33 research outputs found

    Recognizing faces prone to occlusions and common variations using optimal face subgraphs

    Get PDF
    An intuitive graph optimization face recognition approach called Harmony Search Oriented-EBGM (HSO-EBGM) inspired by the classical Elastic Bunch Graph Matching (EBGM) graphical model is proposed in this contribution. In the proposed HSO-EBGM, a recent evolutionary approach called harmony search optimization is tailored to automatically determine optimal facial landmarks. A novel notion of face subgraphs have been formulated with the aid of these automated landmarks that maximizes the similarity entailed by the subgraphs. For experimental evaluation, two sets of de facto databases (i.e., AR and Face Recognition Grand Challenge (FRGC) ver2.0) are used to validate and analyze the behavior of the proposed HSO-EBGM in terms of number of subgraphs, varying occlusion sizes, face images under controlled/ideal conditions, realistic partial occlusions, expression variations and varying illumination conditions. For a number of experiments, results justify that the HSO-EBGM shows improved recognition performance when compared to recent state-of-the-art face recognition approaches

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Face Recognition: Issues, Methods and Alternative Applications

    Get PDF
    Face recognition, as one of the most successful applications of image analysis, has recently gained significant attention. It is due to availability of feasible technologies, including mobile solutions. Research in automatic face recognition has been conducted since the 1960s, but the problem is still largely unsolved. Last decade has provided significant progress in this area owing to advances in face modelling and analysis techniques. Although systems have been developed for face detection and tracking, reliable face recognition still offers a great challenge to computer vision and pattern recognition researchers. There are several reasons for recent increased interest in face recognition, including rising public concern for security, the need for identity verification in the digital world, face analysis and modelling techniques in multimedia data management and computer entertainment. In this chapter, we have discussed face recognition processing, including major components such as face detection, tracking, alignment and feature extraction, and it points out the technical challenges of building a face recognition system. We focus on the importance of the most successful solutions available so far. The final part of the chapter describes chosen face recognition methods and applications and their potential use in areas not related to face recognition

    Visual Tracking Algorithms using Different Object Representation Schemes

    Get PDF
    Visual tracking, being one of the fundamental, most important and challenging areas in computer vision, has attracted much attention in the research community during the past decade due to its broad range of real-life applications. Even after three decades of research, it still remains a challenging problem in view of the complexities involved in the target searching due to intrinsic and extrinsic appearance variations of the object. The existing trackers fail to track the object when there are considerable amount of object appearance variations and when the object undergoes severe occlusion, scale change, out-of-plane rotation, motion blur, fast motion, in-plane rotation, out-of-view and illumination variation either individually or simultaneously. In order to have a reliable and improved tracking performance, the appearance variations should be handled carefully such that the appearance model should adapt to the intrinsic appearance variations and be robust enough for extrinsic appearance variations. The objective of this thesis is to develop visual object tracking algorithms by addressing the deficiencies of the existing algorithms to enhance the tracking performance by investigating the use of different object representation schemes to model the object appearance and then devising mechanisms to update the observation models. A tracking algorithm based on the global appearance model using robust coding and its collaboration with a local model is proposed. The global PCA subspace is used to model the global appearance of the object, and the optimum PCA basis coefficients and the global weight matrix are estimated by developing an iteratively reweighted robust coding (IRRC) technique. This global model is collaborated with the local model to exploit their individual merits. Global and local robust coding distances are introduced to find the candidate sample having similar appearance as that of the reconstructed sample from the subspace, and these distances are used to define the observation likelihood. A robust occlusion map generation scheme and a mechanism to update both the global and local observation models are developed. Quantitative and qualitative performance evaluations on OTB-50 and VOT2016, two popular benchmark datasets, demonstrate that the proposed algorithm with histogram of oriented gradient (HOG) features generally performs better than the state-of-the-art methods considered do. In spite of its good performance, there is a need to improve the tracking performance in some of the challenging attributes of OTB-50 and VOT2016. A second tracking algorithm is developed to provide an improved performance in situations for the above mentioned challenging attributes. The algorithms is designed based on a structural local 2DDCT sparse appearance model and an occlusion handling mechanism. In a structural local 2DDCT sparse appearance model, the energy compaction property of the transform is exploited to reduce the size of the dictionary as well as that of the candidate samples in the object representation so that the computational cost of the l_1-minimization used could be reduced. This strategy is in contrast to the existing models that use raw pixels. A holistic image reconstruction procedure is presented from the overlapped local patches that are obtained from the dictionary and the sparse codes, and then the reconstructed holistic image is used for robust occlusion detection and occlusion map generation. The occlusion map thus obtained is used for developing a novel observation model update mechanism to avoid the model degradation. A patch occlusion ratio is employed in the calculation of the confidence score to improve the tracking performance. Quantitative and qualitative performance evaluations on the two above mentioned benchmark datasets demonstrate that this second proposed tracking algorithm generally performs better than several state-of-the-art methods and the first proposed tracking method do. Despite the improved performance of this second proposed tracking algorithm, there are still some challenging attributes of OTB-50 and of VOT2016 for which the performance needs to be improved. Finally, a third tracking algorithm is proposed by developing a scheme for collaboration between the discriminative and generative appearance models. The discriminative model is explored to estimate the position of the target and a new generative model is used to find the remaining affine parameters of the target. In the generative model, robust coding is extended to two dimensions and employed in the bilateral two dimensional PCA (2DPCA) reconstruction procedure to handle the non-Gaussian or non-Laplacian residuals by developing an IRRC technique. A 2D robust coding distance is introduced to differentiate the candidate sample from the one reconstructed from the subspace and used to compute the observation likelihood in the generative model. A method of generating a robust occlusion map from the weights obtained during the IRRC technique and a novel update mechanism of the observation model for both the kernelized correlation filters and the bilateral 2DPCA subspace are developed. Quantitative and qualitative performance evaluations on the two datasets demonstrate that this algorithm with HOG features generally outperforms the state-of-the-art methods and the other two proposed algorithms for most of the challenging attributes

    Covariate-invariant gait recognition using random subspace method and its extensions

    Get PDF
    Compared with other biometric traits like fingerprint or iris, the most significant advantage of gait is that it can be used for remote human identification without cooperation from the subjects. The technology of gait recognition may play an important role in crime prevention, law enforcement, etc. Yet the performance of automatic gait recognition may be affected by covariate factors such as speed, carrying condition, elapsed time, shoe, walking surface, clothing, camera viewpoint, video quality, etc. In this thesis, we propose a random subspace method (RSM) based classifier ensemble framework and its extensions for robust gait recognition. Covariates change the human gait appearance in different ways. For example, speed may change the appearance of human arms or legs; camera viewpoint alters the human visual appearance in a global manner; carrying condition and clothing may change the appearance of any parts of the human body (depending on what is being carried/wore). Due to the unpredictable nature of covariates, it is difficult to collect all the representative training data. We claim overfitting may be the main problem that hampers the performance of gait recognition algorithms (that rely on learning). First, for speed-invariant gait recognition, we employ a basic RSM model, which can reduce the generalisation errors by combining a large number of weak classifiers in the decision level (i.e., by using majority voting). We find that the performance of RSM decreases when the intra-class variations are large. In RSM, although weak classifiers with lower dimensionality tend to have better generalisation ability, they may have to contend with the underfitting problem if the dimensionality is too low. We thus enhance the RSM-based weak classifiers by extending RSM to multimodal-RSM. In tackling the elapsed time covariate, we use face information to enhance the RSM-based gait classifiers before the decision-level fusion. We find significant performance gain can be achieved when lower weight is assigned to the face information. We also employ a weak form of multimodal-RSM for gait recognition from low quality videos (with low resolution and low frame-rate) when other modalities are unavailable. In this case, model-based information is used to enhance the RSM-based weak classifiers. Then we point out the relationship of base classifier accuracy, classifier ensemble accuracy, and diversity among the base classifiers. By incorporating the model-based information (with lower weight) into the RSM-based weak classifiers, the diversity of the classifiers, which is positively correlated to the ensemble accuracy, can be enhanced. In contrast to multimodal systems, large intra-class variations may have a significant impact on unimodal systems. We model the effect of various unknown covariates as a partial feature corruption problem with unknown locations in the spatial domain. By making some assumptions in ideal cases analysis, we provide the theoretical basis of RSM-based classifier ensemble in the application of covariate-invariant gait recognition. However, in real cases, these assumptions may not hold precisely, and the performance may be affected when the intra-class variations are large. We propose a criterion to address this issue. That is, in the decision-level fusion stage, for a query gait with unknown covariates, we need to dynamically suppress the ratio of the false votes and the true votes before the majority voting. Two strategies are employed, i.e., local enhancing (LE) which can increase true votes, and the proposed hybrid decision-level fusion (HDF) which can decrease false votes. Based on this criterion, the proposed RSM-based HDF (RSM-HDF) framework achieves very competitive performance in tackling the covariates such as walking surface, clothing, and elapsed time, which were deemed as the open questions. The factor of camera viewpoint is different from other covariates. It alters the human appearance in a global manner. By employing unitary projection (UP), we form a new space, where the same subjects are closer from different views. However, it may also give rise to a large amount of feature distortions. We deem these distortions as the corrupted features with unknown locations in the new space (after UP), and use the RSM-HDF framework to address this issue. Robust view-invariant gait recognition can be achieved by using the UP-RSM-HDF framework. In this thesis, we propose a RSM-based classifier ensemble framework and its extensions to realise the covariate-invariant gait recognition. It is less sensitive to most of the covariate factors such as speed, shoe, carrying condition, walking surface, video quality, clothing, elapsed time, camera viewpoint, etc., and it outperforms other state-of-the-art algorithms significantly on all the major public gait databases. Specifically, our method can achieve very competitive performance against (large changes in) view, clothing, walking surface, elapsed time, etc., which were deemed as the most difficult covariate factors

    Paralleizing AwSpPCA for robust facial recognition using CUDA

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2014.Cataloged from PDF version of thesis report.This paper was conducted to analyze the performance benefits of parallelizing the Adaptive Weighted Sub-patterned Principle Component Analysis (Aw SP PCA) algorithm, given that the algorithm is implemented so as to retain the accuracy from its serialized version. The serialized execution of this algorithm is analyzed first and then compared against its parallel implementation, both compiled and run on the same computer. Throughout this paper, the methodology is to undergo a step by step procedure which can clearly outline and describe the problems faced when trying to parallelize this algorithm. It will also describe where, how and why parallelizing procedures were used. The results of the research have shown that while not all parts of the algorithm can be implemented in parallel in the first place, some of the sections that can be parallelized does not necessarily yield a considerable amount of benefits. Also, it was seen that not all sections scale well with problem size, meaning that some portions of the algorithm can be left in its serialized state without much loss in time. The sections which can be parallelized were discussed in detail. Some changes were also made to certain variables to ensure the best accuracy possible. Finally, through analysis and experimentation, a speedup of 2.76 was achieved, with a recognition accuracy of 92.6%.Syed Amer ZawadAshfaque AliB. Computer Science and Engineerin

    Dictionary Pair Learning on Grassmann Manifolds for Image Denoising

    Get PDF
    Abstract—Image denoising is a fundamental problem in com-puter vision and image processing that holds considerable prac-tical importance for real-world applications. The traditional patch-based and sparse coding-driven image denoising methods convert two-dimensional image patches into one-dimensional vectors for further processing. Thus, these methods inevitably break down the inherent two-dimensional geometric structure of natural images. To overcome this limitation pertaining to previous image denoising methods, we propose a two-dimensional image denoising model, namely, the Dictionary Pair Learning (DPL) model, and we design a corresponding algorithm called the Dictionary Pair Learning on the Grassmann-manifold (DPLG) algorithm. The DPLG algorithm first learns an initial dictionary pair (i.e., the left and right dictionaries) by employing a subspace partition technique on the Grassmann manifold, wherein th

    The fundamentals of unimodal palmprint authentication based on a biometric system: A review

    Get PDF
    Biometric system can be defined as the automated method of identifying or authenticating the identity of a living person based on physiological or behavioral traits. Palmprint biometric-based authentication has gained considerable attention in recent years. Globally, enterprises have been exploring biometric authorization for some time, for the purpose of security, payment processing, law enforcement CCTV systems, and even access to offices, buildings, and gyms via the entry doors. Palmprint biometric system can be divided into unimodal and multimodal. This paper will investigate the biometric system and provide a detailed overview of the palmprint technology with existing recognition approaches. Finally, we introduce a review of previous works based on a unimodal palmprint system using different databases
    corecore