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Dictionary Pair Learning on Grassmann Manifolds
for Image Denoising

Xianhua Zeng, Wei Bian, Member, IEEE, Wei Liu, Member, IEEE, Jialie Shen, and Dacheng Tao, Fellow, IEEE

Abstract— Image denoising is a fundamental problem in
computer vision and image processing that holds considerable
practical importance for real-world applications. The traditional
patch-based and sparse coding-driven image denoising methods
convert 2D image patches into 1D vectors for further processing.
Thus, these methods inevitably break down the inherent
2D geometric structure of natural images. To overcome this
limitation pertaining to the previous image denoising methods,
we propose a 2D image denoising model, namely, the dictionary
pair learning (DPL) model, and we design a corresponding
algorithm called the DPL on the Grassmann-manifold (DPLG)
algorithm. The DPLG algorithm first learns an initial dictionary
pair (i.e., the left and right dictionaries) by employing a subspace
partition technique on the Grassmann manifold, wherein the
refined dictionary pair is obtained through a sub-dictionary
pair merging. The DPLG obtains a sparse representation by
encoding each image patch only with the selected sub-dictionary
pair. The non-zero elements of the sparse representation are
further smoothed by the graph Laplacian operator to remove
the noise. Consequently, the DPLG algorithm not only preserves
the inherent 2D geometric structure of natural images but also
performs manifold smoothing in the 2D sparse coding space.
We demonstrate that the DPLG algorithm also improves the
structural SIMilarity values of the perceptual visual quality
for denoised images using the experimental evaluations on
the benchmark images and Berkeley segmentation data sets.
Moreover, the DPLG also produces the competitive peak
signal-to-noise ratio values from popular image denoising
algorithms.

Index Terms— Image denoising, dictionary pair, 2D sparse
coding, Grassmann manifold, smoothing, graph Laplacian
operator.
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I. INTRODUCTION

AN IMAGE is usually corrupted by noise during the
processes of being captured, recorded and transmitted.

One general assumption is that an observed noisy image x is
generated by adding a Gaussian noise corruption to the original
clear image y, that is,

x = y + v, (1)

where v is the additive white Gaussian noise with a mean of
zero and a standard deviation σ .

Image denoising plays an important role in the fields
of computer vision [1], [2] and image processing [3], [4].
Its goal is to restore the original clear image y from the
observed noisy image x , which amounts to finding an inverse
transformation from the noisy image to the original clear
image. Over the past decades, many denoising methods have
been proposed for reconstructing the original image from the
observed noisy image by exploiting the inherently spatial
correlations [5]–[12]. The image denoising methods are
generally divided into three categories including (i) internal
denoising methods (e.g., BM3D [5], K-SVD [11], NCSR [12]):
using only the noisy image patches from a single noisy image;
(ii) external denoising methods (e.g., SSDA [13], SDAE [14]):
training the mapping from noisy images to clean images using
only external clean image patches; and (iii) internal-external
denoising methods (e.g. SCLW [15], NSCDL [16]): jointly
using the external statistics information from a clean training
image set and the internal statistics information from the
observed noisy image. To the best of our knowledge, among
these methods, BM3D [10] is considered to be the current state
of the art in the image denoising area over the past several
years. BM3D combines two classical techniques, non-local
similarity and domain transformation. However, BM3D is
a complex engineering method and has many tunable
parameters, such as the choices of bases, patch-size,
transformation thresholds, and similarity measures.

In recent years, machine learning techniques based on
domain transformation have gained popularity and success in
terms of a good denoising performance [11], [12], [14]–[16].
For example, K-SVD [11] is one of the most well-known
and effective denoising methods that apply machine learning
techniques. This method assumes that a clear image patch can
be represented as a sparse linear combination of the atoms
from an over-complete dictionary. Hence, the K-SVD method
denoises a noisy image by approximating the noisy patch using
a sparse linear combination of atoms, which is formulated as
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minimizing the following objective function:

argMin
D,αi

∑

i

{‖Dαi − Xi‖2 + ‖αi ‖1}, (2)

where D is an over-complete dictionary and each column
therein corresponds to an atom, and αi is the sparse coding
coefficient combination of all atoms for reconstructing the
clean image patch from the noisy image patch Xi under the
convex sparse priori regularization constraint ‖.‖1.

However, the above dictionary D is not easy to
learn, and the corresponding denoising model uses a
1D vector, rather than the original 2D matrix to rep-
resent each image patch. Additionally, regarding the
K-SVD basis, several effective, adaptive denoising methods,
such as [11], [12], and [17]–[19] were also proposed in the
theme of converting image patches into 1D vectors and clus-
tering noisy image patches into regions with similar geometric
structures. Taking the NCSR algorithm [12] as a classical
example, it unifies both priors in image local sparsity and non-
local similarity via a clustering-based sparse representation.
The NCSR algorithm incorporates considerable prior informa-
tion to improve the denoising performance through introducing
sparse coding noise, (i.e., the third regularization term of the
following model, which is an extension of the model in Eq.(2))
as follows:

argMin
D,αi

∑

i

{‖Dαi − Xi‖2 + λ‖ai‖1 + γ ‖αi − βi‖}, (3)

where βi is a good estimation of the sparse codes αi , and
λ and γ are the balance factors of two regularization terms
(i.e., the convex sparse regularization term and sparse coding
noise term).

In the NCSR model, while enforcing the sparsity of coding
coefficients, the sparse codes αi ’s are also centralized to attain
a good estimations βi ’s. Dictionary D is acquired by adopting
an adaptive sparse domain selection strategy, which executes
K-Means clustering and then learns a PCA sub-dictionary for
each cluster. Nevertheless, this strategy still needs to convert
the noisy image patches into 1D vectors, so good estimations
βi ’s are difficult to obtain.

To summarize, almost all patch-based and sparse
coding-driven image denoising methods convert raw,
2D matrix representations of image patches into 1D vectors
for further processing, and thereby break down the inherent
2D geometric structure of the natural images. Moreover, the
learned dictionary and sparse coding representations cannot
capture the intrinsic position correlations between the pixels
within each image patch. On the one hand, to preserve the
2D geometric structure of image patches in the transformation
domain, a bilinear transformation is particularly appropriate
(for image patches in the matrix representation) for extracting
the semantic features of the rows and columns from the
image matrixes [20], which is similar to 2DPCA [21] on
two directions or can also be viewed as a special case of
some existing tensor feature extraction methods such as
TDCS [22], STDCS [23] and HOSVD [24]. On the other
hand, we assume that image patches sampled from a denoised
image lie on an intrinsic smooth manifold. However, the

noisy image patches almost never exactly lie on the same
manifold due to noise. A related work [26] shows that the
manifold smoothing is a usual trick for effectively removing
the noise. The weighted neighborhood graph, constructed
from image patches, can approximate the intrinsic manifold
structure. The graph Laplacian operator is the generator
of the smoothing process on the neighborhood graph [25].
Therefore, the recent promising graph Laplacian operator,
in [26]–[29] and [31], for approximating the manifold
structure is leveraged as a generic smooth regularizer while
removing the noise of 2D image patches based on the sparse
coding model.

With the above considerations, we propose a Dictionary Pair
Learning model (DPL model) for image denoising. In the DPL
model, the dictionary pair is used to capture the semantic
features of 2D image patches, and the graph Laplacian
operator guarantees a disciplined smoothing according to the
image patch geometric distribution in the 2D sparse coding
space. However, we will face the NP-hardness of directly
solving the dictionary pair and the 2D sparse coding matrixes
for image denoising. In the NCSR model, the vectorized
image patches are clustered into K subsets by K-means, and
then one compact PCA sub-dictionary for each cluster is used.
So, in our DPL model, 2D image patches can, of course,
be clustered into some subsets with nonlocal similarities.
The 2D patches in a subset are very similar to each other.
Obviously, one needs only to extend the PCA sub-dictionary
to a 2DPCA sub-dictionary for each cluster. However, the
2D image patches sampled from the noisy image with a
multi-resolution and sliding window in our DPL model are
of a high quantity and have a non-linear distribution, such
that clustering faces a serious computational challenge.
Fortunately, the literature [30] proposed a Subspace Indexing
Model on Grassmann Manifold (SIM-GM) that can
top-to-bottom partition the non-linear space into local
subspaces with a hierarchical tree structure. Mathematically,
a Grassmann manifold is the set of all linear subspaces with a
fixed dimension [32], [33], and so an extracted PCA subspace
in each leaf node of the SIM-GM model corresponds to
a point on a Grassmann manifold. To obtaining the most
effective local space, introducing the Grassmann manifold
distances (i.e., the angles between linear subspaces [34]),
the SIM-GM is able to automatically manipulate the leaf
nodes in the data partition tree and build the most effective
local subspace by using a bottom-up merging strategy.
Thus, by extending the kind of PCA subspace partitioning
on a Grassmann manifold to a 2DPCA subspace pair
partitioning on two Grassmann manifolds, we propose a
Dictionary Pair Learning algorithm on Grassmann-manifolds
(DPLG algorithm in shorthand). Experimental results on
benchmark images and Berkeley segmentation datasets show
that the proposed DPLG algorithm is more competitive
than the state-of-the-art image denoising methods including
the internal denoising methods and the external denoising
methods.

The rest of this paper is organized as follows: In Section II,
we build a novel dictionary pair learning model for
2D image denoising. Section III first analyzes the learning
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methods of the dictionary pair and sparse coding matrixes,
and then summarizes the dictionary pair learning algorithm
on Grassmann-manifolds for image denoising. In Section IV,
a series of experimental results are shown, and we present the
concluding remarks and future work in Section V.

II. DICTIONARY PAIR LEARNING MODEL

According to the above discussion and analysis, to preserve
the original 2D geometric structure and to construct a sparse
coding model for image denoising, the 2D noisy image patches
are encoded by projections on a dictionary pair that correspond
to left multiplying a matrix and right multiplying a matrix.
Then by exploiting sparse coding and graph Laplacian operator
smoothing to remove noises, we design a Dictionary Pair
Learning model (DPL model) for image denoising in this
section.

A. Dictionary Pair Learning Model for 2D Sparse Coding

To preserve the 2D geometrical structure with sparse sensing
in the transformation domain, we need only to find two linear
transformations for simultaneously mapping the columns and
rows of image patches under the sparse constraint. Let the
image patches set be {X1, X2, . . . , Xi , . . . , Xn}, Xi ∈ �M×N ;
our method computes the left and right 2D linear transforma-
tions to map the image patches into the 2D sparse matrix
space. Thus, the corresponding objective function may be
defined as follows:

argMin
A,B,S

∑

i

{‖AT Xi B − Si‖F + λ‖Si‖F,1}, (4)

where A ∈ �M×M1 and B ∈ �N×N1 are respectively called
the left coding dictionary and the right coding dictionary,
S = {Si }, Si ∈ �M1×N1 is the sparse coefficient matrix,
λ is the regularization parameter, ‖.‖F denotes the matrix
Frobenious norm, and ‖.‖F,1 denotes the matrix L1-norm
which is defined as the sum of the absolute values of all its
entries.

In this paper, the left and right coding dictionaries are
combined and called as the dictionary pair 〈A, B〉. Once the
dictionary pair and the sparse representations are learned,
especially, the left and right dictionaries constrained by
block orthogonality, each patch Xi can be reconstructed by
multiplying the selected sub-dictionary pair 〈Aki , Bki 〉 with
its sparse representation, that is:

Xi ≈ Aki Si BT
ki , (5)

where the orthogonal sub-dictionaries Aki , Bki are selected to
code the image patch Xi , and ki is the index of the selected
sub-dictionary pair. Note that the selection method of the
ki − th dictionary pair is described in Section III-B.

B. Graph Laplacian Operator Smoothing

Nonlocal smoothing and co-sparsity are the prevailing tech-
niques for removing noises. Clearly, a natural assumption is
that the coding matrixes of similar patches should be similar.
If similar image patches are encoded only on a sub-dictionary

pair of the learned dictionary pair, then, exploiting the graph
Laplacian as a smoothing operator, both smoothing and
co-sparsity can be simultaneously guaranteed while mini-
mizing a penalty term on the weighted L1-norm divergence
between the coding matrix of a given image patch and
those coding matrixes of its nonlocal neighborhood patches,
as in:

∑

i, j

wi j ‖Si − Sj ‖F,1, (6)

where wi j is the similarity between the i − th patch and its
j − th neighbor.

According to our previous research in manifold learning,
a patch similarity metric is selected to apply the generalized
Gaussian kernel function in literature [31]:

wi j =

⎧
⎪⎪⎨

⎪⎪⎩

1

�
ex p

(− (‖Xi − X j‖F/2σi
)τ )

i f X j i s k − nearest neighbors o f Xi ,

0, otherwi se.

(7)

where � is the normalization factor, σi is the variance
of neighborhood distribution and τ is the generalization
Gaussian exponent. In this paper, the neighborhood similarity
is assumed to obey the super-Gaussian distribution:

wi j = 1

�
ex p

(
−

(
‖Xi − X j‖F,1/

√
2σi

))
. (8)

C. The Final Objective Function

Combining the sparse coding term in Eq. (4) and the
smoothing term in Eq. (6), the final objective function of the
DPL model is defined as follows:⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argMin
A,B,S

∑
i
{‖AT Xi B − Si‖F + λ

∑

i

‖Si‖F,1

+γ
∑

i, j

wi j ‖Si − Sj‖F,1},

S.t .

⎧
⎨

⎩

(1)
∑

j

wi j = 1

(2) AT
k Ak = I, BT

k Bk = I, k = 1, . . . , K

(9)

where ‖.‖F,1 denotes the matrix L1-norm which is defined
as the sum of the absolute values of all matrix elements, and
A and B are constrained to be block orthogonal matrices in
the following learning algorithm.

The above Eq. (9) is an accurate description of the
Dictionary Pair Learning model (DPL model), and Fig. 1
shows an illustration of the DPL model. In the DPL model,
two similar 2D image patches, Xi and X j , extracted from
the given noisy image are encoded on two dictionaries
(i.e., the left dictionary A and the right dictionary B),
which are respectively consisted of sub-dictionary sets
A = {A1, . . . , Ak, . . . , AK } and B = {B1, . . . , Bk, . . . , BK }
for computational simplicity, as analyzed in Section III-A. The
left coding dictionary A is used to extract the features of the
column vectors from the image patches, and the right coding
dictionary B is used to extract the features of the row vectors
from the image patches. For sparse response characteristics,
the two learned dictionaries are usually required to be
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Fig. 1. Similar image patches encoded by the dictionary pair 〈A, B〉.

redundant such that they can represent the various local
structures of 2D images. Unlike traditional sparse coding,
the sparse coding of each image patch in our DPL model is
a 2D sparse matrix. For sparsely coding each 2D image patch,
a simple method is finding the most appropriate sub-dictionary
pair from the learned dictionary pair 〈A, B〉 to carry out
compact coding on it while constraining the zero coding
coefficients on those un-selected sub-dictionary pairs. This
method can ensure the attainment of a global sparse coding
representation. As for the third term in Eq. (9), corresponding
to the right of Fig. 1, it is expected to help realize as close and
co-sparse as possible between the 2D sparse representations
of nonlocal similar image patches (that is, the constraints
of smoothing and nonlocal co-sparsity). Thus, the 2D sparse
coding matrices with corresponding to nonlocal similar
image patches are regularized under the manifold smoothing
assumption with a L1-norm metric.

III. DICTIONARY PAIR LEARNING ALGORITHM

ON GRASSMANN-MANIFOLD

In the DPL model (i.e., Eq. (9)), the dictionary pair 〈A, B〉
and the sparse coding matrixes Si are all unknown, and their
simultaneous solution is a NP problem. Therefore, our learning
strategy is to decompose the problem into three subtasks:
(1) learning the dictionary pair 〈A, B〉 from 2D noisy image
patches by eigen-decomposition, as shown in Section III-A;
(2) fixing the dictionary pair 〈A, B〉, and then updating the
2D sparse coding matrixes with smoothing, as shown
in Section III-B; and (3) reconstructing the denoised image
as shown in Section III-C. Thus, the so-called Dictionary
Pair Learning algorithm on Grassmann-manifold (DPLG) is
analyzed and summarized as follows.

A. Learning the Dictionary Pair

For solving Eq. (9), one important issue centers on how
to learn the dictionary pair 〈A, B〉 for sparsely and smoothly
coding the 2D image patches. Due to the difficulty and
instability in the learned dictionary by directly optimizing
the sparse coding model, the dictionaries can also be directly
selected in conventional sparsity-based coding models
(i.e., analytically designed dictionaries). Thus, we design the
2DPCA subspace pair partition on two Grassmann manifolds
to implement the clustering-based sub-dictionary pair learning.

Two sub-dictionaries for each cluster are computed, corre-
sponding to decomposing the covariance matrix and its trans-
posed matrix from 2D image patches (i.e., the sub-dictionary
pair). All such sub-dictionary pairs construct two large
over-complete dictionaries to characterize all the possible
local structures of a given observed image. It is assumed that
the k−th subset is extracted to obtain the k−th sub-dictionary
pair 〈Ak, Bk〉, where k = 1, . . . , K . Then, in the dictionary
pair 〈A, B〉 = {〈Ak, Bk〉}K

k=1, the left dictionary A = {A1, . . . ,
Ak, . . . , AK } is viewed as a point set on a Grassmann
manifold, and the right dictionary B = {B1, . . . , Bk, . . . , BK }
is also viewed as a point set on other Grassmann manifold
because a Grassmann manifold is the set of all linear subspaces
with the fixed dimension [32]. In this paper, obtaining the
dictionary pair 〈A, B〉 includes two basic stages: the initial
dictionary pair 〈A, B〉 is obtained by the following Top-bottom
2D Subspace Partition (TTSP algorithm); next the refined
dictionary pair 〈A, B〉 is obtained by the Sub-dictionary
Merging algorithm (SM algorithm).

1) Obtaining the Initial Dictionary Pair by TTSP Algorithm:
For overcoming the difficulty in directly learning the effective
dictionary pair 〈A, B〉 under the nonlinear distribution
characteristic of all of the 2D image patches, the entire training
image patch set is divided into non-overlapping subsets with
linear structures suited to the classical linear method, such
as 2DPCA, and the sub-dictionary pair on each subset are
easily learned by the eigen-decompositions of two covariance
matrixes.1 The literature [30] constructed a kind of data
partition tree for subspace indexing based on the global PCA,
but it is not suitable for our 2D subspace partition for
learning the dictionary pair 〈A, B〉. We propose a Top-bottom
2D Subspace Partition algorithm (TTSP algorithm)
for obtaining the initial dictionary pair 〈A, B〉. The
TTSP algorithm recursively generates a binary tree, and
each leaf node is used in learning a sub-dictionary pair by
using an extended 2DPCA technique. The detailed steps of
the TTSP algorithm are described in Algorithm 1.

2) Merging Sub-Dictionary Pairs by SM Algorithm: In the
TTSP algorithm, each leaf node corresponds to two subspaces,
namely, the left sub-dictionary and right sub-dictionary, called
a sub-dictionary pair. However, as the number of levels in
the partition increases, the number of training image patches
in each leaf node decreases. Leaf nodes may not be the
most effective local space for describing the image nonlocal
similarity and local distribution because each leaf node may
contain an insufficient number of samples. One reasonable
method is to merge the leaf nodes that span almost the
same left sub-dictionaries, and almost the same right
sub-dictionaries. Because a Grassmann manifold is the set of
all linear subspaces with a fixed dimension and any two points
on a Grassmann manifold correspond to two subspaces.
Therefore, to merge the very similar leaf nodes, we assume
that all left sub-dictionaries from all leaf nodes lie on
one Grassmann manifold and that all right sub-

1Two non-symmetrical covariance matrixes [21] of a matrix dataset
{X1, X2, . . . , XL }, Lcov = 1

L
∑L

i=1(Xi − Ck)(Xi − Ck)T and Rcov =
1
L

∑L
i=1(Xi − Ck)T (Xi − Ck) where Ck = 1

L
∑L

i=1 Xi .
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Algorithm 1 (TTSP Algorithm) Top-Bottom 2D Subspace
Partition

dictionaries from all leaf nodes lie on the other Grassmann
manifold.

The angles between linear subspaces have intuitively
become a reasonable measure for describing the divergence
between subspaces on a Grassmann manifold [32]. Thus,
for computational convenience, the similarity metric between
two subspaces is typically defined by taking the cosines
of the principal angles. Taking the left sub-dictionaries for
example, the cosines of the principal angles are defined as
follows:

Definition 1: Let A1 and A2 be two m-dimensional
subspaces corresponding to the two left sub-dictionaries.
The cosine of the t − th principal angle between the

Fig. 2. Principal angles between sub-dictionaries.

two subspaces span(A1) and span(A2) is defined by:
⎧
⎪⎪⎨

⎪⎪⎩

cos(θt ) = Max
ut∈span(A1)

{ Max
vt∈span(A2)

uT
t vt }

S.t .

{
uT

t ut = vT
t vt = 1

uT
t ur = vT

t vr = 0, (t 	= r),

(10)

where 0 ≤ θt ≤ π/2, t, r = 1, . . . , m, and ut and vt are the
basis vectors from two subspaces, respectively.

In Eq. (10), the first principal angle θ1 is the smallest angle
among those between all pairs (each corresponds to two unit
basis vectors), which are respectively from the two subspaces.
The rest of the principal angles can be obtained by other basis
vectors in each subspace, as shown in Fig. 2. The smaller
the principal angles are, the more similar the two subspaces
are (i.e., the closer they are on the Grassmann manifold).
In fact, the cosines of all principal angles can be computed by
a more numerically stable method, the Singular Value Decom-
position (SVD) [34] solution, as described in Theorem 1, for
which we provide a simple proof in Appendix A.

Let A1 and A2 be two m-dimensional column-orthogonal
matrixes that respectively consist of orthogonal bases from
two left sub-dictionaries. Then, the cosines of all principal
angles between the two subspaces (i.e., the two sub-
dictionaries) are computed by the following SVD equation:

Theorem 1: If A1 and A2 are two m-dimensional
subspaces, then

AT
1 A2 = U�V T , (11)

where the diagonal matrix � = diag(cos θ1, . . . , cosθm),
UU T = Im and V V T = Im.

In the following subspace merging algorithm, the similarity
Sim(A1, A2) between the two subspaces A1 and A2 is defined
as the average of all principal angle cosine values:

Sim(A1, A2) = 1

m

m∑

l=1

cos θl . (12)

Therefore, the larger Sim(Ai , A j ) are, the more similar the
two subspaces are (i.e., the closer they are on the Grassmann
manifold). Those almost same subspaces should be merge into
a single subspace. On the other hand, the same situation should
be considered for the right sub-dictionaries Bi , i = 1, . . . , K .
The similarity metric between the right sub-dictionaries is
defined in the same manner as the above method. Therefore,
simultaneously taking the left sub-dictionaries and the right
sub-dictionaries into account, our Sub-dictionary Merging
algorithm (SM algorithm) is described in Algorithm 2.
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Algorithm 2 (SM Algorithm) Sub-Dictionary Merging
Algorithm

B. Updating Sparse Coding Matrixes

Section III-A describes a method to rapidly learn the
dictionary pair 〈A, B〉, where A = {A1, . . . , Ak, . . . , AK },
B = {B1, . . . , Bk, . . . , BK }. For sparsely coding each
2D noisy image patch and deleting noise, we need only
to find the most appropriate sub-dictionary pair 〈Aki , Bki 〉
from the learned dictionary pair 〈A, B〉 to represent the
patch, and denoise the image patch by smoothing the sparse
representation.

For the i − th noisy image patch, we assume that the most
appropriate sub-dictionary pair 〈Aki , Bki 〉 is used to encode it
and that the other sub-dictionary pairs are constrained to pro-
viding zero coefficient coding. According to the nearest center,
the most appropriate sub-dictionary pair for the i − th noisy
image patch Xi can be selected by the smallest L1 − norm
coding, that is:

ki = argMin
k

{‖AT
k (Xi − Ck)Bk‖F,1}, k = 1, . . . , K, (13)

where K is the total number of sub-dictionary pairs,
Ck denotes the center of the k − th leaf node, and ‖.‖F,1
denotes the matrix L1 − norm, which is defined as the sum
of the absolute values of all matrix elements.

For obtaining sparse representations, we assume that any
noisy image patch is only encoded by one sub-dictionary pair
and that the coding coefficients on the other sub-dictionary
pairs are constrained to zero. Therefore, for any noisy image
patch Xi , we can simplify Eq. (9) to obtain the following
objective function definition:

Definition 2: For image patch Xi , let the selected near-
est sub-dictionary pair be 〈Aki , Bki 〉 in Eq. (13). Then, the
smoothing sparse coding is computed by the following
formula:
⎧
⎪⎪⎨

⎪⎪⎩

argMin
Si

{‖AT
ki Xi Bki −Si‖F + γ

∑

j

wi j ‖Si −Sj‖F,1},

S.t .
∑

j

wi j = 1
(14)

where Sj is the sparse coding matrix of the j − th nearest
image patch on the sub-dictionary pair 〈Aki , Bki 〉, wi j is

the non-local neighborhood similarity, and γ is the balance
factor.

As for the balance factor γ, when the two terms of Eq. (14)
are simultaneously optimized, we can reach the following
conclusion (the proof is shown in Appendix B).

Theorem 2: If Xi is the corrupted image patch by noise
N(0, σ ), and the non-local similarity obeys to the Laplacian
distribution with the parameter σi , then the balance factor
γ = σ 2√

2σi
.

Clearly, the objective function of Si in Eq. (14) is convex
and can be efficiently solved. The first term is to minimize the
reconstruction error on the sub-dictionary pair 〈Aki , Bki 〉, and
the second term is to ensure the smoothing and co-sparsity
in coefficient matrix space. We initialize the coding matrix
Si and Sj by the projections of the image patch Xi and its
neighbors X j on the selected sub-dictionary pair 〈Aki , Bki 〉,
that is:

Si (t) = AT
ki Xi Bki , (15)

Sj (t) = AT
ki X j Bki , j = 1, .., k1, (16)

where image patch X j is one of the k1-nearest neighbors of
image patch Xi .

Additionally, for computational convenience, we can
reformat and relax Eq. (14) into the following objection
function:
⎧
⎪⎪⎨

⎪⎪⎩

argMin
Si

{‖AT
ki Xi Bki −Si‖F + γ‖Si −

∑

j

wi j S j ‖F,1}

S.t .
∑

j

wi j = 1.
(17)

According to the literature [35], a threshold-shrinkage
algorithm is adopted to solve the Eq. (17) (i.e., using the
gradient descent method and the threshold-shrinkage strategy).
Therefore, the sparse coding matrix Si on the sub-dictionary
pair 〈Aki , Bki 〉 is updated by the following formula:
⎧
⎨

⎩

Si (t + 1) = f (Si (t) −
∑

j

wi j S j (t), ηγ) +
∑

j

wi j S j (t)

S.t . ‖Xi − Aki Si BT
ki‖F < cNσ 2,

(18)

where σ is the noise variance, N is the number of image
patch pixels, η is the gradient decent step, c is a scaling factor,
which is empirically set 1.15, and f (., .) is the soft threshold-
shrinkage function, that is:

f (z, δ) =
{

0, i f z < δ

z − sgn(z)δ, otherwi se,
(19)

where sgn(z) is a sign function.

C. Reconstructing the Denoised Image

As a type of non-local similarity and transformation domain
approach, a given noisy image needs to be divided into many
overlapping small image patches. The corresponding denoised
image is obtained by combining all of the denoised image
patches. Let x denote a noisy image, and let the binary
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Fig. 3. The working flowchart of DPLG algorithm.

matrix Ri be used for extracting the i − th image patch at
the position i , that is:

Xi = Ri x, i = 1, 2, . . . , n, (20)

where n denotes the number of possible image patches.
If we let Si be the coding matrix, with smoothing and co-

sparsity obtained by using the sub-dictionary pair 〈Aki , Bki 〉,
then the denoised image x̃ is reconstructed by:

x̃ =
{

∑

i

(RT
i Aki Si BT

ki )

}
�

∑

i

(RT
i Ri 1), (21)

where � denotes an element-wise division and 1 denotes a
matrix of ones. That is, Eq. (21) puts all denoised patches
together as the denoised image x̃ (the overlapped pixels
between neighboring patches are averaged).

D. Summary of the DPLG Algorithm

1) The Description of the DPLG Algorithm: Summarizing
the above analysis, for adaptively learning and denoising from
a given noisy image itself, we put forward the Dictionary
Pair Learning algorithm on Grassmann-manifold (DPLG).
The DPLG algorithm allows the dictionary pair to be
updated according to the last denoised result and then
obtains better representations of the noisy patches. Thus,
the DPLG algorithm is designed as an iterative image
denoising method. Each iteration includes three basic tasks,
namely, learning the dictionary pair 〈A, B〉 from the noisy
image patches sampled from the current noisy image at a
multi-resolution, updating the 2D sparse representations for
image patches from the current noisy image, and reconstruct-
ing the denoised image, where the current noisy image is
a slight translation from the current denoised image to the
original noisy image. Fig. 3 shows the basic working flowchart

Algorithm 3 (DPLG Algorithm) Dictionary Pair Learning on
Grassmann-Manifold

of the DPLG algorithm, and the detailed procedures of the
DPLG algorithm are described in the Algorithm 3.

2) Time Complexity Analysis: Our DPLG method preserves
the original 2D structure of each image patch to un-change.
If the size of the sampled image patches is b × b, and the
sub-dictionary pair 〈Ak, Bk〉 is computed by using 2DPCA
on each image patch subset, then Ak and Bk are two b × b
orthogonal matrices. Comparatively, NCSR needs to compute
a more complex b2 × b2 orthogonal matrix as the dictionary
by using the PCA on 1D presentations of image patches. For
example, in the NCSR method, the matrix size appears to
be 64 times larger than our method when b = 8. Therefore,
for DPLG, less time complexity is required to compute the
eigenvectors.

Moreover, comparing our DPLG method with the
NCSR method, the former is to rapidly top-bottom divide each
leaf node into the left-child and right-child by the first principal
component projection on the current sub-dictionary pair
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TABLE I

TIME COMPLEXITY FOR ONE UPDATE OF TWO BASIC STEPS IN THREE

DICTIONARY LEARNING ALGORITHMS: DPLG, NCSR AND K-SVD

(i.e., the two-way partition of 1D real numbers). The latter is
to divide the whole training set (i.e., b2-dimensional vectors)
into the specified clusters by applying K-means with more
time complexity. Compared with the K-SVD method, each
atom of its single dictionary D needs to be updated by
SVD decomposition. If the number of the dictionary atoms
in K-SVD is equal to the amount of all sub-dictionary atoms
in the DPLG or NCSR, then the computational complexity of
K-SVD is the largest. However, the dictionary D of K-SVD
in real-world applications is only ever empirically set to
a smaller over-complete dictionary atom number than the
DPLG and NCSR method, so that K-SVD has a faster com-
puting speed. Additionally, in the sparse coding step, the three
internal denoising methods DPLG, NCSR and K-SVD have
slight differences in time complexity, as shown in Table I.

Without loss of generality, letting the number of clusters
equal K , the number of image patches equal n, the size
of each image patch equal b × b, the iteration of K-means
clustering equal l, the k1-nearest neighbors equal k1, the
number of dictionary atoms in K-SVD equal H , and the
max number of nonzero codes for each image patch in
K-SVD equal M , we compare the computational complexity
of the dictionary learning step and the sparse coding step in
three iterative dictionary learning methods (internal denoising
methods), namely, DPLG, NCSR and KSVD, as shown in
the Table I. Due to computing the non-local neighborhood
similarity within each cluster in our manifold smoothing
strategy, computing the Laplacian similarity only needs linear
computational time. Finally, the total time complexity of the
DPLG is less than the NCSR and K-SVD algorithms with the
same size of their dictionaries (that is, when H = K b).

IV. EXPERIMENTS

In this section, we will verify the image denoising
performance of the proposed DPLG method. We test the
performance of the DPLG method on benchmark images [38],
[39] and on 100 test images from the Berkeley Segmentation
Dataset [40]. Moreover, these experimental results of the
proposed DPLG method are compared with seven developed
state-of-the-art denoising methods, including three internal
denoising methods and four denoising methods using external
information from clean natural images.

A. Quantitative Assessment of Denoised Images

An objective image quality metric plays an important role in
image denoising applications. Currently, three classical image
quality assessment metrics are typically used: the Root mean
square error (RMSE), the Peak Signal-to-Noise Ratio (PSNR)

Fig. 4. The denoising performance of the DPLG at different k1-nearest
neighbors.

and the measure of Structural SIMilarity (SSIM) [36]. The
PSNR and RMSE are the simplest and most widely used image
quality metrics. Common knowledge holds that the smaller the
RMSE is, the better the denoising is. Equivalently, the larger
the PSNR is, the better the denoising is. Moreover, the
RMSE and PSRN have the same assessment ability, although
they are not very well matched in the perceptual visual quality
of denoised images. The third quantitative evaluation method,
the Structural SIMilarity (SSIM), focuses on the perceptual
quality metric, which compares normalized local patterns of
pixel intensities. In our experiments, the PSNR and SSIM are
used as objective assessments.

B. Experiments on Benchmark Images

To evaluate the performance of the proposed model,
we exploit the proposed DPLG algorithm for denoising
ten noisy benchmark images [38] and another difficult-to-be-
denoised noisy image (named the ‘ChangE-3’ image [39]),
which is significant. Several state-of-the-art denoising methods
with default parameters are used for comparison with the
proposed DPLG algorithm, including the internal denosing
methods BM3D [10], K-SVD [11] and NCSR [12], the
external denoising methods SSDA [13] and SDAE [14],
SCLW [15], and NSCDL [16]. As for the parameter setting of
our DPLG algorithm, the k1-nearest neighbor parameter, the
maximum depth of leaf nodes and the number of iterations
of the DPLG are empirically set to 6, 7 and 18, respectively,
from a series of tentative test. Taking the k1-nearest-neighbor
parameter as an example, we analyze the performance of our
method at the different k1-nearest-neighbor parameters, as
shown in Fig.4. Accordingly, when the size of neighbors is not
large enough (for example the k1-nearest neighbors at [6, 60]),
the performance of our DPLG method does not significantly
change. However, the DPLG can obtain the largest SSIM value
when the k1-nearest-neighbor parameter is set to 6.

1) Comparing With Internal Denoising Methods: The
20 different noisy versions of the 11 benchmark images,
that is, corresponding to 220 noisy images, are denoised
respectively by the previously mentioned four internal denois-
ing methods: DPLG, NCSR, BM3D and K-SVD. The
SSIM results of the four test methods are reported in Table II,
and the highest SSIM values are displayed in black bold. The
PSNR results are reported in Table III, and the highest PSNR
values are displayed in black bold.

It is worth noting that our DPLG method preserves the
2D geometrical structure of the image patches and thus
can significantly achieve the best visual quality, as shown



4564 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2015

TABLE II

THE SSIM VALUES BY DENOISING 11 IMAGES AT DIFFERENT NOISE VARIANCE
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TABLE III

THE PSNR VALUES BY DENOISING 11 IMAGES AT DIFFERENT NOISE VARIANCE
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Fig. 5. The average SSIM values and average PSNR values of 11 denoised
images at different noise variance σ . (a) Average SSIM values of 11 denoised
images. (b) Average PSNR values of 11 denoised images.

in columns 5-17 in Table II. From Table III, we can see
that when the noise level is not very high (seemly noise
variance σ < 30), all of the four methods can achieve very
good denoised images. When the noise level is high (seemly
noise variance 30 ≤ σ < 80), our DPLG method can obtain
basically the best denoising performance corresponding to
columns 9-13 in Table III. Moreover, Fig. 5 shows the plots
of the average PSNR and SSIM of the 11 images at different
noise corruption levels.

Regarding the structural similarity (SSIM) assessment
of restored images, our DPLG algorithm obtains the best
denoising results for 87 noisy images, the NCSR method
is best for 60 noisy images, the BM3D method is best
for 71 noisy images, and the K-SVD method is best
for 2 noisy images. Experiments show that the proposed
DPLG algorithm has the best average performance for
restoring the perceptual visual effect, as shown on the bottom
of Table II and Fig. 5 (a). Under the PSNR assessment, our
DPLG method obtains the best denoising results for 67 noisy
images, while the NCSR method is best for 31 noisy images,
the BM3D method is best for 105 noisy images, and the
K-SVD method is best for 18 noisy images. The DPLG also
has a competitive performance in reconstructing the pixel
intensity, as shown in Table II and Fig. 5 (b).

2) Comparing With External Denoising Methods: In this
experiment, we compare with several denoising methods
that exploit the statistics information of external, noise-free
natural images. Our DPLG method only exploits the internal
statistics information of the tested noisy image itself.

TABLE IV

COMPARISON OF DPLG WITH SEVERAL DENOISING METHODS

USING EXTERNAL TRAINING IMAGES

Fig. 6. (a) The PSNR values versus iterations by using DPLG, NCSR and
KSVD when σ = 50; (b) The SSIM values versus iterations by using DPLG,
NCSR and KSVD when σ = 50.

The SCLW and NSCDL denoising methods all exploit
external statistics information from a clean training image
set and the internal statistics from the observed noisy image.
The SCLW learns the dictionary from external and internal
examples, and the NSCDL learns the coupled dictionaries from
clean natural images and exploits the non-local similarity from
the test noisy images. The SSDA and SDAE adopt the same
denoising technique, (i.e., learning a denoised mapping using a
stacked Denoising Auto-encoder algorithm with sparse coding
characteristics and a deep neural network structure [37]).
Their aims are to find the mapping relations from noisy image
patches to noise-free image patches by training on a large scale
of external natural image set. Table IV shows the comparison
of the DPLG with several internal-external denoising methods
and external denoising methods, in terms of characteristics
and the denoising performance on benchmark images. Our
experiments show that the joint utilization of external and
internal examples generally outperforms either stand-alone
method, but no method is the best for all images. For
example, our DPLG can obtain the best denoising result on
the House benchmark image by using only the smoothing,
sparseness and non-local self-similarity of the noisy image.
Furthermore, our DPLG still maintains a better performance
than the two external denoising methods SSDA and SDAE.
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Fig. 7. The performance of the denoised ‘House’ image and ‘ChangE-3’
image at noise variance = 50 by using three iteration algorithms: DPLG,
NCSR and K-SVD, which are iterated 60 times. Our DPLG method achieves
the best denoised results (with corresponding to the second row, the denoised
‘House’ image, PSNR: 30.042, SSIM: 0.81602, and the denoised ‘ChangE-3’
image, PSNR: 24.2365, SSIM: 0.67538) of the several methods.

3) Comparing With Iteration Denoising Methods: Our
DPLG method is an iterative method that allows the dictionary
pair to be updated using the last denoised result and then
obtains better 2D representations of the noisy patches from
the noisy image. Fig. 6 and Fig. 7 show the denoising
results of two typical noisy images (“House” and “ChangE-3”)
with strong noise corruption (noise variance = 50) after
60 iterations. The experimental results empirically demonstrate
the convergence of the DPLG, as shown in Fig. 6. As the
number of iterations increases, the denoised results get better.
Fig. 6(a)-(b) display the plots of their PSNR values and SSIM
values versus iterations, respectively. Comparing with two
known iterative methods: K-SVD and NCSR, Fig.6 shows

Fig. 8. The distribution of the SSIM and PSNR values of denoising 100 noisy
images corrupted by different noises by using NCSR, BM3D, KSVD and our
DPLG algorithm. (a) The distribution of SSIM values. (b) The distribution of
PSNR values.

that our DPLG has a more rapidly increasing speed of
PSNR and SSIM versus the iterations. It shows that our
algorithm can achieve the best denoising performance among
several iterative methods. The DPLG has competitive perfor-
mance for reconstructing the smooth, the texture and the edge
regions, as shown in the second row of Fig. 7.

C. Experiments on BSD Test Images

To further demonstrate the performance of the proposed
DPLG method, the image denoising experiments were also
conducted on 100 test images from the public benchmark
Berkeley Segmentation Dataset [40]. Aiming at 10 different
noisy versions of these images, that is, corresponding to a
total of 1000 noisy images, the comparison experiments were
completed by respectively running the NCSR, BM3D, K-SVD
and our DPLG method. In the experiments, the parameter set-
tings for the DPLG are the same as in the above experiments.
Under the different Gaussian noise corruption, the average
PSNR and SSIM values of 100 noisy images are shown
in Fig. 8. Our DPLG method can achieve the best total per-
formance for restoring the perceptual visual effect, as shown
in the distribution of the SSIM values of 100 denoised images
by four methods in Fig. 8(a), and has competitive performance
for reconstructing pixel intensity, as shown in the distribution
of the PSNR values of 100 denoised images in Fig. 8(b).
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V. CONCLUSION

In this paper, we proposed a DPLG algorithm which is a
novel 2D image denoising method working on Grassmann
manifolds and leading to state-of-the-art performance. The
DPLG algorithm has three primary advantages: 1) the adaptive
dictionary pairs are rapidly learned via subspace partitioning
and sub-dictionary pair merging on the Grassmann manifolds;
2) 2D sparse representations are notably easy to obtain;
and 3) a graph Laplacian operator makes 2D sparse code
representations vary smoothly for denoising. Moreover,
extensive experimental results achieved on the benchmark
images and the Berkeley segmentation datasets demonstrated
that our DPLG algorithm can obtain better-than-average
performance for restoring the perceptual visual effect than
the state-of-the-art internal denoising methods. In the future,
we would consider several potential problems, such as learning
3D multiple dictionaries for video denoising and exploring
the fusion of manifold denoising and multi-dimensional
sparse coding techniques.

APPENDIX A
THE PROOF OF THEOREM 1 IN SECTION III-A

We give a simple proof of Theorem 1.
Proof: ∵ A1 and A2 are two D ×m-dimensional column-

orthogonal matrixes.
∴ AT

1 A2 is a m-dimensional matrix.
According to the SVD decomposition of the matrix AT

1 A2,
if λ1, λ2, . . . , λm are m eigen-values from the largest to the
smallest, and U, V are two m-dimensional orthogonal matrixes
corresponding to the eigen-values λ1, λ2, . . . , λm , then

U T AT
1 A2V = diag(λ1, λ2, . . . , λm)

And ∵ V is a m × m orthogonal matrix.
∴ A2V is a rotation transformation of subspace A2 by the

rotation matrix V , that is:

span(A2) = span(A2V )

Similarly, the same equation span(A1) = span(A1U).
Let uk and vk of Eq.(11) respectively be the k − th column

of matrixes A1 and A2, that is:

[u1, u2, . . . , uk, . . . , um] = A1U
[v1, v2, . . . , vk , . . . , vm ] = A2V

then,

diag(cos θ1, . . . , cos θk, . . . , cos θm)

= [u1, u2, . . . , uk, . . . , um ]T [v1, v2, . . . , vk, . . . , vm ]
= U T AT

1 A2V
= diag(λ1, λ2, . . . , λm).

�
APPENDIX B

THE PROOF OF THEOREM 2 IN SECTION III-B
Proof: Considering the first term of Eq. (14).

∵ Xi is the corrupted image patch by noise N(0, σ ), and
Si is the code of the corresponding clear patch.

And

∵ E
(
‖AT

ki Xi Bki − Si‖
)

= E
(
‖AT

ki

(
Xi − Aki Si BT

ki

)
Bki‖F

)

According to Eq.(18), Aki Si BT
ki is the reconstruction of the

clear image patch, {Aki , Bki } are the orthogonal dictionary
pair.

∴ E
(‖AT

ki Xi Bki − Si‖
) = σ 2

As for the second term of Eq. (14). According to that the
F1-norm ‖Si − Sj ‖F,1 obeys to the Laplacain distribution
in Eq. (6)

∴ E(γ
∑

j

wi j ‖Si − Sj‖F,1) = γ E(
∑

j

wi j E(‖Si − Sj ‖F,1))

= γ E(
∑

j

wi j
√

2σi )

= γ E(
√

2σi

∑

j

wi j )

= γ E(
√

2σi ), (∵
∑

j

wi j = 1)

= γ
√

2σi

For preserving the scaling consistency, the ratio of two terms
should be equal to 1.

∴ σ 2

γ
√

2σi
= 1 ⇔ γ =

√
2σi
σ 2 . �
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