28,885 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Mixed Initiative Systems for Human-Swarm Interaction: Opportunities and Challenges

    Full text link
    Human-swarm interaction (HSI) involves a number of human factors impacting human behaviour throughout the interaction. As the technologies used within HSI advance, it is more tempting to increase the level of swarm autonomy within the interaction to reduce the workload on humans. Yet, the prospective negative effects of high levels of autonomy on human situational awareness can hinder this process. Flexible autonomy aims at trading-off these effects by changing the level of autonomy within the interaction when required; with mixed-initiatives combining human preferences and automation's recommendations to select an appropriate level of autonomy at a certain point of time. However, the effective implementation of mixed-initiative systems raises fundamental questions on how to combine human preferences and automation recommendations, how to realise the selected level of autonomy, and what the future impacts on the cognitive states of a human are. We explore open challenges that hamper the process of developing effective flexible autonomy. We then highlight the potential benefits of using system modelling techniques in HSI by illustrating how they provide HSI designers with an opportunity to evaluate different strategies for assessing the state of the mission and for adapting the level of autonomy within the interaction to maximise mission success metrics.Comment: Author version, accepted at the 2018 IEEE Annual Systems Modelling Conference, Canberra, Australi

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    An approach to control collaborative processes in PLM systems

    Full text link
    Companies that collaborate within the product development processes need to implement an effective management of their collaborative activities. Despite the implementation of a PLM system, the collaborative activities are not efficient as it might be expected. This paper presents an analysis of the problems related to the collaborative work using a PLM system. From this analysis, we propose an approach for improving collaborative processes within a PLM system, based on monitoring indicators. This approach leads to identify and therefore to mitigate the brakes of the collaborative work

    Engineering of next generation cyber-physical automation system architectures

    Get PDF
    Cyber-Physical-Systems (CPS) enable flexible and reconfigurable realization of automation system architectures, utilizing distributed control architectures with non-hierarchical modules linked together through different communication systems. Several control system architectures have been developed and validated in the past years by research groups. However, there is still a lack of implementation in industry. The intention of this work is to provide a summary of current alternative control system architectures that could be applied in industrial automation domain as well as a review of their commonalities. The aim is to point out the differences between the traditional centralized and hierarchical architectures to discussed ones, which rely on decentralized decision-making and control. Challenges and impacts that industries and engineers face in the process of adopting decentralized control architectures are discussed, analysing the obstacles for industrial acceptance and the new necessary interdisciplinary engineering skills. Finally, an outlook of possible mitigation and migration actions required to implement the decentralized control architectures is addressed.The authors would like to thank the European Commission for the support, and the partners of the EU Horizon 2020 project PERFoRM (2016b) for the fruitful discussions. The PERFoRM project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 680435.info:eu-repo/semantics/publishedVersio
    corecore