. Autonomous
pedestrians. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer
animation, pages 19–28, Los Angeles, USA, 2005.

[18] S. Stüvel, N. Magnenat-Thalmann, D. Thalmann,
A. Egges, and A. F. Stappen. Hierarchical structures
for collision checking between virtual characters.
Computer Animation and Virtual Worlds,
25(3-4):331–340, 2014.

[19] D. Thalmann. Crowd simulation. Wiley Online
Library, 2007.

[20] J. Tsai, N. Fridman, E. Bowring, M. Brown,
S. Epstein, G. Kaminka, S. Marsella, A. Ogden,
I. Rika, A. Sheel, et al. Escapes: evacuation simulation
with children, authorities, parents, emotions, and
social comparison. In Proceedings of the 10th
International Conference on Autonomous Agents and
Multiagent Systems, pages 457–464, Taipei, Taiwan,
2011.

[21] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha.
Reciprocal n-body collision avoidance. In Robotics
research, pages 3–19. Springer, 2011.

[22] J. Zhong, W. Cai, L. Luo, and M. Lees. Ea-based
evacuation planning using agent-based crowd
simulation. In Proceedings of the 2014 Winter
Simulation Conference, pages 395–406, Savannah,
USA, 2014.

[23] S. Zhou, D. Chen, W. Cai, L. Luo, M. Low, F. Tian,
V.-H. Tay, D. Ong, and B. Hamilton. Crowd modeling
and simulation technologies. ACM Transactions on
Modeling and Computer Simulation (TOMACS),
20(4):20, 2010.


