252 research outputs found

    Data Security using Reversible Data Hiding with Optimal Value Transfer

    Get PDF
    In this paper a novel reversible data hiding algorithm is used which can recover image without any distortion. This algorithm uses zero or minimum points of an image and modifies the pixel. It is proved experimentally that the peak signal to noise ratio of the marked image generated by this method and the original image is guaranteed to be above 48 dB this lower bound of peak signal to noise ratio is much higher than all reversible data hiding technique present in the literature. Execution time of proposed system is short. The algorithm has been successfully applied to all types of images

    ROI-based reversible watermarking scheme for ensuring the integrity and authenticity of DICOM MR images

    Get PDF
    Reversible and imperceptible watermarking is recognized as a robust approach to confirm the integrity and authenticity of medical images and to verify that alterations can be detected and tracked back. In this paper, a novel blind reversible watermarking approach is presented to detect intentional and unintentional changes within brain Magnetic Resonance (MR) images. The scheme segments images into two parts; the Region of Interest (ROI) and the Region of Non Interest (RONI). Watermark data is encoded into the ROI using reversible watermarking based on the Difference Expansion (DE) technique. Experimental results show that the proposed method, whilst fully reversible, can also realize a watermarked image with low degradation for reasonable and controllable embedding capacity. This is fulfilled by concealing the data into ‘smooth’ regions inside the ROI and through the elimination of the large location map required for extracting the watermark and retrieving the original image. Our scheme delivers highly imperceptible watermarked images, at 92.18-99.94dB Peak Signal to Noise Ratio (PSNR) evaluated through implementing a clinical trial based on relative Visual Grading Analysis (relative VGA). This trial defines the level of modification that can be applied to medical images without perceptual distortion. This compares favorably to outcomes reported under current state-of-art techniques. Integrity and authenticity of medical images are also ensured through detecting subsequent changes enacted on the watermarked images. This enhanced security measure, therefore, enables the detection of image manipulations, by an imperceptible approach, that may establish increased trust in the digital medical workflow

    A Study And Analysis Of Watermarking Algorithms For Medical Images

    Get PDF
    Digital watermarking techniques hide digital data into digital images imperceptibly for different purposes and applications such as copyright protection, authentication, and data hiding. Teknik-teknik pembenaman tera air menyembunyikan data digit ke dalam imej-imej digit untuk pelbagai keperluan dan aplikasi seperti perlindungan hak cipta, pengesahan, dan penyembunyian data

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    A Multistage High Capacity Reversible Data Hiding Technique Without Overhead Communication

    Get PDF
    Reversible Data Hiding(RDH) has been extensively investigated, recently, due to its numerous applications in the field of defence, medical, law enforcement and image authentication. However, most of RDH techniques suffer from low secret data hiding capacity and communication overhead. For this, multistage high-capacity reversible data hiding technique without overhead is proposed in this manuscript. Proposed reversible data hiding approach exploits histogram peaks for embedding the secret data along with overhead bits both in plain and encrypted domain. First, marked image is obtained by embedding secret data in the plain domain which is further processed using affine cipher maintaining correlation among the pixels. In second stage, overhead bits are embedded in the encrypted marked image. High embedding capacity is achieved through exploiting histogram peak for embedding multiple bits of secret data. Proposed approach is experimentally validated on different datasets and results are compared with the state-of-the-art techniques over different images

    Enhancing The Performance Of Digital Image Data Hiding Using Reduced Difference Expansion Technique And Constant Base Point

    Get PDF
    The last few decades have been marked by a rapid growth and significant enhancement of the internet infrastructures, i.e., the internet has become a broad network enabling many enterprises around the world to interact while sharing multimedia data. Nevertheless, this technology has brought many challenges related to securing private and sensitive information which has led to the application of cryptography technique as a mean for securing data by encrypting them. However, since the encrypted data can be seen by active and sophisticated intruders during the transmission, this may lead to its suspicion which can result in unauthorized access. Thereby, data hiding (which is also called information hiding) is another technique for securing commutation via the public network. Data hiding is one of the best and most challenging fields dealing with securing organizational sensitive information due to many factors such as identity theft, information phishing, user privacy, network policy violation, contents and copyright protection. It is performed by utilizing some carriers to conceal private information which is further extracted later to verify and validate the genuineness. Digital steganography has been recognized among the recent and most popular data hiding techniques. Steganography is the practice of concealing confidential information in the codes that make up the digital files. Such digital files can be an image, audio, video, and text. Different from cryptography, however, steganography provides security by disguising the presence of communication. It originates from the concept that if the communication is visible, the suspicion or attack is obvious. Hence, the main goal is to always disguise the presence of the hidden confidential data. Recently, various data iv hiding methods based on digital image steganography have been already suggested by several researchers around the globe. The main goal was to improve the security, embedding capacity and the quality of the stego image. However, research have shown that there is still a challenge to achieve a good visual quality of the stego media while preserving a good embedding capacity. In this direction, this study aims at proposing a new data hiding approach that enhances the quality of the stego image and the embedding capacity. That is, the suggested approach enhances the existing data hiding methods by utilizing pixel block, constant base point for each pixel block and the reduced difference expansion scheme (RDE-scheme) for grayscale digital images. Accordingly, the suggested enhancement is detailed as follows. First, the existing reduced difference expansion scheme (RDE-scheme) for reducing the difference values is enhanced in order to get possible small values to be used while concealing the secret data into the cover image. The main objective behind this enhancement is to allow data to be concealed while preserving the quality of the stego image. Notice that the suggested RDE-scheme does not only enhance the quality but also it solves the problem of underflow and overflow. The underflow is encountered when the pixel value in the stego image is below 0 (Pixel value < 0) while the overflow occurs when it is greater than 255 (Pixel value > 255). Second, the new constant base point for each pixel block is chosen differently for the sake of increasing the visual quality of the stego image. Third, we have adjusted the size of the pixel block which achieves a high embedding capacity while distorting the cover media from quad of quad (4 × 4 ) to quad, block of size 2 by 2 (2 × 2). Besides, the effect of varying the size of the secret data with respect to the quality of the stego image is also investigated throughout this study. Overall, based on the experimental results, good visual quality of the stego image which is evaluated by measuring the peak signal-to-noise ratio (PSNR) and good embedding capacity (measured in bits) are yielded compared to the previous approach, i.e., the proposed method is effective in terms of maintaining both visual quality of the stego image and the embedding capacity. Index terms— Data hiding, information security, reduced difference expansion, digital steganography, cover image, stego image, confidential data =================================================================================================== Beberapa dekade terakhir internet telah menjadi jaringan luas yang memungkinkan banyak perusahaan di seluruh dunia untuk berinteraksi sambil berbagi data multimedia. Ini merupakan tanda bahwa infrastruktur internet telah tumbuh dan berkembang secara signifikan. Namun, teknologi ini memiliki banyak tantangan dalam hal pengamanan informasi yang bersifat sensitif dan pribadi sehingga mendorong penerapan teknik kriptografi untuk mengamankan data dengan cara mengenkripsinya. Teknik kriptografi memiliki kekurangan yaitu hasil enkripsi dapat dilihat oleh penyusup (intruders) selama transmisi sehingga menyebabkan kecurigaan yang berakibat pada tindakan akses yang bersifat ilegal. Untuk mengurangi hal ini, data hiding dapat dimanfaatkan untuk mengamankan informasi tersebut. Data hiding adalah salah satu teknik terbaik untuk mendapatkan data tetapi memiliki banyak tantangan permasalahan seperti pencurian identitas, phising, pelanggaran kebijakan jaringan dan hak cipta. Untuk mendapatkan kemanan data, data hiding memanfaatkan beberapa media untuk menyembunyikan informasi dan dapat diekstrak untuk memverifikasi keasliannya. Salah satu teknik data hiding yang paling terkenal adalah steganografi digital. Teknik ini menyembunyikan informasi rahasia kedalam file digital seperti citra digital, audio, video dan teks. Berbeda dengan kriptografi, steganografi memberikan keamanan informasi dengan menyamarkannya dalam file digital. Penyebab digunakannya tindakan ini adalah jika komunikasi terlihat maka akan mengundang kecurigaan yang mengakibatkan terjadi serangan seperti yang dijelaskan sebelumnya. Oleh karena itu, tujuan utama dari teknik ini adalah menyamarkan informasi rahasia dengan vi menyembunyikannya kedalam file yang digunakan. Akhir-akhir ini, beberapa teknik data hiding dengan menggunakan citra digital telah banyak dikembangkan oleh beberapa peneliti di seluruh dunia. Tujuan utama mereka adalah untuk meningkatkan keamanan, kapasitas penyisipan dan kualitas dari citra stego. Sampai saat ini, banyak penelitian yang menunjukkan bahwa masih menjadi tantangan untuk mendapatkan kualitas media stego yang baik dengan kapasitas penyisipan yang tinggi. Dengan maksud yang sama, penelitian ini mengusulkan konsep pendekatan baru dalam hal data hiding yang dapat meningkatkan kualitas dan kapasitas dari citra stego. Pendekatan tersebut dilakukan dengan cara meningkatkan metode data hiding yang sudah ada dengan memanfaatkan blok piksel, penentuan base point yang konsisten untuk masing-masing blok dan mereduksi difference expansion untuk citra abu-abu. Rincian dari pendekatan tersebut adalah sebagai berikut. Pertama, skema reduksi difference expansion (RDE) ditingkatkan untuk mendapatkan nilai terkecil yang akan digunakan dalam penyembunyian data kedalam citra carrier. Tujuannya adalah memungkinkan data dapat disisipkan dengan tetap menjaga kualitas citra stego tetap baik. Perlu diketahui bahwa usulan skema RDE tidak hanya meningkatkan kualitas tetapi juga menyelesaikan masalah overflow dan underflow. Underfow merupakan kondisi piksel dalam citra stego bernilai kurang dari 0 sedangkan overflow terjadi ketika nilai piksel melebihi 255. Kedua, base-point yang bersifat konstan untuk masing-masing blok piksel akan dipilih secara berbeda untuk dapat meningkatkan kualitas visual dari citra stego. Ketiga, kami mengatur ukuran blok dari quad of quad (4x4) yang memiliki kualitas citra stego kurang baik menjadi 2x2. Hal lain yang kami lakukan adalah mengetahui efek dari besar ukuran data yang digunakan dalam proses penyisipan. Secara keseluruhan, berdasarkan hasil eksperimen, usulan pendekatan ini memiliki kemampuan yang lebih baik dibandingkan dengan penelitian sebelumnya yang ditandai dengan kapasitas penyisipan yang lebih tinggi dan kualitas visual citra stego yang baik yang diukur menggunakan metode signal-to-noise ratio (PSNR)

    Enhancing Image-Based Data Hiding Method Using Reduced Difference Expansion And Difference Integer Transform

    Get PDF
    Data hiding is a technique that is used to hide secret information within a cover media. In its growth of technology, this technique is not only used for concealing data but also for data authentication and copyright identification. Furthermore, in implementing data hiding algorithm, the technique can leads to diminishing the quality of cover media. In this context, cover media could be image, audio, text or video. Since, hiding secret message within cover media for example image destroys its visual quality. Therefore, unauthorized users can suspect the existence of secret data within that image. To achieve on high quality stego image is still a challenging problem. In the past years, different data hiding algorithms have been developed to secure data during transmission process by increasing the visual quality. However, there is still a room to contribute in order to achieve on high performance algorithm in terms of visual quality. This is why currently many data hiding method are being proposed. In this thesis, a new data hiding algorithm is proposed based on difference expansion that aims to improve the quality of stego image for a given payload capacity. In this proposed method, an image is divided into blocks then a pixel value is used in order to calculate the difference, and it is subtracted from each pixel in a pixel block as the base point. Then, the difference is reduced before embedding using proposed method. Thereafter, the secret message is embedded within the reduced difference. Moreover, at the recipient side, the reverse of embedding process is performed to extract, recover the secret message and cover image respectively without any damage. The outcome from the new proposed method is compared to the previous method and the performance is better. The performance has been increased by the highest improvement of 2.4 dB that was obtained for head image when the size of 5 kb was embedded. The highest PSNR value of 42.609 dB was gained for chest image and the low PSNR value of 34 dB was obtained for head image. In general, the new method performs better for all size of secret message

    Reversible difference expansion multi-layer data hiding technique for medical images

    Get PDF
    Maintaining the privacy and security of confidential information in data communication has always been a major concern. It is because the advancement of information technology is likely to be followed by an increase in cybercrime, such as illegal access to sensitive data. Several techniques were proposed to overcome that issue, for example, by hiding data in digital images. Reversible data hiding is an excellent approach for concealing private data due to its ability to be applied in various fields. However, it yields a limited payload and the quality of the image holding data (Stego image), and consequently, these two factors may not be addressed simultaneously. This paper addresses this problem by introducing a new non-complexity difference expansion (DE) and block-based reversible multi-layer data hiding technique constructed by exploring DE. Sensitive data are embedded into the difference values calculated between the original pixels in each block with relatively low complexity. To improve the payload capacity, confidential data are embedded in multiple layers of grayscale medical images while preserving their quality. The experiment results prove that the proposed technique has increased the payload with an average of 369999 bits and kept the peak signal to noise ratio (PSNR) to the average of 36.506 dB using medical images' adequate security the embedded private data. This proposed method has improved the performance, especially the secret size, without reducing much the quality. Therefore, it is suitable to use for relatively big payloads

    Quad-color image encryption based on Chaos and Fibonacci Q-matrix

    Get PDF
    The Information technology requires the transmission of daily-life images that may reach to millions or even more. Thus, securing them becomes an urgent matter using the encryption technique. Where, a secret key is used for converting the original image into a noisy one and restoring it back using the same key. Confusion and Diffusion are the wildly used steps in such a technique. Therefore, a new algorithm is presented in this work that uses a fusion, segmentation, random assembling, hyperchaotic and Fibonacci Q-matrix (FQ-matrix). A novel fusion method is designed for fusing four color images into four different sequences according to their contained information. Then the resulted four images are each divided into four segments to be assembled randomly into one image using a random-key; which confused later using a six-dimensional hyperchaotic system and diffused using the FQ-matrix. The performance and robustness of the proposed algorithm have been computed based on different tests; where it proved its powerful capability in securing the transmitted images

    The improved algorithm of the high-capacity information embedding into the digital images discrete cosine transform domain

    Get PDF
    Methods of the steganography are characterized by such efficiency rates as invisibility, robustness and capacity. There is considered the maximum capacity support of the information embedding into the DCT-domain. It is investigated the known algorithm that realizes the adaptive information embedding into the digital images frequency domain. The adaptivity is reached due to the image partition into the unequal blocks using a quad-tree. There is received the improved modification of the algorithm based on the reference point variation in case of the image partition into the blocks. The received modification allows to provide the better invisibility at the same capacity.The given paper is completed with the support of the Ministry of Education and Science of the Russian Federation within the limits of the project part of the state assignment of TUSUR in 2017 and 2019 (project 2.3583.2017/PCh) and of the Russian Foundation for Basic Research (project 16-47-700350 r_a)
    corecore