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Abstract

Visual Tracking Algorithms using Different Object

Representation Schemes

Shreyamsha Kumar Bidare Kantharajappa, Ph.D.

Concordia University, 2019

Visual tracking, being one of the fundamental, most important and challenging

areas in computer vision, has attracted much attention in the research community

during the past decade due to its broad range of real-life applications. Even af-

ter three decades of research, it still remains a challenging problem in view of the

complexities involved in the target searching due to intrinsic and extrinsic appear-

ance variations of the object. The existing trackers fail to track the object when

there are considerable amount of object appearance variations and when the object

undergoes severe occlusion, scale change, out-of-plane rotation, motion blur, fast mo-

tion, in-plane rotation, out-of-view and illumination variation either individually or

simultaneously. In order to have a reliable and improved tracking performance, the

appearance variations should be handled carefully such that the appearance model

should adapt to the intrinsic appearance variations and be robust enough for extrinsic

appearance variations. The objective of this thesis is to develop visual object track-

ing algorithms by addressing the deficiencies of the existing algorithms to enhance

the tracking performance by investigating the use of different object representation

schemes to model the object appearance and then devising mechanisms to update the

observation models.

A tracking algorithm based on the global appearance model using robust coding

and its collaboration with a local model is proposed. The global PCA subspace is used

to model the global appearance of the object, and the optimum PCA basis coefficients

and the global weight matrix are estimated by developing an iteratively reweighted

robust coding (IRRC) technique. This global model is collaborated with the local
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model to exploit their individual merits. Global and local robust coding distances

are introduced to find the candidate sample having similar appearance as that of the

reconstructed sample from the subspace, and these distances are used to define the ob-

servation likelihood. A robust occlusion map generation scheme and a mechanism to

update both the global and local observation models are developed. Quantitative and

qualitative performance evaluations on OTB-50 and VOT2016, two popular bench-

mark datasets, demonstrate that the proposed algorithm with histogram of oriented

gradient (HOG) features generally performs better than the state-of-the-art meth-

ods considered do. In spite of its good performance, there is a need to improve the

tracking performance in some of the challenging attributes of OTB-50 and VOT2016.

A second tracking algorithm is developed to provide an improved performance in

situations for the above mentioned challenging attributes. The algorithms is designed

based on a structural local 2DDCT sparse appearance model and an occlusion han-

dling mechanism. In a structural local 2DDCT sparse appearance model, the energy

compaction property of the transform is exploited to reduce the size of the dictio-

nary as well as that of the candidate samples in the object representation so that the

computational cost of the l1-minimization used could be reduced. This strategy is in

contrast to the existing models that use raw pixels. A holistic image reconstruction

procedure is presented from the overlapped local patches that are obtained from the

dictionary and the sparse codes, and then the reconstructed holistic image is used for

robust occlusion detection and occlusion map generation. The occlusion map thus

obtained is used for developing a novel observation model update mechanism to avoid

the model degradation. A patch occlusion ratio is employed in the calculation of the

confidence score to improve the tracking performance. Quantitative and qualitative

performance evaluations on the two above mentioned benchmark datasets demon-

strate that this second proposed tracking algorithm generally performs better than

several state-of-the-art methods and the first proposed tracking method do. Despite

the improved performance of this second proposed tracking algorithm, there are still
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some challenging attributes of OTB-50 and of VOT2016 for which the performance

needs to be improved.

Finally, a third tracking algorithm is proposed by developing a scheme for collab-

oration between the discriminative and generative appearance models. The discrimi-

native model is explored to estimate the position of the target and a new generative

model is used to find the remaining affine parameters of the target. In the generative

model, robust coding is extended to two dimensions and employed in the bilateral two

dimensional PCA (2DPCA) reconstruction procedure to handle the non-Gaussian or

non-Laplacian residuals by developing an IRRC technique. A 2D robust coding dis-

tance is introduced to differentiate the candidate sample from the one reconstructed

from the subspace and used to compute the observation likelihood in the generative

model. A method of generating a robust occlusion map from the weights obtained

during the IRRC technique and a novel update mechanism of the observation model

for both the kernelized correlation filters and the bilateral 2DPCA subspace are de-

veloped. Quantitative and qualitative performance evaluations on the two datasets

demonstrate that this algorithm with HOG features generally outperforms the state-

of-the-art methods and the other two proposed algorithms for most of the challenging

attributes.
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Chapter 1

Introduction

Visual tracking has seen a flurry of research in the last two decades due to its wide

range of real-life applications including activity detection, action recognition, human

behavior analysis, sports video analysis, vehicle navigation, human computer interac-

tion, video indexing and retrieval, medical imaging, robotics, security and surveillance

[4–6]. Visual tracking, the task of finding the location of an object in the subsequent

frames of a video given the initial location, is a critical intermediate step for identi-

fying and analyzing the anomalous activity or behavior in a security and surveillance

videos, or for an autonomous operation of robots in the dynamic environments. In

spite of much progress in the last three decades, visual tracking still remains a chal-

lenging problem due to the complexity involved in target searching as well as in

handling intrinsic (e.g., pose changes, shape deformation) and extrinsic (e.g., varying

viewpoints, rotation and scaling due to camera motion, illumination changes, occlu-

sions, cluttered and moving backgrounds) object appearance variations [5–7]. These

appearance variations should be handled carefully for a reliable tracking performance

for which the appearance model should adapt to the intrinsic appearance variations

and be robust enough for extrinsic appearance variations.

In this thesis, the focus is on single-camera, single-target, short-term, causal track-

ing. Single-camera, single-target tracking means there is only one object of interest

being tracked in a sequence of image frames/video that is captured by a single cam-
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era. The short-term tracking is defined by considering the length of the video that

is used for tracking and the length of the video is in the order of a few seconds or

a couple of minutes. In causal tracking, the target location at time tk is estimated

based on the information from earlier video frames at time t, where t ≤ tk .

1.1 Literature Review

In the literature, based on the representation scheme used to model the appearance

of the object, the tracking algorithms are categorized into either generative or dis-

criminative methods. Generative methods extract information only from the target

region to model the object appearance and search for a region that is most similar

to the target model. These methods are based on holistic templates [2, 8–14], local

patches/fragments [11, 15–17], subspace models [1, 3, 18, 19] or local subspace models

[20, 21]. Black et al. [22] proposed an optical flow framework for tracking, by learn-

ing a subspace model in offline mode to represent the target objects at predefined

views and later on, extended their subspace representation to a mixture model to

capture the object appearance effectively [23]. Jepson et al. [24] proposed an online

appearance model using Gaussian mixture model (GMM) and expectation maximiza-

tion (EM) algorithm for robust visual tracking. Kernel-based tracking using mean

shift-based mode seeking procedure is proposed by Comaniciu et al [9]. Matthews

et al. [10] proposed a template update method with Lucas-Kanade algorithm [8] to

reduce the drifting problem by aligning with the first template. Wang et al. [25] pro-

posed a GMM-based adaptive appearance model in a joint spatial-color space. Ross

et al. [1] proposed an online learning of adaptive linear subspace to model the target

appearance with a sample mean update and tracking the object in a particle filter

framework. In visual tracking decomposition, the observation model is decomposed

into multiple basic observation models to capture wide variations in illumination and

pose [12]. As most of these methods use holistic model of target representation, they
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cannot handle partial occlusion or background distracters.

On the other hand, the discriminative methods extract information not only from

the target region, but also from the background to differentiate the target from the

background within a local region by viewing the tracking as a binary classification

problem (e.g., using boosting algorithms [26, 27], semi-supervised learning [28] and

support vector machines (SVM) [29, 30]). Avidan [29] proposed an offline training

of SVM classifier and extended it for object tracking in an optical flow framework.

Collins et al. [31] proposed a variance ratio of the foreground and the background

classes to find the discriminative features for object tracking. In ensemble tracking

[32], a set of trained weak classifiers are combined to discriminate the target object

from the background. Grabner et al. proposed an online boosting algorithm to update

the discriminative features for tracking [26] and later on, proposed a semi-online

boosting algorithm, which treats all the visual information from the tracking results

as unlabeled data and adapts a classifier within the semi-supervised framework [28].

Further, a tracker based on multiple instance learning uses all the ambiguous positive

and negative samples in the bags to learn a discriminative model to reduce the drifting

problem [27]. The underlying structure of positive and negative samples are exploited

in P-N algorithm to learn an effective classifier for the object tracking [33]. Wang et

al. [34] proposed a superpixel tracker based on discriminative appearance model to

distinguish between the target and the background. Further, an online discriminative

feature selection algorithm is proposed which directly couples the classifier score with

the sample importance, and optimizes the objective function in the steepest ascent

direction for positive samples and steepest descent direction for negative samples

[35]. Li et al. [36] proposed a compact Three Dimensional Discrete Cosine Transform

(3DDCT)-based object representation and its incremental learning for robust visual

tracking using a signal reconstruction-based similarity measure as the discriminative

criterion to evaluate the likelihood.

Since the generative methods consider information from the target region alone
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to model the appearance of the object, they are not efficient in cluttered environ-

ments, but they achieve a higher generalization performance with limited data [37].

In contrast to the generative methods, the discriminative methods perform better if

the training set is large due to its capability of differentiating the target from the

background [38]. The advantages of these individual methods are exploited by col-

laborating both generative and discriminative methods to model the appearance of

the object in [39–46].

Trackers based on Sparse Representation: The success of sparse represen-

tation in vision applications, such as image denoising [47], image classification [48]

and face recognition [49] has inspired Mei et al. to propose a l1-tracker [2, 50], where

a set of target templates and trivial templates are used to model the object appear-

ance, and the target location is determined by solving an l1-minimization problem.

Further, the tracking robustness is improved by exploring the high-dimensional im-

age features and group sparsity in [51]. In order to speed up the tracking process,

the less expensive l2-minimization is exploited to bound the l1 approximation error

without sacrifing the accuracy [52]. Further, L1 tracker using accelerated proximal

gradient algorithm (L1APG) [13] was proposed to improve the l1-tracker [2] in terms

of both the speed and accuracy. Similar to l1-tracker [2], the methods in [53, 54]

use target template-based appearance model but with robust sparse coding (RSC) to

account for non-Gaussian or non-Laplacian residuals by posing visual tracking as an

iteratively reweighted residual minimization task. In [55], a two-stage online discrim-

inative tracking algorithm with particle filter is proposed by representing the target

object by local sparse codes and exploiting both the static and adaptive observation

models.

Trackers based on Covariance Matrices: Although the above tracking meth-

ods based on sparse representation handle partial occlusion and pose changes rela-

tively well, sometimes they fail to track the object with drastic appearance changes

and background clutter. This is because most approaches depend on appearance at-

4



tributes of the object that are highly sensitive to the appearance variations, such as

pose, shape and scale variations, of the object. To overcome these issues, the covari-

ance region descriptor, which captures the spatial attributes from pixel coordinate

values as well as the combination of different appearance attributes, such as color,

image gradients, is explored in detection and classification [56], and in tracking [57–

59]. Porikli et al. [57] employed an affine-invariant metric to find the best match by

brute force search approach and to update the model by finding the intrinsic mean

of the covariance matrices through Riemannian geometry. Further, Wu et al. pro-

posed a probabilistic tracking on Riemannian manifolds [60] and later extended to

fragments-based representation in [61]. Also, incremental covariance tensor learning

is proposed to reduce the computational cost of the model update in [58]. Further, in

Log-Euclidean Riemannian subspace learning algorithm [62], an eigenspace represen-

tation for each mode of the target is learned incrementally by updating the sample

mean and eigenbasis adaptively.

Trackers based on Subspace Representation: Most of the trackers based on

sparse representation employ the target templates to model the appearance of the

object. In contrast, the subspace representation-based trackers exploit the rich and

redundant image properties of the target templates to compactly represent the object

appearance via basis vectors. In incremental visual tracking (IVT) [1], the object

is represented in a low dimensional principal component analysis (PCA) subspace,

which is learned and updated efficiently to adapt the appearance variations of the

object. Further, incremental two dimensional PCA (2DPCA) has been used for ob-

ject appearance model in visual tracking based on maximum likelihood estimation

(MLE) [63]. Even though the schemes in [1] and [63] are effective in handling illu-

mination and pose variations, they are sensitive to partial occlusion. This is due to

the fact that the assumption of Gaussian distributed residual with small variances

does not hold for object representation in visual tracking during partial occlusion. To

address this issue, Wang et al. have exploited the strength of both the subspace and
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sparse representations in [3] and [19] by introducing l1-regularization into the PCA

and 2DPCA reconstruction, respectively. Unlike [19], the method in [64] exploits

the strength of both the subspace representation and RSC for visual tracking by in-

troducing l1-regularization into the 2DPCA reconstruction. The difference between

[19] and [64] is in modeling the occlusion/outliers, the former method uses trivial

templates and the latter uses weights to model the occlusion/outliers. In contrast to

the IVT that assume Gaussian distributed residual with small variances, the method

in [65] assume that the residuals are i.i.d. Gaussian-Laplacian distributed (i.e., an

additive combination of i.i.d. Gaussian and i.i.d. Laplacian components) to handle

outliers/occlusion effectively.

Trackers based on Discriminative Correlation Filters: Recently, discrim-

inative correlation filters have gained significance in visual tracking due to its com-

putational efficiency and tracking accuracy. In [66], adaptive correlation filters are

learned to model the target appearance by minimizing the output sum of the squared

error. Danelljan et al. have exploited adaptive color attributes in [67], and adap-

tive multi-scale correlation filters to handle scale variations of the object in [68, 69].

Henriques et al. have exploited the circulant structure of adjacent image patches in

a kernel space based on intensity features [70], and histogram of oriented gradient

(HOG) features [71] for visual tracking. Later, different variants of correlation filters

have been proposed to increase the tracking performance using long-term memory

components [72], target adaptation [73], complementary cues [74] and correlation

particle filter [75]. In spite of the continuous improvement in tracking performance,

standard discriminative correlation filter suffers from unwanted boundary effects due

to the circulant assumption, thereby leading to a restricted target search region and a

suboptimal training. The unwanted boundary problem has been addressed in [76–79]

by learning a filter that has much smaller spatial support than the training sam-

ples. Learning a filter using a large spatial size training samples not only reduces

the boundary effects [76], but also provides a large number of background training
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samples [77]. However, these methods are computationally expensive due to their

approach in solving the optimization problem.

Trackers based on Deep Features/Learning: In contrast to the discrimina-

tive correlation filter-based trackers [67, 68, 71, 80] that are learned using raw pixel

values or handcraft features such as HOG [81], color attribute [82] or their combina-

tion, the trackers [78, 83–86] learned using deep convolutional neural network (CNN)

features are more robust against geometric and photometric variations of the target.

This is due to the high discriminative capability of deep CNN features that are ob-

tained by training CNNs using a large scale ImageNet dataset [87, 88]. Even though

the trackers [78, 83–86] that use deep CNN features achieve superior tracking per-

formance, they do not exploit the full benefits of end-to-end learning of deep CNNs.

In order to exploit the power of deep CNNs in visual tracking, a large-scale dataset

specialized for visual tracking covering a wide range of variations in the target and

background is needed to train CNNs. Due to lack of specialized data for tracking,

most of the deep learning-based trackers [78, 83–86] have adapted a pre-trained CNN,

which is trained for classification task, to obtain the deep CNN feature maps for visual

tracking. But the deep feature representations thus obtained may not be effective due

to the fundamental difference between classification and tracking problem. Moreover,

the feature representations obtained by a pre-trained CNN may be less discriminative

for tracking specific objects. In addition to this, the superior performance of deep

learning-based trackers is achieved at the cost of excessive complexity and memory

requirements. Considering these facts, in this thesis, non deep learning-based track-

ing algorithms are developed that do not rely on any external source of information

or pre-trained model to obtain the features, but instead use the features obtained

from the object itself to learn and update the object appearance model for tracking.
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1.2 Motivation

In object tracking, the object representation schemes have received extensive attention

from the research community along with the observation model update schemes in

order to handle appearance variations of the object as well as occlusion. In general, the

representation schemes are either generative or discriminative with each one having

its own merits and demerits. As generative models exploit only the information from

the target object and do not take the background into account, they are less effective

in cluttered environments, but they achieve higher generalization with limited data.

On the other hand, discriminative models distinguish the target region from the

background and perform better provided the training set is large.

Most of the appearance models use raw pixels-based object representation except

in some cases, where Haar features [26, 27], Gabor features [89–91], adopted features

(e.g., intensity [1], color [92], texture [32]), description models (e.g., holistic histogram

[9], part-based histogram [93]) are used. The exploration of other features/transform-

domain features, which can reduce the dimensionality of the dictionary as well as the

candidates in the object representation scheme have not been investigated. Further,

during occlusion, the assumption that the residual/error follows either the Gaussian

or the Laplacian distribution may not hold for object representation in visual track-

ing, as the residual cannot be modeled with small variances [3]. But in practice, the

distribution of the residual may be different from the Gaussian or the Laplacian dis-

tribution especially during occlusions, corruptions and appearance variations of the

object. In this regard, not much effort has been made to model the residual/error

other than the Gaussian or the Laplacian distribution for the practical visual tracking

scenarios. In the literature, only a few attempts have been made to combine both

the generative and discriminative appearance models in a collaborative framework to

harvest the benefits of these individual representation schemes [40, 41, 43–46]. These

collaborative schemes have not yet matured enough to provide better tracking per-
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formance, and hence, there is a need for a careful study on new ways of collaboration

by considering the strengths of the generative and discriminative appearance models.

1.3 Objectives and Organization of the Thesis

The objective of the thesis is to develop visual object tracking algorithms by address-

ing the limitations of the existing methods to enhance the tracking performance by

exploring different object representation schemes for the object appearance modeling

and then devising mechanisms to update the observation models. In this thesis, three

visual object tracking algorithms are proposed to improve the tracking performance

over that of the existing methods.

The first tracking algorithm is based on the global appearance model using robust

coding and its collaboration with a local model. The global PCA subspace is used

to model the holistic appearance of the object, and then the optimum global PCA

basis coefficients and the global weight matrix are computed by developing an itera-

tively reweighted robust coding (IRRC) technique. The global appearance model is

collaborated with the local model to exploit the advantages of the individual models.

Global and local robust coding distance measures are introduced to find the candidate

sample having appearance similar to that of the reconstructed one from the subspace,

and then these distances are used to define a novel observation likelihood. A robust

occlusion map generation scheme and a mechanism to update both the global and

local observation models are developed. Experiments conducted on the two popular

benchmark datasets, the object tracking benchmark-50 (OTB-50) [7] and the visual

object tracking 2016 (VOT2016) [94], show that this tracking algorithm with HOG

features generally performs better than several state-of-the-art tracking methods do

for most of the challenging attributes as per both quantitative and qualitative eval-

uations. However, there is a need to improve the tracking performance on some

challenging attributes of OTB-50 and that of VOT2016.
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Therefore, a second tracking algorithm based on a structural local two dimen-

sional discrete cosine transform (2DDCT) sparse appearance model and an occlusion

handling mechanism is proposed. The energy compaction property of 2DDCT is

exploited in the object representation by using only a few 2DDCT coefficients in

both the candidate samples and dictionary, which reduces the computational cost

of l1-minimization. The reconstruction of a holistic image from the overlapped lo-

cal patches is presented, and the holistic image thus obtained is used along with the

pooled feature vector to develop a robust occlusion map generation scheme. Using the

occlusion map, a novel observation model update mechanism is developed to handle

the appearance change of the object and to avoid the model degradation. A patch

occlusion ratio is used in the confidence score computation to enhance the tracking

performance. Experiments conducted on the two benchmark datasets bear out that

the second tracking algorithm generally performs better than several state-of-the-art

methods and the first tracking algorithm proposed in this thesis do, from both the

quantitative and qualitative points of view. In spite of the improvement in the per-

formance of the second tracking algorithm, still there are some challenging attributes

of the two datasets for which performance is to be improved.

This issue is addressed by proposing a third tracking algorithm, where a collab-

orative scheme of the discriminative and generative appearance models is presented.

In the discriminative model, two kernelized correlation filters are used to estimate

the position of the target, and the remaining affine motion parameters of the target

are found using a new generative model. The idea of using the discriminative and

generative models to find the location and the remaining affine motion parameters

of the target, respectively, is based on the intuitions that (1) the discriminative ca-

pability of a tracker plays an important role in estimating the location of the target

rather than in finding the other affine motion parameters of the target and (2) the

generative capability of a tracker plays a significant role in estimating the remaining

affine motion parameters of the target. In the generative model, the robust coding
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technique used in the first tracking algorithm is extended to two dimensions, and

then employed in the bilateral 2DPCA reconstruction procedure to develop an IRRC

technique. A 2D robust coding distance measure is defined to compute the similar-

ity between the candidate and the reconstructed sample from the bilateral 2DPCA

subspace, and then used in the observation likelihood computation. A robust occlu-

sion map generation scheme and the observation model update mechanism of both

the kernelized correlation filters and the bilateral 2DPCA subspace are developed.

To evaluate the performance of the third tracking algorithm both quantitatively and

qualitatively, experiments are conducted on the two datasets mentioned before and

it is observed that the third algorithm outperforms the state-of-the-art methods and

the first two proposed algorithms for most of the challenging attributes.

The thesis is organized as follows. Chapter 2 introduces the background material

concerning particle filters, and the benchmark datasets and performance evaluation

measures used for the performance comparison of the trackers.

Chapter 3 introduces a tracking algorithm based on the global appearance model

using robust coding and its collaboration with a local model. A scheme to represent

the object using the global and local PCA basis vectors, and robust coding is pre-

sented. Global and local robust coding distances are defined to find the similarity

between the candidate sample and the reconstructed sample from the corresponding

subspace. A method to generate robust occlusion map and a mechanism to update

both the global and local observation models are developed. The performance of

the first tracking algorithm with that of the state-of-the-art methods is compared by

conducting experiments on two popular benchmark datasets, OTB-50 and VOT2016.

Chapter 4 presents the object tracking algorithm based on a structural local

2DDCT sparse appearance model and an occlusion handling mechanism. A struc-

tural local 2DDCT sparse appearance model, which exploits the energy compaction

property of 2DDCT to represent the object by using only a few 2DDCT coefficients,

is presented. A procedure to reconstruct the holistic image from the overlapped local
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patches is introduced. Experiments are conducted on the two benchmark datasets to

analyze the performance of the second tracking algorithm with that of the state-of-

the-art methods and that of the first tracking algorithm.

Chapter 5 introduces a tracking algorithm based on the collaboration of the dis-

criminative and generative appearance models. The discriminative appearance model

is used to find the target location, and a new generative appearance model based on

bilateral 2DPCA and 2D robust coding is used to estimate the remaining affine pa-

rameters of the target. A 2D robust coding distance metric is defined to find the

similarity between the candidate and the reconstructed sample from the bilateral

2DPCA subspace. The observation model update mechanism of both the kernelized

correlation filters and bilateral 2DPCA subspace is presented. Experiments are con-

ducted on the same two datasets mentioned above for performance comparison of the

third tracking algorithm with that of the state-of-the-art methods and that of the

first two proposed tracking algorithms.

Finally, Chapter 6 concludes by highlighting the contributions of the thesis fol-

lowed by suggestions for possible future work.
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Chapter 2

Background Material

This chapter covers the background information that is helpful in understanding the

proposed tracking algorithms and their performance evaluation in later chapters of

this thesis.

Section 2.1 discusses the merits and demerits of principal component analysis

(PCA), two dimensional PCA (2DPCA) and bilateral 2DPCA (B2DPCA) from the

perspective of image representation. Section 2.2 briefly explains the particle filter

framework for visual tracking. Section 2.3 presents the benchmark datasets and the

evaluation measures used to compare the performance of the proposed methods with

that of the other trackers.

2.1 Merits and Demerits of PCA, 2DPCA, and

B2DPCA

PCA [95] is a well-established linear-dimension reduction technique and has been used

extensively in the areas of pattern recognition [96], computer vision [97], signal pro-

cessing [98] etc. PCA finds the projection directions by minimizing the reconstruction

error in those directions and then projects the original data into a lower-dimensional

space spanned by those directions corresponding to the top eigenvalues [99]. In image
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representation, recognition and retrieval using PCA, a 2D image matrix is usually

transformed into 1D long vector by concatenating either column by column or row

by row that leads to a point in a high-dimensional vector space. In spite of many ad-

vantages due to the conversion from 2D to 1D, it suffers from the following problems.

First, there is a requirement of a large number of training samples for a reliable and

robust estimation about the characteristics of the data distribution as each image

sample is represented as a point in a high-dimensional space. Second, PCA suffers

from small sample size problem due to the limited availability of data in real-life

applications like face recognition and image retrieval. Third, the exploitation of the

spatial redundancies within the image ensembles is not possible due to absence of

spatial information [99]. Because of large size and relatively small number of training

samples, accurate computation of the covariance matrix is difficult [100], and then

finding the eigenvectors of a large size covariance matrix is very time consuming.

These problems have been addressed in 2DPCA [100] by directly computing the

eigenvectors from the image covariance matrix, which is computed from the image

matrix itself without matrix-to-vector conversion. Since both the number of rows and

columns of the image covariance matrix is equal to the width of the image, the size of

the covariance matrix of 2DPCA is much smaller than that of PCA. Hence, 2DPCA

has a more efficient computation of the eigenvectors with less computational time.

As the unilateral projection (right-multiplication) scheme is adopted in 2DPCA, it

is also termed as unilateral 2DPCA. When compared with PCA, 2DPCA requires

a larger number of coefficients for image representation than that required by PCA

[100]. Moreover, 2DPCA is also viewed as performing PCA on the row vectors of the

image matrix, where the correlation among the column vectors of the image matrix

has not been exploited. The weaknesses of 2DPCA have been overcome by B2DPCA

[99, 101], where two sets of projection directions are simultaneously constructed to

project the row and column vectors of the image matrices to two different subspaces,

respectively.
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For a dl × dr image Y and kl × kr projection coefficients Z, the bilateral projection

is given by

Z = UT
BP YVBP (2.1)

and

Y = UBP ZVT
BP (2.2)

where UBP ∈ R
dl×kl and VBP ∈ R

dr×kr represent orthogonal left- and right-projection

matrices, respectively, and kl and kr are the number of B2DPCA left- and right-

projection basis vectors, respectively. Given a set of K image observations Y =

{Y1, ...,YK}, the projection matrices UBP and VBP are computed as in [63, 99]. As

the redundancies among the rows and the columns of the images are removed in

B2DPCA, it requires less number of coefficients to represent an image than that

required by 2DPCA [100].

2.2 Particle Filters

Generally, in the tracking methods based on particle filter framework, the target

motion is estimated using a Markov model with hidden state variables [102]. In this

thesis, the target motion between two consecutive frames is assumed to be affine.

Let st denote a state variable describing the affine motion parameters of a target at

time t. Given a set of image observations Yt = {Y1, ...,Yt} at time t, the posterior

probability is inferred recursively by the Bayes’ theorem [1]

p(st |Yt) ∝ p(Yt |st)

∫
p(st |st−1) p(st−1 |Yt−1) dst−1 (2.3)

where p(st |st−1) represents the dynamic (state transition) model, p(Yt |st) represents

the observation model and st is the target state.

In this thesis, an affine transformation with six parameters is adopted to model

the target state st = (xt, yt, θt, st, αt, φt), where xt, yt, θt, st, αt and φt denote horizon-
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tal and vertical translations, rotation angle, scale, aspect ratio and skew direction at

time t, respectively. The dynamic model describes the target motion between two

consecutive frames and is modeled by the Gaussian distribution assuming the affine

parameters to be independent, i.e., p(st |st−1) = N(st ; st−1,Σ), where Σ denotes a di-

agonal covariance matrix whose elements are the variances of the affine parameters

(σ2
x , σ

2
y , σ

2
θ , σ

2
s , σ

2
α, σ

2
φ ). These affine parameters are used to crop a sub-image from the

current frame and then normalized to the size dl × dr . The dynamic model randomly

selects M samples (particles) of the state variable st given the state st−1 at t − 1, which

are used to generate the target candidates Ym
t , where m = 1,2, ...,M. The optimal

state of the tracked target ŝt is determined by the following maximum a posteriori

(MAP) estimation

ŝt = argmax
smt

p(Ym
t |s

m
t )p(s

m
t |st−1), m = 1,2, ...,M (2.4)

where sm
t denotes the m-th sample of the state st , andYm

t represents the image sample

observed by sm
t . The observation model represents the likelihood of the observation

Ym
t at state sm

t . This will be defined in the subsequent chapters that use particle filter

framework for tracking.

2.3 Benchmark Datasets and the Performance Eval-

uation Measures

For an exhaustive performance evaluation of the state-of-the-art tracking algorithms,

to identify their strengths and weaknesses, and to draw future research directions for

the development of robust tracking algorithms, the tracking experiments have to be

conducted on the benchmark datasets and then evaluated using standard performance

measures. Also, the benchmark datasets should contain all the individual challenging

tracking scenarios and their combination including but not limited to illumination

16



changes, varying viewpoints, rotation and scaling due to camera motion, occlusions,

cluttered and moving backgrounds etc. From this point of view, the experiments are

conducted on two popular benchmark datasets, object tracking benchmark-50 (OTB-

50) [7] and visual object tracking 2016 (VOT2016) [94], to compare the performance

of the proposed trackers with that of other methods. The sequences from these

benchmarks cover most of the real-life challenging situations in object tracking, such

as motion blur due to fast movement, pose variation, complex background, varying

lighting conditions, low contrast, scale change, heavy occlusion, in-plane and out-of-

plane rotation.

The OTB-50 benchmark [7] consists of 50 challenging sequences (with 51 tar-

get objects) that are fully annotated with bounding boxes as well as 11 different

attributes, namely, illumination variation (IV), out-of-plane rotation (OPR), scale

variation (SV), occlusion (Occ), deformation (Def), motion blur (MB), fast motion

(FM), in-plane rotation (IPR), out-of-view (OV), background clutter (BC) and low

resolution (LR). In OTB-50, there are 18 and 7 sequences with more than 500 and

1000 frames, respectively. The VOT2016 benchmark [94] consists of 60 challenging

sequences that are fully annotated with rotated bounding boxes as per the target

rotations. This is in contrast to the upright bounding boxes annotated in OTB-50.

Further, VOT2016 dataset sequences are per-frame annotated with 5 visual attributes

that reflect a particular challenge in appearance attributes, such as camera motion,

illumination change, motion change, occlusion and size change. If a particular frame

does not contain any of these five attributes, then it is denoted as empty. Again,

this is also in contrast to OTB-50, where the sequences are annotated globally with

attributes even though they may occupy only a few frames in a sequence. Recently, it

has been shown that the performance measures computed from the global attribute

annotations, like in OTB-50, are significantly biased toward the dominant attributes

in the sequences, whereas the bias is significantly reduced with per-frame annotation,

like in VOT2016, even in the presence of mis-annotations [103]. In VOT2016, there
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are 14 and 2 sequences with more than 500 and 1000 frames, respectively.

In general, two frame-based metrics, namely, overlap rate (OR) and center location

error (CLE), are employed to evaluate the tracker in a given frame. The OR is

defined using a score in the Pascal visual object classes challenge [104] as OR =
area(RT ∩ RG)

area(RT ∪ RG)
, where RT and RG are the bounding boxes of the tracking result and

the ground truth, respectively, and area(R) denotes the area of the region R. In case

of OR, its value should be as high as possible, approaching one for better tracking

performance. CLE is the relative distance (in pixels) between the center positions of

the tracking result and the ground truth. For better tracking performance, the value

of CLE should be as close to zero as possible. Further, average OR (AOR) and average

CLE (ACLE) are used to measure the overall performance of the tracker for a given

sequence. However, when the tracker loses the target, the output location and size

of the bounding box can be random, and hence, ACLE and AOR may not evaluate

the tracking performance efficiently [105]. The authors of [7] and [94] have used other

performance measures [105, 106] derived from the two basic metrics, OR and CLE, to

analyze the performance of some existing trackers on their benchmark datasets, OTB-

50 and VOT2016, respectively. Likewise, in this thesis, the performance measures

used in [7] and [94] are employed to evaluate and compare the proposed trackers

with the state-of-the-art methods on the OTB-50 and VOT2016 benchmark datasets,

respectively.

In OTB-50, the performance of a tracker for a given sequence is evaluated using

the success rate and the precision score [105]. The former is the ratio of successful

frames whose OR is larger than a given threshold, to the total number of frames in a

sequence. On the other hand, the later is the percentage of frames whose CLE is less

than a given threshold distance of the ground truth. By using multiple thresholds,

two curves are obtained showing how the threshold value affects the success rate and

the precision score, and are called as success plot and precision plot, respectively, for a

given sequence. Further, these success curves and precision curves are averaged over

18



all the sequences to obtain the overall success plot and precision plot, respectively. In

order to quantify the overall performance of a tracker, the area under curve (AUC) of

the success plot or the precision score for the threshold of 20 pixels is employed. In

OTB-50, the trackers are evaluated on the test sequences with an initialization from

the ground truth position in the first frame and the overall precision plot or success

plot at the end is reported. This evaluation is referred as one-pass evaluation (OPE).

In VOT2016, the performance of a tracker is analyzed using the accuracy and ro-

bustness. The accuracy is the average overlap between the predicted and ground truth

bounding boxes during successful tracking periods, whereas the robustness measures

the number of times the tracker fails to track. In VOT2016, whenever a tracker pre-

dicts a bounding box with zero overlap with the ground truth, a failure is detected and

the tracker is re-initialized. All the trackers are evaluated 15 times on each sequence

and then per-frame accuracy is obtained as an average over these runs. Averaging

per-frame accuracies gives per-sequence accuracy. On the other hand, per-sequence

robustness is computed by averaging failure rates over different runs [94]. Further,

the tracking results are ranked according to the accuracy and robustness performance

metrics, and are called accuracy rank and robustness rank, respectively. Note that as

the trackers with statistically equivalent results are merged while ranking, the differ-

ent trackers may have the same accuracy rank and robustness rank [94]. In order to

quantify the overall performance of a tracker, different averaging methodologies are

used in VOT2016. The averages of the per-attribute results in an equal or weighted

manner are denoted as mean and weighted mean, and the per-frame averaging of

the results of the super-sequence is obtained by concatenating all of the sequences as

pooled.
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2.4 Summary

In this chapter, the advantages and disadvantages of PCA, 2DPCA and B2DPCA

from the image representation point of view has been explained. Also, the particle

filter framework for visual tracking has been introduced. Finally, the benchmark

datasets used for the experimentation and the evaluation measures used to compare

the performance of the proposed trackers have been presented. A novel tracking algo-

rithm based on the global appearance model using robust coding and its collaboration

with a local model will be presented in the next chapter.
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Chapter 3

The Global Appearance Model
using Robust Coding and its
Collaboration with a Local Model
for Visual Tracking

3.1 Introduction

In incremental visual tracking (IVT) [1], the object is represented by a low dimen-

sional principal component analysis (PCA) subspace (Figure 3.1a), which is learned

and updated efficiently to adapt to the object appearance variations. Even though

the PCA subspace representation is effective in handling illumination and pose varia-

tions, it is sensitive to partial occlusion. This is because the assumption of Gaussian

distributed residual with small variances (i.e., small dense noise) does not hold for

representation of the object in visual tracking during partial occlusion. Further, the

IVT does not have a mechanism to detect and remove the occlusion/outliers while

updating its observation model with new observations. Similar drawbacks are ob-

served in other tracking algorithms based on Gaussian noise assumption or ordinary

least squares method [62, 107]. The success of sparse representation has motivated

Mei et al. [2] to propose a novel l1-tracker using a set of target and trivial templates

to model, respectively, the object appearance and to handle occlusions (Figure 3.1b).
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Wang et al. [3] exploit the strength of both the subspace and sparse representations

in sparse prototype tracker (SPT) by introducing l1-regularization into the PCA re-

construction. Here, the target appearance and occlusion are modeled by PCA basis

vectors and trivial templates, respectively, as shown in Figure 3.1c, and given by

y = µGP +UGP z + e = µGP + [UGP I ]

⎡⎢⎢⎢⎢⎣
z

e

⎤⎥⎥⎥⎥⎦ (3.1)

where y ∈ Rdg×1 is an observation vector obtained from the observed image sampleY ∈

Rdl×dr , UGP ∈ R
dg×kg denotes a matrix of PCA basis vectors, µGP ∈ R

dg×1 represents

mean vector, z ∈ Rkg×1 represents the PCA basis coefficients, e ∈ Rdg×1denotes the

error or residual vector, and kg and dg are the number of PCA basis vectors and the

dimension of the observation vector, respectively.

The holistic/global appearance model provides a compact representation of the

target object and deals with global appearance variation of the object, but it cannot

handle occlusion, as the partial and spatial information is not exploited to the full

extent, thus leading to a poor performance of the tracker [1]. On the other hand,

the local appearance models [20, 21, 108] exploit the partial and spatial structural

information of the target, and hence, perform well during occlusions and background

clutter. However, they do not provide a compact representation of the target like the

holistic model does, and fail during global appearance change.

In this chapter, a new tracking algorithm based on the global appearance model

using robust coding (RC) and its collaboration with a local model is proposed [109].

To model the global appearance of the object, the global PCA subspace is used and

an iteratively reweighted robust coding (IRRC) technique is developed to compute

the optimum global PCA basis coefficients and the global weight matrix [110]. A col-

laborative scheme of the global (holistic) and local (patch/block) appearance models

is presented to capture their individual advantages. Global and local RC distances

are defined to find the similarity between the candidate sample and its reconstructed
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sample from the subspace. These RC distances are used to define the observation like-

lihood, which is in turn used to find the tracking result by the maximum a posteriori

(MAP) estimation. As the weights obtained during IRRC capture the outlier/occlu-

sion information, they are exploited to detect outliers/occlusions as well as to generate

the occlusion map. The occlusion map thus generated is used to obtain occlusion-free

samples that are accumulated for observation model update. Experiments conducted

on the two popular benchmark datasets with comparison to the state-of-the-art track-

ing methods bear out the effectiveness and competency of the proposed algorithm for

visual tracking.

This chapter is structured as follows. Section 3.2 introduces the representation

of the object via global and local PCA basis vectors, and robust coding. Section

3.3 presents the proposed tracking algorithm. Experimental results are given and

discussed in Section 3.4 followed by in Section 3.5 a summary of the work presented

in this chapter.

3.2 Object Representation via Global and Local

PCA Basis Vectors, and Robust Coding

In IVT [1], the residual is assumed to be Gaussian distributed with small variances,

but this assumption may not holds good during partial occlusions as the residual

cannot be modeled with small variances. On the other hand, if the residual is assumed

to be Laplacian distributed, then it aims to handle outliers. But, in real practice these

assumptions may not hold well especially in tracking during occlusion and corruption.

The advantage of robust sparse coding (RSC) is exploited in [53, 54, 64] for vi-

sual tracking to account for non-Gaussian or non-Laplacian residuals by posing visual

tracking as an iteratively re-weighted residual minimization task. Similar to l1-tracker

[2], the trackers in [53, 54] use target template-based appearance model. As the target

templates are coherent, the coding coefficients are sparse and hence, require l1-norm
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(a)

(b)

(c)

(d)

Figure 3.1: Different appearance models of (a) IVT [1], (b) l1-tracker [2], (c) SPT
[3], and (d) the proposed tracking algorithm, where ⊙ indicates Hadamard product
(element-wise product).

constraint on the coding coefficients. Since these trackers do not use the trivial tem-

plates to handle the occlusion, the dictionary size is greatly reduced. This reduction

in dictionary size should reflect in the proportionate reduction of computational time,

which does not happen, since each iteration of the residual minimization has to solve

for a weighted least absolute shrinkage and selection operator (LASSO) problem and

hence, not viable for time critical applications. The major differences between the

trackers in [53, 54] are the template update mechanism and the weight function used
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in RSC. Further, the strengths of both the subspace representation and RSC were ex-

ploited in [64] for visual tracking by introducing l1-regularization into the bilateral two

dimensional PCA (B2DPCA) reconstruction. In [64], the object appearance model is

represented by the B2DPCA projection matrices and its observation model update

mechanism is similar to that in [54]. The drawback of [64] is that the unnecessary

imposition of l1-norm constraint on the projection coefficients even though they are

not sparse due to the orthogonality of the B2DPCA projection matrices. Unlike the

appearance models of [53, 54, 64], which use RSC, the proposed appearance model

uses RC as the PCA basis coefficients are not sparse. Also, the appearance model

used in [64] is based on B2DPCA in contrast to that of classical PCA used in this

chapter. Further, [54, 64] exploit only holistic information and differ in the update of

the observation model. Also, the simplified version of the weight function is used in

[54, 64] as compared to that in the proposed appearance model. Further, the algo-

rithm in [111] uses weights for the different trackers, each with different features in a

PCA subspace, and the weight for each tracker is computed using the tracking error

between the forward-backward tracking. In contrast to the proposed algorithm, the

algorithm in [111] does not have any mechanism to handle occlusions/outliers both

in observation likelihood and observation model update. Further, in [112], the tem-

poral appearance model using PCA basis vectors and the spatial constraint model

using K-nearest candidate samples are collaborated for visual tracking. The main

differences between the proposed algorithm and the algorithm in [112] are as follows.

(1) The appearance model in the proposed algorithm is a generative one and [112]

uses both the generative and discriminative models in collaboration. (2) There are

variations in the observation likelihood computation and the observation model up-

date. In [113], tracking by the correlation filter and online learning is combined in

a way such that the tracking by online learning based on logistic regression classifier

is used as a re-detection module and is activated when the correlation score of the

correlation filter is less than a threshold which may otherwise result in tracking drift
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or failure. As opposed to the proposed generative appearance model, the algorithm

in [113] uses discriminative appearance models in both tracking by correlation filter

and online learning. Also, the appearance model of the correlation filter in [113] does

not take care of occlusions/outliers during its model update, which may degrade the

appearance model, thereby resulting in frequent tracking drifts. In [114], the low-rank

sub-dictionary to model the target and background appearance are learned indepen-

dently, and these sub-dictionaries are used to represent the candidate samples. The

observation likelihood is computed based on the reconstruction error of the candidate

samples using these sub-dictionaries with their respective representation coefficients.

The appearance model update of the proposed algorithm is different from that in

[114] due to its discriminative appearance model.

3.2.1 Global Appearance Model using Robust Coding

Considering the visual tracking from the Bayesian estimation point of view, the

PCA basis coefficients z can be computed by maximizing the posterior probabil-

ity p(z|y). Assuming a uniform prior, the basis coefficients z are obtained by ẑ =

argmaxz p(y|z) = argmaxz p(y −UGP z) = argmaxz p(e), which is the maximum like-

lihood estimation (MLE), where y = y− µGP is the centered image observation vector

and e = y − UGP z is the error or residual vector. To find the MLE solution of the

basis coefficients, the PCA basis matrix UGP is written as UGP = [u1;u2; ...;udg],

where the row vector u j is the j-th row of UGP, and the coding residual as

e = y −UGP z = [e1; e2; ...; edg] (3.2)

where each element of the residual is written as e j = y j − u jz, j = 1,2, ..., dg. As-

suming that the elements of the residual e1, e2, ..., edg are independently and identi-

cally distributed (i.i.d) according to some probability density function (PDF) fΘ(e j),

where Θ denotes the unknown parameter that characterizes the distribution, the
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likelihood of the estimator is given by p(e) =
∏dg

j=1 fΘ(e j). Maximization of this like-

lihood is equivalent to minimizing LΘ(e1, e2, ..., edg) = − ln p(e) =
∑dg

j=1 ρΘ(e j), where

ρΘ(e j) = − ln fΘ(e j). Now, the MLE of basis coefficients z, termed as robust coding

(RC), can be written as

min
z

dg∑
j=1

ρΘ(e j) = min
z

dg∑
j=1

ρΘ(y j − u jz) . (3.3)

Here, RC is introduced to account for non-Gaussian or non-Laplacian residuals/noises

and reduce their effect on the computation of the PCA basis coefficients.

If the distribution fΘ (or ρΘ) is known, MLE of the basis coefficients z can be

computed by solving (3.3). Now the question is how to determine the unknown PDF

fΘ (or ρΘ). Explicitly assuming fΘ as Gaussian or Laplacian distribution is simple,

but not effective enough in visual tracking during corruptions/occlusions. Instead of

determining ρΘ directly to solve (3.3), the assumptions of ρΘ mentioned in [115] are

used to approximate the minimization problem in (3.3) by a weighted least squares

(WLS) problem, given by

min
z

1

2
∥W

1
2 (y −UGP z) ∥22 , (3.4)

where W is a diagonal weight matrix representing the different noise types, and its

element W j, j is the weight assigned to each element of observation vector obtained

from the observed image sample Y depending on the value of the residual. Since

the weight matrix W is unknown and needs to be estimated, WLS in (3.4) is a local

approximation of RC in (3.3). Therefore, the minimization procedure of RC can be

converted into an IRRC problem with W being updated using the residuals in the

previous iteration. Due to the properties of ρΘ(e j) and its relation with W j, j , each

W j, j will be a non-negative scalar [115]. So the WLS problem in each iteration of

IRRC is a convex problem and its solution can be found easily. Since the distribution
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ρΘ is unknown, it is difficult to find the weight matrix W. Thus, a logistic function

given by

W j, j =
exp

(
δGP [βGP − e2j ]

)
1 + exp

(
δGP [βGP − e2j ]

) , (3.5)

where δGP controls the decreasing rate from 1 to 0, and βGP controls the location of

the demarcation point, is chosen as the weight function, as it satisfies the following

properties: (1) weight assigned to each pixel of the observed image vector y depends

on the corresponding value of the residual e and (2) the weight function has higher

capability to classify inliers and outliers [115]. This weight function is bounded in

[0,1] and adaptively assigns low weights to the outliers (usually the pixels with big

residuals) to reduce their effects on the regression estimation which in turn reduces

the sensitivity to outliers.

3.2.2 Iteratively Reweighted Robust Coding

The minimization problem in (3.4) can be solved by estimating iteratively the diagonal

weight matrix W using (3.5) and the PCA basis coefficients zopt using the following

equation

zopt =
(
UT

GP WUGP

)−1
UT

GP Wy . (3.6)

The estimation of W and zopt recursively is termed as iteratively reweighted robust

coding (IRRC) technique and is given in Procedure 3.1.

For practical applications, the diagonal weight matrix W is usually not known.

Hence, the diagonal weight matrix W is set to Identity matrix I initially assuming

that all the pixels are inliers (equivalently the residual e = 0). Due to this, (3.6)

reduces to z = UT
GP y as UT

GP UGP = I. Now, the residual error e is obtained using

(3.2). Then, the diagonal weight matrix W is computed using (3.5), and is used to

reduce the effects of outliers on the estimation of PCA basis coefficients z using (3.6)

so that the sensitivity to outliers can be greatly reduced. The above procedure is
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repeated using (3.2), (3.5) and (3.6) until convergence or termination.

Procedure 3.1 Computation of zopt and W by the iteratively reweighted robust
coding technique

Input: Centered image observation vector y, PCA basis vectorsUGP, and parameters
of weight function δGP and βGP.

1: Initialize q = 0 and Wq = I
2: Compute basis coefficients zq = UT

GP y
3: Iterate
4: q← q + 1
5: Compute residual eq = y −UGP zq−1 = [eq

1; eq
2; ...; eq

dg
]

6: Compute the weights using

W
q
j, j =

exp
(
δGP[βGP − (e

q
j )
2]

)
1 + exp

(
δGP[βGP − (e

q
j )
2]

) ; j = 1,2, .., dg

7: Recompute zq =
(
UT

GP Wq UGP

)−1
UT

GP Wq y

8: Until convergence or termination
Output: Basis coefficients zopt , diagonal weight matrix W.

a) Convergence of the IRRC

Weighted least squares in (3.4) is a local approximation of RC in (3.3), and the

objective function of (3.3) will be reducing for each iteration by the IRRC technique.

The iterative minimization procedure in IRRC will converge to a global minimum

solution as the original cost function of (3.3) is lower bounded (≥ 0) and is achieved

when the following criterion is satisfied:

∥Wq −Wq−1∥2

∥Wq−1∥2
< ψGP , (3.7)

where ψGP is a small positive scalar and q is the iteration index. Figure 3.2 shows the

weights obtained for inlier and outlier pixels during the iteration and the convergence

of (3.7) for one of the object tracking benchmark-50 (OTB-50) benchmark sequences

(Faceocc1, frame #52).
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Figure 3.2: Weights for inlier and outlier pixels during the iteration and convergence
of (3.7) for one of the OTB-50 benchmark sequences (Faceocc1, frame #52).

3.2.3 Global and Local PCA Subspace Models

In the proposed algorithm [109], the advantages of both the global and local represen-

tations are exploited by collaborating the global and local PCA subspace models in

a generative tracking framework. This is unlike other collaborative methods [43, 46],

which use local and global representations in generative and discriminative frame-

works, respectively. Also, the strengths of both the subspace learning and RC are

exploited by using the global PCA basis vectors UGP and a global weight matrix W

to model the object appearance and occlusion respectively, as shown in Figure 3.1d

and is given by

W
1
2y =W

1
2
(
µGP +UGP z

)
. (3.8)

The reason for using the diagonal weight matrix W to account for occlusion/outliers

rather than trivial templates as in [2, 3, 13, 65] is justified, since the weight function

(3.5) assigns larger weights to inliers and smaller weights to outliers/occluded pixels

as shown in Figure 3.2.

Similar to the global appearance model in PCA subspace, the local appearance
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model in local PCA subspace is given by

(
Wi

LP

) 1
2
yi

LP =
(
Wi

LP

) 1
2
(
µi

LP +U
i
LP zi

LP

)
; i = 1,2, ...,Nn (3.9)

where yi
LP ∈ R

dn×1 denotes a i-th local patch image observation vector of the can-

didate sample, Ui
LP ∈ R

dn×kg represents a matrix of local PCA column basis vectors

corresponding to the i-th local patch, µi
LP ∈ R

dn×1 denotes the mean vector corre-

sponding to the i-th local patch, zi
LP ∈ R

kg×1 represents the local PCA basis coeffi-

cients, Wi
LP ∈ R

dn×dn is the local diagonal weight matrix corresponding to the i-th

local patch, dn is the number of elements in the local patch, kg the number of local

PCA basis vectors, and Nn is the number of non-overlapped local patches inside the

target region. These non-overlapped local patches of size lr × lc pixels are extracted

with a spatial layout as shown in Figure 3.3 and then vectorized to get the set of local

patch observation vectors yLP = {y
1
LP, y

2
LP , ...,y

Nn

LP}. Note that the i-th local patch

observation vectors yi
LP from previous tracking results are extracted and then used

to generate the corresponding local PCA basis vectors Ui
LP using incremental sub-

space learning [1]. Figure 3.3 shows the block diagram to obtain the local PCA basis

vectors U1
LP corresponding to 1-st local patch using frames from 1 to 5. As the oc-

clusion/outlier information for a given candidate sample y remains the same whether

it is modeled by global or local appearance model, the global diagonal weight matrix

W obtained during the IRRC is used to the reduce the effects of occlusion/outlier

on the estimation of the local PCA basis coefficients zLP. Note that for a given local

patch yi
LP of the candidate sample y, the respective local diagonal weight matrix Wi

LP

is extracted from the global diagonal weight matrix W. Now, the local PCA basis

coefficients zi
LP of the i-th local patch is obtained by

zi
LP =

((
Ui

LP

)T
Wi

LPU
i
LP

)−1 (
Ui

LP

)T
Wi

LP yi
LP (3.10)

where yi
LP = yi

LP−µ
i
LP is the centered i-th local image observation vector. Finally, the
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Figure 3.3: Block diagram to obtain local PCA basis vectors for the local model.

set of local PCA basis coefficients zLP = {z
1
LP,z

2
LP, ...,z

Nn

LP} for a given candidate y is

obtained using the set of local diagonal weight matrices WLP = {W
1
LP,W

2
LP, ...,W

Nn

LP}

as per Procedure 3.2.

Procedure 3.2 Computation of the set of local PCA basis coefficients zLP

Input: Set of centered local patch observation vectors yLP, set of local PCA basis
vectors ULP = {U

1
LP,U

2
LP, ...,U

Nn

LP}, set of local diagonal weight matrices WLP,
number of local patches Nn.

1: for i = 1 to Nn do

2: Compute zi
LP =

( (
Ui

LP

)T
Wi

LPU
i
LP

)−1 (
Ui

LP

)T
Wi

LP yi
LP

3: end for
Output: Set of local basis coefficients zLP.

Finally, the RC distance is derived to compare the candidate sample and the

subspace in order to solve the tracking problem, which will be discussed in the next

subsection.

3.2.4 Robust Coding Distance

Some of the vision applications, like visual tracking, not only require the accurate

estimation of the coefficients, but also need a distance metric to find the similarity
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between a noisy observation and its reconstructed sample from the dictionary or

subspace [1, 65, 116]. In general, the distance metric is inversely proportional to the

maximum joint likelihood with respect to the coefficient z [1, 65],

d
(
Y;UGP, µGP

)
∝ − lnmax

z
p(y,z) ∝ − lnmax

z
p(y|z) p(z)

where y ∈ Rdg×1 is a observation vector obtained from the observed image sample

Y ∈ Rdl×dr . Assuming an uniform prior, the distance metric is written as,

d
(
Y;UGP, µGP

)
∝ − lnmax

z
exp

(
−
1

2
∥y −UGP z∥22

)
where y = y − µGP is the centered image observation vector. As this distance metric

is a function of the global reconstruction error and is based on standard least squares

(SLS), it is denoted as global SLS (GSLS) distance metric, and is given by

dGSLS
(
Y;UGP, µGP

)
= ∥y −UGP z∥22 . (3.11)

This SLS distance metric dGSLS
(
Y;UGP, µGP

)
, which is sensitive to outliers/occlusion,

is used in the likelihood function of the IVT [1] whose appearance model is also

sensitive to outliers/occlusion, and hence the performance of IVT is not effective

during occlusion. Note that in IVT, the basis coefficients are computed using z =

UT
GP y. In order to make the distance metric robust to outliers/occlusion, the distance

metric should give less importance to the reconstruction error due to occluded pixels

or outliers, and hence, in the proposed algorithm [109], the distance between the

observed image sample Y and the global PCA subspace (UGP, µGP) is defined as

dGRC
(
Y;UGP, µGP

)
= ∥W

1
2 e∥22 + λGLP

∑
j

(
1 −W

1
2
j, j

)
, (3.12)
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where, λGLP is a penalty constant. Due to the relation it has with RC, it is denoted as

global RC distance. The first part of (3.12) accounts for the weighted reconstruction

error of the candidate sample that reduces the influence of outliers/occlusion on the

distance calculation compared to dGSLS
(
Y;UGP, µGP

)
in (3.11), and the second part

penalizes the labeling of any pixel as the outlier or being occluded. If the observed

image sample Y can be represented well by the global PCA subspace (UGP, µGP), the

penalty term will be very small, otherwise very large. The importance of penalty term

can be visualized when the candidate sample is from the background or dissimilar from

the subspace, the residual will be large at all pixel locations leading to weights close

to zero, and hence the distance metric may have lesser value due to the first term

compared to the actual target sample, which makes the tracker to fail in the absence

of penalty term. Similarly, the RC distance between the i-th local patch image Yi
LP

and i-th local PCA subspace (Ui
LP, µ

i
LP) is defined as

dLRC

(
Yi

LP;U
i
LP, µ

i
LP

)
= ∥

(
Wi

LP

) 1
2
ei

LP∥
2
2 + λGLP

∑
j

(
1 −

(
Wi

LP

) 1
2

j, j

)
, (3.13)

where ei
LP = yi

LP−U
i
LPz

i
LP is i-th local patch error or residual vector. Figure 3.4 shows

the candidates YdGSLS and YdGRC selected by the distance metrics dGSLS and dGRC re-

spectively, for sequences having occlusion and motion blur, and their distances from

the global PCA subspace (UGP, µGP) using dGSLS, dGSLS RC and dGRC distance met-

rics are reported in Table 3.1, where the distance metric dGSLS RC is the SLS distance

computed using (3.11) but with z = zopt obtained by the IRRC. It is observed from

both Figure 3.4 and Table 3.1 that the proposed distance metric dGRC finds the best

match as compared to that of dGSLS and dGSLS RC due to its occlusion/outlier handling

capability when the object undergoes occlusion or motion blur. Also, for both the

distance metrics dGSLS and dGSLS RC, it is observed that dGSLS
(
YdGSLS ;UGP, µGP

)
<

dGSLS
(
YdGRC ;UGP, µGP

)
and dGSLS RC

(
YdGSLS ;UGP, µGP

)
< dGSLS RC

(
YdGRC ;UGP, µGP

)
,

but for the proposed distance, dGRC
(
YdGSLS ;UGP, µGP

)
> dGRC

(
YdGRC ;UGP, µGP

)
.
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(a) Motion Blur in DavidIndoor

(b) Occlusion in Faceocc2

Figure 3.4: Candidates selected by dGSLS and dGRC.

Even though the dGSLS RC uses the basis coefficients zopt , which are robust to outlier-

s/occlusion, it fails to estimate the best match and performs similar to dGSLS. This

indicates that the outlier/occlusion handling capability should be effective both in

the appearance model as well as in distance metric computation to achieve a better

tracking performance.

3.3 Proposed Tracking Algorithm

The block diagram of the proposed tracking algorithm is shown in Figure 3.5. It is

assumed that an observation vector yt obtained from the image observation Yt can

be generated from a global PCA subspace of the target object spanned by the global
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Table 3.1: Distance metrics comparison between the global PCA subspace (UGP, µGP)

and the candidates selected by dGSLS and dGRC. Lowest distances are in bold face,
and the corresponding candidates are the best match.

Sequence/ Frame Candidate dGSLS dGSLS RC dGRC

DavidIndoor #254
YdGSLS 26.79 28.23 6.35

YdGRC 43.44 45.37 3.85

Faceocc2 #512
YdGSLS 44.20 50.73 6.94

YdGRC 51.51 60.02 2.75

Figure 3.5: Block diagram of the proposed tracking algorithm.
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PCA basis vectors UGP and centered at global mean µGP. As opposed to the trivial

templates used in other methods, the proposed algorithm uses the diagonal weight

matrix to model the occlusion/outliers. Hence, even during occlusion, the weighted

image observation can be represented by a weighted sum of the global mean µGP

and the linear combination of the global PCA basis vectors UGP (as shown in Figure

3.1d), giving less importance to the outliers/occluded pixels in the representation as

well as in the estimation of global basis coefficients z. For each candidate vector ym
t

of a candidate image sample Ym
t observed by a state sm

t , the minimization problem

in (3.4) is solved efficiently by using the IRRC Procedure 3.1 to obtain zm
t and Wm

t .

Similar to the global PCA model, it is assumed that the local patches of the same

candidate image sample Ym
t can be generated from the local PCA subspace (spanned

by the local PCA basis vectors {Ui
LP}

Nn

i=1, and centered at local mean {µi
LP}

Nn

i=1 of

the corresponding patch). For every local patch yi
LP of a candidate image sample

Ym
t , the corresponding local diagonal weight matrix Wi

LP is extracted from the global

diagonal weight matrix Wm
t , and the local basis coefficients zi

LP are computed as per

Procedure 3.2. Now, the local RC distance between the candidate image sample Ym
t

and the local PCA subspace (ULP, µLP) is defined as

dLRC
(
Ym

t ;ULP, µLP
)
=

Nn∑
i=1

dLRC

(
Yi

LP;U
i
LP, µ

i
LP

)
(3.14)

Further, the global and local models are collaborated by adding the global and local

RC distances to get the final distance metric dGLRC
(
Ym

t ;UGP, µGP;ULP, µLP
)
, which

is defined as

dGLRC
(
Ym

t ;UGP, µGP;ULP, µLP
)
= dGRC

(
Ym

t ;UGP, µGP
)
+ dLRC

(
Ym

t ;ULP, µLP
)

In visual tracking based on particle filter framework, the confidence of the each

particle is given by its observation likelihood, and in the proposed algorithm, a novel
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observation likelihood is defined by

p(Ym
t |s

m
t ) = exp

(
−
1

γ
dGLRC

(
Ym

t ;UGP, µGP;ULP, µLP
) )

(3.15)

where γ is a constant. As the proposed observation likelihood considers the distance

metric dGLRC
(
Ym

t ;UGP, µGP;ULP, µLP
)
, the effect of occlusion/outliers on the likeli-

hood is reduced thereby making the likelihood robust to occlusion/outliers. Finally,

the optimal state of the target ŝt is estimated using (2.4). Further, the global and

local observation models are adapted to handle the appearance change of the target

by incrementally updating the global (UGP, µGP) and local (ULP, µLP) PCA subspace

models, as discussed in the next subsection.

3.3.1 Observation Model Update

For handling appearance variations of the target, the observation model update with

precise samples is essential. In some scenarios of tracking, the occluders/outliers

cover the target for an uncertain duration of time. The tracking result in these cases

contain occlusion/outlier information in occluded part of the target and target infor-

mation in non-occluded portion of the target. These tracking samples are not precise

for observation model update due to occlusions/outliers. In order to remove the oc-

clusion/outlier information, it is necessary to generate the occlusion map, which is

essential to mask the occluded region during the observation model update. Other-

wise, update with imprecise tracking samples with occlusions/outliers results in the

model deterioration, thereby causing tracking failure. The observation model update

with precise samples makes the model free from occlusions/outliers and hence the

observation model could represent the candidate samples effectively in future frames.

In the proposed algorithm, the occlusion/outlier information present in the tracked

target candidate is captured by the residual error and the weight matrix Ŵ, which is

obtained by the IRRC technique. Therefore, the weight matrix is exploited to detect
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the occlusion/outliers as the lower weight values correspond to occlusion/outliers.

The weight matrix Ŵ is used to generate the occlusion map O, which avoids the

degradation of the observation model, and in the computation of the distance met-

ric dGLRC, which reduces the influence of occlusions/outliers on the tracking result,

thereby improving the tracking results effectively. As each diagonal element of the

weight matrix Ŵ corresponds to a location in a 2D map, by placing the diagonal

weight elements in respective positions (called as reverse raster scan) results in a

weight map Wmap. Then, a binary occlusion map O is generated from the weight

map Wmap by assigning one and zero for the outlier and inlier pixels, respectively,

using

O =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if Wmap < 0.5

0, otherwise,

(3.16)

Here, the weight Wmap < 0.5 is considered without any bias for the detection of

outliers/occlusion as the weight values are bounded in [0,1] and 0.5 is midpoint of

this range. Note that no arbitrary threshold is used to detect the occlusion/outlier

as in other methods. Further, a occlusion ratio τ is computed as the ratio of the

number of ones in the occlusion map to the total number of elements in the occlusion

map O. This occlusion ratio τ represents the amount of occlusion in the tracked

target candidate and decides whether the update of the observation model with the

tracked target candidate is full or partial or not, with the help of two thresholds τ1

and τ2. If τ < τ1, then it is considered as the case of no occlusion and hence, the

tracked target candidate will be used as it is for the model update (full update). If

τ1 < τ < τ2, then it is considered as the case of partial occlusion and hence, the

occluded pixels in the tracked target candidate are replaced with the corresponding

pixels from the previously updated mean µGP to get a updated sample, which is

free from occlusion, and is used in the model update. If τ > τ2, then it is a case

of severe occlusion and hence, this tracked target candidate will not be used in the

model update. Some cases of these three update scenarios are shown in Figure 3.5.
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After accumulating enough new updated tracked target candidates, which are free

from occlusion, the global
(
UGP, µGP

)
and Nn local observation models (ULP, µLP) are

updated with an incremental subspace learning [1]. Even though the update model of

the proposed algorithm is similar to that of SPT [3], the difference lies in what is used

to find the occlusion/outlier information. The proposed algorithm finds the occlusion

information from the weights as the occluded pixels have low weights, whereas SPT

does it from the coefficients of the trivial templates.

Algorithm 3.1 shows the steps of the proposed tracking method based on the

global appearance model using RC and its collaboration with local model.

3.4 Experimental Results

Algorithm 3.1 is implemented in MATLAB and its average speed is 6.82 fps1. The

algorithm when tested on gray scale features is denoted as Algorithm 3.1 Gray, and

when tested on histogram of oriented gradient (HOG) features is denoted as Algo-

rithm 3.1 HOG. Their performance is evaluated on the challenging sequences avail-

able in object tracking benchmark-50 (OTB-50) [7] and visual object tracking 2016

(VOT2016) [94] datasets using the respective evaluation protocols discussed in Sec-

tion 2.3. In Algorithm 3.1, each image observation is resized to 32 × 32 pixels. This

resized image is used for the global PCA representation as well as to extract Nn = 16

non-overlapped local patches of size 8 × 8 pixels for the local PCA representation

while evaluating Algorithm 3.1 Gray. Similarly, to evaluate Algorithm 3.1 HOG, the

cell size of 2×2 pixels with 5 orientations are adopted for extracting the HOG features

from the resized image of 32× 32 pixels. The above extracted HOG features are used

for the global PCA representation, and for the local PCA representation by extract-

ing Nn = 16 non-overlapped local patches of size 4 × 4. Further, 16 eigenvectors are

used in all the experiments for both the global and local PCA subspace models. The

1Using modern computer of 3.4GHz CPU and 16GB RAM
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Algorithm 3.1 Tracking algorithm based on the global appearance model using
robust coding and its collaboration with the local model

Input: Target object is labeled in the first frame at t = 1 and its initial state is s1,
number of PCA basis vectors kg, number of non-overlapped local patches Nn, and
constants c1, c2, τ1 and τ2.

1: Using the initial state s1, the target image Y1 is cropped out in the first frame
and used to initialize both the global µGP and local µLP PCA mean vectors.

2: for t > 1 do
3: Sample M candidate states {s1t , s

2
t , ..., s

M
t } from st−1 using the particle filter.

4: For every candidate state sm
t , extract the corresponding candidate sample Ym

t
and get the candidate vector ym

t , centered candidate vector ym
t and the set of

centered local patch candidate vectors {yi
LP}

Nn

i=1.
5: if t <= TGP then
6: if t <= 5 then
7: For all the candidates Ym

t , compute dGRC and dLRC using (3.12) and
(3.14), respectively, by assigning Wm

t = I, e = ym
t , and {e

i
LP = yi

LP}
Nn

i=1.
8: else
9: For all the candidates Ym

t , find dGRC and dLRC using (3.12) and (3.14),
respectively, by assigning Wm

t = I, e = ym
t − UGP UT

GP ym
t , and {e

i
LP =

yi
LP −U

i
LP

(
Ui

LP

)T
yi

LP}
Nn

i=1.
10: end if
11: Find the optimal state of the tracked target ŝt using (3.15) and (2.4).
12: The global

(
UGP, µGP

)
and Nn local (ULP, µLP) observation models are

updated incrementally for every five frames as described in section 3.3.1
by assigning the global weight matrix Wm

t = I.
13: else
14: For all the candidate samples Ym

t , compute zm
t and Wm

t as per Procedure
3.1.

15: Extract the set of local diagonal weight matrices WLP from the global
weight matrix Wm

t and compute the set of local basis coefficients zLP ac-
cording to Procedure 3.2 for all the candidates.

16: For all the candidates, calculate dGRC and dLRC using (3.12) and (3.14),
respectively.

17: Find the optimal state of the tracked target ŝt using (3.15) and (2.4).
18: The global

(
UGP, µGP

)
and Nn local (ULP, µLP) observation models are

updated incrementally for every five frames as described in section 3.3.1.
19: end if
20: end for
Output: Target state ŝt at time t.
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occlusion ratio thresholds τ1 and τ2 used to obtain occlusion-free samples in Section

3.3.1 are set to 0.1 and 0.6, respectively. Both the global and Nn = 16 local subspace

models are updated after accumulating 5 occlusion-free samples using incremental

subspace learning.

The computation of the two parameters βGP and δGP needed in the weight function

(3.5) during the residual minimization is explained now. In order to compute the value

of βGP, which controls the location of the demarcation point, it is assumed that when

there are no occlusions in the tracked target candidate, the coding residuals êi at all

locations are in the ”nominal range” and follow the Gaussian distribution. But during

occlusion, the coding residuals êi at the occluded locations will be probably above the

”nominal range”. Therefore, by finding the ”nominal range” of the residuals in the

starting frames (t = 2 to TGP) of the given sequence, the value of the βGP is calculated

as

βGP =

(
1

TGP − 1

TGP∑
t=2

mean(êt) + c1 std(êt)

)2
(3.17)

where c1 is a constant, êt is the residual error of the tracked target candidate, and

TGP is the time instant at which the number of PCA basis vectors kg becomes 16

for the first time. The first frame at t = 1 is manually labeled, due to which all the

elements of the residual will be zero, and hence, the frame at t = 1 is not considered

in the computation of βGP. Now, the square of the residual ê j that is larger than the

computed βGP, will be considered as occluded/outlier and the value of weight will

be less than 0.5. Further, the parameter δGP, which controls the decreasing rate of

weight from 1 to 0 is computed using δGP = c2/βGP, where c2 is a constant. Here, the

constants c1 and c2 are set as 2.5 and 6, respectively, for all sequences. In Algorithm

3.1, the IRRC technique will start functioning after the number of PCA basis vectors

kg becomes 16 for the first time. At time t = TGP, the number of PCA basis vectors

kg is 16, and then the parameters βGP and δGP are computed, which are then used

by the IRRC technique for t > TGP to calculate the weights in (3.5).
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The performance of Algorithm 3.1 is evaluated against several particle filter-based

algorithms for a fair comparison. The algorithms considered are IVT [1], tracking

based on L1 accelerated proximal gradient (L1APG) [13], SPT [3], weighted residual

minimization in PCA subspace for visual tracking (WRMPCA) [110], locally weighted

inverse sparse tracker (LWIST) [117], visual tracking via weighted local cosine similar-

ity (WLCS) [108], visual tracking via least soft-threshold squares (LSST) [65], visual

tracking via bilateral 2DPCA and robust coding (B2DPCARC) [118], robust object

tracking via probability continuous outlier model (PCOM) [119] and deep learning

tracker (DLT) [120]. The codes of the trackers IVT [1], L1APG [13], SPT [3], LWIST

[117], WLCS [108], LSST [65], PCOM [119] and DLT [120] downloaded from the re-

spective authors’ website [121–127] and [128] are used to evaluate on the sequences

of the benchmarks to have a fair comparison with Algorithm 3.1. The parameter set-

tings of these trackers are as given in their respective papers in all the experiments,

except for the parameters related to the particle filter framework, which are set to

be as in OTB-50 [7] for a fair comparison. In the following two sub-sections, two

benchmark datasets and the evaluation measures discussed in Section 2.3 are used

for the quantitative evaluation of Algorithm 3.1 with that of the other methods.

3.4.1 Quantitative Evaluation on OTB-50

The performance of Algorithm 3.1 is evaluated on the OTB-50 benchmark dataset

[7] and compared with that of the state-of-the-art tracking algorithms using one-

pass evaluation (OPE). The performance comparison of Algorithm 3.1 in terms of

the precision score for the location error threshold of 20 pixels with that of the

other trackers for different attributes is given Table 3.2. The best three results are

shown in (red, bold), (violet, underline) and (blue, italic) fonts for better comparison

of Algorithm 3.1 with the other trackers. It is observed that Algorithm 3.1 HOG

provides the best performance in the face of all the challenging attributes, except

occlusion (Occ) and deformation (Def), where it stood second, motion blur (MB)
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and fast motion (FM), where it stood third, and low resolution (LR), where it stood

seventh. On the other hand, Algorithm 3.1 Gray stands third in all the attributes,

except scale variation (SV), MB, FM and in-plane rotation (IPR). Further, DLT ranks

first in Occ, Def, MB and FM, and second in the remaining attributes except LR.

L1APG stands second in MB, FM and LR, and third in IPR, whereas LSST stands

first and third in LR and SV, respectively. It is also observed that Algorithm 3.1 HOG

outperforms the other methods for most of the challenging attributes, except Occ,

Def, MB, FM and LR.

Table 3.3 shows the performance comparison of Algorithm 3.1 in terms of the area

under curve (AUC) with that of the state-of-the-art trackers for different challenging

attributes. It is noticed that Algorithm 3.1 HOG provides the best performance in

the face of all the challenging attributes except MB, where it stood second, and

FM and LR, where it stood third. Further, Algorithm 3.1 Gray ranks second in

LR, and third in IV, out-of-plane rotation (OPR), SV, Occ, Def and out-of-view

(OV) challenging attributes. DLT stands first in MB and FM, second in illumination

variation (IV), OPR, SV, Occ, Def, IPR and OV, and third in background clutter

(BC) challenging attributes. L1APG stands second in FM and BC, and third in

MB and IPR challenging attributes. Also, it is noticed that Algorithm 3.1 HOG

outperforms the other methods for most of the challenging attributes, except MB,

FM and LR.

In IVT, the appearance model and the likelihood function cannot handle out-

liers/occlusion effectively, resulting in a tracking drift for Occ and BC challenging

attributes, and thus, the results are not satisfactory in these challenging attributes as

well as in other attributes. On the other hand, the appearance model in WRMPCA

handles the outliers/occlusion efficiently using RC and removes its effect on the com-

putation of the basis coefficients, but does not remove its effect on the observation

likelihood. Due to this, WRMPCA performs better than IVT does in all the challeng-

ing attributes, except in OV. In spite of using RC in B2DPCARC, the performance of
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the B2DPCARC is inferior to that of IVT in all the challenging attributes, except in

Def and FM, and WRMPCA in all the challenging attributes, except in Def. This is

because the effect of outliers/occlusion is not considered while computing the observa-

tion likelihood of B2DPCARC. Even though both SPT and LSST are based on PCA

subspace, their outlier/occlusion detection schemes are not so efficient as the one in

Algorithm 3.1 and hence, their performance is inferior to that of Algorithm 3.1 in

all the challenging attributes. In spite of using local patch information, both WLCS

and LWIST do not capture the outliers/occlusion information in detail to the pixel

level as compared to Algorithm 3.1 does, and hence, their performance is inferior to

that of Algorithm 3.1. Further, the combined effect of using binary indicator vector

(in contrast to the continuous valued weights used in Algorithm 3.1) to capture the

information on occlusion/outliers and the absence of penalizing the pixel for labeling

it as outlier or being occluded results in the poor performance of PCOM compared

to that of Algorithm 3.1. Even though Algorithm 3.1 HOG has performed well in

terms of AUC due to its outliers/occlusion handling capability, its performance is not

that good in terms of the precision score for the challenging attributes Occ and Def.

This may happen when the target undergoes several changes simultaneously along

with severe occlusion. A similar argument holds good for the inferior performance of

Algorithm 3.1 HOG, in terms of both the precision score and AUC, for the attributes

MB, FM and LR, when the object undergoes a large appearance change due to fast

motion of the object, and when there is a reduction in information of the object due

to motion blur or low resolution.

The performance of Algorithm 3.1 is compared using the precision and success

plots of OPE for OTB-50 benchmark sequences having occlusion against the other

trackers and shown in Figure 3.6. In the precision plot, the precision score for the

location error threshold of 20 pixels is used to rank the tracker, whereas in the success

plot, AUC is used to rank the overall performance of the tracker. It is observed

that Algorithm 3.1 HOG underperforms DLT by 2.7%, and outperforms L1APG,
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Table 3.2: The precision score of Algorithm 3.1 with that of the compared trackers
for different attributes of OTB-50. (red, bold), (violet, underline) and (blue, italic)

indicate first, second and third rankings, respectively.

Precision score IV OPR SV Occ Def MB FM IPR OV BC LR

Algorithm 3.1 HOG 56.5 56.3 60.3 55.8 52.6 36.5 35.1 58.3 51.0 57.4 55.7

Algorithm 3.1 Gray 42.8 50.4 53.2 52.3 49.5 26.2 24.8 48.5 36.3 44.8 60.2

IVT 42.4 46.8 50.3 46.0 40.5 22.2 22.3 46.7 31.2 42.1 55.6

WRMPCA 42.7 47.7 52.8 45.9 41.2 24.3 23.6 47.5 31.1 43.4 58.7

B2DPCARC 30.7 42.0 41.7 40.0 43.4 19.9 23.2 41.4 27.6 38.2 56.1

L1APG 34.1 47.8 47.2 46.1 38.3 37.5 36.5 51.8 32.9 42.5 61.5

SPT 17.2 19.7 23.6 18.9 18.2 10.3 13.5 22.9 17.4 20.5 21.4

WLCS 32.9 33.0 38.3 35.7 29.9 15.4 21.3 30.3 22.8 33.1 23.0

LWIST 34.3 38.4 40.3 40.4 35.3 15.1 18.7 33.7 30.7 37.4 45.9

PCOM 36.8 46.1 48.6 44.4 38.3 22.9 22.0 46.0 30.5 40.1 55.9

DLT 53.4 56.1 59.0 57.4 56.3 45.3 44.6 54.8 44.4 49.5 53.6

LSST 41.5 47.0 53.3 41.3 45.0 27.1 25.2 46.1 24.3 42.6 74.1

Table 3.3: AUC of Algorithm 3.1 with that of the compared trackers for different
attributes of OTB-50. (red, bold), (violet, underline) and (blue, italic) indicate

first, second and third rankings, respectively.

AUC IV OPR SV Occ Def MB FM IPR OV BC LR

Algorithm 3.1 HOG 46.6 44.6 48.2 44.0 42.0 31.6 30.2 46.4 43.2 46.4 41.6

Algorithm 3.1 Gray 33.7 37.0 38.6 37.7 34.6 23.3 22.3 37.1 32.3 31.3 41.7

IVT 30.9 32.7 34.8 32.7 28.4 19.4 20.2 33.4 27.7 29.5 34.2

WRMPCA 33.2 34.7 37.4 33.8 29.7 20.8 21.6 35.1 27.4 31.6 38.9

B2DPCARC 23.9 29.2 30.2 29.6 31.2 18.4 20.8 28.8 26.0 26.8 35.8

L1APG 28.3 36.0 35.0 35.3 31.1 31.0 31.1 39.1 30.3 35.0 37.4

SPT 16.6 17.1 18.3 16.7 13.4 11.9 13.7 20.1 17.7 16.0 14.0

WLCS 27.0 25.8 29.5 27.6 25.0 15.8 19.6 24.2 21.6 27.3 13.7

LWIST 28.9 30.1 31.3 31.9 28.5 15.1 18.3 27.2 28.1 31.1 27.8

PCOM 28.4 32.3 32.9 33.2 26.0 17.8 18.8 32.4 27.5 28.4 34.5

DLT 40.5 41.2 45.5 42.3 39.4 36.3 36.0 41.1 36.7 33.9 34.7

LSST 33.2 33.5 37.7 30.4 31.6 21.4 21.5 32.3 21.7 30.2 46.2
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IVT, WRMPCA, PCOM, LSST, LWIST, B2DPCARC and WLCS by 21.0%, 21.3%,

21.5%, 25.7%, 35.1%, 38.1%, 39.5% and 56.3%, respectively, in terms of the precision

score. Even though Algorithm 3.1 HOG underperforms DLT in terms of the precision

score, which is evaluated at the location error threshold of 20 pixels, it does better

than that of the latter for the location error threshold < 15. On the other hand,

Algorithm 3.1 HOG outperforms DLT, L1APG, WRMPCA, PCOM, IVT, LWIST,

LSST, B2DPCARC and WLCS by 4.0%, 24.6%, 30.1%, 32.5%, 34.5%, 37.9%, 44.7%,

48.6% and 59.4%, respectively, in terms of AUC. Also, it is observed that the success

rate of Algorithm 3.1 HOG is less than that of DLT for overlap threshold < 0.4 but

it is better than that of the latter when the overlap threshold > 0.4. Note that for a

best tracking performance, the precision score should be high even for a lower values

of the location error threshold and the success rate should be high even for a higher

values of the overlap threshold. Therefore, the performance of Algorithm 3.1 is better

than that of the other methods in terms of both the success rate and the precision

score.

The success and precision plots of OPE for the considered trackers averaging over

the OTB-50 benchmark sequences are shown in Figure 3.7. It is observed from Fig-

ure 3.7 that Algorithm 3.1 HOG outperforms the state-of-the-trackers DLT, WRM-

PCA, IVT, LSST, L1APG, PCOM, B2DPCARC, LWIST and WLCS by 3.9%, 18.9%,

21.2%, 23.4%, 25.7%, 28.1%, 40.2%, 49.1% and 68.5%, respectively, in terms of the

precision score. Further, Algorithm 3.1 gray underperforms DLT by 6.3%, and out-

performs WRMPCA, IVT, LSST, L1APG, PCOM, B2DPCARC, LWIST and WLCS

by 7.2%, 9.3%, 11.3%, 13.4%, 15.5%, 26.4%, 34.5% and 51.9%, respectively, in terms

of the precision score. Also, it is observed that Algorithm 3.1 HOG performs best

for the location error threshold < 30 in terms of the precision score. Similarly, Algo-

rithm 3.1 HOG outperforms DLT, WRMPCA, L1APG, IVT, LSST, PCOM, LWIST,

B2DPCARC and WLCS by 11.2%, 27.3%, 27.6%, 34.7%, 36.2%, 42.6%, 49.2%, 58.5%

and 69.5%, respectively, in terms of AUC. Also, Algorithm 3.1 gray underperforms
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DLT by 7.1%, and outperforms WRMPCA, L1APG, IVT, LSST, PCOM, LWIST,

B2DPCARC and WLCS by 6.3%, 6.6%, 12.5%, 13.7%, 19.1%, 24.6%, 32.3% and

41.6%, respectively. Further, the best performance of the Algorithm 3.1 HOG can be

observed for overlap threshold > 0.2 in terms of the success rate. Overall, Algorithm

3.1 HOG provides the best performance to that of the other methods in terms of both

the precision score and the success rate.

3.4.2 Quantitative Evaluation on VOT2016

The average accuracy and robustness, and their rank are used to evaluate the per-

formance of Algorithm 3.1 using VOT2016 benchmark dataset [94]. Table 3.4 shows

the accuracy rank and overlap comparison of Algorithm 3.1 with that of the state-

of-the-art tracking algorithms averaging over the VOT2016 sequences. Similarly,

Table 3.5 shows the performance comparison of Algorithm 3.1 using robustness rank

and failures averaging over the same challenging sequences. The last six columns of

these two tables show the respective measures using different averaging methodolo-

gies, mean, weighted mean and pooled. The best three results are shown in (red,

bold), (violet, underline) and (blue, italic) fonts for better comparison of the pro-

posed tracker with the other state-of-the-art trackers. Note that as the trackers with

statistically equivalent results are merged while ranking, the different trackers may

have same accuracy rank and robustness rank [94]. It is observed from Table 3.4 that

Algorithm 3.1 HOG ranks first in all the attributes and averages of attributes (mean,

weighted mean and pooled), and stands third for the attributes illumination change

and motion change. On the other hand, Algorithm 3.1 Gray stands second and third

for the attribute motion change, and for the attributes camera motion, size change,

weighted mean and pooled, respectively. Also, DLT ranks first and second for the

attribute motion change, and for the attributes camera motion, empty, occlusion,

size change, mean, weighted mean and pooled, respectively. Further, LWIST stands

first and third for the attributes illumination change and mean, respectively, whereas
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(a)

(b)

Figure 3.6: Performance evaluation of Algorithm 3.1 on OTB-50 sequences having
occlusion using (a) the precision plots of OPE, where the precision score is shown
along with the tracker name in the legend, and (b) the success plots of OPE, where
AUC is shown along with the tracker name in the legend. The number 29 appearing
in the title denotes the number of sequences associated with the occlusion attribute
of OTB-50 dataset.
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(a)

(b)

Figure 3.7: Overall performance evaluation of Algorithm 3.1 on OTB-50 using (a)
the precision plots of OPE, where the precision score is shown along with the tracker
name in the legend, and (b) the success plots of OPE, where AUC is shown along
with the tracker name in the legend.
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WLCS stands second and third for the attributes illumination change and empty,

respectively. Also, PCOM ranks third for the attribute occlusion. Further, Algo-

rithm 3.1 HOG performs superior to that of the other methods for all the challenging

attributes except illumination change and motion change.

From Table 3.5, it is observed that Algorithm 3.1 HOG stands first for the at-

tribute size change, and third for motion change and occlusion. On the other hand,

Algorithm 3.1 Gray ranks second for the attributes motion change, occlusion, mean,

weighted mean and pooled, and third for camera motion and empty. Further, DLT

stands first for all the attributes except size change, where it stood second and illumi-

nation change, where it stood seventh. WRMPCA stands second for camera motion,

and third for size change, mean, weighted mean and pooled. Also, LWIST and WLCS

ranks first and third for illumination change, respectively, and L1APG ranks second

for the attribute empty. Even though Algorithm 3.1 HOG is inferior to DLT in terms

of robustness on most of the challenging attributes, it performs better than the latter

does in terms of accuracy. This may happen when the target undergoes severe occlu-

sion, scale change, out-of-plane rotation, motion blur, fast motion either individually

or simultaneously.

3.4.3 Qualitative Evaluation

For qualitative evaluation of the trackers, some tracking results on a subset of the

OTB-50 benchmark sequences are shown in Figure 3.8. For each sequence, the track-

ing results of all the trackers on the six exemplar image frames, which are selected

at regular intervals without any bias, are shown. Algorithm 3.1 HOG successfully

tracks the target in the all the frames of all the sequences, which contain most of

the real-time challenges such as pose changes, partial occlusion, out-of-plane rota-

tion, illumination and scale variations. It is also observed that Algorithm 3.1 HOG

is the only method that tracks the object successfully in Suv and Trellis sequences.

This shows that Algorithm 3.1 is strong enough to handle these challenges. Further,
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Algorithm 3.1 HOG has slightly drifted away in the last few frames of the Fleetface

sequences shown in Figure 3.8. On the other hand, Algorithm 3.1 Gray fails to track

the object in most of the sequences except Faceocc2, Fleetface, Freeman3, David and

Walking. Algorithm 3.1 performs well for the challenges that are considerably diffi-

cult, however, loses the target for challenges that are extremely difficult or for the

sequences where the target undergoes several changes simultaneously. It is also ob-

served that LWIST and SPT fail in most of the sequences, whereas WLCS fails in all

the sequences except Faceocc2. WRMPCA tracks the object successfully in Faceocc2

and Walking sequences, fails to estimate the scale in David, fails to estimate both

the scale and location in Freeman3, and fails in the remaining sequences. Further,

B2DPCARC successfully tracks the object in Doll and Walking sequences, fails to

estimate the scale in Faceocc2 and Singer2, both scale and location in Freeman3 and

David and fails in the remaining sequences. Even though LSST tracks the object

in Singer2 sequence completely but fails to estimate the scale and location of the

object accurately. Similar observations can be made for LSST in Faceocc2 and David

sequences with imprecise estimation of the scale and location of the object. Further,

LSST and DLT have successfully tracked the object in Freeman3 sequence. Also,

DLT has tracked the object in Faceocc2, Fleetface, CarScale and David sequences

with inaccurate scale and location of the object. On the other hand, PCOM fails

to track the object in most of the frames in Fleeface, Suv, Trellis and Walking se-

quences, except in Freeman3, CarScale and David, where it fails to estimate the scale

of the object. Also, IVT fails to track the object in most of the sequences except in

Faceocc2, CarScale and David with imprecise estimation of scale. Thus, from these

qualitative analyses, it is observed that Algorithm 3.1 performs favorably in most of

the challenging sequences.

The main drawback of Algorithm 3.1 is that it fails to track the object when there

is a large change in the appearance of the object. This is due to the fact that the

reconstruction of the object from the linear PCA subspace may not be accurate as
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the candidate samples may lie beyond the range of the linear subspace.

3.5 Summary

In this chapter, a new generative tracking algorithm, Algorithm 3.1, which is based

on the global appearance model using robust coding and its collaboration with a

local model has been proposed. The global PCA subspace has been used to model

the global appearance of the object and an iteratively reweighted robust coding tech-

nique has been developed to compute the optimum global PCA basis coefficients and

the global weight matrix. A collaborative scheme of the global and local appear-

ance models has been presented to exploit their individual merits. The global and

local robust coding distances have been introduced to find the candidate having the

similar appearance as that of the reconstructed sample from the subspace, and the

observation likelihood has been defined using the above two distances. The occlu-

sion map has been generated and used to reduce the effect of outliers/occlusion on

the observation model update. Extensive experiments have been conducted on the

OTB-50 and VOT2016 benchmark datasets to analyze the performance of Algorithm

3.1. Also, Algorithm 3.1 has been tested on the gray values (Algorithm 3.1 Gray)

and HOG features (Algorithm 3.1 HOG), and the corresponding performances using

one-pass evaluation have been compared with the several state-of-the-art methods

based on particle filter framework. Even though Algorithm 3.1 HOG generally per-

forms better than the other methods do for most of the challenging attributes, there is

still a room for improvement in occlusion, deformation, motion blur, fast motion and

low resolution challenging attributes of OTB-50, and camera motion, illumination

change, motion change and occlusion attributes of VOT2016. In order to improve the

performance of the tracker on some of these challenging attributes, a second track-

ing algorithm based on a structural local 2DDCT sparse appearance model and an

occlusion handling mechanism is introduced in the next chapter.
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Figure 3.8: Examples of tracking results of the compared methods on the ten OTB-50
benchmark sequences.
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Chapter 4

Structural Local 2DDCT Sparse
Appearance Model and an
Occlusion Handling Mechanism for
Visual Tracking

4.1 Introduction

Algorithm 3.1 HOG [109], proposed in the previous chapter, does not perform well for

the challenging attributes of occlusion (Occ), deformation (Def), motion blur (MB),

fast motion (FM) and low resolution (LR) present in the object tracking benchmark-

50 (OTB-50) dataset, and camera motion, illumination change, motion change and

occlusion in the visual object tracking 2016 (VOT2016) benchmark dataset. This

may happen when the target undergoes severe occlusion, deformation, out-of-plane

rotation, illumination change, fast motion and appearance change due to camera

motion either individually or simultaneously resulting in a large appearance variation

of the object. When there is a large change in the appearance of the object, the

reconstruction of the object from the principal component analysis (PCA) subspace

model may not be accurate as the candidate samples may lie beyond the range of

the PCA subspace. This problem is addressed by using a set of target templates

to model the object appearance. Most of the trackers based on target templates
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[2, 50, 52, 53, 129] use a holistic/global object representation scheme to handle the

appearance variation of the object. However, these trackers fail during occlusions and

background clutter as the information based on the parts of the target and spatial

information within the target region are not fully exploited. On the other hand,

the local appearance models [11, 15, 20, 108, 130] exploit the partial and spatial

structural information of the target, and hence, perform better during occlusions and

background clutter. Therefore, in this chapter, local patches that are extracted from

the target templates in a structured manner are investigated in a transform domain

for the object appearance model in visual tracking.

Adam et al. [11] proposed a tracking algorithm based on fragments, where each

fragment is tracked by measuring the local regional similarity, and then, the target

location is found by using the vote maps of the tracked fragments. Liu et al. [130]

proposed a local sparse appearance model based on a static sparse dictionary and a

dynamically updated basis distribution, and then tracking is achieved using a sparse

representation-based vote map and a sparse regularized mean-shift algorithm. Jia et

al. [15] proposed a visual tracking algorithm based on an adaptive structural local

sparse appearance (ASLA) model by exploiting both the partial and the spatial in-

formation of the target. Similar to ASLA, Dai et al. [131] proposed a part-based

sparsity model for visual tracking but with non-overlapped patches to model the ob-

ject appearance. Then, the target template set for each patch is updated dynamically.

Further, a tracking algorithm based on support vector machine is proposed by ex-

ploiting the aligned structural local sparse features in [30]. Concurrently, a robust

local sparse tracker with global consistency constraint is proposed in [132] to alleviate

the problem of drifting when a patch on the background is similar to some patches

of the target. Wang et al. [108] proposed a weighted local cosine similarity (WLCS)

to measure the similarity between the target and the candidates, and then developed

a tracking algorithm based on the local model. Further, the discriminative ability

of WLCS is improved by learning discriminative weights via quadratic programming.
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Also, they proposed a locally weighted distance metric-based inverse sparse tracking

algorithm (LWIST) [117], where instead of using the Euclidean distance metric, a

locally weighted distance metric is employed to measure the similarity between the

target and the candidates. As the algorithm employs a local template update scheme,

the unoccluded local parts are updated while the occluded ones are discarded during

heavy occlusion.

In this chapter, a new tracking algorithm [133] based on a structural local 2DDCT

sparse appearance model [134] and an occlusion handling mechanism is proposed.

The energy compaction property of 2DDCT is exploited by using only a few 2DDCT

coefficients in the object appearance model to reduce the computational cost of the

l1-minimization. This strategy is unlike other models that use raw pixels for object

representation. As raw pixels are equally probable, the dimensionality reduction

in the spatial domain is not affordable. A method is presented to reconstruct a

holistic image from the overlapped local patches that are obtained using the local

patch dictionary and the sparse codes. A robust occlusion map generation scheme

using the reconstructed holistic image, and the pooled feature vector is developed.

The highest confident occlusion-free sample among the cumulated samples is used to

reconstruct the image for the template update. The template that contributes least

in representing the previous tracking results is replaced with the reconstructed image

obtained after incremental subspace learning. A patch occlusion ratio is used while

computing the confidence of a candidate. Experiments conducted on the two popular

benchmark datasets with comparison to the state-of-the-art tracking methods bear

out the competency and effectiveness of the proposed algorithm for visual tracking.

This chapter is organized as follows. Section 4.2 introduces the object represen-

tation using a structural local 2DDCT sparse appearance model. The holistic image

reconstruction from an overlapped local patches is explained in Section 4.3 followed

by the proposed tracking algorithm in Section 4.4. Experimental results for the two

popular benchmark datasets, OTB-50 and VOT2016, are presented and discussed in
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Section 4.5 followed by a chapter summary in Section 4.6.

4.2 Structural Local 2DDCT Sparse Appearance

Model

In the literature, only a few attempts have been made to exploit the properties of

2DDCT for visual tracking [36, 135, 136] in spite of its success in a wide range of

vision applications such as image retrieval [137, 138], image fusion [139, 140], im-

age denoising [141, 142], face recognition [143, 144], video object segmentation [145]

and video caption localization [146]. In both [135] and [136], the features extracted

from the 2DDCT coefficients are used to find the target location by measuring the

similarity between the target and the candidates, but there is no update of appear-

ance model in [135]. At the same time, Li et al. [36] proposed a compact 3DDCT

based object representation and its incremental learning for robust visual tracking

(IL3DDCT) using a signal reconstruction-based similarity measure to evaluate the

likelihood. In contrast to these methods, which use only 2DDCT for the appearance

model, the proposed appearance model [134] exploits both the sparse representation

and 2DDCT to model the appearance of the object. Further, the proposed appear-

ance model uses the local patches in contrast to the holistic templates used in the

above methods. Also, a mechanism for robust occlusion detection and observation

model update mechanisms are developed to reduce the effects of occlusion/outliers

on the tracking algorithm.

The robustness and effectiveness of local representations, when the objects un-

dergo pose change, deformation and partial occlusion [11, 15, 131], have motivated

us to propose a structural local 2DDCT sparse appearance model for visual tracking.

The proposed algorithm has some similarity to ASLA [15] in the use of local sparse

representation, but differs in the domain in which sparse representation is applied.

ASLA directly uses the pixel intensities in the local patches for the object appear-
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ance model, whereas the proposed appearance model uses the 2DDCT coefficients of

those pixel intensities in the local patches. Even though ASLA can handle partial

occlusions due to local representations, it does not have any mechanism for occlusion

detection, whereas the proposed algorithm has a mechanism to detect occlusion. Also,

the proposed algorithm differs from ASLA in terms of the appearance model update.

Most of the methods in the literature use pixel intensities in the holistic templates

[2, 13] or in the local patches [15, 131, 132] for the object appearance modeling using

sparse representation. But the proposed appearance model explores the appearance

modeling of the object in the transform domain (2DDCT domain). It is well known

that a fraction of the 2DDCT coefficients are sufficient to represent an image with

less visual distortion due to the energy compaction property of the 2DDCT [147]. In

this section, the energy compaction property of the 2DDCT is exploited by reducing

the number of elements/coefficients in the candidate samples and the dictionary to

lower the computational cost of the l1-minimization.

For a given target candidate, the overlapped local patches Pi inside the target

region are extracted with a spatial layout as shown in Figure 4.1. Then, 2DDCT of

these patches are computed followed by zigzag scanning, whose order is akin to the

one defined in [147]. This gives a matrix Ỹ = [y1OL,y
2
OL, ...,y

No

OL] ∈ R
do×No for a given

candidate, where No denotes the number of overlapped local patches extracted within

the target region and do is the number of pixels in a patch. As each fixed part of

the target object is represented by one local patch, the complete holistic structure

of a target candidate can be represented by all these No local patches with a fixed

spatial relationship. Similar procedure is followed for every template in a given set of

target templates T = [T1,T2, ...,Tnt ] to create a dictionary D = [d1,d2, ...,d(nt×No)] ∈

Rdo×(nt×No), where nt is the number of target templates. Here, the local patches of the

target templates are used as the dictionary atoms to encode the local patches inside

the candidate regions, where all these local patches are in 2DDCT domain. As these

local patches are obtained across many templates, the resultant dictionary captures
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the generality of the different templates and hence, it is able to represent various

forms of target parts [15, 134].

In sparse representation, only a few basis elements of the dictionary with different

coefficients are sufficient to represent a local patch inside the target region and this

is achieved by solving the following minimization problem:

min
bi
∥yi

OL −Dbi∥
2
2 + λ∥bi∥1, s.t. bi ≽ 0, (4.1)

where yi
OL ∈ R

do×1 represents the 2DDCT of the i-th local patch, bi ∈ R
(nt×No)×1 is

the sparse code of that local patch, and the constraint bi ≽ 0 indicates that all the

elements of bi are non-negative. The constraint bi ≽ 0 is imposed to consider only the

positive contributions of the basis elements of the dictionary D in representing a local

patch of the target candidate yi
OL. Now, the sparse codes of the given target candidate

is given by B = [b1,b2, ...,bNo], where the sparse coefficients of each local patch bi

are divided into several segments depending on the template that each element of the

vector belongs to, i.e., bTi = [b
(1)T
i ,b(2)Ti , ,b(nt )Ti ], where b

( j)
i ∈ R

No×1 indicates the j-th

segment of the sparse coefficient vector bi corresponding to the template T j in the

given target template set T (as shown in Figure 4.1). From these segmented sparse

coefficients b
( j)
i , a normalized feature vector vi ∈ R

No×1 for the i-th local patch is

obtained as

vi =
1

G

nt∑
j=1

b
( j)
i , i = 1,2, ...,No, (4.2)

where G is a normalization term, which makes all the contributions from the templates

sum to unity. Thus, for a given candidate, all the normalized feature vectors of the

local patches within a candidate region form a square matrix V f = [v1,v2, ...,vNo] ∈

RNo×No . Since a single local patch captures only some local appearance of the object,

the whole object modeling requires pooling of information from these normalized

feature vectors. Here, alignment pooling is chosen due to its capability of using full

structural information contained in the dictionary and precisely locating the target
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object [15]. Even though each local patch at a given position of the candidate is

represented by patches at different positions of the templates, the local appearance

of a patch with some appearance variation in a candidate is correctly represented by

the patches at the same positions of the templates, i.e, the top left corner patch of

the object in Figure 4.1 can be represented precisely by the top left corner patches

of the templates. This is achieved by considering only the diagonal elements of the

square matrix V f as the pooled feature vector fp ∈ R
No×1, given by

fp = diag(V f ) (4.3)

This feature vector fp not only captures the target structure with a fixed spatial

relationship but also reflects the similarity between the candidate and the target

template.

4.3 Holistic Image Reconstruction from an Over-

lapped Local Patches

In the proposed appearance model, the overlapped local patches are used for the

object representation rather than holistic templates due to their robustness to pose

change, deformation and occlusion. The overlapped local patches of size 16× 16 with

an overlap of 8 pixels are extracted from an image of size 32 × 32 as per the layout

shown in Figure 4.1. Now, the extracted local patches are concatenated as per their

spatial relationship to obtain a overall block of size 48 × 48 (as shown in left part of

Figure 4.2). For clarity, the original image of size 32 × 32 is assumed to be divided

into a sub-blocks of size 8 × 8 as shown in right part of Figure 4.2. Now, the first

16 × 16 patch extracted from the top-left corner of the image, denoted as block 1 in

left part of Figure 4.2, is comprised of four 8 × 8 sub-blocks denoted as sub-block A,

B, E and F in right part of Figure 4.2. Similarly, the second block, denoted as block
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Figure 4.2: Holistic image reconstruction from overlapped local patches.

2, is comprised of four 8 × 8 sub-blocks B, C, F and G, and so on.

To understand the reconstruction procedure, the 8 × 8 sub-blocks in Figure 4.2

are divided into three groups depending on the number of overlaps they have with

the neighboring 16× 16 blocks. The first group consisting of four 8× 8 sub-blocks (A,

D, Q and T ) has no overlaps with 16× 16 blocks, and are denoted as no overlapping

blocks (NOB) (blue color blocks in the right part of Figure 4.2). The second group

consisting of eight 8×8 sub-blocks (B, C, E, H, J, O, R and S ) has an overlap with two

adjacent 16×16 blocks, and are denoted as two overlapping blocks (TOB) (green color

blocks in the reconstructed image of Figure 4.2). Similarly, the last group consisting

of four 8 × 8 sub-blocks (F, G, K and L) has an overlap with four adjacent 16 × 16

blocks, and are denoted as four overlapping blocks (FOB) (orange color blocks in the

reconstructed image of Figure 4.2). Since the NOB group has no overlaps, the pixels

in the 8× 8 sub-blocks A, D, Q and T of the reconstructed image are copied directly
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from the II -quadrant of block 1, III -quadrant of block 3, I -quadrant of block 7 and

IV -quadrant of block 9, respectively. However, the TOB group has two overlapping

16 × 16 blocks and hence the pixels in the 8 × 8 sub-blocks B, C, E, H, J, Q, R and

S of the reconstructed image are computed from the corresponding two overlapping

16×16 blocks. For example, the 8×8 sub-block R is reconstructed from IV -quadrant

of block 7 and I -quadrant of block 8. Therefore, all the pixels in the IV -quadrant of

block 7 (denoted as P7
R) and I -quadrant of block 8 (denoted as P8

R) are used to find

the pixel values in 8 × 8 sub-block R (denoted as PR) by

PR =
aP7

R + bP8
R

a + b
, (4.4)

where a and b are the distances as shown in Figure 4.2. Similarly, all the pixels in

the 8 × 8 sub-blocks F, G, K and L belonging to FOB group are computed from the

pixels of the corresponding four overlapping 16 × 16 blocks using

PK =
c

c + d

(
aP4

K + bP5
K

a + b

)
+

d
c + d

(
aP7

K + bP8
K

a + b

)
, (4.5)

where a, b, c and d are the distances as shown in Figure 4.2, P4
K , P

5
K , P

7
K and P8

K

are the pixel values from the blocks 4, 5, 7 and 8, respectively, and PK is the recon-

structed pixel belonging to block K. In this way, all the 8× 8 sub-blocks are obtained

to get the reconstructed holistic image Yr . Figure 4.3 shows the reconstructed holis-

tic image Yr of the Jogging-2 and Woman sequences to illustrate the effectiveness of

the proposed image reconstruction procedure without introducing any errors/artifacts

during transition from one patch to another.

4.4 Proposed Tracking Algorithm

The 2DDCT of the overlapped local patches inside the target region are used to model

the object appearance, and these overlapped local patches can be represented by a
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very few low-frequency 2DDCT coefficients, which can preserve the image information

in a patch very well due to the energy compaction property of the 2DDCT. Hence,

only ro lower frequency 2DDCT coefficients are considered out of do coefficients in

all the patches of the candidates and the dictionary while solving the l1-minimization

problem in (4.1). The confidence scores Cm for all the candidates are computed from

the sparse codes using (4.2), (4.3) as

Cm =

No∑
i=1

fm
p (i) (4.6)

In visual tracking based on particle filter framework, the confidence of the each particle

is given by its observation likelihood, defined as

p(Ym
t |s

m
t ) ∝ Cm (4.7)

Finally, the optimal state of the target ŝt is estimated using (2.4). Further, the

observation models are adapted to handle the appearance change of the target by

incrementally updating the template set and dictionary, as discussed in the next

subsection.

4.4.1 Observation Model Update

The update of observation model is very much essential to handle the appearance

variations of the object, but the update with imprecise samples will cause tracking

drift due to model degradation. Therefore, the imprecise samples should be avoided

during the model update. Even though ASLA is efficient during partial occlusion due

to its local appearance model, its template update mechanism has a drawback during

occlusion. That is, the tracking results, which are occluded, are employed directly

for an incremental subspace learning thereby degenerating the PCA subspace. As

the image reconstructed from the degenerated PCA subspace is used for the template
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update, there are chances of appearance model degradation (see Figure 4.4a) resulting

in a tracking drift. To address this issue, it is proposed to detect and generate a robust

occlusion map, and use it to modify the occluded samples before the observation

model update.

For the occlusion map generation, all the 2DDCT coefficients are used in both

the dictionary D and the candidate matrix Ỹ of the tracked target candidate image

Ŷ to compute the sparse codes B̂ using (4.1). The local appearance of a patch in a

target candidate is correctly represented by the patches at the same positions of the

templates. Hence, the sparse codes corresponding to the respective patches are only

used to compute the overlapped local patches. These overlapped patches are used

to reconstruct the holistic image Yr as described in section 4.3 and then the holistic

reconstruction error Eh = Ŷ −Yr is computed. Further, the holistic reconstruction

error Eh is used to generate a binary occlusion map O1 using (4.8) indicating one for

occluded pixels and zero for non-occluded pixels.

O1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if |Eh | ≥ Othr

0, otherwise,

(4.8)

where Othr is a precomputed threshold that decides whether the pixel is occluded or

not. In order to compute Othr , it is assumed that all the elements of the reconstruc-

tion error Eh will be in the ”normal range” and follow the Gaussian distribution in

the absence of occlusion. But during occlusions, the occluded elements of the recon-

struction error Eh will probably exceed the ”normal range”. Therefore, by knowing

the ”normal range” of the reconstruction error in the initial frames (from 1 to nt) of

the respective sequence, the value of the Othr is computed as

Othr =
c3
nt

nt∑
f=1

std (Eh( f )) (4.9)

where c3 is a constant and std represents the standard deviation. Here, each target
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template in a template set T is used as the candidate sample and the remaining nt −1

templates are used as the dictionary in a round-robin fashion to compute Othr . In

general, the occlusion is a large connected region as opposed to the random noises or

object appearance variations, whose region is very small. Hence, the occlusion map

is updated to retain only the large connected region by applying a morphological

operations and a connected component analysis, to fill the small hole between the

regions and remove the small regions.

In order to increase the robustness of the occlusion detection method, it is pro-

posed to identify the patch of the tracked target candidate with no contribution from

the respective patches of the dictionary D using the pooled feature vector f̂p, which

is obtained from sparse codes B̂ using (4.2) and (4.3). Note that if there is no con-

tribution from the respective patches of the dictionary D, the respective element of

the pooled feature vector f̂p will be zero. That is, f̂p(i) = 0 indicates that there is no

contribution from the i-th patch of all the templates in representing the correspond-

ing patch of the tracked target candidate, and this happens when the i-th patch is

occluded fully. Then, a binary occlusion map O2 is generated by indicating one in

the respective pixel locations of the corresponding patch.

Now, the two occlusion maps O1 and O2 are combined to generate a final occlusion

map O by performing a logical-OR operation. This makes the occlusion map more

robust, so that the chances of appearance model deterioration due to occlusion could

be reduced. Figure 4.3 shows the occlusion maps O1, O2 and O for Jogging-2 (#45)

and Woman (#122) sequences. Further, a occlusion ratio τ is computed as the ratio

of the number of ones in O to the total number of elements in O. This occlusion ratio

τ indicates the amount of occlusion in the tracked candidate. The occlusion ratio

τ decides whether the update of the observation model with the tracked sample is

full or partial or not, with the help of two thresholds τ1 and τ2. In the absence of

occlusion (when τ < τ1), the tracked sample is used directly for the model update

(full update). During partial occlusion (when τ1 < τ < τ2), the occluded pixels in
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Figure 4.3: Some representative cases of Jogging-2 (#45) and Woman (#122) se-
quences to illustrate the effectiveness of the proposed holistic image reconstruction,
the robust occlusion map generation (O1, O2, O), and the updated sample.

the tracked sample are replaced with the corresponding pixels from the previously

updated PCA mean vector µLD to get a updated sample. This updated sample is

free from occlusion and is used in the model update. During severe occlusion (when

τ > τ2), the tracked sample is not used for the model update. Figure 4.3 shows

the updated tracked sample, which is free from occlusion, for Jogging-2 (#45) and

Woman (#122) sequences. It is observed from Figure 4.3 that the combined occlusion

map O is more robust than the individual ones O1 and O2, and make the updated

sample free from occlusion.

The updated tracked samples, which are free from occlusion, are cumulated and

then used to update the PCA subspace model (µLD, ULD) by an incremental subspace
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(a) Template set of ASLA

(b) Template set of the proposed algorithm

Figure 4.4: Template set for some representative cases of Faceocc1 (#700) and
Woman (#180) to illustrate the effectiveness of the proposed observation model up-
date compared to that of ASLA.

learning [1]. This incremental learning not only adapts to the target appearance vari-

ation but also preserves the common visual information in the collected observations.

As in ASLA [15], the proposed observation model update uses the PCA mean vector

µLD and the trivial templates along with PCA basis vectors ULD to estimate the

target p, as given by

p = µLD +ULD q + e = µLD + [ ULD I ]

⎡⎢⎢⎢⎢⎣
q

e

⎤⎥⎥⎥⎥⎦ (4.10)

where I is the identity matrix representing trivial templates, q denotes the coefficients

of the PCA basis vectors ULD, and e represents the pixels in p that are outliers or

corrupted. Unlike ASLA [15], which uses the latest tracked candidate as p, the

proposed observation model update choses the updated tracked sample with highest

confidence score among the cumulated updated tracked samples as p, which is free

from occlusion. Note that when τ > τ2, the tracked candidate with severe occlusion
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is not cumulated and hence its probability of considering as p is zero. Since the

error is arbitrary and sparse, (4.10) is solved by l1-minimization, and an image p̂

is reconstructed from the PCA mean vector µLD and the PCA basis vectors ULD

along with its coefficients q. This ensures the reconstructed image p̂ is free from

corruption and outliers, as the coefficients of trivial templates e (due to noise or

outlier) are excluded for image reconstruction. The reconstructed image p̂ is then

used for updating both the template and the corresponding dictionary atoms in D as

discussed in the next paragraph.

It is known that the sparse codes B̂ of the tracked target candidate represent the

contributions from all the patches of all the templates. Also, the local appearance of

a patch with some appearance variation in the tracked target candidate is correctly

represented by the patches at the same positions of the templates. Hence, the con-

tribution ĥ j of the j−th template in representing the tracked target candidate Ŷ is

computed by considering only the contributions from the respective patches of the

j−th template using (4.11).

ĥ j =

No∑
i=1

B̂ (No[ j − 1] + i, i) , j = 1,2, ...,nt, (4.11)

While cumulating the updated tracked samples, the respective confidence Ĉ and the

template contribution scores ĥ j are also cumulated. From the cumulated confidence

scores, the highest confidence score is found and its corresponding updated tracked

sample is used as p in (4.10). Further, from the cumulated template contribution

scores, the location ĵ of the template to be replaced is found using the (4.12).

ĵ = argmin
j

∑
t∈[t−4:t]

ĥ j(t) (4.12)

With this replacement strategy, the template, which is contributing least to the repre-

sentation of the previous 5 tracking results, is replaced with the reconstructed image
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p̂. This is done with an assumption that the template with the least contribution

score may have an old appearance of the object, which may be outdated, and hence

cannot contribute significantly in representing the target candidate. After updating

the template set with p̂, the corresponding dictionary atoms in D are also updated.

To illustrate the effectiveness of the proposed observation model update, the template

set for the proposed algorithm and ASLA is shown in Figure 4.4. From Figure 4.4,

it is observed that the template set of ASLA gets corrupted over the time in con-

trast to that of the proposed algorithm. Unlike [2], which considers only the current

tracking result (may be severely occluded) to find the template contribution score,

the proposed algorithm considers previous 5 tracking results (which are not severely

occluded with τ < τ2) to find the average template contribution score. As [2] directly

uses the occluded/corrupted tracking result for the model update, there are chances

of observation model degradation. However, in the proposed algorithm, p̂ used for the

model update is free from the occlusion and outliers/corruptions, as they are removed

before and after an incremental subspace learning. Further, in [43] the occlusion is

detected based on the patch reconstruction error as opposed to that based on holistic

reconstruction error in the proposed algorithm.

In the proposed algorithm, instead of using the sum of pooled features to find the

confidence score Cm by giving equal weights to each patch (as in ASLA), weighted

sum of the pooled features are used to compute the confidence score Cm. This is done

by assigning different weights to each patch depending on its patch occlusion ratio

τpi . Now the confidence score Cm is rewritten as

Cm =

No∑
i=1

τpi f
m
p (i) (4.13)

where τpi is the ratio of occluded pixels to that of total pixels in a patch. The proposed

tracking method based on the structural local 2DDCT sparse appearance model and

the occlusion handling mechanism is summarized in Algorithm 4.1.
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Algorithm 4.1 Tracking algorithm based on the structural local 2DDCT sparse
appearance model and the occlusion handling mechanism

Input: Target object is labeled in the first frame and its initial state is s1, number
of templates nt , number of local patches No.

1: Collect a set of nt templates, T = [T1,T2, ...,Tnt ], using kd-tree to model the
object appearance.

2: From every template in T, extract the No overlapped local patches Pi, compute
the 2DDCT followed by zigzag scanning to create a dictionary D.

3: for t > nt do
4: Sample M candidate states {s1t , s

2
t , ..., s

M
t } from st−1.

5: For every candidate state sm
t , extract the corresponding image sample Ym

t and

candidate matrix in 2DDCT domain Ỹm
t as explained in section 4.2.

6: For all the candidate samplesYm
t , compute sparse codes bi for each local patch

vector yi
OL in the candidate sample matrix Ỹm

t using (4.1) by considering only
ro number of 2DDCT coefficients in both candidates and the dictionary.

7: Compute the pooled feature vector fm
p and the confidence score Cm for all the

candidates using (4.2), (4.3) and (4.13), respectively.

8: Find the optimal state of the tracked target ŝt using the (4.7) and (2.4).
9: Update the template set T and dictionary D as described in section 4.4.1 for

every 5 frames.
10: end for
Output: Target state ŝt at time t.
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4.5 Experimental Results

Algorithm 4.1 is implemented in MATLAB and its performance is evaluated on the

challenging sequences available in OTB-50 [7] and VOT2016 [94] datasets using the

respective evaluation protocols discussed in Section 2.3. In Algorithm 4.1, each image

observation is resized to 32 × 32 pixels and then local patches of size 16 × 16 are

extracted with an overlap of 8 pixels. Therefore, each target region is cut into No = 9

overlapping patches. In Algorithm 4.1, sparse modeling software (SPAMS) package

[148] is used for l1-norm minimization and the regularization constant λ is set to 0.01.

10 eigenvectors are used in an incremental subspace learning and the observation

model is updated for every 5 frames. Considering the trade-off between effectiveness

in tracking and computational efficiency, M = 600 particles are sampled using a

particle filter, which is discussed in Section 2.2. The constant c3 used to compute

threshold Othr in (4.9) is set to 4. The occlusion ratio thresholds τ1 and τ2 are

set to 0.1 and 0.65, respectively. In the initial 10 frames, kd-tree is used to obtain

the tracking results, and from these tracking results nt = 10 target templates are

extracted for the generation of the dictionary D. The number of 2DDCT coefficients

considered in each patch, ro, is set to 64 while computing confidence score Cm for all

the candidates, except during occlusions when τ > τ2, it is set to 256. By reducing

the size of the dictionary as well as that of the candidate samples, Algorithm 4.1 has

achieved a speed of 2.18 fps1 (including the time required for the computation of the

2DDCT and the proposed occlusion detection) as compared with 1.86 fps required by

ASLA [15]. This is a 17.2% increase in the speed compared to that of ASLA in spite

of having to compute the 2DDCT coefficients and to detect the occlusion.

The performance of Algorithm 4.1 is evaluated against several state-of-the-art

tracking algorithms, ASLA [15], local 2DDCT sparse appearance model (LDSAM)

[134], IL3DDCT [36] and the top two best tracking algorithms selected from the

1Using modern computer of 3.4GHz CPU and 16GB RAM
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previous chapter based on their performance on each of the challenging attributes of

both the OTB-50 and VOT2016 benchmark datasets, for a fair comparison. The codes

of the trackers ASLA [15] and IL3DDCT [36] downloaded from the respective authors’

website [149] and [150] are used to evaluate on the sequences of the benchmarks to

have a fair comparison with Algorithm 4.1. The parameter settings of these trackers

are as given in their respective papers in all the experiments, except for the parameters

related to the particle filter framework, which are set to be as in OTB-50 [7] for a

fair comparison. In the following two sub-sections, two benchmark datasets and the

evaluation measures discussed in Section 2.3 are used for the quantitative evaluation

of Algorithm 4.1 with that of the other methods.

4.5.1 Quantitative Evaluation on OTB-50

The performance of Algorithm 4.1 is evaluated on the OTB-50 benchmark [7] and

compared with the state-of-the-art tracking algorithms using one-pass evaluation

(OPE). Table 4.1 shows the performance comparison of Algorithm 4.1 in terms

of the precision score for the threshold of 20 pixels with that of the considered

trackers for different attributes. The best three results are shown in (red, bold),

(violet, underline) and (blue, italic) fonts for better comparison of Algorithm 4.1 with

the other trackers. It is observed that Algorithm 4.1 ranks first in illumination vari-

ation (IV), out-of-plane rotation (OPR), scale variation (SV) and occlusion (Occ)

challenging attributes, second in deformation (Def), in-plane rotation (IPR) and low

resolution (LR), and third in background clutter (BC) challenging attributes. On the

other hand, LDSAM [134], stands first in Def and IPR challenging attributes, stood

second in IV, OPR, Occ, out-of-view (OV) and BC challenging attributes. Also,

Algorithm 3.1 HOG ranks first in OV and third in IV, SV, motion blur (MB), fast

motion (FM) and IPR challenges. Further, ASLA ranks first in BC, second in SV

and third OPR and Def challenging attributes. Also, DLT stands first in MB and

FM, third in Occ and OV attributes, and LSST stands first in LR attributes. L1PAG
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ranks second in MB and FM, and third in LR challenging attributes. It is also ob-

served from the Table 4.1 that the performance of Algorithm 4.1 is superior to that

of ASLA in the face of all the challenges except OV and BC. Algorithm 4.1, is an

improvement of LDSAM [134] with a robust occlusion detection mechanism, which

is used to update the observation model as well as to find the confidence score. This

has resulted in an improved performance of Algorithm 4.1 over that of LDSAM in

IV, OPR, SV, Occ, MB, FM and LR challenging attributes. It is also observed that

Algorithm 4.1 has a performance better than that of Algorithm 3.1 HOG for all the

challenging attributes except MB, FM and OV. Further, Algorithm 4.1 outperforms

all the methods for most of the challenging attributes, except Def, MB, FM, IPR,

OV, BC and LR.

The performance comparison of Algorithm 4.1 in terms of area under curve (AUC)

with that of the considered trackers for the different attribute challenges is given in

Table 4.2. It is noticed that Algorithm 4.1 stands first in IV, OPR, SV, Occ and LR

challenging attributes, stood second in Def and third in BC challenging attributes.

LDSAM ranks first in Def, second in IV, OPR, Occ, IPR, OV and BC, and third in

LR attributes. Also, Algorithm 3.1 HOG stands first in IPR and OV, stood second

in MB, and third in IV, SV, Occ, Def and FM attributes. Further, ASLA stands first

in BC, stood second in SV and Def, and third in IV, OPR, IPR and OV attributes.

Also, DLT stands first in MB and FM attributes, LSST stood second in LR, whereas

L1APG stood second in FM and third in MB. Algorithm 4.1 has a performance better

than that of ASLA in face of all the challenges except FM, IPR, OV and BC. Due

to the robust occlusion detection mechanism, the performance of Algorithm 4.1 in

terms of AUC has been improved to that of LDSAM [134] in IV, OPR, SV, Occ,

MB, FM and LR challenging attributes. It is also noticed that Algorithm 4.1 has a

performance superior to that of Algorithm 3.1 HOG for all the challenging attributes

except MB, FM, IPR and OV. Further, Algorithm 4.1 outperforms all the methods

for most of the challenging attributes, except Def, MB, FM, IPR, OV and BC. This
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Table 4.1: The precision score of Algorithm 4.1 with that of the compared trackers
for different attributes of OTB-50. (red, bold), (violet, underline) and (blue, italic)

indicate first, second and third rankings, respectively.

Precision score IV OPR SV Occ Def MB FM IPR OV BC LR

Algorithm 4.1 61.5 62.9 63.4 60.4 59.8 33.9 33.3 58.6 39.9 60.1 68.1

LDSAM 58.8 61.6 60.1 58.1 59.9 29.9 28.4 59.4 45.9 62.4 61.2

Algorithm 3.1 HOG 56.5 56.3 60.3 55.8 52.6 36.5 35.1 58.3 51.0 57.4 55.7

Algorithm 3.1 Gray 42.8 50.4 53.2 52.3 49.5 26.2 24.8 48.5 36.3 44.8 60.2

ASLA 56.4 59.1 62.3 53.3 57.7 32.3 33.1 57.5 41.7 63.6 59.0

IL3DDCT 52.7 51.4 51.3 45.6 49.0 27.2 24.6 51.0 26.1 46.7 59.9

L1APG 34.1 47.8 47.2 46.1 38.3 37.5 36.5 51.8 32.9 42.5 61.5

WRMPCA 42.7 47.7 52.8 45.9 41.2 24.3 23.6 47.5 31.1 43.4 58.7

LWIST 34.3 38.4 40.3 40.4 35.3 15.1 18.7 33.7 30.7 37.4 45.9

WLCS 32.9 33.0 38.3 35.7 29.9 15.4 21.3 30.3 22.8 33.1 23.0

LSST 41.5 47.0 53.3 41.3 45.0 27.1 25.2 46.1 24.3 42.6 74.1

DLT 53.4 56.1 59.0 57.4 56.3 45.3 44.6 54.8 44.4 49.5 53.6

PCOM 36.8 46.1 48.6 44.4 38.3 22.9 22.0 46.0 30.5 40.1 55.9

may happen when the target undergoes a large appearance change due to either fast

motion or out-of-view or in-plane-rotation of the object, and when there is a reduction

in information of the object due to motion blur.

The performance comparison of Algorithm 4.1 using the precision and success

plots of OPE for OTB-50 benchmark sequences having occlusion against the other

trackers is shown in Figure 4.5. In the precision plot, the precision score for the lo-

cation error threshold of 20 pixels is used to rank the tracker, whereas in the success

plot, AUC is used to rank the overall performance of the tracker. From Figure 4.5, it is

observed that Algorithm 4.1 outperforms the other trackers LDSAM, DLT, Algorithm

3.1 HOG, ASLA, Algorithm 3.1 Gray, L1APG, WRMPCA, IL3DDCT, PCOM and

LSST by 3.9%, 5.2%, 8.2%, 12.9%, 15.5%, 23.6%, 31.6%, 32.4%, 36% and 46.2%, re-

spectively, and LDSAM [134] performs better than DLT, Algorithm 3.1 HOG, ASLA,

Algorithm 3.1 Gray, L1APG, WRMPCA, IL3DDCT, PCOM and LSST do by 1.2%,

4.1%, 9.0%, 11.0%, 26.0%, 26.3%, 27.4%, 30.8% and 40.6%, respectively, in terms

of the precision score. Similarly, Algorithm 4.1 outperforms the other trackers LD-
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Table 4.2: AUC of Algorithm 4.1 with that of the compared trackers for different
attributes of OTB-50. (red, bold), (violet, underline) and (blue, italic) indicate

first, second and third rankings, respectively.

AUC IV OPR SV Occ Def MB FM IPR OV BC LR

Algorithm 4.1 49.3 47.8 49.4 46.6 46.2 28.7 28.6 45.1 35.2 47.1 47.2

LDSAM 47.9 47.5 47.5 45.9 48.0 27.3 26.5 46.3 40.4 49.4 44.1

Algorithm 3.1 HOG 46.6 44.6 48.2 44.0 42.0 31.6 30.2 46.4 43.2 46.4 41.6

Algorithm 3.1 Gray 33.7 37.0 38.6 37.7 34.6 23.3 22.3 37.1 32.3 31.3 41.7

ASLA 46.6 46.5 49.0 43.1 46.2 28.2 29.2 45.6 38.7 50.2 42.1

IL3DDCT 37.2 35.8 33.9 34.3 34.3 24.6 22.3 36.8 27.6 32.5 34.1

L1APG 28.3 36.0 35.0 35.3 31.1 31.0 31.1 39.1 30.3 35.0 37.4

WRMPCA 33.2 34.7 37.4 33.8 29.7 20.8 21.6 35.1 27.4 31.6 38.9

LWIST 28.9 30.1 31.3 31.9 28.5 15.1 18.3 27.2 28.1 31.1 27.8

WLCS 27.0 25.8 29.5 27.6 25.0 15.8 19.6 24.2 21.6 27.3 13.7

LSST 33.2 33.5 37.7 30.4 31.6 21.4 21.5 32.3 21.7 30.2 46.2

DLT 40.5 41.2 45.5 42.3 39.4 36.3 36.0 41.1 36.7 33.9 34.7

PCOM 28.4 32.3 32.9 33.2 26.0 17.8 18.8 32.4 27.5 28.4 34.5

SAM, Algorithm 3.1 HOG, ASLA, DLT, Algorithm 3.1 Gray, L1APG, IL3DDCT,

WRMPCA, PCOM and LWIST by 1.5%, 5.9%, 8.1%, 10.1%, 23.6%, 32.0%, 35.8%,

37.8%, 40.3% and 46.0%, respectively, and the performance of LDSAM is superior to

that of Algorithm 3.1 HOG, ASLA, DLT, Algorithm 3.1 Gray, L1APG, IL3DDCT,

WRMPCA, PCOM and LWIST by 4.3%, 6.5%, 8.5%, 21.7%, 30.0%, 33.8%, 35.7%,

38.2% and 43.8%, respectively, in terms of AUC. For sequences having occlusion, it

is observed that Algorithm 4.1 and LDSAM [134] have shown a performance better

than that of the other trackers and Algorithm 3.1 in terms of both the precision score

and AUC.

The precision and success plots of OPE for the various trackers averaging over

the OTB-50 benchmark sequences are shown in Figure 4.6. From Figure 4.6, it is ob-

served that Algorithm 4.1 outperforms the state-of-the-trackers LDSAM, ASLA, Al-

gorithm 3.1 HOG, DLT, Algorithm 3.1 Gray, IL3DDCT, WRMPCA, LSST, L1APG

and PCOM by 0.9%, 3.7%, 3.9%, 8.0%, 15.2%, 23.6%, 23.6%, 28.3%, 30.7% and

33.2%, respectively, and LDSAM performs better than ASLA, Algorithm 3.1 HOG,
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DLT, Algorithm 3.1 Gray, IL3DDCT, WRMPCA, LSST, L1APG and PCOM do by

2.7%, 2.9%, 6.9%, 14.1%, 22.4%, 22.4%, 27.1%, 29.4% and 31.9%, respectively, in

terms of the precision score. Similarly, the performance of Algorithm 4.1 is supe-

rior to that of ASLA, Algorithm 3.1 HOG, DLT, Algorithm 3.1 Gray, WRMPCA,

L1APG, IL3DDCT, LSST and PCOM by 1.2%, 1.8%, 13.3%, 21.9%, 29.6%, 30.0%,

36.4%, 38.7% and 45.3%, respectively, and LDSAM [134] outperforms ASLA, Algo-

rithm 3.1 HOG, DLT, Algorithm 3.1 Gray, WRMPCA, L1APG, IL3DDCT, LSST

and PCOM by 1.4%, 2.0%, 13.5%, 22.2%, 29.9%, 30.2%, 36.7%, 39.0% and 45.5%,

respectively, in terms of AUC. Overall, Algorithm 4.1 and LDSAM [134], provide the

performance superior to that of the other methods and Algorithm 3.1 in terms of

both the precision score and AUC.

4.5.2 Quantitative Evaluation on VOT2016

The average accuracy and robustness, and their rank are used to evaluate the perfor-

mance of Algorithm 4.1 using VOT2016 benchmark dataset [94]. Table 4.3 shows the

accuracy rank and overlap comparison of Algorithm 4.1 with that of the other track-

ing algorithms averaging over the VOT2016 sequences. Similarly, Table 4.4 shows

the performance comparison of Algorithm 4.1 using robustness rank and failures av-

eraging over the same challenging sequences. The last six columns of these two tables

show the respective measures using different averaging methodologies, mean, weighted

mean and pooled. The best three results are shown in (red, bold), (violet, underline)

and (blue, italic) fonts for better comparison of the proposed tracker with the other

state-of-the-art trackers. Note that as the trackers with statistically equivalent re-

sults are merged while ranking, the different trackers may have same accuracy rank

and robustness rank [94]. From Table 4.3, it is observed that Algorithm 4.1, in

terms of overlap, stands first for the attribute motion change, and stood second for

the remaining attributes except illumination change and occlusion, where it stood

third. Also, Algorithm 3.1 HOG ranks first in all the attributes except illumination
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(a)

(b)

Figure 4.5: Performance evaluation of Algorithm 4.1 on OTB-50 sequences having
occlusion using (a) the precision plots of OPE, where the precision score is shown
along with the tracker name in the legend, and (b) the success plots of OPE, where
AUC is shown along with the tracker name in the legend. The number 29 appearing
in the title denotes the number of sequences associated with the occlusion attribute
of OTB-50 dataset. 80



(a)

(b)

Figure 4.6: Overall performance evaluation of Algorithm 4.1 on OTB-50 using (a)
the precision plots of OPE, where the precision score is shown along with the tracker
name in the legend, and (b) the success plots of OPE, where AUC is shown along
with the tracker name in the legend.
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change and motion change. Further, ASLA stood third in camera motion and motion

change attributes, whereas DLT stood second in motion change and occlusion, and

third for the remaining attributes except camera motion and illumination change.

For the sequences having illumination change, LWIST and WLCS stood first and

second, respectively. Algorithm 4.1 has a performance better than that of ASLA in

the face of all the challenging attributes. Also, the performance of Algorithm 4.1, in

terms of overlap, has been improved to that of LDSAM [134] in all the challenging

attributes due to the robust occlusion detection mechanism. It is also noticed that

Algorithm 4.1 has a performance better or similar to that of Algorithm 3.1 HOG for

all the challenging attributes except occlusion and size change. Further, Algorithm

4.1 outperforms all the methods for all the challenging attributes except illumination

change, occlusion and size change.

Also, it is observed in Table 4.4 that Algorithm 4.1 ranks first in all the challeng-

ing attributes in terms of failures, except for motion change, where it stood second,

and illumination change, where it stood fourth. It is also observed that Algorithm

3.1 HOG ranks third in size change. Further, ASLA stands first in illumination

change and third in the remaining attributes, except camera motion, occlusion and

size change, where it stood second, whereas DLT ranks first in motion change, third

in camera motion and occlusion, and second in the remaining attributes, except il-

lumination change and size change. For the sequences having illumination change,

LWIST and PCOM stood second and third, respectively. Algorithm 4.1 has a per-

formance superior to that of ASLA in face of all the challenging attributes, except

illumination change. Also, the robust occlusion detection mechanism in Algorithm

4.1 has improved the performance in all the challenging attributes when compared

to that of LDSAM [134]. In addition, Algorithm 4.1 has a performance superior to

that of Algorithm 3.1 for all the challenging attributes. Also, Algorithm 4.1 exhibits

a performance better than that of all the methods for all the challenging attributes

of VOT2016, except illumination change and motion change.
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The overall performance of Algorithm 4.1 is similar to that of Algorithm 3.1 HOG

in terms of mean, weighted mean and pooled averaging of overlap. Also, the overall

performance of Algorithm 4.1 is superior to that of the other methods in terms of

mean, weighted mean and pooled averaging of overlap. On the other hand, the overall

performance of Algorithm 4.1 is superior to that of the other methods and Algorithm

3.1 HOG in terms of mean, weighted mean and pooled averaging of failures.

4.5.3 Qualitative Evaluation

For qualitative evaluation of the trackers, some tracking results on a subset of the

OTB-50 benchmark sequences are shown in Figure 4.7. In Figure 4.7, the tracking

results of top twelve trackers, which are selected from Figure 4.6, on the six exemplar

image frames are shown for each sequence and these six frames are selected at regular

intervals without any bias. Algorithm 4.1 tracker successfully tracks the target in the

all the frames of the Doll, Faceocc2, Dudek, Fish, Girl, Freeman3, Jogging-2, Singer1,

Walking2 and Woman sequences, which contain most of the real-time challenges

such as pose change, partial occlusion, illumination change, scale change and out-of-

plane rotation. This indicates the strong capabilities of Algorithm 4.1 in handling

these challenges. Algorithm 4.1 tracker has slightly drifted away in middle few frames

(between #250 to #415) of theGirl sequence and then starts tracking afterwards. It is

also observed that LDSAM [134], performs better in all the sequences exceptWalking2

and Woman sequences, where the sequence undergoes severe occlusion along with

scale and appearance change, in spite of using local appearance model. Similarly, even

with local appearance model, ASLA fails to track the object in Faceocc2, Jogging-

2, Walking2 and Woman, where the sequence undergoes partial or severe occlusion.

These failures in both ASLA and LDSAM is because of the appearance model update

with the imprecise tracked samples without removing the occlusion. It is also observed

that Algorithm 3.1 HOG tracks the object completely in all the sequences except

Woman, where it fails to track the object towards the end of the sequence, and Girl
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and Jogging-2, where it fails within initial few frames, whereas Algorithm 3.1 Gray

tracks the object completely in all the sequences except Girl and Woman, where it

fails within initial few frames, Doll, where it fails to track the object towards the end

of the sequence. L1APG tracks the object completely in Girl andWalking2 sequences

and drifts away in Faceocc2, Dudek and Fish sequences in the last few frames. Further,

WRMPCA fails to track the object completely in Doll, Girl, Freeman3, Jogging-2 and

Woman sequences. Further, LSST fails to estimate the scale and location of the object

in most of the sequences except Singer1 and Freeman3 sequences. DLT tracks the

object successfully in most of the sequences except Doll, Girl and Jogging-2. Finally,

the overall qualitative performance of Algorithm 4.1 is better than that of the other

methods and Algorithm 3.1.

4.6 Summary

In this chapter, a new tracking algorithm, Algorithm 4.1, which is based on a struc-

tural local 2DDCT sparse appearance model and an occlusion handling mechanism

has been proposed. A procedure to reconstruct the holistic image from the over-

lapped local patches and then, a method to generate a robust occlusion map from

the reconstructed holistic image have been given. The patch occlusion ratio has

been defined and has been used in the confidence score computation by weighting

the pooled features. Extensive experiments have been conducted on the two popular

tracking benchmark datasets, OTB-50 and VOT2016, to analyze the performance

of Algorithm 4.1. The quantitative and qualitative performance of Algorithm 4.1

has been compared with that of several state-of-the-art algorithms and Algorithm

3.1 using these benchmark datasets. Algorithm 4.1 outperforms Algorithm 3.1 and

other methods in terms of the precision and success plots averaged over the OTB-50

benchmark sequences. Also, the performance of Algorithm 4.1 is similar to that of

Algorithm 3.1 HOG and generally superior to that of the other considered methods in
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terms of overlap for VOT2016 dataset. Further, Algorithm 4.1 generally outperforms

Algorithm 3.1 and other methods in terms of failures for VOT2016 dataset. Even

though Algorithm 4.1 generally performs better than that of Algorithm 3.1 and other

methods, it still needs an improvement in motion blur, fast motion, in-plane rotation,

out-of-view and background clutter challenging attributes of OTB-50, and illumina-

tion change, motion change and occlusion attributes of VOT2016. To improve the

tracking performance on some of these challenges, a third tracking algorithm based on

a collaboration of the discriminative and generative appearance models is presented

in the next chapter.
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Figure 4.7: Examples of tracking results of the compared methods on the ten OTB-50
benchmark sequences.
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Chapter 5

Collaboration of Kernelized
Correlation Filters and the
Bilateral 2DPCA Subspace for
Visual Tracking

5.1 Introduction

Algorithms 3.1 and 4.1 proposed in the preceding chapters do not perform well in

the challenging attributes of motion blur (MB) and fast motion (FM) of the object

tracking benchmark-50 (OTB-50) dataset, and illumination change, motion change

and occlusion of the visual object tracking 2016 (VOT2016) dataset. These two

proposed algorithms are based on the particle filter framework. The main drawback

of the particle filter-based tracking algorithms is that they cannot effectively track

a fast-moving object with random velocity and acceleration [151]. Also, in order

to cover the search range and object states well, the particle filter has to densely

generate probable target locations in a wide range of area resulting in a large number

of candidates, and hence, increasing the complexity of the tracking algorithm. As can

be seen from Chapter 2, the target state st is modeled by an affine transformation with

six parameters xt, yt, θt, st, αt and φt . Among the variances of these six parameters,

the variances of translations, xt and yt , are responsible mainly for the search range of
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the candidates. Assuming a larger or a smaller variance of translations results in a

loss of the target during slow and fast motion of the target, respectively.

In order to address this issue and to improve the performance of the tracker in view

of some of the challenges discussed above, in this chapter, a new tracking algorithm

based on a collaboration of the discriminative and generative appearance models is

proposed [152]. In the discriminative model, two kernelized correlation filters (KCFs)

are used to estimate the location (xt, yt) of the target, and then, a new generative

model is used to find the other affine motion parameters (θt, st, αt, φt) of the target.

The above method of finding the location and other affine motion parameters of the

target is based on the ideas that (1) the discriminative capability of a tracker plays an

important role in estimating the location of the target rather than in finding the other

affine motion parameters of the target and (2) the generative capability of a tracker

plays an important role in estimating the other affine motion parameters of the tar-

get. In the generative model, the robust coding technique used in the first tracking

algorithm is extended to two dimensions, and then used in the bilateral two dimen-

sional principal component analysis (B2DPCA) reconstruction procedure to develop

an iteratively reweighted robust coding (IRRC) technique [118]. To find the similarity

between the candidate and its reconstructed sample from the B2DPCA subspace, a

two dimensional robust coding (2DRC) distance measure is defined, which in turn is

used to calculate the observation likelihood. The occlusion information captured by

the weights, which are obtained from IRRC, are used to generate an occlusion map.

The occlusion map thus generated is used to develop a mechanism for the observa-

tion model update of both the B2DPCA subspace and the two KCFs. Experiments

conducted on the two popular benchmark datasets and comparison with the state-of-

the-art methods bear out the competency and effectiveness of the proposed algorithm

for visual tracking.

This chapter is organized as follows. KCFs are discussed in Section 5.2. Object

representation based on the B2DPCA projection matrices and 2D robust coding is
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explained in Section 5.3. The proposed tracking algorithm is developed in Section

5.4. Experimental results obtained using the two popular benchmark datasets are

discussed in Section 5.5 followed by a summary of this chapter in Section 5.6.

5.2 Kernelized Correlation Filters

The correlation filter-based visual tracking has achieved a great success due to its

high efficiency and performance, and hence, has attracted much attention among re-

search community [67, 68, 71, 80]. Notable among them is, the kernelized correlation

filters (KCF) [71] that employ numerous negative samples to enhance the discrimi-

native capability of the tracking-by-detection scheme by exploiting the structure of

the circulant matrix for computational efficiency. In KCF, the object appearance is

modeled using a correlation filter H trained on an image patch X of dh × dw pixels,

where all the circular shifts of Xi,j with (i, j) ∈ {0,1, ..., dh − 1} × {0,1, ..., dw − 1} are

generated as training samples with Gaussian function label gi,j . The optimal filter

weights H are obtained by minimizing the following objective function

H = argmin
H

∑
i,j

|⟨Φ(Xi,j),H⟩ − gi,j |
2 + ξ∥H∥2 (5.1)

where Φ denotes the mapping to a kernel space and ξ is a regularization parameter.

By using the Fourier transform, the objective function in (5.1) is minimized as H =∑
i,j αi,jΦ(Xi,j), and the coefficient α is given by

α = F−1
(

F(g)

F (⟨Φ(X),Φ(X)⟩) + ξ

)
(5.2)

where F and F−1 denote, respectively, the Fourier transform and its inverse. The

learned coefficients model α̂ and the target appearance model X̂ along with an image
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patch XD cropped out in the new frame are used to find the response map as

g = F−1
(
F(α̂) ⊙ F

(
⟨Φ(XD),Φ(X̂)⟩

))
(5.3)

where ⊙ is the Hadamard product. The maximal value of the response map g gives

the position of the target. Despite its good performance, there are still some issues,

such as scale variations and out-of-view problems, that need to be addressed.

5.3 Object Representation based on Bilateral 2DPCA

Projection Matrices and 2D Robust Coding

In incremental visual tracking (IVT) [1], a low dimensional principal component anal-

ysis (PCA) subspace is used to represent the object, where PCA subspace is learned

and updated efficiently to adapt the appearance variations of the object. Further,

incremental B2DPCA has been used to model the object appearance in visual track-

ing based on the maximum likelihood estimation (MLE) [63]. Wang et al. have

exploited the strength of both the subspace and sparse representations in [3] and

[19] by introducing l1-regularization into the PCA and B2DPCA reconstruction, re-

spectively. Even though the subspace-based trackers [1, 63] are robust to in-plane

rotation, illumination variation, scale change and pose change, they are sensitive to

partial occlusion due to their underlying assumption that the residual is Gaussian

distributed with small variances. This is not valid as the residual cannot be modeled

with small variances during partial occlusion. On the other hand, if the residual is

assumed to be Laplacian distributed, then it aims to handle outliers. As the residual

cannot be modeled with neither Gaussian nor Laplacian distribution during occlusion

in visual tracking, the strengths of both the B2DPCA subspace representation and

RSC were exploited in [64] by introducing l1-regularization into the B2DPCA recon-

struction. In [64], the object appearance is represented by the B2DPCA projection
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matrices and its observation model update mechanism is similar to that in [54]. The

drawback of the appearance model in [64] is that the unnecessary imposition of l1-

norm constraint on the projection coefficients even though they are not sparse due to

the orthogonality of the B2DPCA projection matrices.

In this section, to account for non-Gaussian or non-Laplacian residual/noise, ro-

bust coding, discussed in Section 3.2.1, is extended to two dimensions, and then used

in the B2DPCA reconstruction procedure to model the object appearance. The ob-

ject appearance is modeled by two separate B2DPCA projection matrices as in (2.2)

and the projection coefficient Z is computed using (2.1), where Y ∈ Rdl×dr = Y − µBP

represents the centered image observation matrix, µBP ∈ R
dl×dr represents mean ma-

trix, UBP ∈ R
dl×kl and VBP ∈ R

dr×kr represent orthogonal left- and right-projection

matrices, respectively, Z ∈ Rkl×kr denotes the projection coefficients, dl × dr the size

of the observation matrix, and kl and kr are the number of B2DPCA left- and right-

projection basis vectors, respectively. As the target templates are coherent in [2, 13],

the coding coefficients are sparse and hence, there is a requirement of l1-norm con-

straint on the coding coefficients. But in the proposed appearance model, the projec-

tion coefficients are not sparse due to the orthogonality of the B2DPCA projection

matrices and hence, it is not required to impose complex l1-norm constraint on the

projection coefficients. This is in contrast to [64], where the unnecessary complex

l1-norm constraint is imposed on the projection coefficients Z in spite of using the

B2DPCA projection matrices (UBP,VBP).

Expressing the left- and right-projection matrices as UBP = [u1;u2; ...; udl ] and

VBP = [v1; v2; ...; vdr ] respectively, where the vectors ui and v j are the i-th and j-th

rows of UBP and VBP, respectively, and denoting the coding residual error matrix

as E = Y − UBP ZVT
BP, each element of the residual error matrix E is written as

ei j = yi j −ui ZvTj . Assume that the residuals e11, ...., edldr are independently and iden-

tically distributed (i.i.d) according to some probability density function fΘ(ei j), where

Θ denotes the parameter set that characterizes the probability distribution. Then,
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maximizing the likelihood function LΘ(e11, ...., edldr ) =
∏dr

j=1
∏dl

i=1 fΘ(ei j) is equivalent

to minimizing the objective function: − ln LΘ(e11, ...., edldr ) =
∑dr

j=1
∑dl

i=1 ρΘ(ei j), where

ρΘ(ei j) = − ln fΘ(ei j). From this discussion, MLE of Z, referred to as 2D robust coding

(2DRC), can be formulated as the following minimization problem

min
Z

dr∑
j=1

dl∑
i=1

ρΘ(ei j) = min
Z

dr∑
j=1

dl∑
i=1

ρΘ(yi j − ui ZvTj ) (5.4)

The introduction of 2DRC takes care of non-Gaussian or non-Laplacian noise and

avoids the effect of outliers (e.g., occluded or corrupted pixels) while computing the

projection coefficients of the B2DPCA projection matrices. Now, MLE of Z can be

obtained by solving (5.4), but the problem is as to how to find the distribution ρΘ

(or fΘ). Explicitly taking fΘ as Gaussian or Laplacian distribution is simple, but

not effective during occlusion. Based on the assumptions on ρΘ specified in [115],

the above minimization problem is transformed into a weighted least squares (WLS)

problem, given by

min
Z
∥A

1
2 ⊙ (Y −UBP ZVT

BP)∥
2
F (5.5)

where A ∈ Rdl×dr is a weight matrix to model different types of noise, and its element

ai j is the weight assigned to each pixel of the observed image sample Y depending on

the value of the residual ei j , and ⊙ is the Hadamard product. Since the weight matrix

A is unknown and needs to be estimated, WLS in (5.5) is a local approximation of

2DRC in (5.4). Therefore, the 2DRC minimization procedure can be converted into

an IRRC problem with A being updated using the residuals in the previous iteration.

Since the distribution ρΘ is unknown, it is difficult to find the weight matrix A. Thus,

a logistic function given by

ai j =
exp

(
δBP

[
βBP − e2i j

] )
1 + exp

(
δBP

[
βBP − e2i j

] ) , (5.6)
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where δBP controls the decreasing rate from 1 to 0, and βBP controls the location of

the demarcation point, is chosen as the weight function, as it satisfies the following

properties: (1) weight assigned to each pixel of the observed image Y depends on

the corresponding value of the residual E and (2) the weight function has higher

capability to classify inliers and outliers [115]. This weight function is bounded in

[0,1] and adaptively assigns low weights to the outliers (usually the pixels with large

residuals) to reduce their effect on the estimation of the projection coefficients Z so

that the sensitivity to outliers can be greatly reduced. Even though the tracking

methods in [53], [54], and [64] use RSC, they differ from the proposed algorithm in a

number of ways. The tracking methods in [53] and [54] use a target template-based

appearance model, and hence, use l1-norm constraint on the coding coefficients, and

are computationally complex. Also, they differ in the way the observation model is

updated. Even though the appearance model of [64] is based on B2DPCA, it imposes

l1-norm constraint on the projection coefficients thereby increasing the computational

complexity. Further, its weight function and the observation model update mechanism

are different from that of the proposed algorithm.

The minimization problem in (5.5) can be solved by estimating iteratively the

weight matrix A using (5.6) and the projection coefficients Zopt using the following

equation

Zopt = UT
BP (A ⊙ Y)VBP (5.7)

The estimation of A and Zopt recursively is referred to as iteratively reweighted robust

coding (IRRC) technique and is given in Procedure 5.1. This is terminated when the

following criterion is satisfied:

∥Aq −Aq−1∥F

∥Aq−1∥F
< ψBP , (5.8)

where ψBP is a small positive scalar constant.

94



Procedure 5.1 Computation of Zopt and A by the iteratively reweighted robust
coding technique

Input: Centered image observation matrix Y, left- and right-projection matrices UBP
and VBP, previous weight matrix At−1 corresponding to the tracking result at time
t − 1, constants δBP and βBP

1: Initialize q = 0 and Aq = At−1
2: Compute basis coefficients Zq = UT

BP (A
q ⊙ Y)VBP

3: Iterate
4: q← q + 1
5: Compute residual Eq = Y −UBP Zq−1VT

BP
6: Compute the weights using

aq
i j =

exp

(
δBP

[
βBP −

(
eq

i j

)2] )
1 + exp

(
δBP

[
βBP −

(
eq

i j

)2] ) ; i = 1,2, .., dl
j = 1,2, .., dr

7:

8: Recompute Zq = UT
BP(A

q ⊙ Y)VBP
9: Until convergence or termination

Output: Basis coefficients Zopt , weight matrix A

5.4 Proposed Tracking Algorithm

Most of the collaborative methods [43–46] find all the affine motion parameters of the

target by combining the individual scores of both the generative and discriminative

models, whereas the proposed algorithm explores the discriminative model to estimate

the target location (xt,yt) and the particle filter-based generative model to find the

remaining affine parameters of the target (θt, st, αt, φt). This is based on the intuition

that the discriminative capability of a tracker plays a prominent role in estimating the

location of the target rather than in finding the other affine motion parameters of the

target. On the other hand, the generative capability of a tracker plays a prominent

role in finding the other affine motion parameters of the target. The block diagram

of the proposed tracking algorithm is shown Figure 5.1.
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Figure 5.1: Block diagram of the proposed tracking algorithm.

5.4.1 Target Location Estimation using Kernelized Correla-

tion Filters

For target location estimation, it is proposed to use two kernelized correlation filters,

KCF-1 and KCF-2, each with its own target appearance model X̂k
t and learned coef-

ficients model α̂k
t , where k = 1,2 indicates which correlation filter the model belongs

to. An image patch XD
t of new window size, which is estimated in the previous frame

t − 1, is cropped out from the previous target position (xt−1,yt−1) in the current frame

t, and then resized to the initial window size in order to preserve the consistency of

the object representation in the scale space. This patch along with their respective

models X̂k
t−1 and α̂k

t−1 is used to find the response maps gk
t of the two correlation
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filters using (5.3). The resulting response maps gk
t are energy normalized to scale

the peak value according to the total energy in the respective response map. This

helps to normalize low/high peak values when the entire response map is low/high

due to the image characteristics such as illumination [153]. Finally, the location of

the maximum value of the response map g̃t that is computed employing (5.9) is used

to find the position of the target (xt,yt).

g̃t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g1t , if max(g1t ) > max(g2t )

g2t , otherwise

(5.9)

5.4.2 Target State Estimation using Bilateral 2DPCA and

2DRC

It is assumed that an image observation sample Y can be generated from a B2DPCA

subspace of the target object spanned by the B2DPCA basis vectors (UBP,VBP) and

centered at mean µBP. As opposed to the trivial templates used in appearance models

of [3, 65, 154], the proposed appearance model uses the weight matrix A to model

the occlusion/outliers. Hence, even during occlusion, the weighted image observation

can be represented by a weighted sum of the mean µBP and the linear combination

of the B2DPCA basis vectors (UBP,VBP), as in (5.10), giving less importance to

the outliers/occluded pixels in the representation as well as in the estimation of the

projection coefficients Z.

A
1
2 ⊙ Y = A

1
2 ⊙

(
µBP +UBP ZVT

BP

)
(5.10)

In addition to an accurate estimation of the projection coefficients Z, visual track-

ing also needs a distance metric to find the similarity between a noisy observation and

its reconstructed sample from the dictionary or the subspace [1, 65, 116]. In general,

the distance metric is inversely proportional to the maximum joint likelihood with
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respect to the projection coefficients Z [1, 65],

d(Y;UBP,VBP, µBP) ∝ − lnmax
Z

p(Y,Z) ∝ − lnmax
Z

p(Y |Z) p(Z)

Assuming a uniform prior, the distance metric is written as

d(Y;UBP,VBP, µBP) ∝ − lnmax
Z

exp

(
−
1

2
∥Y −UBP ZVT

BP∥
2
F

)
This distance metric is sensitive to occlusion/outliers as it considers the occluded/out-

lier pixels for the similarity measurement. In order to make the distance metric robust

to occlusion/outliers, it should give less importance to the reconstruction error due

to the occluded pixels or outliers, and hence, in this work, a new 2DRC distance,

defined as

d2DRC(Y;UBP,VBP, µBP) = ∥A
1
2 E∥2F + λBP∥1 −A

1
2 ∥2F (5.11)

where E = Y −UBP ZVT
BP and λBP is a penalty constant, is proposed.

In visual tracking based on Bayesian inference framework, the confidence of each

particle is given by its observation likelihood, and in the proposed algorithm, it is

defined as

p(Ym
t |s

m
t ) = exp

(
−
1

γ
d2DRC(Y

m
t ;UBP,VBP, µBP)

)
(5.12)

where γ is a constant. As the observation likelihood in the proposed algorithm con-

siders the distance metric d2DRC(Y;UBP,VBP, µBP), the effect of occlusion/outliers on

the likelihood is reduced thereby making the likelihood robust to occlusion/outliers.

For each candidate image sample Ym
t observed by a state sm

t , the minimization

problem in (5.5) is solved efficiently by the IRRC technique as per Procedure 5.1

to obtain Zm
t,opt and Am

t . Now among the candidate samples, the optimal state of

the tracked target ŝt is found using (5.11), (5.12) and (2.4). Finally, the observation

models are adapted to handle the appearance change of the target by incrementally

updating both the KCF models (X̂1
t , α̂

1
t , X̂

2
t , α̂

2
t ), and the B2DPCA subspace model
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(UBP,VBP, µBP), as discussed in the next subsection.

5.4.3 Observation Model Update

The update of the observation model is very much essential to handle the appearance

variations of the object, but the update with imprecise samples will cause tracking

drift due to the model degradation. Therefore, the imprecise samples should be

avoided during the model update.

a) Bilateral 2DPCA

The appearance variations of the object are handled by incrementally updating the

B2DPCA projection matrices (UBP,VBP), and the mean µBP. In order to avoid update

with imprecise samples having occlusion/outliers, it is very important to extract the

occlusion/outliers information from the tracking results. As the occluded/outlier

pixels have low weights in the proposed algorithm, the occlusion/outliers information

is extracted from the weight matrix A of the tracked target candidate. But in [3, 19],

the occlusion/outliers information is extracted from the coefficients of the trivial

templates. In the proposed observation model update, a pixel is considered either

noisy or occluded, if the corresponding weight ai j < 0.5 while generating a binary

occlusion map Ot . Here, the weight ai j < 0.5 is considered without any bias for

the detection of outliers/occlusion as the weight values are bounded in [0,1] and 0.5

is midpoint of this range. Note that no arbitrary threshold is used to detect the

occlusion/outlier as in other methods. Using the weight matrix A, the occlusion map

Ot , with an entry of unity indicating outlier and an entry of zero indicating inlier

pixel, is generated according to the following rule:

Ot(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if ai j < 0.5

0, otherwise

i = 1,2, .., dl

j = 1,2, .., dr

(5.13)
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Usually the occluded region is a large connected area compared to that of random

noises or object appearance variations, which are comparatively very small. Hence, to

retain the large connected area, and to fill the small hole between the regions and to

remove the small regions, morphological operations and connected component anal-

ysis are performed on the occlusion map. This updated occlusion map Ôt is used to

find the occlusion ratio τ, which is the ratio of the number of ones in Ôt to the total

number of elements in Ôt . Now, with the help of two thresholds, τ1 and τ2, the occlu-

sion ratio τ is used to decide whether the tracked sample is utilized fully, or partially,

or not utilized at all, in the observation model update. In the absence of occlusion

(when τ < τ1), the tracked sample is used directly for the model update (full update).

During a partial occlusion (when τ1 < τ < τ2), the occluded pixels in the tracked

sample are replaced with the corresponding pixels from the previously updated mean

µBP to get an updated sample, which is free from occlusion, and is used in a model

update. Otherwise, the tracked sample is not used for the model update due to severe

occlusion (when τ > τ2). These updated new observations are accumulated and used

to update the observation model (UBP,VBP, µBP) by incremental subspace learning

[63].

b) Kernelized Correlation filters

In the proposed algorithm, the model of each kernelized correlation filter consists of

its own target appearance X̂k
t and the learned coefficients model α̂k

t , where k = 1,2

indicates which correlation filter the model belongs to. In order to preserve the

consistency of the object representation in the scale space, the optimal state ŝt of the

tracked target, obtained from (2.4), is used to find the new target and window sizes,

and then an image is cropped out from the current frame corresponding to the new

window size and position (x̂t, ŷt), and it is resized to the initial window size to obtain

the target appearance Xt . The model of the first correlation filter KCF-1 is updated
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by the linear interpolation, given by

F(α̂1
t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − η)F(α̂1

t−1) + ηF(α
1
t ), if τ ≤ τKCF

F(α̂1
t−1), otherwise

F(X̂1
t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − η)F(X̂1

t−1) + ηF(Xt), if τ ≤ τKCF

F(X̂1
t−1), otherwise

(5.14)

where α1
t is the learned coefficient obtained from (5.2) using the target appearance

Xt at time t, η is the learning rate parameter and τKCF is a threshold. Note that both

the target appearance model X̂1
t and the learned coefficients model α̂1

t of KCF-1 are

not updated when the occlusion ratio τ > τKCF . This prevents the model from getting

degraded during severe occlusion, and hence, the tracking drift. Further, with the

help of occlusion map Ôt and the previous target appearance model X̂2
t−1 of KCF-2,

the modified target appearance X̃t is obtained from the target appearance Xt as

X̃t = Ot ⊙ X̂2
t−1 + (1 −Ot) ⊙ Xt (5.15)

where Ot is the resized occlusion map obtained from Ôt to match the matrix dimen-

sions of X̂2
t−1. Note that from Figure 5.2 the modified target appearance X̃t is free

from the occlusion only inside the target region but not outside, since the occlusion

maps Ot and Ôt are obtained only for the target region in a generative appearance

model of B2DPCA. Now, the models of KCF-2 are updated as

F(α̂2
t ) = (1 − η)F(α̂

2
t−1) + ηF(α

2
t )

F(X̂2
t ) = (1 − η)F(X̂

2
t−1) + ηF(X̃t)

(5.16)

where α2
t is the learned coefficients obtained from the modified target appearance X̃t

using (5.2). By employing the modified target appearance X̃t instead of Xt in both

the learned coefficients α2
t computation and the target appearance model X̂2

t update,
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Figure 5.2: Some representative cases of (a) Faceocc1 (#92) and (b) Faceocc2 (#260)

sequences showing the target appearance Xt , the resized occlusion map Ot and the
modified target appearance X̃t .

the models of KCF-2 are prevented from degradation due to occlusion.

Algorithm 5.1 shows the steps of the proposed tracking method based on KCF

and B2DPCA. To understand the advantages of using two KCFs on the tracking

performance, two special cases of Algorithm 5.1 are considered each with only one

KCF enabled and the other disabled. The special case of Algorithm 5.1 that uses

only KCF-1, whose target appearance model X̂1
t and learned coefficients model α̂1

t

are updated as in Step 11 of Algorithm 5.1, is termed as Algorithm 5.1 KCF-1.

Similarly, the other special case of Algorithm 5.1 that uses only KCF-2 is termed as

Algorithm 5.1 KCF-2, where its target appearance model X̂2
t and learned coefficients

model α̂2
t are updated as in Step 11 of Algorithm 5.1.

5.5 Experimental Results

Algorithm 5.1 is implemented in MATLAB and its average speed is 14.93 fps1. The

algorithm when tested on gray scale/raw pixels is referred to as Algorithm 5.1 Gray,

1Using modern computer of 3.4GHz CPU and 16GB RAM
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Algorithm 5.1 Tracking algorithm based on the kernelized correlation filters and
the bilateral 2D principal component analysis subspace

Input: Target object is labeled in the first frame, and its initial state and location
are s1 and (x1,y1), respectively.

1: Using s1 and (x1,y1), the target image Y1 is cropped out in the first frame and
used to initialize the B2DPCA mean matrix µBP.

2: An image patch X1 is cropped out from (x1,y1) in the first frame and used to
initialize both X̂1

1 and X̂2
1. Compute the coefficients α1

1 using (5.2), and initialize

α̂1
1 and α̂2

1 with α1
1.

3: for t > 1 do
4: An image patch XD

t of new window size is cropped out from the position
(xt−1,yt−1) in frame t, and then resized to match the initial window size.

5: Compute gk
t from (5.3) using X̂k

t−1, α̂
k
t−1 and XD

t , where k = 1,2.

6: Compute g̃t using (5.9) after energy normalization of the response maps gk
t ,

and the location of its maximum value is used to find (xt,yt).

7: Sample M candidate states {s1t , s
2
t , ..., s

M
t } from st−1 using the particle filter.

8: Extract the candidate sample Ym
t from the state sm

t and position (xt,yt), ∀m =
1,2, ...,M, and get centered candidate matrix Y

m
t .

9: if t <= TBP then
10: if t <= 5 then
11: Assign Am

t = J (all-ones matrix) and E = Y
m
t .

12: else
13: Assign Am

t = J and E = Y
m
t −UBP UT

BP Y
m
t VBP VT

BP.
14: end if
15: Find d2DRC for all Ym

t using (5.11).
16: Find the optimal state of the tracked target ŝt using (5.12) and (2.4).
17: As described in section 5.4.3, update the observation models of KCF

(X̂1
t , α̂1

t , X̂2
t , α̂2

t ) incrementally every frame and that of B2DPCA
(UBP,VBP, µBP) incrementally for every five frames by assigning Am

t = J.
18: else
19: For all Ym

t , compute Zm
t and Am

t according to Procedure 5.1.
20: Find the optimal state of the tracked target ŝt using (5.11), (5.12) and

(2.4).

21: The observation models of KCF (X̂1
t , α̂1

t , X̂2
t , α̂2

t ) and B2DPCA
(UBP,VBP, µBP) are updated incrementally for every one and five frames,
respectively, as described in section 5.4.3.

22: end if
23: end for
Output: Target state ŝt and position (xt,yt) at time t.

103



and when tested on histogram of oriented gradient (HOG) features is referred to as

Algorithm 5.1 HOG. Their performance is evaluated on the challenging sequences

available in OTB-50 [7] and VOT2016 [94] benchmark datasets using the respective

evaluation protocols discussed in Section 2.3. The mapping function Φ and regu-

larization parameter ξ in (5.1) of KCF-1 and KCF-2 are set to be as in KCF [71].

Even though the initialization of both KCFs, (X̂1
t , α̂

1
t ) and (X̂2

t , α̂
2
t ), is same as in

Steps 1 and 2 of Algorithm 5.1, their observation model updates are different as in

(5.14) and (5.16). In Algorithm 5.1, for B2DPCA representation, each image obser-

vation is resized to 32×32 pixels, and kl = 4 left- and kr = 4 right-projection basis

vectors are used in all the experiments. The positive scalar ψBP used to terminate

the IRRC technique in (5.8) is set to 0.1. The penalty constant λBP used in the

computation of d2DRC in (5.11) is set to 0.1. The B2DPCA observation model is

incrementally updated for every 5 frames, and the occlusion ratio thresholds τ1 and

τ2 used in B2DPCA observation model update are set to 0.1 and 0.6, respectively.

The occlusion ratio threshold τKCF used in the model update of KCF-1 in (5.14) is

set to 0.6. In both the correlation filters and B2DPCA, the cell size of 4 × 4 pixels

with 9 orientations are adopted for extracting the HOG features.

The two parameters βBP and δBP used in the weight function in (5.6) of the IRRC

technique are computed as given below. In order to compute the value of βBP, which

controls the location of the demarcation point, the coding residuals êi j at all locations

are assumed to be in the ”normal range” and follow the Gaussian distribution in the

absence of occlusions in the tracked target candidate. But during occlusions, they will

probably exceed the ”normal range” at the occluded locations. Hence, by knowing

the ”normal range” of the residuals êi j in the initial frames (t = 2 to TBP) of the

respective sequence, the value of βBP is computed as

βBP =
1

TBP − 1

TBP∑
t=2

[
mean(Êt) + c4 std(Êt)

]2
(5.17)
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where c4 is a constant, Êt is the residual error of the tracked target candidate, and

TBP is the time instant at which the number of the left- and right-projection basis

vectors kl and kr become 4 for the first time. Note that the residual matrix Êt is

vectorized while computing the mean and standard deviation in (5.17). The first

frame at t = 1 is manually labeled, due to which all the elements of the residual

will be zero, and hence, the frame at t = 1 is not considered in the computation of

βBP. Now, the square of the residual êi j that is larger than the computed βBP will

be considered as occluded/outlier and the value of weight ai j will be less than 0.5.

Further, the parameter δBP, which controls the rate of the weight between 1 and 0

is computed using δBP = c5/βBP, where c5 is a constant. The constants c4 and c5

are set as 2 and 7, respectively, for all the sequences. In Algorithm 5.1, the IRRC

technique starts functioning after the number of the left- and right-projection basis

vectors kl and kr become 4 for the first time. At time t = TBP, the number of the

left- and right-projection basis vectors kl and kr are 4, and then, the parameters βBP

and δBP are computed, which are then used by the IRRC technique for t > TBP to

calculate the weights in (5.6).

The performance of the proposed Algorithm 5.1 is evaluated against several state-

of-the-art tracking algorithms, namely, visual tracking via discriminative low-rank

learning (DLR) [155], tracking via structured discriminative dictionary learning (DDL)

[156], adaptive color attributes for real-time visual tracking (ACT) [67], visual track-

ing based on KCF [71], visual tracking via locally structured Gaussian process regres-

sion (LSGPR) [157], visual tracking based on discriminative subspace learning (DSL)

[158] and the top two best tracking algorithms selected from the previous chapter

based on their performance on each of the challenging attributes of both the OTB-50

and VOT2016 benchmark datasets, for a fair comparison. The OTB-50 results of

the trackers DDL [156], DLR [155], LSGPR [157] and DSL [158] are available on the

respective authors’ website [159–161] and [162], and they have been used to compare

the performance with that of Algorithm 5.1 on OTB-50 dataset. The codes of the
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trackers ACT [67] and KCF [71] downloaded from the respective authors’ website

[163] and [164] are used to evaluate on the sequences of the two benchmarks to have

a fair comparison with Algorithm 5.1. The parameter settings of these trackers are

as given in their respective papers in all the experiments. Note that visual tracking

based on KCF [71] is evaluated on gray values and HOG features, which are denoted

as KCF Gray and KCF HOG, respectively, to compare the performance with that

of Algorithm 5.1. In Algorithm 5.1, 400 particles are used to find the four affine

parameters of the target (θt, st, αt, φt) using B2DPCA and 2DRC. In the following

sub-sections, two benchmark datasets and the evaluation measures discussed in Sec-

tion 2.3 are used for the quantitative and qualitative evaluation of Algorithm 5.1 with

that of the other methods.

5.5.1 Performance Evaluation on OTB-50

a) Special cases of Algorithm 5.1

Two special cases of Algorithm 5.1 are considered each with only one KCF enabled

and other disabled to analyze their effect on the tracking performance. Compared to

Algorithm 5.1, the methods in Algorithm 5.1 KCF-1 and Algorithm 5.1 KCF-2, use

only one correlation filter, KCF-1 and KCF-2, respectively, to find the location of the

target (xt,yt). The performance of special cases of Algorithm 5.1 are compared with

that of Algorithm 5.1 in terms of the precision score and area under curve (AUC)

on OTB-50 benchmark dataset in Table 5.1. For this comparison, Algorithm 5.1 and

the special cases of Algorithm 5.1 are tested on HOG features. It is observed from

the Table 5.1 that Algorithm 5.1 KCF-1 performs better than Algorithm 5.1 KCF-2

does in terms of the precision score and AUC. Also, notice that the combination of

the two correlations filters, KCF-1 and KCF-2, further enhances the performance of

Algorithm 5.1 in terms of both the precision score and AUC.
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Table 5.1: Performance comparison of special cases of Algorithm 5.1 in terms of the
precision score and AUC on OTB-50.

Variants/Metric Precision Score AUC

Algorithm 5.1 KCF-1 75.8 55.0

Algorithm 5.1 KCF-2 73.2 53.2

Algorithm 5.1 77.7 56.2

b) Comparison with the state-of-the-art algorithms:

Algorithm 5.1 is evaluated on the OTB-50 benchmark dataset [7] and compared with

the state-of-the-art tracking algorithms using one-pass evaluation (OPE). Table 5.2

shows the performance comparison of Algorithm 5.1 in terms of the precision score

for the location error threshold of 20 pixels with that of the other state-of-the-art

trackers for different attributes. The best three results are shown in (red, bold),

(violet, underline) and (blue, italic) fonts for better comparison of Algorithm 5.1

with the other methods. It can be observed from Table 5.2 that Algorithm 5.1 HOG

outperforms the other trackers in all the challenging attributes, whereas Algorithm

4.1 stood third in low resolution (LR). KCF HOG ranks first in background clutter

(BC), and second in the remaining attributes except scale variation (SV) and LR.

Further, DLR stands second in SV and third in the remaining attributes except de-

formation (Def), motion blur (MB), fast motion (FM), in-plane rotation (IPR) and

LR. DDL ranks second in BC and third in out-of-plane rotation (OPR), SV, Def

and IPR. Also, ACT stands third in MB and FM, whereas LSST stand second in

LR. It is also observed from the Table 5.2 that Algorithm 5.1 Gray, based on gray

features, outperforms Algorithm 3.1 HOG, Algorithm 4.1 and other particle filter-

based trackers (LDSAM, ASLA, L1APG, LSST, LWIST and WLCS) for MB and FM

challenging attributes. This improvement in performance is due to the collaboration

of KCF and B2DPCA used in Algorithm 5.1. Further, Algorithm 5.1 HOG outper-

forms KCF HOG in all the attributes especially in SV, FM, out-of-view (OV) and

LR attributes by 10.3%, 10.8%, 12.3% and 22.6%, respectively. It is also observed
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that Algorithm 5.1 HOG has a performance superior to that of Algorithm 3.1 HOG,

Algorithm 4.1 and other methods for all the challenging attributes.

The performance comparison of Algorithm 5.1 in terms of AUC with that of

the other state-of-the-art trackers for different attributes is shown in Table 5.3. It

is observed from the table that the performance of Algorithm 5.1 HOG is superior

to that of the other methods in all the challenging attributes except Def, whereas

Algorithm 4.1 stood second in LR. Further, KCF HOG ranks first in Def and second

in the remaining attributes except illumination variation (IV), OPR, SV and LR,

whereas DDL ranks third in SV and BC, and second in the remaining challenges

except MB, FM, OV and LR. Further, LSST stands third in LR, and ACT and DSL

stands third in MB and IPR, respectively. Also, DLR ranks second in SV and IPR,

and third in the remaining attributes except Def, MB, BC and LR. It is observed from

Table 5.3 that the performance of Algorithm 5.1 Gray is superior to that of Algorithm

3.1 HOG, Algorithm 4.1 and other particle filter-based trackers (LDSAM, ASLA,

L1APG, LSST, LWIST and WLCS) for MB and FM challenging attributes. Also,

it is observed that Algorithm 5.1 HOG outperforms KCF HOG in all the attributes

especially in IV, OPR, SV, FM, OV and LR attributes by 11.9%, 9.3%, 27.4%, 9.6%,

9.4% and 90.4%, respectively. Further, Algorithm 5.1 HOG outperforms Algorithm

3.1 HOG, Algorithm 4.1 and other methods for all the challenging attributes except

in Def.

The performance of Algorithm 5.1 is compared using the precision and success

plots of OPE for OTB-50 benchmark sequences having occlusion against the other

trackers and shown in Figure 5.3. In the precision plot, the precision score for the

location error threshold of 20 pixels is used to rank the tracker, whereas in the suc-

cess plot, AUC is used to rank the overall performance of the tracker. It is observed

that the performance of Algorithm 5.1 HOG is superior to that of the state-of-the-

trackers KCF HOG, DLR, DDL, DSL, LSGPR, ACT, Algorithm 4.1, LDSAM, DLT,

Algorithm 3.1 HOG, ASLA, KCF Gray and L1APG by 6.0%, 13.6%, 15.4%, 21.2%,
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Table 5.2: The precision score of Algorithm 5.1 with that of the compared trackers
for different attributes of OTB-50. (red, bold), (violet, underline) and (blue, italic)

indicate first, second and third rankings, respectively.

Precision score IV OPR SV Occ Def MB FM IPR OV BC LR

Algorithm 5.1 HOG 74.8 76.0 74.9 79.4 74.7 68.6 66.7 73.2 73.0 75.3 77.1

Algorithm 5.1 Gray 42.7 51.4 51.4 50.8 48.3 45.4 41.9 49.9 35.2 48.1 57.0

Algorithm 4.1 61.5 62.9 63.4 60.4 59.8 33.9 33.3 58.6 39.9 60.1 68.1

Algorithm 3.1 HOG 56.5 56.3 60.3 55.8 52.6 36.5 35.1 58.3 51.0 57.4 55.7

KCF HOG 72.8 72.9 67.9 74.9 74.0 65.0 60.2 72.5 65.0 75.3 62.9

KCF Gray 44.8 54.1 49.2 50.5 48.0 39.4 44.1 55.2 35.8 50.3 52.9

ACT 57.5 64.5 59.8 61.9 60.5 55.0 48.0 67.5 43.4 62.9 55.9

LSGPR 52.1 57.1 58.6 62.7 57.9 31.2 33.6 53.5 45.5 57.0 55.1

DSL 62.7 69.1 68.6 65.5 67.6 37.2 41.1 63.8 41.3 62.0 67.6

DLT 53.4 56.1 59.0 57.4 56.3 45.3 44.6 54.8 44.4 49.5 53.6

DDL 65.0 72.6 69.3 68.8 69.5 33.2 36.2 67.9 35.4 67.3 62.8

DLR 65.9 72.6 71.7 69.9 69.1 42.0 45.8 67.2 51.1 66.2 67.6

LDSAM 58.8 61.6 60.1 58.1 59.9 29.9 28.4 59.4 45.9 62.4 61.2

ASLA 56.4 59.1 62.3 53.3 57.7 32.3 33.1 57.5 41.7 63.6 59.0

L1APG 34.1 47.8 47.2 46.1 38.3 37.5 36.5 51.8 32.9 42.5 61.5

LSST 41.5 47.0 53.3 41.3 45.0 27.1 25.2 46.1 24.3 42.6 74.1

LWIST 34.3 38.4 40.3 40.4 35.3 15.1 18.7 33.7 30.7 37.4 45.9

WLCS 32.9 33.0 38.3 35.7 29.9 15.4 21.3 30.3 22.8 33.1 23.0
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Table 5.3: AUC of Algorithm 5.1 with that of the compared trackers for different
attributes of OTB-50. (red, bold), (violet, underline) and (blue, italic) indicate

first, second and third rankings, respectively.

AUC IV OPR SV Occ Def MB FM IPR OV BC LR

Algorithm 5.1 HOG 55.2 54.1 54.4 55.9 52.2 51.3 50.3 53.3 60.2 54.3 51.8

Algorithm 5.1 Gray 32.0 35.1 33.6 35.7 34.3 35.7 32.7 35.4 32.1 35.3 28.3

Algorithm 4.1 49.3 47.8 49.4 46.6 46.2 28.7 28.6 45.1 35.2 47.1 47.2

Algorithm 3.1 HOG 46.6 44.6 48.2 44.0 42.0 31.6 30.2 46.4 43.2 46.4 41.6

KCF HOG 49.3 49.5 42.7 51.4 53.4 49.7 45.9 49.7 55.0 53.5 27.2

KCF Gray 34.8 38.7 34.8 37.3 36.4 34.5 37.1 39.2 35.3 37.2 25.8

ACT 41.4 44.1 38.4 42.5 43.4 41.0 37.3 46.9 41.0 44.9 26.7

LSGPR 41.9 42.3 43.7 48.1 45.4 28.0 28.8 39.2 40.8 43.7 33.0

DSL 48.0 50.2 51.5 48.1 49.9 33.1 36.0 47.1 36.3 46.4 38.5

DLT 40.5 41.2 45.5 42.3 39.4 36.3 36.0 41.1 36.7 33.9 34.7

DDL 51.1 53.7 52.6 51.4 53.3 31.6 33.4 49.7 34.4 51.0 39.0

DLR 50.9 52.7 54.1 51.2 51.5 36.4 39.0 49.7 44.2 49.8 38.5

LDSAM 47.9 47.5 47.5 45.9 48.0 27.3 26.5 46.3 40.4 49.4 44.1

ASLA 46.6 46.5 49.0 43.1 46.2 28.2 29.2 45.6 38.7 50.2 42.1

L1APG 28.3 36.0 35.0 35.3 31.1 31.0 31.1 39.1 30.3 35.0 37.4

LSST 33.2 33.5 37.7 30.4 31.6 21.4 21.5 32.3 21.7 30.2 46.2

LWIST 28.9 30.1 31.3 31.9 28.5 15.1 18.3 27.2 28.1 31.1 27.8

WLCS 27.0 25.8 29.5 27.6 25.0 15.8 19.6 24.2 21.6 27.3 13.7
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26.6%, 28.3%, 31.4%, 36.6%, 38.3%, 42.3%, 48.9%, 57.2% and 72.2%, respectively,

in terms of the precision score. On the other hand, Algorithm 5.1 HOG outper-

forms DDL, KCF HOG, DLR, DSL, LSGPR, Algorithm 4.1, LDSAM, Algorithm

3.1 HOG, ASLA, ACT, DLT, KCF Gray and L1APG by 8.7%, 8.7%, 9.2%, 16.2%,

16.2%, 19.9%, 21.8%, 27%, 29.7%, 31.5%, 32.1%, 49.8% and 58.3%, respectively, in

terms of AUC. Further, it is observed that Algorithm 5.1 HOG outperforms both

DDL and KCF HOG in terms of the precision score and the success rate for the loca-

tion error threshold > 5 and overlap threshold < 0.6, respectively. This is due to the

outliers/occlusion handling capability of Algorithm 5.1 in both the observation model

update and the computation of the observation likelihood in the generative model.

For sequences having occlusion, it is observed that Algorithm 5.1 HOG yields a per-

formance superior to that of Algorithm 3.1 HOG, Algorithm 4.1 and other trackers

in terms of both the precision score and the success rate.

The precision and success plots of OPE for the various trackers averaging over

the OTB-50 benchmark sequences are shown in Figure 5.4. To rank the tracker, the

precision score for the threshold of 20 pixels is used in the precision plot, whereas

AUC is used in the success plot, and their values are shown along with the tracker

name. From Figure 5.4, it is observed that Algorithm 5.1 HOG outperforms the state-

of-the-trackers KCF HOG, DLR, DDL, DSL, Algorithm 4.1, ACT, LDSAM, LSGPR,

ASLA, Algorithm 3.1 HOG, DLT, KCF Gray and LSST by 5.0%, 8.6%, 9.1% 13.7%,

22.5%, 23.5%, 23.7%, 26.3%, 27.1%, 27.4%, 32.3%, 38.7% and 57.3%, respectively,

in terms of the precision score. Similarly in terms of the AUC, Algorithm 5.1 HOG

outperforms DDL, DLR, KCF HOG, DSL, LDSAM, Algorithm 4.1, ASLA, Algorithm

3.1 HOG, LSGPR, ACT, DLT, KCF Gray and L1APG, by 4.2%, 5.0%, 9.3%, 10.2%,

13.5%, 13.7%, 15.1%, 15.9%, 21.1%, 26.8%, 28.9%, 38.4% and 47.9%, respectively. It

is also observed that Algorithm 5.1 HOG outperforms both DDL and KCF HOG in

terms of the precision score and the success rate for the location error threshold > 5

and overlap threshold < 0.6, respectively. Overall, Algorithm 5.1 HOG provides the
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best performance to that of Algorithm 3.1 HOG, Algorithm 4.1 and other trackers in

terms of both the precision score and the success rate.

5.5.2 Performance Evaluation on VOT2016

The performance of Algorithm 5.1 is evaluated on the VOT2016 benchmark dataset

[94] using the average accuracy and robustness. The accuracy rank and overlap com-

parison of Algorithm 5.1 with that of the recent state-of-the-art tracking algorithms

averaging over the VOT2016 sequences is shown in Table 5.4. Likewise, Table 5.5

shows the robustness rank and failures comparison of Algorithm 5.1 averaging over

the same challenging sequences. Also, the respective measures with different aver-

aging methodologies, mean, weighted mean and pooled, are shown in the last six

columns of these two tables. For a better comparison of Algorithm 5.1 with that of

the other state-of-the-art trackers, the best three results are shown in (red, bold),

(violet, underline) and (blue, italic) fonts. From Table 5.4, it is observed that in terms

of the overlap, Algorithm 5.1 HOG ranks first for the attributes mean, weighted mean

and pooled, and stands second for the attributes camera motion, motion change and

size change, and third for the attributes empty, illumination change and occlusion.

Also, Algorithm 4.1 ranks second in attribute empty and third in attributes size

change and mean, whereas Algorithm 3.1 HOG ranks first in camera motion and

occlusion, second in mean, weighted mean and pooled attributes. Further, in terms

of the overlap, KCF HOG stands first for the attributes camera motion and occlu-

sion, third for the attributes motion change, weighted mean and pooled. Also, ACT

stands first, second and third for the attributes motion change, occlusion and cam-

era motion, respectively. Further, LWIST and WLCS ranks first and second for the

attribute illumination change, respectively. Algorithm 5.1 HOG has a performance

better than that of KCF HOG in the face of all the challenging attributes except

camera motion and occlusion. It is also noticed that Algorithm 5.1 HOG performs

better than Algorithm 3.1 HOG does for all the challenging attributes except empty
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(a)

(b)

Figure 5.3: Performance evaluation of Algorithm 5.1 on OTB-50 sequences having
occlusion using (a) the precision plots of OPE, where the precision score is shown
along with the tracker name in the legend, and (b) the success plots of OPE, where
AUC is shown along with the tracker name in the legend. The number 29 appearing
in the title denotes the number of sequences associated with the occlusion attribute
of OTB-50 dataset.
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(a)

(b)

Figure 5.4: Overall performance evaluation of Algorithm 5.1 on OTB-50 using (a)
the precision plots of OPE, where the precision score is shown along with the tracker
name in the legend, and (b) the success plots of OPE, where AUC is shown along
with the tracker name in the legend.
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and size change. Further, Algorithm 5.1 HOG outperforms Algorithm 4.1 for all the

challenging attributes except empty.

From Table 5.5, it is observed that Algorithm 5.1 HOG ranks second in the at-

tributes camera motion and empty, and third in size change, mean, weighted mean

and pooled, whereas Algorithm 5.1 Gray stand third in the attributes motion change

and occlusion. On the other hand, KCF HOG stands second in the attributes motion

change, size change, mean, weighted mean and pooled, and third in camera motion,

whereas KCF Gray ranks first in empty, and second in illumination change, motion

change, occlusion and mean. Further, ACT ranks first in all the attributes in terms

of failures except empty, where it stood third, whereas ASLA stood third in illumi-

nation change. Algorithm 5.1 HOG has a performance better or similar to that of

KCF HOG in the face of all the challenging attributes except motion change, oc-

clusion, size change, mean, weighted mean and pooled. This may happen when the

target undergoes severe occlusion, scale change, out-of-plane rotation, motion blur,

fast motion either individually or simultaneously. It is also noticed that Algorithm

5.1 HOG has a performance better than that of Algorithm 3.1 HOG and Algorithm

4.1 for all the challenging attributes except illumination change. Further, the overall

performance (mean, weighted mean and pooled attributes) of Algorithm 5.1 HOG is

superior to that of the other methods in terms of overlap, but its performance is not

that good in terms of failures, where it stood third.

5.5.3 Qualitative Evaluation

For qualitative evaluation of the trackers, some tracking results on a subset of the

OTB-50 benchmark sequences are obtained and shown in Figure 5.5. The tracking

results of top twelve trackers, which are selected from Figure 5.4, on the six exemplar

image frames are shown for each sequence and these six frames are selected at regular

intervals without any bias. Algorithm 5.1 HOG successfully tracks the target in all

the frames of the Car4, CarScale, Fleetface, Freeman3, Freeman4, Jogging-1, Singer1,
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Suv and Trellis sequences, which contain most of the real-time challenges such as

pose change, partial occlusion, illumination change, scale change and out-of-plane

rotation. This indicates the strong capabilities of Algorithm 5.1 in handling these

challenges. Even though Algorithm 5.1 HOG performs well for the challenges that

are considerably difficult, it loses the target for challenges that are extremely difficult

or for the sequences where the target undergoes several changes simultaneously. This

can be observed in the last image (#1332) of the Lemming sequence, one of the

longest and most challenging sequences, where the target undergoes severe occlusion,

scale change, out-of-plane rotation, motion blur, fast motion either individually or

simultaneously. Algorithm 5.1 HOG has tracked the target successfully till frame

#1110 without loosing in between and has failed afterwards (towards the end of the

sequence). In contrast to Algorithm 5.1 HOG, other methods have failed in the middle

of the Lemming sequence, but at different frames of the sequence. For example, in

frame #0444 and #0666, all the trackers have failed except Algorithm 5.1 HOG and

DLT, whereas in #0888, DLT has failed, and all the remaining trackers have started

to track the target again except Algorithm 3.1 HOG, Algorithm 4.1, LDSAM, ASLA,

DDL and LSGPR. So, none of the trackers has tracked the target through the entire

Lemming sequence successfully. Even though some trackers fail in some frames, they

are able to track the object once again by chance as the object reappears at the same

location due to camera pan or due to repetitive motion of the object. All the trackers

perform well in the Car4 sequence except ACT, where the tracker drifts away slightly

but with imprecise estimation of scale. In the CarScale sequence, all the methods

track the target, but fail to estimate the scale and location of the target effectively.

Similar observations can be made even in the Fleetface sequence, where ACT, ASLA,

Algorithm 3.1 HOG and Algorithm 4.1 fail towards the end of the sequence, and

LDSAM fails to estimate the scale of the object accurately. Algorithm 5.1 HOG,

Algorithm 3.1 HOG, Algorithm 4.1, LDSAM and DLT estimate both the scale and

location of the target effectively in Freeman3, whereas DSL and DLR fail to estimate
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the scale of the target. The only method that tracks the target effectively until the

end in the Freeman4 sequence is Algorithm 5.1 HOG, and Algorithm 4.1 has drifted

away little bit towards the end of the sequence. Further, in the Jogging-1 sequence,

LSGPR, DDL, ASLA and Algorithm 5.1 HOG track the object successfully, whereas

the other trackers fail to track the object after a few initial frames. In Singer1, all

the methods track the target to successfully except DLR and ACT fail to estimate

the scale accurately. Also, Algorithm 5.1 HOG, Algorithm 3.1 HOG, KCF HOG

and LSGPR track the object successfully in Suv except DDL, DLT, DLR, DSL,

ACT, Algorithm 4.1, LDSAM and ASLA, which fail to track the object towards the

end of the sequence. Further, Algorithm 5.1 HOG, Algorithm 3.1 HOG and ASLA

successfully track the target in Trellis. Eventhough KCF HOG, DLR, DDL and DSL

track the target in Trellis, but they fail to estimate the scale precisely. Also, ACT

fails to track the target in the middle of the Trellis sequence (#470) and starts to

track again but with imprecise scale and location (#564). Further, Algorithm 4.1,

LDSAM, LSGPR and DLT fail to track the object towards the end of the sequence in

Trellis. Thus, from these qualitative analyses, it is observed that Algorithm 5.1 HOG

performs favorably in most of the challenging sequences and better than that of

Algorithm 3.1, Algorithm 4.1 and other methods.

5.6 Summary

In this chapter, a new tracking algorithm, Algorithm 5.1, which is based on a col-

laboration of the discriminative and generative models has been proposed. In the

discriminative model, kernelized correlation filters have been used to find the target

position, and a new generative model has been used to find the remaining affine mo-

tion parameters of the target. In the generative model, the robust coding technique

used in the first tracking algorithm has been extended to two dimensions, and then,

used in the reconstruction procedure of bilateral 2DPCA to develop an iteratively
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Figure 5.5: Examples of tracking results of the compared methods on the ten OTB-50
benchmark sequences.
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reweighted robust coding technique. A 2D robust coding distance measure has been

defined, and then used to compute the observation likelihood. By exploiting the

weights obtained from iteratively reweighted robust coding, a robust occlusion map

has been generated and used in the observation model update of both the kernelized

correlation filters and the bilateral 2DPCA subspace. Extensive experiments have

been conducted on the two popular benchmark datasets, OTB-50 and VOT2016, to

analyze the performance of Algorithm 5.1. Performance of Algorithm 5.1 has been

compared with that of Algorithm 3.1, Algorithm 4.1 and the other methods using

these datasets. Algorithm 5.1 generally outperforms these methods for most of the

challenging attributes of OTB-50, both in terms of the precision score and area under

curve (AUC). The performance of Algorithm 5.1 HOG is almost comparable to that

of ACT in terms of failures for all the challenging attributes of the VOT2016 includ-

ing mean, weighted mean and pooled attributes. On the other hand, even though

none of the trackers perform well for all the challenging attributes of the VOT2016

in terms of overlap, Algorithm 5.1 HOG outperforms all the other methods when the

overlap measure is averaged over all the challenging attributes (mean, weighted mean

and pooled). Quantitative and qualitative performance of Algorithm 5.1 HOG have

shown that Algorithm 5.1 HOG generally outperforms the other methods for most of

the challenging attributes of both OTB-50 and VOT2016 datasets as well as when

averaged over these attributes. In the next chapter, the concluding remarks and some

suggestions for the future investigation are presented.
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Chapter 6

Conclusion

6.1 Concluding Remarks

Visual tracking has drawn a great deal of attention among the research community

since the last decade due to its wide range of real-life applications in the field of

computer vision, such as action recognition, vehicle navigation, robotics, human be-

havior analysis, human computer interaction, event/activity detection, sports video

analysis, video indexing and retrieval, medical imaging, traffic management, security,

and surveillance. In this thesis, three visual object tracking algorithms have been

developed to improve the tracking performance over that of the existing algorithms

by exploring different object representation schemes to model the object appearance,

and by devising mechanisms to update the observation models.

A new tracking algorithm (Algorithm 3.1) based on the global appearance model

using robust coding and its collaboration with a local model has been proposed. The

global appearance of the object has been modeled by the global PCA subspace, and

an iteratively reweighted robust coding (IRRC) technique has been developed to com-

pute the optimum global PCA basis coefficients and the global weight matrix. The

global weight matrix and the local PCA model have been used to find the optimum

local PCA basis coefficients, and these models are collaborated to exploit their indi-

vidual advantages. Global and local robust coding distances have been introduced to
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measure the similarity between the candidate sample and the corresponding sample

reconstructed from the subspace by reducing the effects of outliers/occlusion on these

distances. A novel observation likelihood based on both the global and local robust

coding distances has been introduced, and then used to obtain the tracking result.

The global weights obtained during IRRC have been exploited to detect the outlier-

s/occlusions as well as to generate the occlusion map, which has been used to update

both the global and local observation models. Extensive experiments have been con-

ducted on the two popular benchmark datasets, the object tracking benchmark-50

(OTB-50) [7] and the visual object tracking 2016 (VOT2016) [94], to evaluate Al-

gorithm 3.1. The algorithm has been tested on the gray scale features (Algorithm

3.1 Gray) and histogram of oriented gradient (HOG) features (Algorithm 3.1 HOG)

for its performance comparison with that of the several state-of-the-art algorithms

in the framework of particle filters. In general, Algorithm 3.1 HOG performs better

than the state-of-the-art methods considered do for most of the challenging attributes

in both the quantitative and qualitative evaluations.

Despite a good performance provided by Algorithm 3.1, there is a need to im-

prove the tracking performance in some of the challenging situations of OTB-50, and

VOT2016. In view of this, a second tracking algorithm, Algorithm 4.1, based on a

structural local 2DDCT sparse appearance model and an occlusion handling mech-

anism has been proposed. The energy compaction property of 2DDCT has been

exploited in the object representation by using only a few 2DDCT coefficients, which

has reduced the computational cost of the l1-minimization used in the algorithm. By

considering only a few 2DDCT coefficients in each local patch of the dictionary and

candidate samples, this algorithm requires 2.18 fps as compared with 1.86 fps required

by ASLA, thereby increasing the speed of this second algorithm by 17.2% compared

to that of ASLA. In contrast to the existing spatial domain object representation

schemes, Algorithm 4.1 represents the object in the transform domain. A holistic

image reconstruction procedure from the overlapped local patches that are obtained
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using the local patch dictionary and the sparse codes has been presented. A method

of generating a robust occlusion map from the reconstructed holistic image and the

pooled feature vector has been obtained. A novel observation model update mecha-

nism has been developed to handle the appearance change of the target and to avoid

model degradation. A patch occlusion ratio has been introduced for the confidence

score computation to enhance the tracking performance. Experiments conducted on

the two datasets mentioned above bear out that the proposed Algorithm 4.1 gener-

ally performs better than the state-of-the-art tracking methods and the first tracking

algorithm proposed in the thesis do for most of the challenging attributes in both the

quantitative and qualitative evaluations.

In spite of the good performance of Algorithm 4.1, there are still some challeng-

ing situations in the OTB-50 and VOT2016 datasets for which further improvement

in the performance of Algorithm 3.1 and Algorithm 4.1 is desired. Therefore, these

issues have been addressed by proposing yet another tracking algorithm, Algorithm

5.1, based on a collaboration of the discriminative and generative appearance models.

In the discriminative model, two kernelized correlation filters have been used to esti-

mate the target location and a new generative model has been used to find the other

affine motion parameters of the target. The motivation for developing this method of

estimating the location and other affine motion parameters of the target in the differ-

ent models has been drawn from the intuitions that (1) the discriminative capability

of a tracker plays a significant role in finding the location of the target rather than

in estimating the other affine motion parameters of the target and (2) the generative

capability of a tracker plays an important role in finding the remaining affine motion

parameters of the target. A new generative appearance model has been presented by

extending the robust coding technique used in the first tracking algorithm to two di-

mensions, and then introducing it into the bilateral 2DPCA reconstruction procedure

to develop an IRRC technique. The introduction of 2D robust coding takes care of

non-Gaussian or non-Laplacian noise and avoids the effect of the outliers or occlusion

123



when computing the projection coefficients of the bilateral 2DPCA projection matri-

ces. A 2D robust coding distance measure has been introduced to find the candidate

sample having appearance similar to that of the reconstructed one from the bilateral

2DPCA subspace, and has been used in the observation likelihood calculation to find

the tracking result. The weights obtained during IRRC have been exploited to detect

outliers or occlusion as well as to generate an occlusion map that has been used in

the observation model update of both the bilateral 2DPCA subspace and the two

kernelized correlation filters. Algorithm 5.1 has been tested on the gray scale fea-

tures (Algorithm 5.1 Gray) and HOG features (Algorithm 5.1 HOG) by conducting

extensive experiments on the two datasets for performance comparison with several

state-of-the-art methods and with the first two tracking algorithms (Algorithm 3.1

and Algorithm 4.1) proposed in the thesis. The proposed Algorithm 5.1 HOG gen-

erally outperforms the methods considered for most of the challenging attributes in

both the quantitative and qualitative evaluations.

6.2 Scope for Future Investigation

The various schemes resulting from the research work of the thesis can be extended

in different ways both to visual tracking and in other research areas of computer

vision. Considering the fact that the reconstruction of the object from the linear PCA

subspace may not be accurate as the candidate samples may lie beyond the range of

the linear subspace during a large appearance change of the object, non-linear or

kernel PCA subspace models can be investigated to model the object appearance

for visual tracking. Similarly, to handle a large appearance variation of the object,

the non-linear or kernel bilateral 2DPCA subspace models can be explored for visual

tracking. Further, the 2DRC in both the bilateral 2DPCA and kernel bilateral 2DPCA

subspace models can be investigated for face recognition. The occlusion detection

mechanism using weights obtained from robust coding or 2D robust coding can also
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be explored in face recognition. The PCA subspace model and its update can be

performed in the 2DDCT domain instead of in the spatial domain, as in Chapter

4, to reduce the computational complexity further as the object appearance model

is already in the 2DDCT domain. The reconstruction of holistic image from the

overlapped local patches, proposed in Chapter 4, could be explored for applications

in the areas of computer vision, where there is a need for such a reconstruction. Also,

the deep features from convolutional neural networks and their combination with gray,

HOG and color attribute features can be investigated to model the object appearance

in the proposed tracking algorithms. A study on the inclusion of a module to re-

detect the object in the proposed tracking algorithms can be carried out to address

the challenges of long-term tracking or long-term full occlusion. Finally, the proposed

tracking algorithms can be extended to multi-object tracking.
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