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Abstract 

 

This paper was conducted to analyze the performance benefits of parallelizing the Adaptive 

Weighted Sub-patterned Principle Component Analysis (Aw SP PCA) algorithm, given that the 

algorithm is implemented so as to retain the accuracy from its serialized version. The serialized 

execution of this algorithm is analyzed first and then compared against its parallel 

implementation, both compiled and run on the same computer. Throughout this paper, the 

methodology is to undergo a step by step procedure which can clearly outline and describe the 

problems faced when trying to parallelize this algorithm. It will also describe where, how and 

why parallelizing procedures were used. 

The results of the research have shown that while not all parts of the algorithm can be 

implemented in parallel in the first place, some of the sections that can be parallelized does not 

necessarily yield a considerable amount of benefits. Also, it was seen that not all sections scale 

well with problem size, meaning that some portions of the algorithm can be left in its serialized 

state without much loss in time. The sections which can be parallelized were discussed in detail. 

Some changes were also made to certain variables to ensure the best accuracy possible. Finally, 

through analysis and experimentation, a speedup of 2.76 was achieved, with a recognition 

accuracy of 92.6%.  
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1. Introduction 

 

1.1  Motivation 

The reason behind undertaking this research is to better understand and evaluate the hardware 

capabilities of modern day commercially produced Graphics Processing Units. A few years ago, 

parallel implementations of programs required the use of multiple computers working over a 

network with each other in order to emulate a parallel programming environment. This needed 

the use of networking as well as good use of every individual processing unit. Nowadays, this 

kind of power is readily available to us, in the form of multiprocessor CPUs and GPUs. While 

the network models for parallel processing are still widely in use, one does not need the amount 

of physical space necessary for the networked models to be able to enjoy the benefits of parallel 

processing. This is mainly due to modern day advancements in the hardware industry and the 

availability of parallel processing capabilities in mass-produced processors. This is a major leap 

in the field of computer science as it allows for faster solutions to classical problems. However, it 

is understood that not all programs can be implemented this way and not all problems have 

parallel solutions. Thus every algorithm needs to be evaluated for its ―parallelizability‖. 

Aw SP PCA is an update on the traditional PCA algorithm and used in facial recognition. The 

main motivation for implementing this algorithm using parallel programming techniques is 

because of its significance in the history of Facial Recognition and also because of the 

opportunities it provides us. At first glance, it seems very obvious that certain parts of this 

algorithm are so promising that it might be considered ―embarrassingly parallel‖. We believe that 

this algorithm is a good example of how a traditional algorithm might use the powers of modern 

day hardware to perform better. An evaluation of the parallelization process might also provide 

us an insight into the world of parallel programming, which (as undergraduate students) we see 

as a great opportunity to further ourselves in the field of computer science. 
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1.2  Related Works 

There are many face recognition proposals employing PCA [9]. P. Shamna et al. and W. Zhao et 

al. indicated that most of them used PCA for different purposes and obtained several distinctive 

features, e.g., less memory requirement and simple computation complexity [5-7, 15, 19-21]. 

The results of the survey brought about various PCA derivations including increasing the 

recognition rate. For example, in 2010, E. Gumus et al. [22] applied a hybrid approach over PCA 

and Wavelets to extract feature resulting in higher recognition rate. Recently, some research have 

also improved the recognition rate; for instance, A. K. Bansal and P. Chawla [23], in 2013, have 

proposed Normalized Principal Component Analysis (NPCA) which normalized images to 

remove the lightening variations and background effects by applying SVD instead of eigenvalue 

decomposition. 

Furthermore, in the same year, X. Yue [24] proposed to use a radial basis function to constructa 

kernel matrix by computing the distance of two different vectors calculated by the parameter of 

2-norm exponential, and then apply a cosine distance to calculate the matching distance leading 

to higher recognition rate over a traditional PCA. Similarly, L. Min et al. [16] introduced a two 

dimensional concept for PCA (2DPCA) for face feature extraction to maintain the recognition 

rate but with lower computational recognition time. Note that only a few proposals investigated 

on a computational time complexity. 

Recently in 2013, G. D. C. Cavalcanti et al. [33] proposed a novel method called (weighted) 

Modular IMage PCA by dividing a single image into different modules to individually recognize 

human face to reduce computational complexity. Previously, in 2003, J. Chunghong et al. [34] 

proposed a distributed parallel system for face recognition by dividing trained face databases into 

five sub-databases feeding into each individual computer hardware system, and then performed 

an individual face recognition algorithm individually in parallel over TCP/IP socket 

communication, and after that, the recognition feedbacks are sent back for making a final 

decision at the master. Similarly, X. Liu and G. Su [35] modified a distributed system to support 

parallel retrieval virtual machines by allowing multi-virtual machines for each slave to run 

individual face recognition algorithms. 
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1.3  Methodology 

The paper starts with the question ―How much does the Aw SP PCA performance improve if 

implemented in parallel?‖ and hopes to answer this through quantitative analysis of the research 

results. We also intend to find out how much of an impact modern hardware can make on this 

algorithm. As such, we follow a very methodical analysis of every portion of the algorithm and 

try to answer the proposed questions based completely on our evaluations. We begin by 

implementing the basic Aw Sp Principle Component Analysis in its traditional serialized form. 

To understand the parallelization process better, we further segment the code into sections (see 

chapter 3). These sections are evaluated individually through a time graph analysis. Aw SP PCA 

was implemented to calculate the Eigen space. Then we implement the recognition section which 

applies the face-space projection and Euclidean distance measurements to find the database 

image which is the test image‘s closest match. This same program is run again on the same 

machine, except this time we used functions from MATLAB‘s Parallel Processing Toolbox (see 

chapter 2.6) to execute the program in parallel using CUDA on the NVIDIA GPU. The graphs 

are also plotted for this and the results are compared between the two implementations for every 

section. The results are discussed in Chapter 4. 

 

1.4  Outline 

Chapter 2 provides all the relevant information one may require in order to understand the 

terminologies, techniques and objects used for this paper. The literature review was written so as 

to assist the reader in case they require it regarding the information in this paper. It explains the 

algorithms involved in detail, as well as defining the parallel processing techniques used. Finally, 

it contains information regarding the libraries used and the programming environment which was 

used to run the code. 

Chapter 3 describes the implementation details that were performed when running the code. It 

discusses the algorithm and how it functions in a step-by-step manner. The whole process of the 

implementation is explained thoroughly and snippets of the code are shown where appropriate. 

Chapter 4 discusses the results obtained from the previous chapter. It first elaborates on the 

database used then talks about the runtime environment in details. It explains the output of the 

Aw SP PCA code and evaluates them in context of parallel programming. 

Chapter 5 draws a conclusion from the evaluations of the previous chapter and tries to settle the 

questions posed by the research paper. It also extends into providing suggestions as to what can 

be done to further improve the results of this paper and proposes a few more questions. 

Chapter 6 lists all the related works used in the production of this paper and any and all citations 

provided.  
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2. Literature Review 

 

2.1 Aw SP PCA 

Principal component analysis (PCA) is an algorithm that has found application in fields such as 

face recognition and image compression, and is a common technique for finding patterns in data 

of high dimension. The luxury of graphical representation is not available when searching for 

patterns in data of high dimensions. This is where PCA becomes a powerful tool for analyzing 

data. 

The traditional PCA operates directly on whole patterns represented as (feature) vectors to 

extract so-needed global features for subsequent classification by a set of previously found 

global projectors from a given training pattern set, whose aim is to maximally preserve original 

pattern information after extracting features, i.e., reducing dimensionality. SpPCA operates 

instead directly on a set of partitioned sub-patterns of the original pattern and acquires a set of 

projection sub-vectors for each partition to extract corresponding local sub-features and then 

synthesizes them into global features for subsequent classification. These sub-patterns are 

formed via a partition for an original whole pattern and utilized to compose multiple training 

sub-pattern sets for the original training pattern set. In this way, SpPCA can independently be 

performed on individual training sub-pattern sets and finds corresponding local projection sub-

vectors, and then uses them to extract local sub-features from any given pattern. Afterwards, 

these extracted sub-features from individual sub-patterns are synthesized into a global feature of 

the original whole pattern for subsequent classification. 

Aw-SpPCA operates directly on the sub patterns partitioned from an original whole pattern and 

separately extracts features from them. In Aw-SpPCA not only is the spatially-related 

information in a face image considered and preserved in each sub-pattern, but also the different 

contributions made by different parts of the face are emphasized. Aw-SpPCA incorporates both 

PCA and SPPCA algorithms. Where SpPCA does not concern different contributions made by 

different sub-patterns, in other words, it endows equal importance to different parts of a pattern 

in classification, Aw-SpPCA can adaptively compute the contributions of each part and then 

endows them to a classification task in order to enhance the robustness to both expression and 

illumination variations. Due to this classification accuracies are improved beyond that of SpPCA. 
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2.2 Parallel computing 

Parallel computing is a form of computation in which many calculations are carried out 

simultaneously.[23]It defines the ability to complete multiple tasks concurrently. Up till now 

parallelism has only been used to some extent. However, in the age of high performance it is 

absolutely necessary for programs to run faster and when everything else remains constant 

parallel computing is the only way to achieve better performance. Parallelism has been employed 

for many years, mainly in high-performance computing, but interest in it has grown lately due to 

the physical constraints preventing frequency scaling.[24]Frequency scaling was the dominant 

reason for improvements in computer performance. The runtime of a program is equal to the 

number of instructions multiplied by the average time per instruction. Maintaining everything 

else constant, increasing the clock frequency decreases the average time it takes to execute an 

instruction. However increases in frequency increase the amount of power used in a processor. 

To solve both the power consumption and frequency scaling problems, parallel computing is 

necessary. It operates on the principle that large problems can often be divided into smaller ones, 

which can be solved with relative ease. These small problems then are distributed among the 

processing units to be solved concurrently with the objective of reducing the runtime of the 

program. The processing elements can be diverse and include resources such as a single 

computer with multiple processors, several networked computers, specialized hardware, or any 

combination of the above.[25]Ideally, parallel processing makes programs run faster because 

there are more engines (CPUs or Cores) running it. In practice, it is often difficult to divide a 

program in such a way that separate CPUs or cores can execute different portions without 

interfering with each other.  However when program environment stays constant the only way to 

improve a program‘s execution speed is through parallel computing. 

 

Theoretically, parallelization induced speed-up should be linear as in, doubling the number of 

processing elements should halve the runtime, and doubling it a second time should halve the 

current runtime. However, in practice very few parallel algorithms can achieve this. Most of 

them have a near-linear speed-up for small numbers of processing elements, which flattens out 

into a constant value for large numbers of processing elements. The potential speed-up of an 

algorithm on a parallel computing platform is given by Amdahl's law. It states that a small 

portion of the program which cannot be parallelized will limit the overall speed-up available 

from parallelization. A program solving a large mathematical or engineering problem will 

typically consist of several parallelizable parts and several non-parallelizable (sequential) parts. 

If the sequential portion of a program accounts for 10% of the runtime, we can get no more than 

a 10× speed-up, regardless of how many processors are added. This puts an upper limit on the 

usefulness of adding more parallel execution units. 
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When a task cannot be partitioned because of sequential constraints, the application of more 

effort has no effect on the schedule. The bearing of a child takes nine months, no matter how 

many women are assigned.[26] 

One of the fundamental concepts, anyone trying to implement parallel algorithms has to 

understand is data dependencies. No program can run more quickly than the longest chain of 

dependent calculations, since calculations that depend upon prior calculations in the chain must 

be executed in order. However, most algorithms do not consist of just a long chain of dependent 

calculations; there are usually opportunities to execute independent calculations in parallel. So if 

there are no dependencies between instructions or tasks, then they can be executed in parallel. 

There are several different forms of parallel computing: bit-level, instruction-level parallelism 

and task parallelism. Ever since very-large-scale integration computer-chip fabrication 

technology had been invented, speed-up in computer architecture was done by increasing bit-

level parallelism. Increasing the word or bit size reduces the number of instructions the processor 

must execute to perform an operation on variables whose sizes are greater than the length of the 

word. For example, an 8-bit processor takes two instructions to complete a 16-bit integer 

addition, where a 16-bit processor can complete the operation with a single instruction. In 

instruction-level parallelism(ILP), the number of operations in a program that can be run 

simultaneously is measured. The goal of compiler and processor designers is to identify and take 

advantage of as much ILP as possible. Where typically programs are written in a sequential 

manner and executes one after the other, ILP allows compiler and the processor to overlap the 

execution of multiple instructions or change the order in which they are to be executed. 

Task parallelism focuses on distributing execution process on a program code across different 

parallel computing units in parallel computing environments. In a multiprocessor system, task 

parallelism is achieved when each processor executes multiple threads containing same or 

different code, on the same or different data. In general, different execution threads communicate 

with one another as they work. Communication usually takes place by passing data from one 

thread to the next as part of a work-flow. Task parallelism emphasizes on the distribution of the 

processes, as opposed to the data parallelism which focuses on distributing data. Most real 

programs fall somewhere on a continuum between task parallelism and data parallelism. 

Parallel computers can be classified according to the level at which the hardware supports 

parallelism. Among these classifications General-purpose computing on graphics processing 

units (GPGPU) is a fairly recent trend in computer engineering research. General-Purpose 

Computing on Graphics Processing Units (GPGPU) is the utilization of a graphics processing 

unit (GPU), which typically handles computation only for computer graphics, to perform 

computation in applications traditionally handled by the central processing unit (CPU).[27] 

GPUs were born for high end graphics processing. Recently interfaces have been built to interact 

with codes not related to graphical purposes, for example for linear algebraic matrix 
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manipulations. Because of this high-performance computing using GPUs has become 

increasingly popular due to their remarkable computational power, improved programmability 

and relatively cheap prices. Performing general purpose computing on graphics processor units 

usually leads to performance gains of several orders of magnitude compared with traditional 

CPU implementations. The model for GPU computing is to use a CPU and GPU together in a co-

processing computing model. The sequential part of the application runs on the CPU and the 

computationally-intensive part is accelerated by the GPU. From the user‘s perspective, the 

application just runs faster because it is using the high-performance of the GPU to boost 

performance.  

GPUs are co-processors that have been heavily optimized for computer graphics 

processing.[28]The success of GPGPUs in the past few years has been the ease of programming 

of the associated CUDA parallel programming model. In this programming model, the developer 

modifies their application to take the compute-intensive kernels and map them to the GPU. The 

rest of the application remains on the CPU. Mapping a function to the GPU involves rewriting 

the function to expose the parallelism in the function and adding keywords to move data to and 

from the GPU.  

Though a program may execute faster, parallel computing can also induce bugs in the program 

such as, race condition, deadlocks, parallel slowdown etc. In a parallel program subtasks are 

referred as threads or processes. Threads will often need to use or update variables that are 

shared among all the threads in the thread-pool. So if one thread is executing an instruction that 

changes the data of a variable, while another thread also manipulates that same variable then the 

first thread will produce the wrong result. This is known as race condition. This is easily solved 

by with mutual exclusion. A lock is placed on the thread to take control of a variable and prevent 

other threads from reading and writing it, until that variable is unlocked. After the thread has 

finished executing, the data is unlocked and can be accessed by other threads again. Locking 

multiple variables using non-atomic locks introduces the possibility of program deadlock. An 

atomic lock locks multiple variables all at once. If it cannot lock all of them, it does not lock any 

of them. If two threads each need to lock the same two variables using non-atomic locks, it is 

possible that one thread will lock one of them and the second thread will lock the second 

variable. In such a case, neither thread can complete, and deadlock results. 

Parallelization does not always result in speedup. As a task is split up into smaller tasks and 

assigned to threads, those threads spend an increasing amount of their time communicating with 

each other. Eventually, the overhead from communication dominates the time spent solving the 

problem and further parallelization increases rather than decreases the amount of time required to 

finish. This is known as parallel slowdown. 
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2.3 Facial Recognition 

Comparing with other biometrics, the most superiority of face biometric is its non-intrusive 

nature. Therefore, face is one of the most suitable biometrics for surveillance applications. A 

facial recognition system is a computer application which uses a digital image or a video frame 

from a video source to identify or verify a person. One of the ways to do this is by comparing 

selected facial features from the image and a facial database.  

It is typically used in security systems and can be compared to other biometrics such as 

fingerprint or eye iris recognition systems.[29]There are different ways a facial recognition 

system can work. Some facial recognition algorithms identify facial features by extracting 

landmarks, or features, from an image of the subject's face. These features are then used to 

search for other images with matching features. Other algorithms normalize a gallery of face 

images and then compress the face data, only saving the data in the image that is useful for face 

recognition. A probe image is then compared with the face data. One of the earliest successful 

systems is based on template matching techniques applied to a set of salient facial features, 

providing a sort of compressed face representation. Geometric, which looks at distinguishing 

features, or photometric, which is a statistical approach that distills an image into values and 

compares the values with templates to eliminate variances are the two main approaches facial 

recognition can be classified into. Popular recognition algorithms include Principal Component 

Analysis using eigenfaces, Linear Discriminate Analysis, Elastic Bunch Graph Matching using 

the Fisherface algorithm, the Hidden Markov model, the Multilinear Subspace Learning using 

tensor representation, and the neuronal motivated dynamic link matching.  

Existing methods of facial recognition can be divided into two categories: 2D methods and 3D 

methods (or their hybrid). Because the pose variation is essentially caused by the 3D rigid 

motion of face, 3D model based methods generally have higher precision than 2D methods. Due 

to lacking one degree of freedom, 2D methods often use some 2D transformations to 

approximate the 3D transformation and compensate the error by some statistical learning 

strategies. The learning procedures are either conducted in image space or feature space. 3D 

methods are always based on a 3D face model, which may be a single model, or a deformable 

model in certain parametric forms. The flexibility and precision of the 3D face model is the core 

of 3D methods, therefore we usually call them as 3D model assisted methods. In typical face 

recognition applications, the enrolled face images (gallery) are usually captured under controlled 

environment, while the quality of on-site face images (probe) are uncontrolled. 

Among the newly emerging forms of facial recognition, claimed to achieve improved accuracies, 

is three-dimensional face recognition. This technique uses 3D sensors to capture information 

about the shape of a face. This information is then used to identify distinctive features on the 

surface of a face, such as the contour of the eye sockets, nose, and chin. One advantage of 3D 

facial recognition is that it is not affected by changes in lighting like other techniques. It can also 

identify a face from a range of viewing angles, including a profile view. Three-dimensional data 



9 
 

points from a face vastly improve the precision of facial recognition. 3D research is enhanced by 

the development of sophisticated sensors that do a better job of capturing 3D face imagery. The 

sensors work by projecting structured light onto the face. Up to a dozen or more of these image 

sensors can be placed on the same CMOS chip—each sensor captures a different part of the 

spectrum.[30]Even a perfect 3D matching technique could be sensitive to expressions. For that 

goal a group at the Technion applied tools from metric geometry to treat expressions as 

isometries. Using the visual details of the skin, as captured in standard digital or scanned images 

is another emerging technique for facial recognition. This technique, called skin texture analysis, 

turns the unique lines, patterns, and spots apparent in a person‘s skin into a mathematical space.  

Tests have shown that with the addition of skin texture analysis, performance in recognizing 

faces can increase 20 to 25 percent.[31]Questions have been raised on the effectiveness of facial 

recognition software in cases of railway and airport security. Face recognition is not perfect and 

struggles to perform under certain conditions. From the early stages of face recognition research 

to now, pose variation was always considered as an important problem. The problem gained 

great interest in the computer vision and pattern recognition research community, and many 

promising methods have been proposed to tackle the problem of recognizing faces in arbitrary 

poses. However, none of them is free from limitations and is able to fully solve the pose 

problem. As noted in a recent survey, the protocols for testing face recognition across pose are 

even not unified, which indicates that a lot more work is needed to build a fully pose invariant 

face recognition system. Other conditions where face recognition does not work well include 

poor lighting, sunglasses, long hair, or other objects partially covering the subject‘s face, and low 

resolution images. Because of these conditions and due to the limitations of the machine if the 

picture that is provided and the picture that is in the database vary by a considerable margin then 

even if the picture belongs to the same person the machine will fail to recognize the person. 

Another serious disadvantage is that many systems are less effective if facial expressions vary. 

Even a big smile can render the system less effective. For instance: Canada now allows only 

neutral facial expressions in passport photos. There is also inconstancy in the datasets used by 

researchers. Researchers may use anywhere from several subjects to scores of subjects, and a few 

hundred images to thousands of images. It is important for researchers to make available the 

datasets they used to each other, or have at least a standard dataset.  

Ralph Gross, a researcher at the Carnegie Mellon Robotics Institute, describes one obstacle 

related to the viewing angle of the face: "Face recognition has been getting pretty good at full 

frontal faces and 20 degrees off, but as soon as you go towards profile, there've been 

problems."[32] 

Authorities have found a number of applications for facial recognition systems. While earlier 

post-9/11 deployments were well publicized trials, more recent deployments are rarely written 

about due to their covert nature. The Mexican government employed facial recognition software 

to prevent voter fraud. Some individuals had been registering to vote under several different 

names, in an attempt to place multiple votes. By comparing new facial images to those already in 
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the voter database, authorities were able to reduce duplicate registrations. Similar technologies 

are being used in the United States to prevent people from obtaining fake identification cards and 

driver‘s licenses. There are also a number of potential uses for facial recognition that are 

currently being developed. This technology could also be used as a security measure at ATMs. 

Instead of using a bank card or personal identification number, the ATM would capture an image 

of the customer's face, and compare it to the account holder's photo in the bank database to 

confirm the customer's identity. Facial recognition systems are used to unlock software on 

mobile devices. An independently developed Android Marketplace app called VisidonApplock 

makes use of the phone's built-in camera to take a picture of the user. Facial recognition is used 

to ensure only this person can use certain apps which they choose to secure. Face detection and 

facial recognition are integrated into the iPhoto application for Macintosh, to help users organize 

and caption their collections. Modern digital cameras often incorporate a facial detection system 

that allows the camera to focus and measure exposure on the face of the subject, thus 

guaranteeing a focused portrait of the person being photographed. Some cameras, in addition, 

incorporate a smile shutter, or take automatically a second picture if someone closed their eyes 

during exposure. Because of certain limitations of fingerprint recognition systems, facial 

recognition systems are used as an alternative way to confirm employee attendance at work for 

the claimed hours. Another use could be a portable device to assist people with prosopagnosia in 

recognizing their acquaintances. 

At Super Bowl XXXV in January 2001, police in Tampa Bay, Florida used Viisage facial 

recognition software to search for potential criminals and terrorists in attendance at the event. 19 

people with minor criminal records were potentially identified.[33] 

One of the key advantages of facial recognition is that it does not require the cooperation of the 

test subject to work. Properly designed systems installed in airports, multiplexes, and other 

public places can identify individuals among the crowd, without passers-by even being aware of 

the system. Other biometrics like fingerprints, iris scans, and speech recognition cannot perform 

this kind of mass identification. However, privacy has become one of the many issues that have 

been introduced due to this. It can be used not just to identify an individual, but also to unearth 

other personal data associated with an individual – such as other photos featuring the individual, 

blog posts, social networking profiles, Internet behavior, travel patterns, etc. – all through facial 

features alone. Moreover, individuals have limited ability to avoid or thwart facial recognition 

tracking unless they hide their faces. This fundamentally changes the dynamic of day-to-day 

privacy by enabling any marketer, government agency, or random stranger to secretly collect the 

identities and associated personal information of any individual captured by the facial 

recognition system. 
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2.4 CUDA 

CUDA (Compute Unified Device Architecture) is a parallel computing platform and 

programming model created by NVIDIA and implemented by the graphics processing units 

(GPUs) that they produce.[34] 

CUDA gives program developers direct access to the virtual instruction set and memory of the 

parallel computational elements in CUDA supported GPUs. Using CUDA, the GPUs can be used 

for general purpose processing (i.e., not exclusively graphics); this approach is known as 

GPGPU. Unlike CPUs, however, GPUs have a parallel throughput architecture that emphasizes 

executing many concurrent threads slowly, rather than executing a single thread very quickly. 

CUDA provides both a low level API and a higher level API. CUDA works with all Nvidia 

GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is 

compatible with most standard operating systems. Nvidia states that programs developed for the 

G8x series will also work without modification on all future Nvidia video cards, due to binary 

compatibility.CUDA has several advantages over traditional general-purpose computation on 

GPUs (GPGPU) using graphics APIs. Scattered read is a term used to define the ability to read 

from arbitrary address in memory. This is implemented in CUDA for better performance. It also 

has unified virtual memory. This feature was added for CUDA 6 which allows disparate x86 and 

GPU memory pools to be addressed together in a single space. However unified virtual 

addressing only simplified memory management; it did not get rid of the required explicit 

memory copying and pinning operations necessary to bring over data to the GPU first before the 

GPU could work on it. It can also download and readback, to and from the GPU faster. Full 

support for integer and bitwise operations, including integer texture lookups is also integrated in 

CUDA. Also CUDA exposes a fast shared memory region (up to 48KB per Multi-Processor) that 

can be shared amongst threads. Shared memory is memory that may be simultaneously accessed 

by multiple programs with an intent to provide communication among them or avoid redundant 

copies. So calculations and processes run faster without hampering other processes.This can be 

used as a user-managed cache, enabling higher bandwidth than is possible using texture 

lookups.[35] 

Although CUDA has many advantages it is not immune to drawbacks. For instance texture 

rendering is not supported by CUDA. However CUDA 3.2 and up addresses this by introducing 

"surface writes" to CUDA arrays, the underlying opaque data structure. Copying between host 

and device memory may incur a performance hit due to system bus bandwidth and latency. This 

can be partly alleviated with asynchronous memory transfers, handled by the GPU's DMA 

engine. Also threads should be running in groups of at least 32 for best performance, with total 

number of threads numbering in the thousands. Branches in the program code do not affect 

performance significantly, provided that each of 32 threads takes the same execution path. the 

SIMD execution model becomes a significant limitation for any inherently divergent task. Valid 

C/C++ may sometimes be flagged and prevent compilation due to optimization techniques the 
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compiler is required to employ to use limited resources. Double precision floats deviate from the 

IEEE 754 standard: round-to-nearest-even is the only supported rounding mode for reciprocal, 

division, and square root. In single precision, denormals and signaling NaNs are not supported. 

Only two IEEE rounding modes are supported (chop and round-to-nearest even), and those are 

specified on a per-instruction basis rather than in a control word; and the precision of 

division/square root is slightly lower than single precision. CUDA also runs the host code 

through a C++ compiler. Due to this some valid C instructions which are invalid for C++ fail to 

compile. Unlike OpenCL, CUDA-enabled GPUs are only available from Nvidia.[36] 

 

2.5 NVidia 

Nvidia Corporation is an American global technology company based in Santa Clara, California. 

Nvidia manufactures graphics processing units (GPUs), as well as having a significant stake in 

manufacture of system-on-a-chip units (SOCs) for the mobile computing market. In addition to 

GPU manufacturing, Nvidia provides parallel processing capabilities to researchers and scientists 

that allow them to efficiently run high-performance applications.GeForce is a brand of graphics 

processing units (GPUs) designed by Nvidia. The 700 series is a member of the GeForce family. 

The GeForce 700 Series contains features from both GK104 and GK110. GK110 has been 

designed and is being marketed with compute performance in mind. It contains 7.1 billion 

transistors. This model also attempts to maximise energy efficiency through the performance of 

as many tasks as possible in parallel according to the capabilities of its streaming processors. 

With GK110, Nvidia also reworked the GPU texture cache to be used for compute. There are 

also new features from GK110 such as CUDA compute compatibility 3.5. It provides new 

shuffle instructions and grid management unit. At a low level, GK110 sees an additional 

instructions and operations to further improve performance. New shuffle instructions allow for 

threads within a warp to share data without going back to memory, making the process much 

quicker than the previous load/share/store method.  It also includes NVIDIA GPUDirect 

although it's RDMA functionality is reserved for Tesla technology only. Another interesting 

feature of this series is dynamic parallelism. Dynamic Parallelism allows kernels to be able to 

dispatch other kernels. With Fermi, only the CPU could dispatch a kernel, which incurs a certain 

amount of overhead by having to communicate back to the CPU.By giving kernels the ability to 

dispatch their own child kernels, GK110 can both save time by not having to go back to the 

CPU, and in the process free up the CPU to work on other tasks.[36] 
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2. 5 Matlab 

Matlab (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-

generation programming language. Matlab allows matrix manipulations, plotting of functions 

and data, implementation of algorithms, creation of user interfaces, and interfacing with 

programs written in other languages, including C, C++, Java, and Fortran. Although Matlab is 

intended primarily for numerical computing, an optional toolbox uses the MuPAD symbolic 

engine, allowing access to symbolic computing capabilities. Matlab is widely used in academic 

and research institutions as well as industrial enterprises. Matlab can easily interface with other 

languages. Libraries written in Perl, Java, ActiveX or .NET can be directly called from Matlab, 

and many MATLAB libraries (for example XML or SQL support) are implemented as wrappers 

around Java or ActiveX libraries. Calling Matlab from Java is more complicated, but can be done 

with a Matlab toolbox or using an undocumented mechanism called JMI. Matlab can also call 

functions and subroutines written in the C programming language or Fortran. A wrapper function 

is created allowing Matlab data types to be passed and returned. The dynamically loadable object 

files created by compiling such functions are termed "MEX-files 

 

 

 

 

 

 

 

 

 

 



14 
 

 

3. Implementing AwSpPCA 

 

3.1 Database 

Tan, K.Songcan, C. [1] has introduced the algorithm that this paper intends to parallelize. Here, 

three separate databases are used to evaluate the efficiency of AwSpPCA; the ORL database, the 

Yale database and the AR database. Our thesis uses the Yale database to perform evaluations. 

The Yale Database contains two sets of faces – one set contains the subject‘s faces against a 

significant portion of the background, while the other has been cropped to only present the facial 

area. These faces are presented in different lighting conditions from different directions. It was 

chosen purposefully to make recognition harder and reveals the strength of Aw Sp PCA against 

PCA. The database contains faces of 39 individuals, both male and female, with 64 images per 

person making a total of 2496 images. The images are in 192x180 pixels, in the ‗.pgm‘ format.  

 

3.2 Image Preprocessing 

The cropped Yale database was used and the pictures were resized into 77x66 pixels. These 

dimensions were chosen because they provide a greater scope of Sub-patterning and the reduced 

pixels allows for faster calculations in covariance matrix and eigenvectors. However this resizing 

lowers the quality of the images and as such must be done with reserve. The implementation of 

Aw SP PCA requires the use of a Training Set and Test Set of images. Therefore, we needed to 

split the database into two sections. The Training sets and the Test sets were generated at random 

from the database. Depending on the implementation, up to 30 training images and 30 test 

images for every person were selected to run the algorithm on. 

 

3.3Training Database 

3.3.1 Sub-Pattern Partitioning 

The Yale database is arranged as subfolders containing all the images of one person. There are 

39 folders in total, and depending on the number of training images we had decided to train the 

database with, meaning a fixed number of random pictures from every folder is chosen as input. 

It is necessary to keep count of this for every person as will be shown later. The selected image is 

taken and partitioned into portions as selected and arranged into a one dimensional array 
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containing the grayscale values of the pixels. Thus we have the vectorized representation of an 

image. 

For image dimensions of N width and M height in pixels (totaling a N*M number of pixels per 

image), the image can be partitioned into numbers of rows which are a factor of M and column 

numbers which are a factor of N so as to avoid a loss of pixel data when creating sub-patterns. 

Therefore, for sub-patterns of m columns and n rows will give a total of m*n sub-patterns. The 

total number of pixels per sub-pattern will be given by  

                 

After being read, the image is cropped into a specified number of sub-patterns. The pixels are 

appended under each other in one column array for that sub-pattern. The next sub-pattern is 

converted into another 1-dimensional array and this is concatenated to the end of the previous 

sub-pattern‘s column array. This process is iterated over the remaining sub-patterns and 

eventually results in a vectorized array for one image. For the next image in the dataset, the 

above process is repeated and another column array is generated and so on, until all images for 

one person has been vectorized and placed next to each other. Thus, for I number of images for 

one person, we will have an array of N*M height and I width. 

 

Figure 1. – Partition Image into Sub-Patterns 
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3.3.2 Probe Sets 

After the vectorization of every training image of one person, we must create one column array 

for the mean and another column array for the median of the set of images. The mean is 

calculated by averaging the pixel values in every row of the vectorized training images 

calculated in the previous step. For the median, the middle values for the pixels are taken. Thus 

for all images for a single person, in the training set, we will have a rectangular array of the 

vectorized image array, a 1-dimensional column array for the mean and another for the median. 

3.3.3 Filling up the database 

Given a particular database, the algorithm assumes a number of images will be used as the 

training images and to generate the probes sets. This is done for a multitude of different people 

and thus the training dataset is completed. Therefore, given a set of images with J different 

people, and number of images of I per person, we should have J*I number of vectorized training 

images and J mean and median probe sets. 

3.3.4 Parallelizing 

The above steps are relatively simple and require little calculations on the Processing unit‘s part. 

For the serialized version, the images are read in a loop and one image is taken per cycle.  

CUDA allows access to the processing capabilities of the NVIDIA GPU and gives the ability to 

run calculations on the GPU in parallel. The GPU used (See Chapter 4.1) contains 12 

multiprocessor cores and they were used to perform computations in parallel. The results are 

shown in Figure 2. This section was chosen since the computations here can be considered 

embarrassingly parallel. Also, the next section of the algorithm requires data from every pixel in 

every image; otherwise the covariance cannot be calculated, which is why the next section could 

not be put in parallel with the execution of this particular instruction sequence. The sequence of 

the tasks being executed is such that the Single Instruction Multiple Data [3] system would work 

on multiple threads to process the data of one image per core. Upon completion of the input of 

one of the processes of any core, it will move on to the next available image that has yet to be 

read and re-executes the instruction sequence on that image. 
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Figure 2. Number of Input Imagesvs. Time 

 

The curves for the number of cores used grow linearly with number of image inputs. It can also 

be seen from the graph plot that while at inputs at less than 250 images, it is more efficient to use 

the serial implementation. However, an anomalous change is detected with the use of a single 

core of the GPU. As the number of inputs is increased, the time taken is also increased, but not 

linearly as is the case with the others. It increases with a certain exponential characteristic. This 

is because initializing threads and workers on a single processor has certain overheads which 

simply do not scale with the workload it has been presented with. The GPUs are designed for 

multitasking, therefore by limiting its work to a single GPU, much of the work it does is 

redundant and inefficient, resulting in the rise in time. 

Note that while the graph functions were plot against all 12 cores, the last data for the last three 

cores are not presented since they show practically no improvement and the execution times. The 

reasons for this are explained in Chapter 4.4. 
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3.4 Principle Component Analysis 

 

3.4.1 Calculating Covariance Matrix 

The resultant of the previous steps produces a vectorized image array. Depending on the number 

of sub-patterns that has been decided on, this vectorized array is split for the calculations in the 

next steps. Given that the vectorized image array has N*M (row pixels and column pixels) pixels 

and the length of the array is J*I (total number of images), without sub-pattern partitioning we 

will require to calculate covariance with N*M values. The covariance is calculated by 

 

For details on the calculations for covariance, see [18]. 

Here, the covariance is calculated by summing the multiplied result of the mean subtracted row 

against another row and then dividing it by the total number of columns. The row contains the 

pixel values of all the images and therefore the covariance calculated here is the covariance 

between the pixels. With sub-patterns, we will create covariance separately for each of them, 

thus significantly reducing the time required to calculate them. With a larger number of sub-

patterns, there will be lesser pixels per sub-pattern and therefore less time required to calculate 

them. Putting it all together, we can say that given Sp being the number of pixels per sub-pattern, 

for every one sub-pattern the covariance matrix dimensions will be Sp*Sp.  

It must also be noted that the number of sub-patterns significantly affect the accuracy of the 

results. The details of the results can be found in Figure 3. The σ [Chapter 3.4.3] is kept at a 

constant 100% and the dataset for training and testing are kept the same while the sub-pattern 

row and sub-pattern columns are changed to check for their resulting differences in accuracy. It 

has been found that an increase in sub-pattern will increase accuracy, though not proportionally. 

These findings encourage the use of greater number of sub-patterns to optimize the Aw SP PCA 

algorithm both in execution time and in results. 
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Figure 3. Accuracy vs. Sub-patterns 

It is quite obvious that a greater number of sub-patterns yield better accuracy. However, noticing 

the trend with which the accuracy rises, it becomes apparent that after 35 sub-patterns, the 

accuracy falls victim to diminishing returns so it might seem redundant to use any more. 

3.4.2 Eigenvectors and Eigenvalues 

The covariance matrix is a representation of the relationship between the pixel values of the 

images. It can be said that the covariance can accurately show the deviation of every pixel 

against each other. Being a square matrix, the covariance matrix can have eigenvectors and 

eigenvalues derived from it. This process is equivalent to finding the axis system in which the 

covariance matrix is diagonal. The eigenvector with the largest eigenvalue is the direction of the 

greatest variation, the one with the second largest value is the (orthogonal) direction with the 

next highest variation and so on.  Let A be a square matrix with k Х k dimensions. The 

eigenvalues of A are defined as the roots of  

determinant(A – λI) = |(A – λI)| = 0 

where I is the k Хk identity matrix. This equation is called the characteristic equation (or 

characteristic polynomial and has k roots. 



20 
 

Let λ be an eigenvalue of A. then there exists a vector such that 

Ax = λx 

The vector x is called an eigenvector of A associated with the eigenvalue λ. Notice that there is 

no unique solution for x in the above equation. It is a direction vector only and can be scaled to 

any magnitude. To find a numerical solution for x we need to set one of its key elements too an 

arbitrary value, which gives us a set of simultaneous equations to solve for the other elements. 

The values that result are usually normalized as x*x’ = 1. 

What the above procedure effectively does is come up with a new set of axes directions which 

better suit to represent the vectorized images. The eigenvectors are essentially the new 

directional axes upon which a projection of the images will give a set of coordinates on what is 

called the eigenspace. It is in this eigenspace that we calculate the Euclidean distances to come 

up with a sub-pattern weight set and classification results as shown in Chapter 4. 

This is the second last step in performing Principle Component Analysis. The generation of the 

Eigenvectors and their corresponding eigenvalues makes it possible to find the underlying the 

components in a set of data, thus being called the Principle Components. As was seen in the 

previous section regarding the relationship between sub-pattern number and calculation times for 

covariance matrices, the same is true for eigenvector calculations. A smaller covariance matrix 

will yield a smaller eigenvector matrix because of the need for fewer computations and result in 

faster outputs. 

3.4.3 Dimension Reduction Heuristics 

The next step is to organize the eigenvectors in descending order with respect to their 

eigenvalues. In other words, the eigenvector with the highest eigenvalue is put first, the second 

highest is put next and so on. The purpose of doing this is to analyze the eigenvectors to see 

which ones have the most impact and which have the least on the dataset. In terms of this 

implementation, the results of sorting the eigenvalues will give us the pixels which have the least 

impact (meaning change the smallest) throughout the dataset. After sorting, it becomes apparent 

that certain pixels are more important than others on the variations of the pixel values in the 

dataset. The less important ones, if significantly low enough can be ignored and removed from 

the original eigenvectors generated, resulting in a smaller eigenvector matrix.The decision of 

which portions (or how much) of the eigenvectors is unnecessary requires a heuristic approach to 

it (one may even consider the usage of Artificial Intelligence algorithms to come up with an 

optimal solution). The mathematical approach to this is to assign a value σ, where 

σ = (number of eigenvectors taken/total number of eigenvectors) * 100 
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By changing the value of σ, we can quite effectively manipulate the algorithm into choosing the 

top few percent of the total values. To figure out the changes, a graph of σ versus accuracy is 

plotted, and the results are show in Figure 4. 

 

 

Figure 4.Accuracy vs. σ 

From the above graph, it is apparent that increasing the σ over 10% results in lower increases in 

accuracy. The highest accuracy was at 50% at 92%. 

3.4.4 Parallelizing 

As mentioned above, the best way to improve the running time of the algorithm can be set by 

increasing the number of sub-patterns used. There are multiple prospects of applying 

parallelization to this portion of the algorithm. The first would be to select one particular sub-

pattern from the vectorized images matrix, and send it to one core to perform eigenspace 

calculations and return that particular sub-pattern‘s array, with every core working on a different 

sub-pattern.The other option would be to take every sub-pattern serially and compute the 

covariance between two particular rows on one core and other combinations on other cores in 

parallel (it is not possible to parallel compute eigenspace due to its inherent requirement of data 

dependency). However this was not chosen as the parallel model due to the fact that covariance 

matrix has little computational costs with larger number of sub-patterns and contribute little to 

the overall time for this portion. It must be realized that GPUs specialize in executing 

mathematical functions efficiently and covariance calculations are just a series of summations 

and multiplications, making the calculations very efficient in a GPU. Therefore, the above model 

was chosen to be the parallel model. 
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Figure 5 – Parallel implementation of Eigenspace generation 

 

Figure 6 – Time vs. Sub-pattern 
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It can be seen that the steepest drops in time results from the increase of sub-patterns rather than 

the use of multiple cores of the GPU. There is an extreme improvement for sub-pattern numbers 

greater than 4, but any other numbers beyond that yield little benefits to execution time. This can 

be attributed to the fact that by partitioning an image, we are effectively lowering the number of 

dimensions that will be required for calculation, so eigenspace and covariance calculations show 

drastic improvements. However, the use of multiple cores shows practically no difference, which 

was a surprise since even the least amount of performance benefits could have been expected, 

however minimal. Since no performance benefits were apparent, it seems as though this section 

of the algorithm was better left in its serialized version 

 

3.5 Computing Sub-pattern Weights 

3.5.1 Weights 

The major difference between classical Principle Component Analysis and Adaptively weighted 

Sub-patterned Principle Component Analysis is the latter‘s use of taking into account the 

separate contribution degrees of a particular portion of the image. These contributions are given 

a quantitative value in the form of weights. These weights are not assigned by the programmer. 

Instead, a separate function must be written in order to compute the weights per sub-pattern 

through the use of the mean and median (as calculated in Chapter 3.4.1) probe sets and by 

comparing them against the training set. The contributions of a sub-pattern are basically how 

important that particular portion of the image is in determining the final output of the 

classification result. The process of calculating a sub-pattern‘s weight starts by comparing that 

sub-patterns probe sets and matching them against the training set images. If the sub-pattern 

mean or median manages to get a correct hit, then the sub-pattern‘s weight is increased by one. 

In this way, all sub-patterns are checked for accuracy and their weights adjusted accordingly. 

3.5.2 Projection on Eigenspace 

Given a set of eigenvectors, a projection of a matrix or matrices means placing that matrix in the 

eigenspace in the form of a point on the coordinate system. This is done through matrix 

multiplication of the eigenvector matrices with the matrices to be placed. For the purposes of this 

algorithm, the set of vectorized images are the matrices that need to be projected in the 

eigenspace, as is given by –  

EigenSpaceCoordinates = Eigenvectors * VectorizedImagesMatrix 
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As such, given two such points in the eigenspace, the distance between them can be measured in 

Euclidean Distances. The formula for it is given by –  

Euc(x, y) = ((x₁ - y₁)²+ (x₂ - y₂)²+ . . . . . + (xi – yi)²)
1/2 

 

3.5.3 Calculating Sub-pattern Weights 

In classical Principle Component Analysis (for Facial Recognition), two images, the unknown 

image which needs to be classified and the database image against which it is being classified, 

are projected on the eigenspace and the distances are calculated through the Euclidean distance 

formula mentioned above. The image to be classified is compared against the distances of all the 

images in the training database and the training image which has the least distance is considered 

to be the closest match to the unknown image. The same is true for Aw SP PCA. However, 

instead of comparing whole images, sub-patterns are compared to their corresponding sub-

patterns in other images. This is how the weights of the sub-patterns are calculated. The process 

begins by initializing an array of size equaling the number of sub-patterns. Next, the median and 

mean of one person is taken and one of the sub-patterns is selected from both the mean and 

median. This sub-pattern is then compared to the all the training set images‘ corresponding sub-

patterns. The step sequence is shown in Figure 8. The results of the comparisons are checked. If 

the sub-pattern comparison yields the correct result, that is, if the closest Euclidean distance of 

the mean or median sub-pattern is the sub-pattern of one of the correct person‘s image to whom 

the probe set mean and median array belong to, then the value of that sub-pattern‘s weight array 

is increased by one. After the calculations for every sub-pattern has been completed for every 

mean and median array from the probe sets, then we will have the completed weight array. As a 

finishing touch, the values of the weights are recalculated to –  

Wi = Wi  /(2 * M) 

Where M is the number of means and medians in the probe set and Wiis the weight of sub-

pattern i. 

As can be seen from the steps, the iteration is threefold. The first loop iterates through all the 

probe set images, meaning once for every different person. The next loops through all the sub-

patterns and the last one goes through every image in the training set. Therefore, given that we 

have i number of people with every image being split to j sub-patterns and a total of m images in 

the training database, we will require i*j*m iterations in total. 
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Figure 7 – Euclidean Distance Calculation 

 

3.5.4 Parallel Implementation 

Given the number of iterations one must undergo here, and the fact that there is a great level of 

data independency per iteration, the parallel implementation prospects seem lucrative. The 

greatest number of iterations must be done in the loop that goes through all the training images. 

Thus it made most sense to perform one training image comparison per core. As mentioned 

before, the parallel architecture chosen was the Single Instruction Multiple Data structure. We 

have seen previously that the optimum number of sub-patterns is 36, which is why this number is 

kept constant while the Time vs. Cores is evaluated.  
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Figure 8.  – Parallel Implementation for sub-pattern weights 
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Figure 9. – Sub-pattern Weights - Time vs. Cores 

While it is expected that there should be a massive level of improvement for all cores, it is 

apparent that thread controlling overheads tend to take a toll on increase of cores. Also, there is a 

notable rise in execution time on using a single core of the GPU than using the series 

implementation on the CPU. This can be explained by the fact that the CPU used an Intel Core i7 

processor, which is a significantly powerful commercial processor with fully utilized 8 cores. 

Also, by limiting the number of cores in the GPU by 1, we are significantly increasing the tread 

overheads, resulting in the rise in time. 

 

3.6 Classification 

3.6.1 Test Image Vectorization 

The test images dataset must also be vectorized similarly as the training set images in Section 

3.3. It must be noted that the test images must also have the same dimensions as the training 

database images and thus be subjected to the same degree of partitioning. Ultimately the test 

image dataset will be created with the same processes just with the lack of creating a probe set 

for a set of images. 
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3.6.2 Classification 

The first step of this stage is to initialize a total weights array with a size equal to the number of 

people there was in the training database. This array holds the cumulative weight as calculated 

by the recognition algorithm. It is almost the same as the previous section, since it also requires 

measuring the Euclidean distances between sub-patterns. 

The steps start with selecting a test image from the vectorized images set. This image is then 

broken into its sub-patterned sections and projected on the corresponding eigenspace. The next 

step is to iteratively take every training database image‘s same section sub-pattern and project it 

on the same eigenspace. The Euclidean distance is measured and saved. After all the images 

have been measured against, the closest image to the test image is picked, and that image‘s 

corresponding person‘s weight is increased by the amount in that sub-pattern‘s weight array (the 

result from Section 3.5). 

After all training images have been looped through, the algorithm moves on to the next sub-

pattern and the whole process is repeated for one test image until all sub-patterns have been 

checked. The total weight array is then sorted, and the person with the greatest weight is 

considered the closest match to the test image and is given as a ‗hit‘. 

 

3.6.3 Parallel Implementation 

The image vectorization can be subject to instruction parallelism, with the performance graphs 

and implementations being virtually the same to Figure 2. 

Classification goes through the familiar steps from Section 3.5, with the differences being in the 

calculation of weightings and the inclusion of test input images. The iterations start with 

selecting all test images, then looping through all the sub-patterns. Lastly, all training images are 

gone through, which ultimately results in an algorithmic structure similar to those taken to 

calculate sub-pattern weight. Thus, it can also be subject to the parallel structure discussed above 

in Figure 9.  
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Figure 10.Classification - Time vs. Cores 

The explanations for this section are the same as in Chapter 3.5.4. However, one may note the 

significant differences in the values from Figure 10 in that this time the lowest runtime is for the 

7 core. Due to the greater number of computations involved in this part of the algorithm, it is 

apparent that it can fully utilize the processing capabilities of the 7 core processor, without being 

encumbered by overheads. It has been shown in [41] that larger problem sizes give better 

efficiency with a higher number of processors. So this section, having to undergo more iterations 

due to larger data size, is more efficient at the use of more cores. 
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4. Results and Discussion 

 

4.1 System Environment 

PC Specifications 

 Windows 8 – 64 bit 

 CUDA – Version 3.5 

 MATLAB 2013b 

PC 1 Hardware 

 Intel Core i7 4770 3.40GHz 

 Number of cores in CPU: 8 cores 

 Ram 16 GB 

 GPU: NVidia GTX 780 

 Multiprocessor Count for GPU: 12 

 Number of CUDA core in GPU: 2304 

 GPU memory size: 3GB 

 GPU memory Interface width: 384-bit 

PC 2 Hardware 

 Intel Core i7 4770 3.40GHz. 

 Number of cores in CPU: 8 cores.   

 Ram 16 GB. 

 GPU: NVidia GTX 660 

 Multiprocessor Count for GPU: 6. 

 Number of CUDA core in GPU: 960. 

 GPU memory size: 1GB. 

 GPU memory Interface width: 192-bit. 
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4.2 Accuracy 

From Figure-3, it can be seen that there were no significant performance benefits in runtime after 

increasing sub-pattern size over 4, therefore the accuracy benefits over any sub-pattern size over 

4 should be considered. Considering the results from Figure 3, sub-pattern size 35 seems to give 

the best results in accuracy. Since the number of sub-patterns must be the multiple of the factors 

for the image dimensions, the final number of sub-patterns chosen was 36.Similarly, from Figure 

7.itcan be concluded that by taking a σ value of over 30% will not result in significant increases 

in accuracy, and the peak accuracy is reached at a value of 50% (92% accuracy for 36 sub-

patterns). While a greater number of σ will result in a greater time for the overall execution, it 

must be understood that a compromise must be made between speed and accuracy. An increase 

of accuracy from using σ values from 30% to 50% results in an increase of 3% in accuracy, 

while any more increase does not provide any more benefits, but has greater execution time. 

Therefore, the σ of 50% was chosen, culminating to a final accuracy of 92.6315%. 

 

4.3 Results 

Going by the data from Figures 2, 3, 4, 6, 9, and 10, a reasonable estimate can be made on the 

time taken for the complete execution of the algorithm for every core used. The analysis proves 

that the best cores to be used would be 4 cores (for Sub-pattern Weights calculation) and 7 cores 

(for Recognition and Classification). It would have been best to be able change the number of 

cores for every section, but the time taken to pool resources and redistribute them again when 

changing cores requires too much time where the CPU will be involved in unnecessary work, so 

a compromise needs to be made, because the average number, which is 5, is taken. 

The use of 7 cores in the classification phase as compared to using 5 cores has a difference of 

approximately 0.47s. Similarly, the use of 4 cores in the Sub-pattern weights calculation phase as 

compared to using 5 cores has a difference of approximately 0.01s. Thus a compromise of 0.08 

seconds must be made by running the full algorithm on 5 cores of the NVidia GPU. 

Next, the vectorization sections are also analyzed and for 570 image (the size of the training 

dataset) from Figure 2 and using 5 cores give a respectable difference in execution time 

compared to serial. 

Based on these observations, it can be safely assumed that using 5 cores, with σ= 50% and sub-

patterns = 36, should give us the optimum result. 

Executing the algorithm on the above specifications on PC 1 gives an execution time of 

12.6707s. 



32 
 

Similarly, the algorithm was re-analyzed for PC 2, and it has been found that the optimum 

number of cores for this machine was 4, with it giving a runtime of 14.2245s. The summary of 

the results are given below. 

 

 

Figure 11. – Aw SP PCA Sequential and Parallel Times 

 

4.3 Discussion 

In order to further analyze the performance benefits, the speedup and efficiency of the speedup 

are calculated. They are given by – 
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Table 1. Performance Analysis Results 

 

 

Figure 12. Aw SP PCA ExecutionTime Distribution 

The time distribution of the Aw SP PCA Algorithm was measured through timing the different 

sections of the sequential implementation of the algorithm. According to Amdahl‘s Law, the 

maximum speedup of an algorithm is given by –  

                 
 

        ⁄
 

where N = number of processors and f= % of algorithm inherently sequential 

PC 1 PC 2 

 

Speedup = 2.74 

Efficiency = 55.3% 

 

Speedup = 2.62 

Efficiency = 65.6% 

Vectorization 
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Eigen Space 
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SubPattern Weight 
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The version of the algorithm implemented has been calculated to have f = 8%. The number of 

processors being used for the final execution was 5 (for PC 1). Thus the calculated Maximum 

Speedup = 3.78. 

Theoretically, the ideal time taken for execution against a number of processors should decrease 

proportionally. Had this been the case, the efficiency of speedup for Aw SP PCA would have 

been close to 100% and the speedup would have been close to the value calculated. However, 

practically it is much lower due to the cost constraint suffered by every parallel implementation 

of a program. These constraints are generally called ―communication overheads‖ and are known 

to increase as per equation –  

                                                                [40] 

The cost rises multiplicatively with additional processors, which explains the steady time taken 

after a certain number of processors are used. The problem size is also a factor. The explanations 

for these costs can be explained through detailed study of Load Balancing, Shared Memory, 

Resource Paging, Memory passing and more, with the details found in [21]. 
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5.   Conclusion and Future Work 

 

5.1 Conclusion 

Through the use of the Single Instruction Multiple Data design, the algorithm structure was 

changed to make the most efficient use of the parallel processing capabilities offered by CUDA 

and NVidia GPUs. The results are below the mark by quite a large margin when compared 

against the speedup efficiency and the expected values expected from speedup judging by 

Amdahl‘s Law. However, the aim of the paper, which was to implement parallel processing 

techniques to decrease the runtime was achieved to some degree. A speedup of over 2.5 is a 

significant improvement. The analysis of sub-patterns against and heuristics against accuracy 

also yielded beneficial results compared to [1]. An increase in accuracy of almost 5% was 

achieved. 

 

5.2 Future Work 

There remains much to be done about Aw SP PCA considering increasing its accuracy. One such 

work would be to analyze the benefits of scaling sub-patterns to see their effects on accuracy. 

Similarly, using the RGB values instead of using plain grayscale values to increase accuracy 

would also be an option. While this paper uses the SIMD to parallely implement Aw SP PCA, 

using the pipeline processing for Aw SP PCA to reduce runtime was another path that can be 

taken. Amdahl‘s effect, which says that parallelizing scalability increases with data size can be 

illustrated through the use of a larger database. 
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