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In this paper, we propose a novel object tracking method that can work well in challenging scenarios such as 
appearance changes, motion blurs, and especially partial occlusions and noise. Our method applies bilateral two-
dimensional principal component analysis (Bi-2DPCA) for efficient object modeling and real-time computation 
requirement. An incremental Bi-2DPCA learning algorithm is proposed for characterizing the appearance changes 
of newly tracked objects. Also, to account for noise and occlusions, a sparse structure is introduced into our Bi-
2DPCA object representation model. With this sparse structure, the appearance of an object can be represented by 
a linear combination of basis images and an additional noise image. The noise image, which indicates the location 
of noise and occlusions, can be used to effectively eliminate the influence caused by noise and occlusions and lead 
to a robust tracker. Instead of the reconstruction error commonly used in eigen-based tracking methods, a more 
accurate method is adopted for the computation of observation likelihood. The method is based on the energy 
distribution of coefficient matrix projected by Bi-2DPCA. Experimental results on challenging image sequences 
demonstrate the effectiveness of the proposed tracking method. 

OCIS codes:      (100.2000) Digital image processing;  (100.4999) Pattern recognition, target tracking; 
                        (100.0100) Image processing; (100.4993) Pattern recognition, Baysian processors. 
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1. Introduction 
Object tracking is one of fundamental problems in the field 
of computer vision. It prevails in diverse applications such 
as intelligent surveillance, human-computer interface and 
vehicle navigation. Developing a robust online tracker still 
remains as a tough field of study, because the visual 
appearance of the target object may undergo large 
variations due to many factors such as illumination 
changes, pose changes, deformations and occlusions. As a 
result, effectively modeling the changes of the tracked 
object appearance plays an important role in visual 
tracking. 

Different approaches have been proposed to address this 
difficult task. Among them, object tracking via online 
subspace learning [1]-[5] is one of attractive techniques. 
Instead of treating the target as a collection of low-level 
features [6][7], subspace representation methods provide a 
compact notion of the “thing” being tracked, which 
facilitates other vision tasks such as object recognition. In 
particular, Principal Component Analysis (PCA) is a 
popular technique for subspace learning. Li et al. [8] 
propose an incremental PCA algorithm for subspace 
learning. Skocaj and Leonardis [9] present a weighted 
incremental PCA algorithm for subspace learning. In [1], 
Ross et al. propose a generalized tracking framework based 

on the incremental image-as-vector PCA methods with a 
sample mean update. It is noted that the above tracking 
methods are unable to fully exploit the spatial 
redundancies within the image ensembles [3]. This is 
particularly true for those image-as-vector tracking 
techniques, as the local spatial information is almost lost. 
Consequently, the focus has been made on developing the 
image-as-matrix learning algorithms for effective subspace 
analysis. The 2-dimensional PCA (2DPCA) for image 
representation was developed [10], and has been adopted 
for object tracking [11, 12]. Based on the original image 
matrices, 2DPCA constructs an image covariance matrix 
whose eigenvectors are derived for image feature 
extraction. The size of the image covariance matrix of 
2DPCA is much smaller in contrast with the covariance 
matrix of PCA. As a result, 2DPCA achieves a more 
efficient computation to calculate the eigenvectors. The 
disadvantage of 2DPCA is that 2DPCA needs more 
coefficients than PCA for image representation. To 
overcome the weakness of 2DPCA, the bilateral 2DPCA 
(Bi-2DPCA) [13, 14] is developed. The main idea of Bi-
2DPCA is straightforward, which is to perform 2DPCA 
twice sequentially. The first one is in the horizontal 
direction and the second is in the vertical direction. At the 
same time, Bi-2DPCA has a solid theoretical foundation for 
optimal image representation mechanism in the sense of 



minimal Mean Square Error (MSE). Consequently, the 
resulting features of Bi-2DPCA are reduced significantly, 
but they are still as powerful as the 2DPCA features.  

It should be noted that although PCA subspace 
representation with online update is effective in dealing 
with appearance change caused by in-plane rotation, scale, 
illumination variation and pose change, it has also been 
shown that the PCA subspace based representation 
scheme is sensitive to partial occlusion [15]. 

Recently, sparse representation has been successfully 
applied to visual tracking [15-20]. Mei and Ling [16] were 
the first to develop the sparse representation technique for 
object tracking, in which an over-complete dictionary is 
constructed using target templates and trivial templates, 
and a 1l  regularized optimization procedure is adopted to 
obtain a sparse linear representation solution. Since it 
assumes that a target object is a linear combination of a 
set of target templates and trivial templates, object tracker 
based on sparse representation can handle noise and 
partial occlusions successfully. However, the 1l  tracker is 
computationally expensive even with further improvement 
[21][22], which limits its performance.  

Inspired by the work above, we propose an efficient 
appearance model to handle the object appearance 
variations and partial occlusions during the tracking 
process. A subspace spanned by two separated projection 
kernels based on Bi-2DPCA and centered at the sample 
mean is constructed for modeling the appearance of an 
object. We use a new mechanism to update the subspace 
model online. In order to handle partial occlusions and 
other challenging factors, the Bi-2DPCA based object 
subspace model is embedded into a structure of sparse 
representation. Instead of the reconstruction error 
commonly used in eigen-based tracking methods, a more 
accurate method is adopted for the computation of 
observation likelihood. Inspired by the work in [11], our 
method is based on the energy distribution of the 
coefficient matrix projected by Bi-2DPCA. By exploiting 
both the capability of handling occlusions and noise of 
sparse representation and the power of feature extraction 
of Bi-2DPCA, our tracking algorithm is able to efficiently 
handle the high resolution image observation and the 
object undergoing partial occlusions, noise, and blurred. 
Tracking is then achieved by Bayesian inference, in which 
a particle filter is adopted to estimate the object state 
sequentially. With the tracking results in new frames, we 
update the subspace model adaptively. Numerous 
experiments demonstrate the excellence of our algorithm 
compared with state-of-the-art algorithms on some 
challenging image sequences. 

The main contributions of this paper are as follows. 
Firstly, we employ Bi-2DPCA in a tracking framework for 
appearance modeling. This scheme allows us to take 
advantage of spatial information of raw intensity image 
and avoid the large size covariance matrix calculation. We 
propose a novel incremental Bi-2DPCA subspace learning 
technique which models the appearance changes of an 
object. Secondly, we introduce the sparse structure into our 
Bi-2DPCA based subspace to handle noise and partial 
occlusions. Finally, the time-consuming 1l  regularized 
optimization procedure is replaced by an iterative 
algorithm to achieve a real-time implementation. 

The remaining part of this paper is organized as follows. 
Section 2 reviews the basic conceptions of Bi-2DPCA and 
sparse representation based object tracking. Our 
appearance model for visual tracking is described in 
Section 3. Section 4 presents the proposed tracking 
algorithm and the incremental Bi-2DPCA learning 
algorithm. Section 5 gives our experiments and 
performance evaluation of our tracker and we conclude this 
paper in Section 6. 

 
2. Related work 
In this section, we will review the most relevant theories 
and algorithms associated with our tracking method. 

A. Bi-2DPCA and its properties 

We review 2DPCA first, as the main idea of Bi-2DPCA is to 
perform 2DPCA in the horizontal and vertical direction 
sequentially. Given a 2D imageA , expressed as a m n×  
matrix, the aim of 2DPCA is to project image A  onto a 
unitary column vector X  by the following linear 
transformation  

Y = AX                                       (1) 
whereY  is a m-dimensional projected vector. The criterion 
used to determine a good projection vector X  is to 
maximize the total scatter of the projected vectors. We 
recall that the total scatter measures the discriminatory 
power of the projection vectorX . The total scatter of the 
projected vectors can be characterized by the trace of the 
covariance matrix of the projected vectors. As a 
consequence, we adopt the following criterion 

( ) ( )J tr= YX S                                 (2) 

where YS  is the covariance matrix of the projected vectors 
and ( )tr YS  denotes the trace of YS , which takes the form 

( ) [ ( ) ( )]T Ttr E E E= − −YS X A A A A X              (3) 

Then a n n×  non-negative definite matrix is defined as 

( ) ( )T
t E E E= − −G A A A A                       (4) 

The symmetric matrix tG  is called the image covariance 
scatter matrix. It can be evaluated by the training samples 
of the random matrix A . Suppose that there are N  
training image samples 1{ }Ni i=A , and A  denotes their 
mean. Then, tG  can be computed approximately by 

1

1 ( ) ( )
N

T
t i i

iN =

= − −∑G A A A A                      (5) 

Then the criterion in (2) can be rewritten by 

 ( ) T
tJ =X X G X                                (6) 

Based on criterion in (6), the optimal projection axes 
1 2, ,..., qX X X  are chosen as the orthogonal eigenvectors of 

tG  corresponding to the first  ( )q q n<  largest 



eigenvalues. Let 1 2[ , ,..., ]q=R X X X  denote the right 
projection kernel. The projected matrix of tA  can be 
expressed by 

( )i i= −B A A R                                (7) 

After the projection of image patches through the right 
projection kernel, the projected matrix eliminates the 
correlations between image columns and compresses the 
image energy optimally in the horizontal direction. As 
2DPCA directly handles image patches by a 2D matrix, it 
has an advantage in preserving spatial information, and in 
calculating the covariance matrix. However the 
compression rate of 2DPCA is far lower than PCA and 
more coefficients are required for the image 
representation. This leads to a large storage and 
significant computation requirement.  

Bi-2DPCA can overcome the weakness of 2DPCA. We 
construct the covariance matrix tF  based on T

iB  and it can 
be evaluated by 

1

1 N
T

t i i
iN =

= ∑F B B                                 (8) 

Let 1 2[ , ,..., ] ( )p p m= <L W W W be the left projection 
kernel, where its columns are the orthogonal eigenvectors 
of tF  corresponding to the p  largest eigenvalues
1 2 ... p
L L Lλ λ λ≥ ≥ ≥ . The coefficient matrix based on Bi-

2DPCA of a specified image patch iA  is formulated as  

      ( )T
i i= −C L A A R                               (9) 

The resulting coefficient matrix iC  is a p q×  matrix, 
whose size is much smaller than the projected matrix and 
the original image patch since p  and q  are usually 
selected much smaller than m and n . The main process of 
Bi-2DPCA is illustrated in Fig.1. 
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Fig.1  Illustration of Bi-2DPCA 
 

B. Object tracking via sparse representation 

Sparse representation has been successfully applied to 
object tracking by Mei and Ling [16]. They assume that an 
object observation can be linearly represented by a basis 
library that consists of a target template set and occlusion 
template set. They cast the tracking problem as  

[ ][ ]T= + = =y Tz e T I z e Bc                  (10) 

where y  is an observation vector, T denotes a matrix of 
target templates, z represents the corresponding 
coefficients, and e  is the error vector, a fraction of whose 
entries are nonzero when y is the observation of a true 
object. The error caused by noise and occlusions typically 
corrupts a fraction of the image pixels. We get a sparse 
solution of (10) 

2

2 1
min  
c

λ− +Bc y c
                           

 (11) 

where
2
⋅  and 1

⋅  denote the 2l  and 1l  norms 
respectively,λ  is a parameter that balances the tradeoff 
between the reconstruction error and the sparsity. This 
formulation leads to the well-known 1l tracker which is 

time-consuming due to 1l  minimization problem. 
Because the sparsity of z  is not required and the target 

templates of T  are mutually correlated, each object 
observation can be sparsely approximated by the learned 
eigenbases and other noise bases. So, Wang et al. [15] cast 
object tracking as the following optimization problem  

2

2 1,
min  λ− − +
z e

y Uz e e                       (12) 

where U  is an orthogonal matrix of column PCA basis 
vectors. For (12), it can handle partial occlusions 
effectively, and compared with the 1l  tracker, it has less 
computational complexity by exploiting the subspace 
representation power and a new iterative scheme [15]. 

For (11), referred to as the 1l  tracker, has two 
drawbacks. One is the extensive computational cost 
brought by 1l  minimization as already discussed. Another 
is the expressiveness of the object appearance is limited as 
the object appearance can only be represented by the 
subspace spanned by the target templates directly cropped 
from the images. This makes it difficult to handle 
significant appearance changes and fast motion. Different 
from the 1l  tracker, the tracking method based on (12) 
represent an object with orthogonal basis vectors extracted 
from a collection of tracked objects, which depict the 
statistical model of samples. This method achieves a 
relatively good performance. However, PCA is inefficient at 
handling the high-dimensional feature vectors. Below we 
will introduce a novel object appearance model based on 
Bi-2DPCA that can handle the problems which PCA does 
not. 

3. Object appearance modeling 
 
We present the detail of the proposed object appearance 

model here. In the proposed appearance model, a subspace 
spanned by two separated projection kernels based on Bi-
2DPCA and centered at the sample mean, is constructed 
for modeling the appearance of the tracked objects. Then 
the Bi-2DPCA based subspace model is embedded into a 
sparse structure to account for noise and occlusions. 

 



A. Subspace model based on Bi-2DPCA 

Suppose we have a collection of observations 
1 2{ , ,..., }tA A A  which each element iA  is a m n×  matrix 

normalized from the object image region of the thi  frame. 
We obtain the covariance matrices tG  and tF  based on (5) 
and (8). Suppose the right projection kernel

1 2[ , ,..., ]t q=R X X X is a n q×  matrix that consists of the 
orthogonal eigenvectors of tG  corresponding to the q  
largest eigenvalues 1 2 ... q

R R Rλ λ λ≥ ≥ ≥ ; the left projection 
kernel 1 2[ , ,..., ] t p=L W W W  is a m p× matrix that consists 
of the orthogonal eigenvectors of tF  corresponding to the 
p  largest eigenvalues 1 2 ... p

L L Lλ λ λ≥ ≥ ≥ . Let 
1 2( , ,..., )t q

R R R Rdiag λ λ λ=Σ and 1 2( , ,..., )t p
L L L Ldiag λ λ λ=Σ .The 

average image of all image patches at time t  is denoted by
tA . Next, we describe the object subspace model. The 

subspace is spanned by tR and tL , centered at tA . t
RΣ and

t
LΣ  evaluate the energy distribution of all training samples 

along each projection vector. 
Compared with the conventional PCA based subspace 

model, the Bi-2DPCA based subspace has the following 
advantages. Firstly, the Bi-2DPCA based subspace does 
not face the massive computation caused by the high-
dimensional feature vectors, because Bi-2DPCA directly 
uses the original object image matrix. It is easy to calculate 
the eigenvectors and eigenvalues of its covariance 
matrices. In the following, we will see that it needs less 
computation to recursively update the subspace for 
charactering the appearance changes of the tracked object. 
Secondly, Bi-2DPCA has a solid theoretical foundation for 
optimal image representation mechanism in the sense of 
minimal MSE. Furthermore, the efficiency of Bi-2DPCA 
does not depend on the distribution of data while PCA 
does. Thus, the Bi-2DPCA based space is particularly 
suited for object appearance characterization. 

B. Bi-2DPCA based subspace with sparse structure 

The original image can be reconstructed by 
T= +A A LCR                             (13) 

Denote ( )ij p qc ×=C , (13) can be rewritten by 

1 1

p q
T

ij i j
i i

c
= =

= +∑∑A A WX                        (14) 

Denote T
ij i j=ψ WX . Obviously, ijψ  is a rank-1 matrix, 

which is the same size of the original image patch A  
and is called the basis image [14] corresponding to the 
basis vectors of PCA. Any image can be approximately 
reconstructed by adding up the weighted basis images 
and the mean image. In order to handle occlusions and 
noise, we add an error matrix ( )ij m no ×=O  to the right 
side of (14) and ignore the mean for the moment 

1 1 1 1
 

p q m n
T T

ij i j ij i j
i j i j

c o
= = = =

= +∑∑ ∑∑A WX e u
                 

(15) 

where m
i R∈e and n

j R∈u are both column vectors with 
only one nonzero entry 1 located at i  and j  respectively. 

Similar to the 1l  tracker, the error term O is caused by 
occlusions and noise, which typically corrupts a fraction of 
the image pixels. Therefore, for a true object, there is only 
a limited number of nonzero entries in the error termO . 
So, we want to have a sparse solution to (15). Thus, 

1,
min T

FC O
λ− − +A LCR O O

                  
   (16) 

where λ  is a parameter that balances the tradeoff between 
the reconstruction error and the sparsity, 

F
⋅ is F norm of 

a matrix, 1
⋅ means summing the absolute values of 

nonzero entries of a matrix. Fig.2 gives the object 
representation schemes of the three formulations defined 
in Eq. (11), (12) and (16).  

 

 
(a) 1l  tracker 

 
(b) Eigen-based sparse tracker 
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Fig.2. Three object representation schemes  

 
Our implementation solves the optimization problem in 

(16) via an iterative algorithm, which is an extension of the 
algorithm in [15] into 2D matrix space. We demonstrate its 
feasibility through many experiments. The algorithm is 
shown in Algorithm 1. 

Because the Bi-2DPCA based subspace representation 
model aims to adapt the appearance variations with a low-
dimensional subspace for dimensionality reduction and 
real-time calculation, it is efficient and effective for 
handling the situation where the object undergoes pose, 
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scale and illumination changes. This representation model, 
however usually fails in the presence of occlusions and 
noise. Sparse representation based appearance model 
treats an object as a linear combination of target templates 
and an additional noise item which is explicitly designed 
for modeling the occlusions and noise. Therefore the sparse 
structure is introduced into the Bi-2DPCA object 
representation model to take into account both advantages 
of two models. 

 

Algorithm 1: The iterative algorithm for Eq. (16) 

Input: an observation imageA , projection kernelsL,R , and a 
constant λ . 
1: Initialize O be a zero matrix; 
2: Iterate  
3:     Obtain ( )T= −C L A O R ; 
4:     Obtain ( )Tλ= −O S A LCR , where ( ) sgn( ) ( )S x x xλ λ= ⋅ − ; 

5: Until ( )J γΔ <C,O or a certain number iterations arrive, where

1
( , ) T

F
J λ= − − +C O Α LCR O O  and γ  is a small positive 

number. 
Output: the coefficient matrix C , the error matrix O . 

 

4. Proposed tracking algorithm 
Object tracking can be cast as a Bayesian inference process 
for estimating the unknown state tx . The posterior 
distribution 1:( | )t tp x y over tx  is recursively updated given 
all observations 1: 1 2{ , ,..., }t t=y y y y  up to time t . 

1: 1 1 1: 1 1( | ) ( | ) ( | ) ( | )t t t t t t t t tp p p p d− − − −∝ ∫x y y x x x x y x      (17) 

where ( | )t tp y x is the observation model depicting the 
likelihood of observing ty  at state tx , and the dynamic  
model 1( | )t tp −x x defines motion randomness between two 
consecutive states. In the particle filter, the posterior 
distribution 1:( | )t tp x y  is approximated by discrete random 
measures defined by particles 1{ }i N

t i=x  and weights 1{ }i N
t i=w  

assigned to the particles. The optimal state ∗x  of the 
tracked object, given all the observations up to t-frame, is 
obtained by the MAP estimation over N samples at time t 

* arg max  , =1,2,...,
i
t

i
t i N=

x
x w                   (18) 

where 1 ( | )i i i
t t t tp−=w w y x . 

A. Dynamic model 

In the tracking framework, we apply an affine image 
warping to model the target motion between two 
consecutive frames. The six parameters of the affine 
transform are used to model 1( | )t tp −x x of a tracked target. 
Let =( , , , , , )t t t t t t tx y sθ α φx , where tx , ty , tθ , ts , tα , and tφ  

denote the x , y translations, the rotation angle, the scale, 
the aspect ratio, and the skew direction at time t ,  
respectively.  Generally, the dynamic model is formulated 
by a Gaussian distribution as follows: 

1 1( | ) ( ; , )t t t tp N− −=x x x x Φ                         (19) 

whereΦ  is a diagonal covariance matrix whose elements 
depict how much we expect the object might move from one 
frame to the next. The value of Φ ’s diagonal elements 
affect the accuracy of our tracking process. With smaller 
values in the diagonal covariance matrix Φ , we may lose 
the object, and larger values may need more particles.  It is 
our task to find a balance. 

B. Observation model 

The object appearance can be modeled by a Bi-2DPCA 
based subspace, spanned by the separate projection 
kernels tR and tL , centered at tA , embedded into a 
sparse structure. The observation model is used to 
evaluate the probability of a sample being generated from 
our appearance model. Given an image patch i

tA  
predicated by the candidate target state i

tx  in the current 
frame, the probability of i

tA  is generated from our 
appearance model can be expressed by the reconstruction 
error as following 

1( | ) exp
2

i i i T
t t t t t t t F

p ⎡ ⎤= − − −⎢ ⎥⎣ ⎦
y x A A L C R              (20) 

where i
tC  is the coefficient matrix of i

tA , and i T i
t t t t=C L A R . 

However the reconstruction error has the drawback that 
it does not consider the distance from the center of 
subspace to the projected point, and ignores the 
relationship between the projection axes, which causes 
inaccuracies when applying the MAP for state estimation. 
The distance should instead be computed according to the 
energy distribution of each of the projection axes. Here we 
propose a new computation scheme that can sovle the 
above problem, expressed as 

2

2

1 1

1( | ) exp
2

( , )1exp
2

i i i T
t t t t t t t F

ip q
t
k l

k l L R

p

k l

σ

λ λ= =

⎡ ⎤∝ − − −⎢ ⎥⎣ ⎦

⎡ ⎤
× −⎢ ⎥+⎣ ⎦

∑∑

y x A A L C R

C                   
(21) 

where 2

1 1

1 1m n
i i
L R

i p i qm p n q
σ λ λ

= + = +

= +
− −∑ ∑ , 1 2 ... m

L L Lλ λ λ≥ ≥ ≥  

and 1 2 ... n
R R Rλ λ λ≥ ≥ ≥  are eigenvalues of the covariance 

matrix tG and tF  respectively. ( , )i
t k lC denotes the k-th row 

and the l-th column element of the coefficient matrix i
tC . 

Fig. 3(a) and 3(b) illustrate Eq. (21) intuitively. As 
shown in Fig. 3(a), the region inside the black circle 
indicates the subspace generated by Bi-2DPCA, where O is 
the subspace center, P is the location of the candidate 
target, D  is the overall distance from P to O , and 1D  and 



2D are two orthogonal components of D respectively. In 
real tracking applications, it is necessary for a subspace-
based tracker to evaluate the likelihood between the 
candidate target and the learned subspace. Commonly, this 
likelihood is determined by the reconstruction error norm, 
actually which is the component 1D  in Fig. 3(a). Obviously, 
another orthogonal component 2D  in the subspace should 
not be negligible. Therefore, we use D  instead of 1D for 
observation modeling. In this paper, we calculate the 
component 2D by  

2

1 1

( , )
2

ip q
t
k l

k l L R

k l
D

λ λ= =

=
+

∑∑
C                                           (22) 

On the other hand, Fig. 3(b) intuitively shows the energy 
distribution of the coefficient matrix projected by projection 
kernels of Bi-2DPCA. Given an image patchA , we can 
obtain the coefficient matrix C via a complete Bi-2DPCA 
transform, whose entry corresponds to a small block in Fig. 
3(b). The energy of the image is reassigned onC . The i-th 
column of C is the projection of the imageA on the i-th 
column vector of the right projection matrix R
corresponding to the eigenvalue i

Rλ , which can be thought 
of as its allocated energy. Similarly, the j-th row of C
indicates the allocated energy of the j-th row vector of the 
left projection matrix L corresponding to the eigenvalue 

j
Lλ . As a result, the contribution of the entry of C for 

computing the distance D2 depends on its allocated energy. 
Thus, (22) can describe the distance more accurately for 
the tracking problem, which is similar to the Mahalanobis 
distance. 
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Fig. 3 (a) Decomposition of distance. (b) The energy distribution of 
the coefficient matrix projected by projection kernels of Bi-2DPCA. 
 

C. Incremental Bi-2DPCA learning 

During tracking, the object appearance may change due to 
many factors such as illumination changes, pose changes, 
deformations and occlusions. Therefore, it is inaccurate to 
maintain a fixed object appearance model. Adapting the 
appearance models online to reflect these changes is 
crucial to keeping the tracker robust. Our object 
appearance model is a combination of the Bi-2DPCA based 
subspace and the object sparse representation. We only 
need to update the subspace, because it is the only part 
that corresponds to the changes of the object appearance. 
Let 1 2{ , ,..., }t=A A A A  be the original observation set and 

let 1 2{ , ,..., }t t t M+ + +=B A A A  be the newly added 
observation set, then the total observation set at time 
t M+  can be written as 1 2{ , } { , ,..., }t M+= =C A B A A A . 

Denote tA , MA , t M+A as the corresponding average 
images of sets A , B , C .The related covariance matrices 
can be computed as follows 
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where tR , t M+R  are matrices constructed by the Eigen-
vectors of covariance matrices tG  and t M+G corresponding 
to the q  largest eigenvalues. Then we have the following 
results 

1 ( ) ( )T
t M t M M t M t

t Mt M
t M t M+

⋅⎡ ⎤= + + − −⎢ ⎥+ +⎣ ⎦
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(29) 
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(30) 

However tF  in (30) is computationally infeasible as the 
right projection matrix is changed from tR to t M+R , it is 
impossible to store all the observation images and it is also 
time-consuming to compute tF . So we use  

∞
1

1 ( ) ( )
t

T T
t i t t t i t

it =

= − −∑F A A R R A A                    (31) 

instead of tF and obtain 

∞1 ( ) ( )T T
tt M M M t t M t M M t

t Mt M
t M t M+ + +

⋅⎡ ⎤≈ + + − −⎢ ⎥+ +⎣ ⎦
F F F A A R R A A

                      
(32) 

Lots of experiments demonstrate its feasibility. The 
major computation of (29) and (32) is to evaluate MG and 

MF . BecauseM , that is the batch size for our appearance 
model update, is often a small value, the time and space 
consumption of incremental Bi-2DPCA learning method is 
reduced greatly. Algorithm 2 presents its overall learning 
process. 



 
Algorithm 2. Incremental Bi-2DPCA Learning 
Input: the mean image tA ,  projection kernels tL , tR , 
covariance matrices tG , tF , the newly added observation set B
and its mean MA ; 

1. Compute the mean image 1 ( )t M t Mt M
t M+ = ⋅ + ⋅
+

A A A . 

2. Obtain the covariance matrix t M+G  by (29). 

3. Compute the EVD (Eigen Value Decomposition) of t M+G : 
T

t M R+ =G RΣ R . t M+R  consists of the columns of R  

corresponding the q  largest eigenvalues of t M+G , and t M
R
+Σ  is 

a diagonal matrix whose elements are the q  largest 
eigenvalues of t M+G . 

4. Obtain the covariance matrix t M+F  by (32). 

5. Compute the EVD of t M+F : T
t M L+ =F LΣ L , t M+L  consists of 

the columns of L  corresponding the p  largest eigenvalues of 

t M+F , and t M
L
+Σ  is a diagonal matrix whose elements are the 

p  largest eigenvalues of t M+F . 

Output: the mean image t M+A ,  projection kernels t M+L , t M+R  

and its corresponding eigenvalues t M
L
+Σ , t M

R
+Σ , covariance 

matrices t M+G , t M+F . 
 

5.Experimental results 
 
To demonstrate performance of the proposed tracking 
algorithm, we tested it on 8 publicly available image 
sequences collected from the public dataset [15,23]. These 
image sequences involve different situations that an object 
may experience such as illumination changes, 
deformations, partial occlusions, fast movement, facial 
expression changes and large pose variations. The 
resolution, length and challenges in each sequence are 
listed in Table 1. We also compare our tracker with four 
other state-of-the-art tracking methods using the source 
codes provided by the authors, including FRAG [24], 1l -
APG [22], CT [25], and IVT [1]. 
 

Table 1 The used test sequences and their challenges 

Sequences 
Frame  
size 

Frame  
length 

Challenges 

Occlusion1 352×288 889 Partial occlusion 

Occlusion2 320×240 819 
Partial occlusion, in-plane rotation, 
out-plane rotation 

Car4 360×240 450 Illumination variation, scale change 

Car11 320×240 393 
Illumination variation, background 
clutter, scale change 

David_indoor 320×240 462 
Illumination variation, scale change, 
out-plane rotation 

Caviar1 384×288 382 Partial occlusion, scale change 

Lemming 640×480 1336 
out-plane rotation, scale change, 
occlusion, background clutter 

Cliffbar 320×240 471 
in-plane rotation, scale change, 
background clutter, abrupt motion 

 
Without loss of generality, we locate the target object 

manually in the first frame using a rectangle, and 
transform all image sequences to the gray scale. The object 
region used in our experiments is normalized to a 32 32×
patch. In the previous 8 frame images, we use the classical 
particle filter algorithm to obtain a target object sample 
set. Then we use the observations of these target image 
patches to initialize our Bi-2DPCA based subspace. The 
subspace is updated every 5 frames. The number of 
columns of the right projection matrix tR  is set to 6, the 
same as the left projection matrix tL . The number of 
particles is set to 600. 

In the Occlusion1 sequence, a woman occludes her face 
with a book frequently. The main difficulty of the tracking 
is occlusion issue in this video sequence. The tracked object 
is even covered 50%-80% in some video frames, such as the 
534th frame and the 622th frame. As shown in Fig. 4(a), the 
FRAG, 1l -APG and the proposed algorithm perform better 
than the CT tracker. The FRAG method uses the part-
based representation with histograms to handle occlusion. 
The proposed and 1l -APG trackers handle partial 
occlusions via the sparse representation with trivial 
templates. 

In the occlusion2 sequence, the proposed tracker 
performs best although the face is heavily occluded with 
in-plane rotations such as the 473th and 716th frames as 
shown in Fig. 4(b). In these frames, the FRAG algorithm 
performs poorly since it does not handle appearance 
change caused by pose and occlusion. 

Fig. 4(c) shows the tracking results of the Car4 sequence, 
which is captured in an open road scenario. There is a 
drastic lighting change when the vehicle goes underneath 
the overpass or the trees. The 1l -APG, IVT and the 
proposed algorithm track the target quite well whereas the 
other methods drift away when drastic illumination or 
scale variation occurs.  

In the Car11 sequence, a car is driven into a very dark 
environment, while being videotaped from another moving 
car. The Fig. 4(d) shows the tracking results. Between the 
10th frame and the 172th frame, although the appearance 
of the target does not change a lot, the FRAG and CT 
trackers lose the target due to the low contrast between 
the foreground and the background and illumination 
changes. The car starts to turn from the 280th frame, the 

1l -APG algorithm loses the target gradually and the IVT 
algorithm gets drift finally. The proposed tracker performs 
well in the whole sequence. 

In the David_indoor sequence, shown in Fig. 4(e), the 
appearance of the man changes significantly when he 
walks from a dark room into areas with spot light. In 
addition, appearance change caused by scale and pose as 
well as camera motion pose great challenges. The IVT and 
proposed methods perform quite robustly to appearance 
and illumination changes in this case, while the other 
trackers do not adapt to scale or in-plane rotation. 

Fig. 4(f) shows the tracking results of the Caviar1 
sequence. The main difficulty of tracking for this video lies 



in heavy occlusions and scale changes. In addition, there 
are numerous objects with similar appearance (shape and 
color) to the target. The IVT tracker often leads to drifts 
due to the simple update scheme without dealing with 
occluded regions. In contrast, the FRAG and proposed 
methods achieve stable performance in the entire 
sequences in spite of heavy occlusions and large scale 
changes. 

Fig. 4(g) and Fig. 4(h) show tacking results from two 
challenging sequences with complex background. For the 
Lemming sequence shown in Fig.10, the object undergoes 
change of scale and pose, as well as heavy occlusion in 
cluttered background. The object in the Cliffbar sequence 
undergoes scale change, in-plane rotation, and abrupt 
motion in cluttered background. In addition, the target and 
the surrounding region have similar texture. The 1l -APG, 
CT and FRAG algorithms perform poorly since the 
surrounding background is similar to the target object. The 
IVT method is able to track the targets in some frames but 
fails after abrupt motion occurs. However, our tracker 
successfully keeps track of the target objects with small 
errors in these two sequences. 

To quantitatively compare the performance of the 
tracking methods, we compute the center location error 
(CLE) which is defined as the average Euclidean distance 
between the center locations of the tracked targets and the 

ground truths, as well as the average CLE over all the 
frames of one sequence. The average CLE of each tracker 
on all sequences are shown in Table 2. Fig. 5 shows the 
CLE of each tracker over time on each sequence. It can be 
seen that our method achieves lowest tracking errors in 
almost all the sequences.  

Our tracking method is implemented in MATLAB which 
runs on a PC with Intel Core 3.00GHz CPU. Without code 
optimization, our tracking algorithm can achieve about 5-6 
frames per second (fps) for the evaluated sequences. Its 
running speeds could be increased remarkably by using 
C/C++ and code optimization. Actually, if we conservatively 
predict a 5-time growth, our tracking method will become 
qualified for real-time applications. 

 
Table 2. Average CLE (in pixel) for five trackers 

Sequence FRAG 1l -APG CT IVT Ours 

Occlusion1 5.6 6.1 27.0 9.2 2.4 
Occlusion2 15.5 8.9 12.5 10.2 4.7 
Car4 179.8 4.1 153.7 2.9 2.6 
Car11 63.9 3.1 76.8 2.1 2.1 
David_indoor 76.7 16.1 25.6 3.6 2.3 
Caviar1 5.7 8.9 17.1 45.1 5.6 
Lemming 149.1 184.5 135.9 93.4 8.5 
Cliffbar 48.7 83.6 21.9 24.8 1.7 
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Fig. 4  Tracking results of different algorithms for sequences (a) Occlusion1 , (b) Occlusion2,  (c)car4,  (d)car11,  (e) David_indoor, (f) Caviar1, 
(g) Lemming , and (h) Cliffbar. 
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Fig. 5  Quantitative evaluation of different trackers in terms of center location error on sequences (a) Occlusion1 , (b) Occlusion2,  (c)car4,  
(d)car11,  (e) David_indoor, (f) Caviar1, (g) Lemming , and (h) Cliffbar. 

 



6.Conclusion 
 
In this paper, we employ Bi-2DPCA for appearance 
modeling in a tracking framework. This scheme allows us 
to take advantage of spatial information of the raw 
intensity image and avoid calculating the large size 
covariance matrix. We proposed a new incremental Bi-
2DPCA subspace learning technique which models the 
appearance changes of an object. Furthermore, we 
introduced a sparse structure into our Bi-2DPCA based 
subspace to handle noise and occlusions. The time-
consuming 1l  regularized optimization procedure is 
replaced by an iterative algorithm to achieve a real-time 
implementation. Experimental results on the challenging 
image sequences demonstrate that our tracking algorithm 
performs favorably against state-of-the –art algorithms. 
Our future work will focus on utilizing prior knowledge 
with online learning for more effective object tracking. 

This work was supported by the Research Fund for the 
Key Project of Technology Research Plan of Ministry of 
Public Security, China under Grant 2014JSYJA018, the 
Natural Science Research Project of Education Department 
of Shaanxi Province, China under Grant 12JK0731, the 
Research Fund for the Doctoral Program of Higher 
Education of China under Grant 20126102110041, and the 
Royal Academy of Engineering, UK, under Grant 
1314RECI025. 

References 
1. D. Ross, J. Lim, R. Lin, and M. Yang, “Incremental learning 

for robust visual tracking,” Int. J. Comput. Vision, 77, 125–
141 (2008). 

2. D. Wang, H. Lu, and Y.-W. Chen, “Incremental MPCA for color 
object tracking,” in Proceedings of IEEE Conference on 
Pattern Recognition (IEEE, 2010), pp. 1751–1754.  

3. W. Hu, X. Li, X. Zhang, X. Shi, S. J. Maybank, and Z. Zhang, 
“Incremental tensor subspace learning and its applications to 
foreground segmentation and tracking” Int. J. Comput. Vision, 
91, 303–327 (2011). 

4. D. Ross, J. Lim, and M. Yang, “Adaptive probabilistic visual 
tracking with incremental subspace update,” in Proceedings of 
the Eighth European Conference on Computer Vision (IEEE, 
2004), pp. 470–482. 

5. G. Li, D. Liang, Q. Huang, S. Jiang, and W. Gao, “Object 
tracking using incremental 2D-LDA learning and Bayes 
inference,” in Proceedings of IEEE Conference on Image 
Processing (IEEE, 2008), pp. 1568–1571. 

6. T. Can, A. O. Karal, and T. Aytac, “Detection and tracking of 
sea-surface targets infrared and visual band videos using the 
bags-of-features technique with scale-invariant feature 
transform, “Appl. Opt. 50, 6302–6312 (2011). 

7. S. Avidan, “Ensemble tracking,” IEEE Trans. Pattern Anal. 
Mach. Intell., 29, 261–271 (2007). 

8. Y. Li, L. Xu, J. Morphett and R. Jacobs, “On Incremental and 
Robust Subspace Learning,” Pattern Recognition, 37, 1509-
1518 (2004). 

9. D. Skocaj, A. Leonardis, “Weighted and Robust Incremental 
Method for Subspace Learning,” in Proceedings of IEEE 
Conference on Computer Vision (IEEE, 2003), pp.1494-1501. 

10. J. Yang, D. Zhang. “Two-Dimensional PCA: A new approach to 
appearance-based face representation and recognition,” IEEE 
Trans. Pattern Anal. Machine Intell. 26, 131-137 (2004). 

11. T. Wang, I. Gu, and P. Shi, “Object tracking using incremental 
2D-PCA learning and ML estimation,” in Proceedings of IEEE 
Conference on Acoustics Speech Signal Processing (IEEE, 
2007), pp. 933–936. 

12. Q. Wang, F. Chen, and W. Xu, “Visual tracking by appearance 
modeling and sparse representation,” in Proceedings of IEEE 
Conference on Neural Computation (IEEE, 2010), 1464-1468. 

13. D. Zhang, Z.-H. Zhou, “(2D)2 PCA: Two-directional two-
dimensional PCA for efficient face representation and 
recognition, ” Neurocomputing, 69, 224-231(2005). 

14. J. Yang, Y. Xu and J. Yang, “Bi-2DPCA: a fast face coding 
method for recognition”, Pattern Recognition Recent Advances, 
pp. 313-340, Adam Herout (Ed.), InTech (2010). 

15. D. Wang, H. Lu, and M. Yang, “Online Object Tracking with 
Sparse Prototypes,” IEEE Trans. Image Process. 22, 314-325 
(2013). 

16. X. Mei and H. Ling, “Robust Visual Tracking using L1 
minimization,” in Proceedings of IEEE Conference on 
Computer Vision (IEEE, 2009), pp. 1436–1443. 

17. Y. Li, P. Li, and Q. Shen, “Real-time infrared target tracking 
based on 1l  minimization and compressive features,” Appl. 
Opt. 53, 6518–6526 (2014). 

18. X. Jia, H. Lu, M Yang, “Visual tracking via adaptive structural 
local sparse appearance model,” in Proceeding of IEEE 
Conference on Computer Vision and pattern Recognition 
(IEEE, 2012), pp. 1822-1829. 

19. X. Mei, and H. Ling, “Robust visual tracking and vehicle 
classification via sparse representation,” IEEE Trans. Pattern 
Anal. Machine Intell., 33, 2259-2272 (2011). 

20. W. Zhang, H. Lu, and M. Yang, “Robust object Tracking via 
sparse collaborative appearance model,” IEEE Trans. Image 
Process. 23, 2356-2368 (2014). 

21. X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai, “Minimum error 
bounded efficient 1l  tracker with occlusion detection,” in 
Proceedings of IEEE Conference on Computer Vision and 
Pattern Recognition (IEEE, 2011), pp. 1257-1264. 

22. C. Bao, Y. Wu, H. Ling, and H. Ji, “Real-time robust 1l  
tracker using accelerated proximal gradient approach,” in 
Proceedings of IEEE Conference on Computer Vision and 
Pattern Recognition (IEEE, 2012), pp. 1830-1837. 

23. Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, “Online Object 
Tracking: A Benchmark,” in Proceedings of IEEE Conference 
on Computer Vision and Pattern Recognition (IEEE, 2013) pp, 
2411 - 2418. 

24. A. Adam, E. Rivlin, and I. Shimshoni. “Robust Fragments 
based Tracking using the Integral Histogram,” in Proceedings 
of IEEE Conference on Computer Vision and Pattern 
Recognition (IEEE, 2006) pp, 798–805. 

25. K. Zhang, L. Zhang, and M. Yang, “Real-Time Compressive 
Tracking,” in Proceedings of European Conference on 
Computer Vision (2012), pp.864-877. 


