Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2015

Dictionary Pair Learning on Grassmann Manifolds
for Image Denoising

Xianhua ZENG

Chonggqing University of Posts and Telecommunications

Wei BIAN
University of Technology, Sydney

Wei LIU
Xidian University

Jialie SHEN
Singapore Management University, jlshen@smu.edu.sg

Dacheng TAO
University of Technology, Sydney

DOI: https://doi.org/10.1109/TIP.2015.2468172

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, Graphics and Human Computer

Interfaces Commons, and the Theory and Algorithms Commons

Citation

ZENG, Xianhua; BIAN, Wei; LIU, Wei; SHEN, Jialie; and TAO, Dacheng. Dictionary Pair Learning on Grassmann Manifolds for
Image Denoising. (2015). IEEE Transactions on Image Processing. 24, (11), 4556-4569. Research Collection School Of Information
Systems.

Available at: https://ink.library.smu.edu.sg/sis_research/316S

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of

Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TIP.2015.2468172
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Published in IEEE Transactions on Image Processing, Nov. 2015, Volume: 24, Issue: 11, pp. 4556 - 4569.

http://doi.org/10.1109/T1P.2015.2468172

Dictionary Pair Learning on Grassmann Manifolds
for Image Denoising

Xianhua Zeng, Wei Bian, Member, IEEE, Wei Liu, Member, IEEE, Jialie Shen, and Dacheng Tao, Fellow, IEEE

Abstract—Image denoising is a fundamental problem in
computer vision and image processing that holds considerable
practical importance for real-world applications. The traditional
patch-based and sparse coding-driven image denoising methods
convert 2D image patches into 1D vectors for further processing.
Thus, these methods inevitably break down the inherent
2D geometric structure of natural images. To overcome this
limitation pertaining to the previous image denoising methods,
we propose a 2D image denoising model, namely, the dictionary
pair learning (DPL) model, and we design a corresponding
algorithm called the DPL on the Grassmann-manifold (DPLG)
algorithm. The DPLG algorithm first learns an initial dictionary
pair (i.e., the left and right dictionaries) by employing a subspace
partition technique on the Grassmann manifold, wherein the
refined dictionary pair is obtained through a sub-dictionary
pair merging. The DPLG obtains a sparse representation by
encoding each image patch only with the selected sub-dictionary
pair. The non-zero elements of the sparse representation are
further smoothed by the graph Laplacian operator to remove
the noise. Consequently, the DPLG algorithm not only preserves
the inherent 2D geometric structure of natural images but also
performs manifold smoothing in the 2D sparse coding space.
We demonstrate that the DPLG algorithm also improves the
structural SIMilarity values of the perceptual visual quality
for denoised images using the experimental evaluations on
the benchmark images and Berkeley segmentation data sets.
Moreover, the DPLG also produces the competitive peak
signal-to-noise ratio values from popular image denoising
algorithms.

Index Terms—Image denoising, dictionary pair, 2D sparse
coding, Grassmann manifold, smoothing, graph Laplacian
operator.

Manuscript received December 2, 2014; revised May 18, 2015 and
July 3, 2015; accepted August 4, 2015. Date of publication August 13, 2015;
date of current version August 31, 2015. This work was supported in part by
the National Natural Science Foundation of China under Grant 61075019 and
Grant 61379114, in part by the State Key Program of National Natural Science
Foundation of China under Grant U1401252, in part by the Chongqing Natural
Science Foundation under Grant cstc2015jcyjA40036, and in part by the
Australian Research Council under Project FT-130101457,
Project DP-140102164, and Project LP-140100569. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Nilanjan Ray.

X. Zeng is with the Chongqing Key Laboratory of Computational
Intelligence, College of Computer Science and Technology, Chongqing Uni-
versity of Posts and Telecommunications, Chongqing 400065, China (e-mail:
xianhuazeng @ gmail.com).

W. Bian and D. Tao are with the Centre for Quantum Computation
and Intelligent Systems, and the Faculty of Engineering and Information
Technology, University of Technology, Sydney, 81 Broadway Street, Ultimo,
NSW 2007, Australia (e-mail: wei.bian, dacheng.tao@uts.edu.au).

W. Liu is with the School of Electronic Engineering, Xidian University,
Xi’an 710071, China (e-mail: wliu.cu@gmail.com).

J. Shen is with the School of Information Systems, Singapore Management
University, Singapore 178902 (e-mail: jlshen@smu.edu.sg).

I. INTRODUCTION

N IMAGE is usually corrupted by noise during the

processes of being captured, recorded and transmitted.
One general assumption is that an observed noisy image x is
generated by adding a Gaussian noise corruption to the original
clear image y, that is,

x=y+o, ey

where v is the additive white Gaussian noise with a mean of
zero and a standard deviation o.

Image denoising plays an important role in the fields
of computer vision [1], [2] and image processing [3], [4].
Its goal is to restore the original clear image y from the
observed noisy image x, which amounts to finding an inverse
transformation from the noisy image to the original clear
image. Over the past decades, many denoising methods have
been proposed for reconstructing the original image from the
observed noisy image by exploiting the inherently spatial
correlations [5]-[12]. The image denoising methods are
generally divided into three categories including (i) internal
denoising methods (e.g., BM3D [5], K-SVD [11], NCSR [12]):
using only the noisy image patches from a single noisy image;
(ii) external denoising methods (e.g., SSDA [13], SDAE [14]):
training the mapping from noisy images to clean images using
only external clean image patches; and (iii) internal-external
denoising methods (e.g. SCLW [15], NSCDL [16]): jointly
using the external statistics information from a clean training
image set and the internal statistics information from the
observed noisy image. To the best of our knowledge, among
these methods, BM3D [10] is considered to be the current state
of the art in the image denoising area over the past several
years. BM3D combines two classical techniques, non-local
similarity and domain transformation. However, BM3D is
a complex engineering method and has many tunable
parameters, such as the choices of bases, patch-size,
transformation thresholds, and similarity measures.

In recent years, machine learning techniques based on
domain transformation have gained popularity and success in
terms of a good denoising performance [11], [12], [14]-[16].
For example, K-SVD [11] is one of the most well-known
and effective denoising methods that apply machine learning
techniques. This method assumes that a clear image patch can
be represented as a sparse linear combination of the atoms
from an over-complete dictionary. Hence, the K-SVD method
denoises a noisy image by approximating the noisy patch using
a sparse linear combination of atoms, which is formulated as

minimizing the following objective function:

argMin »_{I|Da; — Xi||* + llai |11},)
D,a; .
Ehad] i

where D is an over-complete dictionary and each column
therein corresponds to an atom, and a; is the sparse coding
coefficient combination of all atoms for reconstructing the
clean image patch from the noisy image patch X; under the
convex sparse priori regularization constraint ||.|.

However, the above dictionary D 1is not easy to
learn, and the corresponding denoising model uses a
1D vector, rather than the original 2D matrix to rep-
resent each image patch. Additionally, regarding the
K-SVD basis, several effective, adaptive denoising methods,
such as [11], [12], and [17]-[19] were also proposed in the
theme of converting image patches into 1D vectors and clus-
tering noisy image patches into regions with similar geometric
structures. Taking the NCSR algorithm [12] as a classical
example, it unifies both priors in image local sparsity and non-
local similarity via a clustering-based sparse representation.
The NCSR algorithm incorporates considerable prior informa-
tion to improve the denoising performance through introducing
sparse coding noise, (i.e., the third regularization term of the
following model, which is an extension of the model in Eq.(2))
as follows:

argMin D {IIDa; — Xil* + Allailli + 7l — Bill}, (3)
D,a; i

where f; is a good estimation of the sparse codes a;, and
A and y are the balance factors of two regularization terms
(i.e., the convex sparse regularization term and sparse coding
noise term).

In the NCSR model, while enforcing the sparsity of coding
coefficients, the sparse codes a;’s are also centralized to attain
a good estimations f;’s. Dictionary D is acquired by adopting
an adaptive sparse domain selection strategy, which executes
K-Means clustering and then learns a PCA sub-dictionary for
each cluster. Nevertheless, this strategy still needs to convert
the noisy image patches into 1D vectors, so good estimations
pi’s are difficult to obtain.

To summarize, almost all patch-based and sparse
coding-driven image denoising methods convert raw,
2D matrix representations of image patches into 1D vectors
for further processing, and thereby break down the inherent
2D geometric structure of the natural images. Moreover, the
learned dictionary and sparse coding representations cannot
capture the intrinsic position correlations between the pixels
within each image patch. On the one hand, to preserve the
2D geometric structure of image patches in the transformation
domain, a bilinear transformation is particularly appropriate
(for image patches in the matrix representation) for extracting
the semantic features of the rows and columns from the
image matrixes [20], which is similar to 2DPCA [21] on
two directions or can also be viewed as a special case of
some existing tensor feature extraction methods such as
TDCS [22], STDCS [23] and HOSVD [24]. On the other
hand, we assume that image patches sampled from a denoised
image lie on an intrinsic smooth manifold. However, the

noisy image patches almost never exactly lie on the same
manifold due to noise. A related work [26] shows that the
manifold smoothing is a usual trick for effectively removing
the noise. The weighted neighborhood graph, constructed
from image patches, can approximate the intrinsic manifold
structure. The graph Laplacian operator is the generator
of the smoothing process on the neighborhood graph [25].
Therefore, the recent promising graph Laplacian operator,
in [26]-[29] and [31], for approximating the manifold
structure is leveraged as a generic smooth regularizer while
removing the noise of 2D image patches based on the sparse
coding model.

With the above considerations, we propose a Dictionary Pair
Learning model (DPL model) for image denoising. In the DPL
model, the dictionary pair is used to capture the semantic
features of 2D image patches, and the graph Laplacian
operator guarantees a disciplined smoothing according to the
image patch geometric distribution in the 2D sparse coding
space. However, we will face the NP-hardness of directly
solving the dictionary pair and the 2D sparse coding matrixes
for image denoising. In the NCSR model, the vectorized
image patches are clustered into K subsets by K-means, and
then one compact PCA sub-dictionary for each cluster is used.
So, in our DPL model, 2D image patches can, of course,
be clustered into some subsets with nonlocal similarities.
The 2D patches in a subset are very similar to each other.
Obviously, one needs only to extend the PCA sub-dictionary
to a 2DPCA sub-dictionary for each cluster. However, the
2D image patches sampled from the noisy image with a
multi-resolution and sliding window in our DPL model are
of a high quantity and have a non-linear distribution, such
that clustering faces a serious computational challenge.
Fortunately, the literature [30] proposed a Subspace Indexing
Model on Grassmann Manifold (SIM-GM) that can
top-to-bottom partition the non-linear space into local
subspaces with a hierarchical tree structure. Mathematically,
a Grassmann manifold is the set of all linear subspaces with a
fixed dimension [32], [33], and so an extracted PCA subspace
in each leaf node of the SIM-GM model corresponds to
a point on a Grassmann manifold. To obtaining the most
effective local space, introducing the Grassmann manifold
distances (i.e., the angles between linear subspaces [34]),
the SIM-GM is able to automatically manipulate the leaf
nodes in the data partition tree and build the most effective
local subspace by using a bottom-up merging strategy.
Thus, by extending the kind of PCA subspace partitioning
on a Grassmann manifold to a 2DPCA subspace pair
partitioning on two Grassmann manifolds, we propose a
Dictionary Pair Learning algorithm on Grassmann-manifolds
(DPLG algorithm in shorthand). Experimental results on
benchmark images and Berkeley segmentation datasets show
that the proposed DPLG algorithm is more competitive
than the state-of-the-art image denoising methods including
the internal denoising methods and the external denoising
methods.

The rest of this paper is organized as follows: In Section II,
we build a novel dictionary pair learning model for
2D image denoising. Section III first analyzes the learning

methods of the dictionary pair and sparse coding matrixes,
and then summarizes the dictionary pair learning algorithm
on Grassmann-manifolds for image denoising. In Section IV,
a series of experimental results are shown, and we present the
concluding remarks and future work in Section V.

II. DICTIONARY PAIR LEARNING MODEL

According to the above discussion and analysis, to preserve
the original 2D geometric structure and to construct a sparse
coding model for image denoising, the 2D noisy image patches
are encoded by projections on a dictionary pair that correspond
to left multiplying a matrix and right multiplying a matrix.
Then by exploiting sparse coding and graph Laplacian operator
smoothing to remove noises, we design a Dictionary Pair
Learning model (DPL model) for image denoising in this
section.

A. Dictionary Pair Learning Model for 2D Sparse Coding

To preserve the 2D geometrical structure with sparse sensing
in the transformation domain, we need only to find two linear
transformations for simultaneously mapping the columns and
rows of image patches under the sparse constraint. Let the
image patches set be {X1, X2,..., X;,..., X}, Xi € RM=N,
our method computes the left and right 2D linear transforma-
tions to map the image patches into the 2D sparse matrix
space. Thus, the corresponding objective function may be
defined as follows:

argMin D (AT XiB — Sillr + A1 F.1},)
A,B,S .
l

where A € RM>*M1 and B € VXN are respectively called

the left coding dictionary and the right coding dictionary,
S = {8}, S € RMIXNT s the sparse coefficient matrix,
A is the regularization parameter, ||.|r denotes the matrix
Frobenious norm, and ||.||F,1 denotes the matrix Lj-norm
which is defined as the sum of the absolute values of all its
entries.

In this paper, the left and right coding dictionaries are
combined and called as the dictionary pair (A, B). Once the
dictionary pair and the sparse representations are learned,
especially, the left and right dictionaries constrained by
block orthogonality, each patch X; can be reconstructed by
multiplying the selected sub-dictionary pair (Ag;, Bx;) with
its sparse representation, that is:

X; ~ Ay Si B, (5)

where the orthogonal sub-dictionaries Ag;, By; are selected to
code the image patch X;, and ki is the index of the selected
sub-dictionary pair. Note that the selection method of the
ki — th dictionary pair is described in Section III-B.

B. Graph Laplacian Operator Smoothing

Nonlocal smoothing and co-sparsity are the prevailing tech-
niques for removing noises. Clearly, a natural assumption is
that the coding matrixes of similar patches should be similar.
If similar image patches are encoded only on a sub-dictionary

pair of the learned dictionary pair, then, exploiting the graph
Laplacian as a smoothing operator, both smoothing and
co-sparsity can be simultaneously guaranteed while mini-
mizing a penalty term on the weighted Li-norm divergence
between the coding matrix of a given image patch and
those coding matrixes of its nonlocal neighborhood patches,
as in:
> wijllSi = SjllFa, (6)
i
where w;; is the similarity between the i — th patch and its
J — th neighbor.
According to our previous research in manifold learning,

a patch similarity metric is selected to apply the generalized
Gaussian kernel function in literature [31]:

1

TExP (— (I1Xi — Xjllr/20:)")

wijj = if Xjisk—nearest neighbors of X;, (7
0, otherwise.

where I' is the normalization factor, o; is the variance
of neighborhood distribution and 7 is the generalization
Gaussian exponent. In this paper, the neighborhood similarity
is assumed to obey the super-Gaussian distribution:

wiy = zexp (= (1% = Xl /V30r)). ®)

C. The Final Objective Function

Combining the sparse coding term in Eq. (4) and the
smoothing term in Eq. (6), the final objective function of the
DPL model is defined as follows:

argMin Y {|ATX;B = Sillr + 4 D I1Sillr.1
A,B,S i

i
+y D wijllSi — SjllFa)s

l’]
1) D wy =1
J

() ATAx=1, BIBv=1, k=1,...,K

©)

S.t.

where |.|[r,1 denotes the matrix Lj-norm which is defined
as the sum of the absolute values of all matrix elements, and
A and B are constrained to be block orthogonal matrices in
the following learning algorithm.

The above Eq. (9) is an accurate description of the
Dictionary Pair Learning model (DPL model), and Fig. 1
shows an illustration of the DPL model. In the DPL model,
two similar 2D image patches, X; and X, extracted from
the given noisy image are encoded on two dictionaries
(i.e., the left dictionary A and the right dictionary B),
which are respectively consisted of sub-dictionary sets
A=1{A,...,Ar,...,Ax}and B = {By,...,B,..., Bk}
for computational simplicity, as analyzed in Section III-A. The
left coding dictionary A is used to extract the features of the
column vectors from the image patches, and the right coding
dictionary B is used to extract the features of the row vectors
from the image patches. For sparse response characteristics,
the two learned dictionaries are usually required to be

Exiracting fage patehes X,i Y 31 N
lEm -

L J

ANCET S
)| | -

& J

Extracting image patches ’T

Fig. 1. Similar image patches encoded by the dictionary pair (A, B).

redundant such that they can represent the various local
structures of 2D images. Unlike traditional sparse coding,
the sparse coding of each image patch in our DPL model is
a 2D sparse matrix. For sparsely coding each 2D image patch,
a simple method is finding the most appropriate sub-dictionary
pair from the learned dictionary pair (A, B) to carry out
compact coding on it while constraining the zero coding
coefficients on those un-selected sub-dictionary pairs. This
method can ensure the attainment of a global sparse coding
representation. As for the third term in Eq. (9), corresponding
to the right of Fig. 1, it is expected to help realize as close and
co-sparse as possible between the 2D sparse representations
of nonlocal similar image patches (that is, the constraints
of smoothing and nonlocal co-sparsity). Thus, the 2D sparse
coding matrices with corresponding to nonlocal similar
image patches are regularized under the manifold smoothing
assumption with a L{-norm metric.

III. DICTIONARY PAIR LEARNING ALGORITHM
ON GRASSMANN-MANIFOLD

In the DPL model (i.e., Eq. (9)), the dictionary pair (A, B)
and the sparse coding matrixes S; are all unknown, and their
simultaneous solution is a NP problem. Therefore, our learning
strategy is to decompose the problem into three subtasks:
(1) learning the dictionary pair (A, B) from 2D noisy image
patches by eigen-decomposition, as shown in Section III-A;
(2) fixing the dictionary pair (A, B), and then updating the
2D sparse coding matrixes with smoothing, as shown
in Section III-B; and (3) reconstructing the denoised image
as shown in Section III-C. Thus, the so-called Dictionary
Pair Learning algorithm on Grassmann-manifold (DPLG) is
analyzed and summarized as follows.

A. Learning the Dictionary Pair

For solving Eq. (9), one important issue centers on how
to learn the dictionary pair (A, B) for sparsely and smoothly
coding the 2D image patches. Due to the difficulty and
instability in the learned dictionary by directly optimizing
the sparse coding model, the dictionaries can also be directly
selected in conventional sparsity-based coding models
(i.e., analytically designed dictionaries). Thus, we design the
2DPCA subspace pair partition on two Grassmann manifolds
to implement the clustering-based sub-dictionary pair learning.

Two sub-dictionaries for each cluster are computed, corre-
sponding to decomposing the covariance matrix and its trans-
posed matrix from 2D image patches (i.e., the sub-dictionary
pair). All such sub-dictionary pairs construct two large
over-complete dictionaries to characterize all the possible
local structures of a given observed image. It is assumed that
the k—th subset is extracted to obtain the k —th sub-dictionary
pair (Ak, Bx), where k = 1,..., K. Then, in the dictionary
pair (A, B) = {(Ag, Bk)},le, the left dictionary A = {Ay, ...,
Ag,..., Ak} is viewed as a point set on a Grassmann
manifold, and the right dictionary B = {By, ..., Bk, ..., Bk}
is also viewed as a point set on other Grassmann manifold
because a Grassmann manifold is the set of all linear subspaces
with the fixed dimension [32]. In this paper, obtaining the
dictionary pair (A, B) includes two basic stages: the initial
dictionary pair (A, B) is obtained by the following Top-bottom
2D Subspace Partition (TTSP algorithm); next the refined
dictionary pair (A, B) is obtained by the Sub-dictionary
Merging algorithm (SM algorithm).

1) Obtaining the Initial Dictionary Pair by TTSP Algorithm:
For overcoming the difficulty in directly learning the effective
dictionary pair (A, B) under the nonlinear distribution
characteristic of all of the 2D image patches, the entire training
image patch set is divided into non-overlapping subsets with
linear structures suited to the classical linear method, such
as 2DPCA, and the sub-dictionary pair on each subset are
easily learned by the eigen-decompositions of two covariance
matrixes.! The literature [30] constructed a kind of data
partition tree for subspace indexing based on the global PCA,
but it is not suitable for our 2D subspace partition for
learning the dictionary pair (A, B). We propose a Top-bottom
2D Subspace Partition algorithm (TTSP algorithm)
for obtaining the initial dictionary pair (A, B). The
TTSP algorithm recursively generates a binary tree, and
each leaf node is used in learning a sub-dictionary pair by
using an extended 2DPCA technique. The detailed steps of
the TTSP algorithm are described in Algorithm 1.

2) Merging Sub-Dictionary Pairs by SM Algorithm: In the
TTSP algorithm, each leaf node corresponds to two subspaces,
namely, the left sub-dictionary and right sub-dictionary, called
a sub-dictionary pair. However, as the number of levels in
the partition increases, the number of training image patches
in each leaf node decreases. Leaf nodes may not be the
most effective local space for describing the image nonlocal
similarity and local distribution because each leaf node may
contain an insufficient number of samples. One reasonable
method is to merge the leaf nodes that span almost the
same left sub-dictionaries, and almost the same right
sub-dictionaries. Because a Grassmann manifold is the set of
all linear subspaces with a fixed dimension and any two points
on a Grassmann manifold correspond to two subspaces.
Therefore, to merge the very similar leaf nodes, we assume
that all left sub-dictionaries from all leaf nodes lie on
one Grassmann manifold and that all right sub-

ITwo non-symmetrical covariance matrixes [21] of a matrix dataset
(X1 Xo o X Loy = £ 20 (X = COXG = €T and Regy =
+3E (X =)T (X = C) where G = + 3 X;.

Algorithm 1 (TTSP Algorithm) Top-Bottom 2D Subspace

Partition

Input: Training image patches, the maximum depth of the
binary tree.

Output: the Dictionary pair < A, B > and centers {C}} of
all leaf nodes.
PROCEDURES:
Stepl, The first node is the root node including all image
patches.
Step2, For all image patches in the current leaf node, run
the following 1)-4)steps:

1) Compute respectively the maximum eigenvectors u
and v of the two covariance matrixes in the Footnotel.

2) Compute the one-dimensional projection representa-
tions of all image patches from this node, that is,
si=ul'Xv,i=1,.., L.

3) Partition the one-dimensional real number set {s;} into
two clusters by K-means.

4) Partition the image patches corresponding to these
two clusters into the left child and the right child.
Simultaneously the depth of the node is added one.

Step3, IF the depth of the node is larger than the maximum
depth or the number of image patches in this leaf node
is smaller than the row number or column number of the
image patches, THEN stop the partition. ELSE repeat Step2
recursively for the left child node and the right child node.
Step4, Compute the left sub-dictionary and the right sub-
dictionary for each leaf node by the following 1)-4) steps:

1) Compute the center in the given leaf node k.

2) Compute the two covariance matrixes L o, and R.q,
in the Footnotel.

3) Compute respectively the corresponding eigenvectors
Ui, Uz, .., uqg and vi,vs,..,vg to the d largest eigen-
values; that is, to solve the two eigen-equations
Loyt = Au and Re,v = v .

4) Compute the left sub-dictionary Ay = [uq,us, .., ug)
and the right sub-dictionary By, = [v1, va, .., v4].
Step5, Collect the sub-dictionaries of K leaf nodes into
the dictionary pair < A,B > (i.e., the left dictionary
A = {Ay,..., Ay, ..., A} and the right dictionary B =

{B1,...; Bk, ..., Bk }).

dictionaries from all leaf nodes lie on the other Grassmann
manifold.

The angles between linear subspaces have intuitively
become a reasonable measure for describing the divergence
between subspaces on a Grassmann manifold [32]. Thus,
for computational convenience, the similarity metric between
two subspaces is typically defined by taking the cosines
of the principal angles. Taking the left sub-dictionaries for
example, the cosines of the principal angles are defined as
follows:

Definition 1: Let A1 and A, be two m-dimensional
subspaces corresponding to the two left sub-dictionaries.
The cosine of the r — th principal angle between the

Subspace 42

Fig. 2. Principal angles between sub-dictionaries.

two subspaces span(A1) and span(A») is defined by:

cos(;)) = Max Max ulv}
urespan(Ay) viespan(Az)
S utTutzv,Tvtzl (10)
S uluy =olv, =0, (t#7),
where 0 < 6, < n/2,t,r = 1,...,m, and u, and v; are the

basis vectors from two subspaces, respectively.

In Eq. (10), the first principal angle 8 is the smallest angle
among those between all pairs (each corresponds to two unit
basis vectors), which are respectively from the two subspaces.
The rest of the principal angles can be obtained by other basis
vectors in each subspace, as shown in Fig. 2. The smaller
the principal angles are, the more similar the two subspaces
are (i.e., the closer they are on the Grassmann manifold).
In fact, the cosines of all principal angles can be computed by
a more numerically stable method, the Singular Value Decom-
position (SVD) [34] solution, as described in Theorem 1, for
which we provide a simple proof in Appendix A.

Let A1 and A be two m-dimensional column-orthogonal
matrixes that respectively consist of orthogonal bases from
two left sub-dictionaries. Then, the cosines of all principal
angles between the two subspaces (i.e., the two sub-
dictionaries) are computed by the following SVD equation:

Theorem 1: If Ay and A, are two m-dimensional
subspaces, then

ATA, =uAvT, (11)

where the diagonal matrix A = diag(cosby,...,cosby),

UUT =1, and VVT = I,.

In the following subspace merging algorithm, the similarity
Sim(A1, Ay) between the two subspaces A and A is defined
as the average of all principal angle cosine values:

1 m
Sim(A1, Ay) = — > cos6). (12)
n =1

Therefore, the larger Sim(A;, A;) are, the more similar the
two subspaces are (i.e., the closer they are on the Grassmann
manifold). Those almost same subspaces should be merge into
a single subspace. On the other hand, the same situation should
be considered for the right sub-dictionaries B;,i = 1,..., K.
The similarity metric between the right sub-dictionaries is
defined in the same manner as the above method. Therefore,
simultaneously taking the left sub-dictionaries and the right
sub-dictionaries into account, our Sub-dictionary Merging
algorithm (SM algorithm) is described in Algorithm 2.

Algorithm 2 (SM Algorithm) Sub-Dictionary Merging
Algorithm

Input: Sub-dictionary pairs < A;, B; >,i = 1,..., K1, the
pre-specified constant § (empirical value 0.99).

Output: The reduced sub-dictionary pairs < A;, B; >,k =
1,..., K, where K <= K1.
PROCEDURES:
Stepl, Find the subset; and subset;, if Sim(A;, A;) > 6
and Szm(B“Bj) > 4.
Step2, Delete A;, A; and B;, B;, and replace with the newly
merged new left sub-dictionary and right sub-dictionary
from updated the image patch set subset; | subset;.
Step3, Go Stepl until any Sim(A4;,4;) < & or
Szm(BZ,BJ) < 0.
Step4, Update the dictionary pair < A, B > using the
reduced sub-dictionary pairs.

B. Updating Sparse Coding Matrixes

Section III-A describes a method to rapidly learn the
dictionary pair (A, B), where A = {A1,..., Ak, ..., Ak},
B = {Bi,...,By,...,Bg}. For sparsely coding each
2D noisy image patch and deleting noise, we need only
to find the most appropriate sub-dictionary pair (Ag;, Bi)
from the learned dictionary pair (A, B) to represent the
patch, and denoise the image patch by smoothing the sparse
representation.

For the i — th noisy image patch, we assume that the most
appropriate sub-dictionary pair (Ag;, Bk;) is used to encode it
and that the other sub-dictionary pairs are constrained to pro-
viding zero coefficient coding. According to the nearest center,
the most appropriate sub-dictionary pair for the i — th noisy
image patch X; can be selected by the smallest L1 — norm
coding, that is:

ki = argMin{||A,Z(Xi —Cu)BillFa}, k=1,...,K, (13)
k

where K is the total number of sub-dictionary pairs,

Ci denotes the center of the k — th leaf node, and ||.||F,1

denotes the matrix L1 — norm, which is defined as the sum

of the absolute values of all matrix elements.

For obtaining sparse representations, we assume that any
noisy image patch is only encoded by one sub-dictionary pair
and that the coding coefficients on the other sub-dictionary
pairs are constrained to zero. Therefore, for any noisy image
patch X;, we can simplify Eq. (9) to obtain the following
objective function definition:

Definition 2: For image patch X;, let the selected near-
est sub-dictionary pair be (Ag;, By;) in Eq. (13). Then, the
smoothing sparse coding is computed by the following
formula:

arng{nA XiBi = SillF + 7> wijlSi —SjllFa},

j 14
S.t. Zw,,_1 (9

where §; is the sparse coding matrix of the j — th nearest
image patch on the sub-dictionary pair (Ag;, Byi), w;; is

the non-local neighborhood similarity, and y is the balance
factor.

As for the balance factor y, when the two terms of Eq. (14)
are simultaneously optimized, we can reach the following
conclusion (the proof is shown in Appendix B).

Theorem 2: If X; is the corrupted image patch by noise
N(0, o), and the non-local similarity obeys to the Laplacian

distribution with the parameter o;, then the balance factor
ag

V=

Clearly, the objective function of S; in Eq. (14) is convex
and can be efficiently solved. The first term is to minimize the
reconstruction error on the sub-dictionary pair (Ag;, B;), and
the second term is to ensure the smoothing and co-sparsity
in coefficient matrix space. We initialize the coding matrix
S; and S; by the projections of the image patch X; and its
neighbors X; on the selected sub-dictionary pair (A;, Byi),
that is:

Si(t) = Al X By,
Sj(t) = A X By,

5)

j=1,..kl, (16)

where image patch X; is one of the k1-nearest neighbors of
image patch X;.

Additionally, for computational convenience, we can
reformat and relax Eq. (14) into the following objection
function:

arng{nA XiBii —SillF + 7S = wijSjliFa)

7 17
S.t. Zwu_l an

According to the literature [35], a threshold-shrinkage
algorithm is adopted to solve the Eq. (17) (i.e., using the
gradient descent method and the threshold-shrinkage strategy).
Therefore, the sparse coding matrix S; on the sub-dictionary
pair (A, Bki) is updated by the following formula:

Si(t+1) = f(8i(0) —Z wij Sj (1), ny) +_ wij S;(t)
j (18)

S.t. 1Xi — AkiSiBL, IIF < c¢No?,

where ¢ is the noise variance, N is the number of image
patch pixels, # is the gradient decent step, c is a scaling factor,
which is empirically set 1.15, and f(.,.) is the soft threshold-
shrinkage function, that is:

ifz<0

otherwise,

f(z,0) = (19)

[z — sgn(z)0,

where sgn(z) is a sign function.

C. Reconstructing the Denoised Image

As a type of non-local similarity and transformation domain
approach, a given noisy image needs to be divided into many
overlapping small image patches. The corresponding denoised
image is obtained by combining all of the denoised image
patches. Let x denote a noisy image, and let the binary

multi-resolution down-sampling

i

Extracting|
2-dimensional subspace
partitioning& merging

Smoothing sparse
codingSi

Reconstruction

4@

‘Y

Output

<AB> | [<aiB2] - [Abe |[Aber] = Bagidinge

ictionary pairs

Fig. 3. The working flowchart of DPLG algorithm.

matrix R; be used for extracting the i — th image patch at
the position i/, that is:

Xi=Rix, i=12,...,n, (20)

where n denotes the number of possible image patches.

If we let S; be the coding matrix, with smoothing and co-
sparsity obtained by using the sub-dictionary pair (Ag;, Bki),
then the denoised image X is reconstructed by:

i= {Z(R,-TAkisiB,Z»} @ > (R RiD), 1)

1

where @ denotes an element-wise division and 1 denotes a
matrix of ones. That is, Eq. (21) puts all denoised patches
together as the denoised image X (the overlapped pixels
between neighboring patches are averaged).

D. Summary of the DPLG Algorithm

1) The Description of the DPLG Algorithm: Summarizing
the above analysis, for adaptively learning and denoising from
a given noisy image itself, we put forward the Dictionary
Pair Learning algorithm on Grassmann-manifold (DPLG).
The DPLG algorithm allows the dictionary pair to be
updated according to the last denoised result and then
obtains better representations of the noisy patches. Thus,
the DPLG algorithm is designed as an iterative image
denoising method. Each iteration includes three basic tasks,
namely, learning the dictionary pair (A, B) from the noisy
image patches sampled from the current noisy image at a
multi-resolution, updating the 2D sparse representations for
image patches from the current noisy image, and reconstruct-
ing the denoised image, where the current noisy image is
a slight translation from the current denoised image to the
original noisy image. Fig. 3 shows the basic working flowchart

Algorithm 3 (DPLG Algorithm) Dictionary Pair Learning on

Grassmann-Manifold

Input: Noisy image N_Im0 and estimated noise variance
ago.

Output: Denoised image D_Im.
PROCEDURES:
Stepl, Set the initial parameters, including iterations, patch
size, the maximum depth of leaf nodes, and the pre-specified
constants pl and p2.
Step2, Let the current denoised image and noisy image be
D_Im = N_Im = N_Im0.
Step3, Loop the following steps from 1) to 9) until the given
iterations.

1) N_Im=D_Im+ pul(N_Im0— D_Im),
o=u2 [of— % (N_Im0 — N_Im)izj.

i,

2) Extract the 2D noisy image patch set X from the given
noisy image N _Im at multi-resolution.

3) Divide the 2D image patch set X into K subsets by
using the Stepl-3 of the TTSP algorithm.

4) Compute the two-dimensional sub-dictionary pairs <
Ay, By, > and the center C, for each 2D patch subset
by using the Step4 of the above TTSP algorithm.

5) Merge those almost the same sub-dictionary pairs
using the SM algorithm.

6) Select the corresponding sub-dictionary pair <
Ay, Br; > for each noisy image patch X; from
the current noisy image N_Im using the following
formula: ki = argMin{||AL(X; — Ck)Bxl||r1}

k

7) Compute the neighborhood similarity w;; between
these noisy image patches {X;} using Eq. (8).

8) Compute the smooth and sparse 2D representations for
each image patch and its neighbors from the current
noisy image by using Eq. (18).

9) Reconstruct the denoised image D_Im by integrating
all denoised image patches Y; = Ay;S; By using Eq.
(21).

of the DPLG algorithm, and the detailed procedures of the
DPLG algorithm are described in the Algorithm 3.

2) Time Complexity Analysis: Our DPLG method preserves
the original 2D structure of each image patch to un-change.
If the size of the sampled image patches is b x b, and the
sub-dictionary pair (Ag, Bx) is computed by using 2DPCA
on each image patch subset, then A; and By are two b X b
orthogonal matrices. Comparatively, NCSR needs to compute
a more complex b? x b? orthogonal matrix as the dictionary
by using the PCA on 1D presentations of image patches. For
example, in the NCSR method, the matrix size appears to
be 64 times larger than our method when b = 8. Therefore,
for DPLG, less time complexity is required to compute the
eigenvectors.

Moreover, comparing our DPLG method with the
NCSR method, the former is to rapidly top-bottom divide each
leaf node into the left-child and right-child by the first principal
component projection on the current sub-dictionary pair

TABLE I
TIME COMPLEXITY FOR ONE UPDATE OF TWO BASIC STEPS IN THREE
DICTIONARY LEARNING ALGORITHMS: DPLG, NCSR AND K-SVD

Algorithm | Dictionary learning step | Sparse coding step
DPLG O(Knl) + O(Kb?) O(Knb) + O(nkl)
NCSR O(Knlb?) + O(Kb%) | O(Knb?)

K-SVD O(Hn) + O(Hb®) O(HnM)

(i.e., the two-way partition of 1D real numbers). The latter is
to divide the whole training set (i.e., b2-dimensional vectors)
into the specified clusters by applying K-means with more
time complexity. Compared with the K-SVD method, each
atom of its single dictionary D needs to be updated by
SVD decomposition. If the number of the dictionary atoms
in K-SVD is equal to the amount of all sub-dictionary atoms
in the DPLG or NCSR, then the computational complexity of
K-SVD is the largest. However, the dictionary D of K-SVD
in real-world applications is only ever empirically set to
a smaller over-complete dictionary atom number than the
DPLG and NCSR method, so that K-SVD has a faster com-
puting speed. Additionally, in the sparse coding step, the three
internal denoising methods DPLG, NCSR and K-SVD have
slight differences in time complexity, as shown in Table I.
Without loss of generality, letting the number of clusters
equal K, the number of image patches equal n, the size
of each image patch equal b x b, the iteration of K-means
clustering equal [, the kl-nearest neighbors equal k1, the
number of dictionary atoms in K-SVD equal H, and the
max number of nonzero codes for each image patch in
K-SVD equal M, we compare the computational complexity
of the dictionary learning step and the sparse coding step in
three iterative dictionary learning methods (internal denoising
methods), namely, DPLG, NCSR and KSVD, as shown in
the Table I. Due to computing the non-local neighborhood
similarity within each cluster in our manifold smoothing
strategy, computing the Laplacian similarity only needs linear
computational time. Finally, the total time complexity of the
DPLG is less than the NCSR and K-SVD algorithms with the
same size of their dictionaries (that is, when H = Kb).

IV. EXPERIMENTS

In this section, we will verify the image denoising
performance of the proposed DPLG method. We test the
performance of the DPLG method on benchmark images [38],
[39] and on 100 test images from the Berkeley Segmentation
Dataset [40]. Moreover, these experimental results of the
proposed DPLG method are compared with seven developed
state-of-the-art denoising methods, including three internal
denoising methods and four denoising methods using external
information from clean natural images.

A. Quantitative Assessment of Denoised Images

An objective image quality metric plays an important role in
image denoising applications. Currently, three classical image
quality assessment metrics are typically used: the Root mean
square error (RMSE), the Peak Signal-to-Noise Ratio (PSNR)

House image,c =50
0.85 30.5

House image,s =50

60—
T 4 o
Sooeoy Bul o e
%) o O .y
0.75 295
0 6 12 18 24 30 36 42 48 54 60 0 6 12 18 24 30 36 42 48 54 60
Neighbors k1 Neighbors k1
Fig. 4. The denoising performance of the DPLG at different kl-nearest

neighbors.

and the measure of Structural SIMilarity (SSIM) [36]. The
PSNR and RMSE are the simplest and most widely used image
quality metrics. Common knowledge holds that the smaller the
RMSE is, the better the denoising is. Equivalently, the larger
the PSNR is, the better the denoising is. Moreover, the
RMSE and PSRN have the same assessment ability, although
they are not very well matched in the perceptual visual quality
of denoised images. The third quantitative evaluation method,
the Structural SIMilarity (SSIM), focuses on the perceptual
quality metric, which compares normalized local patterns of
pixel intensities. In our experiments, the PSNR and SSIM are
used as objective assessments.

B. Experiments on Benchmark Images

To evaluate the performance of the proposed model,
we exploit the proposed DPLG algorithm for denoising
ten noisy benchmark images [38] and another difficult-to-be-
denoised noisy image (named the ‘ChangE-3’ image [39]),
which is significant. Several state-of-the-art denoising methods
with default parameters are used for comparison with the
proposed DPLG algorithm, including the internal denosing
methods BM3D [10], K-SVD [11] and NCSR [12], the
external denoising methods SSDA [13] and SDAE [14],
SCLW [15], and NSCDL [16]. As for the parameter setting of
our DPLG algorithm, the k1-nearest neighbor parameter, the
maximum depth of leaf nodes and the number of iterations
of the DPLG are empirically set to 6, 7 and 18, respectively,
from a series of tentative test. Taking the k1-nearest-neighbor
parameter as an example, we analyze the performance of our
method at the different kl-nearest-neighbor parameters, as
shown in Fig.4. Accordingly, when the size of neighbors is not
large enough (for example the k1-nearest neighbors at [6, 60]),
the performance of our DPLG method does not significantly
change. However, the DPLG can obtain the largest SSIM value
when the k1-nearest-neighbor parameter is set to 6.

1) Comparing With Internal Denoising Methods: The
20 different noisy versions of the 11 benchmark images,
that is, corresponding to 220 noisy images, are denoised
respectively by the previously mentioned four internal denois-
ing methods: DPLG, NCSR, BM3D and K-SVD. The
SSIM results of the four test methods are reported in Table II,
and the highest SSIM values are displayed in black bold. The
PSNR results are reported in Table III, and the highest PSNR
values are displayed in black bold.

It is worth noting that our DPLG method preserves the
2D geometrical structure of the image patches and thus
can significantly achieve the best visual quality, as shown

TABLE II
THE SSIM VALUES BY DENOISING 11 IMAGES AT DIFFERENT NOISE VARIANCE

IM\ ¢

Algorit]

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Barbara

DPLG

0.962

0.940

0.920

0.904

0.886

0.865

0.849

0.831

0.812

0.795

0.777

0.759

0.746

0.728

0.719

0.696

0.682

0.671

0.655

0.649

NCSR

0.964

0.941

0.921

0.905

0.888

0.869

0.847

0.823

0.811

0.790

0.775

0.741

0.743

0.718

0.705

0.688

0.686

0.663

0.649

0.643

BM3D

0.965

0.942

0.922

0.905

0.885

0.866

0.846

0.820

0.815

0.796

0.778

0.758

0.744

0.730

0.713

0.704

0.674

0.675

0.653

0.642

K-SVD

0.964

0.935

0.909

0.880

0.849

0.821

0.799

0.770

0.745

0.714

0.687

0.661

0.641

0.615

0.604

0.586

0.566

0.559

0.545

0.541

Boat

DPLG

0.935

0.885

0.850

0.823

0.797

0.773

0.753

0.734

0.716

0.700

0.683

0.669

0.657

0.646

0.636

0.621

0.609

0.603

0.592

0.587

NCSR

0.941

0.888

0.851

0.818

0.793

0.772

0.742

0.723

0.705

0.688

0.675

0.661

0.651

0.637

0.631

0.619

0.613

0.604

0.594

0.590

BM3D

0.939

0.888

0.854

0.826

0.801

0.778

0.756

0.735

0.716

0.703

0.687

0.669

0.659

0.644

0.633

0.623

0.614

0.606

0.597

0.588

K-SVD

0.941

0.883

0.841

0.805

0.771

0.744

0.719

0.699

0.678

0.659

0.641

0.620

0.608

0.592

0.580

0.567

0.558

0.548

0.537

0.527

Camera
Man

DPLG

0.959

0.926

0.897

0.863

0.849

0.831

0.817

0.806

0.796

0.785

0.773

0.766

0.750

0.741

0.731

0.726

0.719

0.710

0.694

0.694

NCSR

0.961

0.930

0.902

0.870

0.853

0.827

0.811

0.799

0.791

0.781

0.769

0.762

0.752

0.743

0.735

0.728

0.728

0.714

0.703

0.697

BM3D

0.962

0.931

0.899

0.872

0.852

0.834

0.821

0.803

0.788

0.779

0.767

0.759

0.745

0.741

0.726

0.720

0.699

0.696

0.693

0.689

K-SVD

0.959

0.926

0.893

0.861

0.834

0.813

0.793

0.778

0.758

0.740

0.726

0.715

0.697

0.685

0.652

0.648

0.616

0.609

0.594

0.579

Couple

DPLG

0.947

0.907

0.873

0.842

0.816

0.790

0.768

0.745

0.729

0.710

0.685

0.668

0.656

0.638

0.622

0.610

0.594

0.581

0.573

0.561

NCSR

0.950

0.907

0.871

0.838

0.809

0.780

0.758

0.732

0.712

0.690

0.673

0.654

0.638

0.624

0.608

0.598

0.583

0.578

0.568

0.555

BM3D

0.951

0.908

0.875

0.845

0.819

0.794

0.768

0.743

0.723

0.705

0.685

0.672

0.652

0.639

0.623

0.613

0.598

0.587

0.574

0.567

K-SVD

0.950

0.897

0.853

0.815

0.780

0.746

0.711

0.680

0.659

0.632

0.611

0.596

0.575

0.565

0.550

0.539

0.525

0.521

0.505

0.501

Finger
print

DPLG

0.988

0.969

0.948

0.929

0910

0.894

0.874

0.858

0.844

0.829

0.813

0.797

0.789

0.769

0.761

0.746

0.731

0.717

0.710

0.702

NCSR

0.988

0.970

0.950

0.932

0.913

0.896

0.874

0.856

0.839

0.825

0.808

0.789

0.777

0.762

0.755

0.736

0.724

0.708

0.701

0.685

BM3D

0.987

0.969

0.949

0.930

0911

0.894

0.878

0.856

0.847

0.832

0.822

0.806

0.793

0.781

0.772

0.762

0.746

0.739

0.726

0.718

K-SVD|

0.988

0.968

0.946

0.923

0.897

0.871

0.846

0.817

0.791

0.753

0.721

0.686

0.647

0.605

0.572

0.546

0.505

0.480

0.458

0.447

House

DPLG

0.956

0.921

0.891

0.876

0.860

0.853

0.846

0.837

0.827

0.819

0.811

0.806

0.801

0.787

0.780

0.775

0.771

0.749

0.741

0.741

NCSR

0.958

0.924

0.894

0.875

0.858

0.850

0.841

0.837

0.823

0.815

0.808

0.799

0.792

0.789

0.783

0.767

0.765

0.756

0.751

0.743

BM3D

0.956

0.922

0.889

0.874

0.858

0.846

0.836

0.826

0.823

0.810

0.804

0.798

0.792

0.770

0.757

0.757

0.750

0.738

0.735

0.730

K-SVD

0.953

0.906

0.877

0.860

0.843

0.828

0.817

0.795

0.777

0.764

0.750

0.731

0.711

0.688

0.678

0.665

0.649

0.622

0.617

0.618

Lena

DPLG

0.942

0914

0.892

0.877

0.859

0.844

0.835

0.823

0.814

0.803

0.789

0.780

0.770

0.761

0.752

0.746

0.740

0.728

0.724

0.715

NCSR

0.945

0.915

0.893

0.876

0.860

0.848

0.836

0.824

0.814

0.805

0.793

0.787

0.779

0.771

0.762

0.753

0.749

0.744

0.734

0.727

BM3D

0.945

0.917

0.895

0.875

0.860

0.845

0.829

0.814

0.807

0.798

0.788

0.777

0.766

0.758

0.751

0.741

0.733

0.723

0.720

0.704

K-SVD

0.946

0911

0.885

0.862

0.843

0.825

0.807

0.791

0.773

0.758

0.745

0.733

0.720

0.707

0.697

0.684

0.671

0.660

0.656

0.639

Man

DPLG

0.951

0.906

0.867

0.832

0.805

0.777

0.752

0.732

0.718

0.702

0.686

0.676

0.666

0.656

0.645

0.633

0.627

0.618

0.609

0.601

NCSR

0.954

0.907

0.866

0.831

0.804

0.776

0.750

0.730

0.714

0.699

0.683

0.672

0.662

0.653

0.644

0.634

0.625

0.621

0.608

0.605

BM3D

0.955

0.907

0.865

0.832

0.803

0.778

0.754

0.734

0.719

0.702

0.689

0.677

0.667

0.654

0.642

0.633

0.625

0.612

0.607

0.598

K-SVD

0.952

0.899

0.852

0.813

0.781

0.752

0.724

0.702

0.681

0.664

0.647

0.635

0.619

0.607

0.598

0.586

0.573

0.567

0.558

0.551

Monarc
h_full

DPLG

0.976

0.959

0.939

0.923

0.901

0.886

0.871

0.859

0.836

0.821

0.820

0.803

0.789

0.777

0.770

0.748

0.740

0.723

0.717

0.713

NCSR

0.976

0.958

0.940

0.922

0.902

0.889

0.867

0.853

0.834

0.822

0.815

0.810

0.794

0.775

0.765

0.752

0.744

0.726

0.720

0.705

BM3D

0.975

0.957

0.938

0.919

0.900

0.881

0.871

0.849

0.833

0.818

0.808

0.787

0.779

0.760

0.757

0.746

0.741

0.727

0.701

0.698

K-SVD

0.972

0.949

0.928

0.908

0.885

0.865

0.853

0.831

0.812

0.796

0.782

0.755

0.745

0.724

0.710

0.694

0.676

0.661

0.633

0.627

Peppers

DPLG

0.952

0.925

0.905

0.885

0.867

0.852

0.838

0.824

0.810

0.798

0.786

0.777

0.769

0.750

0.743

0.733

0.721

0.723

0.696

0.695

NCSR

0.955

0.927

0.907

0.886

0.868

0.851

0.835

0.817

0.816

0.795

0.786

0.772

0.767

0.751

0.745

0.734

0.725

0.718

0.716

0.703

BM3D

0.955

0.929

0.908

0.887

0.870

0.852

0.835

0.820

0.807

0.792

0.779

0.763

0.751

0.750

0.727

0.718

0.708

0.700

0.688

0.680

K-SVD

0.954

0.924

0.898

0.877

0.857

0.840

0.826

0.806

0.789

0.772

0.757

0.740

0.716

0.707

0.687

0.676

0.651

0.650

0.641

0.627

ChangE-

DPLG

0.949

0.899

0.860

0.822

0.796

0.770

0.740

0.718

0.699

0.681

0.667

0.654

0.639

0.627

0.613

0.601

0.592

0.579

0.565

0.562

NCSR

0.955

0.905

0.866

0.823

0.795

0.766

0.730

0.710

0.689

0.670

0.659

0.644

0.630

0.621

0.605

0.594

0.586

0.576

0.569

0.557

BM3D

0.956

0.903

0.863

0.826

0.795

0.768

0.743

0.719

0.694

0.677

0.659

0.644

0.631

0.616

0.602

0.594

0.585

0.577

0.567

0.550

K-SVD|

0.956

0.904

0.863

0.826

0.793

0.762

0.733

0.708

0.681

0.659

0.634

0.615

0.595

0.577

0.557

0.543

0.533

0.518

0.507

0.489

DPLG

0.956

0.923

0.895

0.871

0.850

0.830

0.813

0.797

0.782

0.768

0.754

0.741

0.730

0.716

0.706

0.694

0.684

0.673

0.661

0.656

NCSR

0.959

0.925

0.896

0.870

0.849

0.829

0.809

0.791

0.777

0.762

0.749

0.735

0.726

0.713

0.704

0.691

0.684

0.674

0.665

0.655

Average

BM3D

0.959

0.925

0.896

0.872

0.850

0.830

0.812

0.793

0.779

0.765

0.751

0.737

0.725

0.713

0.700

0.692

0.679

0.671

0.660

0.651

K-SVD

0.958

0.918

0.886

0.857

0.830

0.806

0.784

0.762

0.741

0.719

0.700

0.681

0.661

0.643

0.626

0.612

0.593

0.581

0.568

0.559

TABLE III
THE PSNR VALUES BY DENOISING 11 IMAGES AT DIFFERENT NOISE VARIANCE

SNR\ ¢
Algorit]

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Barbara

DPLG

38.290

34.921

32.935

31.621

30.575

29.633

28.933

28.335

27.681

27.169

26.625

26.160

25759

25.306

24.983

24.504

24.199

23913

23.628

23.442

NCSR

38.346

35.018

33.033

31.784

30.664

29.670

28.909

28.170

27.633

27.036

26.502

25.726

25.515

24.985

24.737

24.296

24.269

23.762

23.431

23.198

BM3D

38.284

34977

33.047

31.772

30.651

29.768

29.026

27.989

27.831

27.220

26.776

26.231

25.912

25.525

25.162

24.907

24.362

24.203

23.846

23.630

K-SVD

38.069

34.447

32.355

30.857

29.554

28.562

21.787

26.968

26.207

25.454

24.837

24.219

23.805

23.267

23.089

22.760

22.357

22.260

22.034

21.916

Boat

DPLG

37.169

33.856

32.055

30.783

29.780

28971

28.279

27.687

27.219

26.771

26.256

25.838

25.502

25.090

24.894

24,511

24.188

24.053

23.734

23.670

NCSR

37.342

33.877

32.049

30.705

29.653

28.859

28.104

27469

26.976

26423

26.085

25.684

25.408

25.019

24.741

24.466

24287

24.017

23.749

23.604

BM3D

37.285

33.890

32.130

30.846

29.871

29.057

28319

27.635

27.130

26.705

26.292

25.881

25.584

25252

24.954

24.782

24.528

24.337

24.100

23.840

K-SVD

37.235

33.608

31.749

30.379

29.328

28475

27.687

27.083

26479

25.925

25448

24.993

24.596

24219

23.996

23.681

23471

23.256

23.039

22.809

Camera
Man

DPLG

38.211

34.024

31.893

30.192

29.346

28.596

21.776

27.148

26.809

26.355

25.750

25.579

25.093

24.629

24.244

24.101

23.741

23.510

22.998

23.140

NCSR

38.292

34.147

31.988

30.360

29.398

28.388

27.654

27.016

26.594

26.001

25.689

25.278

24.812

24 475

24.095

23.698

23.656

23.278

22.888

22.673

BM3D

38.322

34.153

31.884

30.442

29.517

28.730

27.953

27.266

26.618

26.134

25.597

25.286

24.832

24.627

24.170

24.120

23.662

23.470

23.350

23.047

K-SVD

37.917

33.728

31.442

29.950

28.919

28.096

27212

26.898

26.264

25.624

25.152

24.739

24231

23.887

23.188

23.188

22.601

22.255

22.006

21.741

Couple

DPLG

37.350

33.975

32.078

30.631

29.604

28.769

28.045

27.403

26.954

26.483

25915

25.561

25.303

24.863

24.522

24.301

23.948

23.661

23.579

23228

NCSR

37.480

33.941

31.970

30.584

29.441

28.518

27922

27.187

26.625

26.153

25.720

25.261

24.925

24.667

24336

24.090

23.810

23.534

23.376

23213

BM3D

37.504

33.983

32.081

30.757

29.693

28.843

28.065

27.391

26.915

26.412

25.937

25.691

25.281

24.963

24.649

24.453

24.124

23.900

23.731

23.512

K-SVD

37.314

33.465

31.455

30.029

28.892

27927

27.068

26.347

25.867

25.294

24.806

24.491

24.151

23.835

23.589

23.409

23.114

22.987

22.765

22.641

Finger
print

DPLG

36.755

32.595

30.337

28.854

27.706

26.874

26.117

25.509

24.974

24.520

24.117

23.730

23.432

23.011

22.815

22.495

22177

21.930

21.721

21.635

NCSR

36.782

32.672

30.453

28.980

27.817

26.975

26.155

25.504

24.960

24436

24.094

23.614

23.262

22.962

22734

22378

22.180

21.816

21.679

21.376

BM3D

36.492

32.444

30.288

28.815

27.680

26.805

26.094

25.291

24.988

24.509

24.164

23.757

23.388

23.102

22.817

22.598

22.262

22.028

21.808

21.631

K-SVD

36.630

32.382

30.069

28493

27251

26.283

25495

24717

24.009

23.161

22492

21.810

21.171

20481

19.965

19.596

19.101

18.778

18.525

18.374

House

DPLG

39.840

36.808

35.100

33.960

33.132

32.332

31.736

31.020

30.483

29.953

29.265

29.035

28.529

28.057

27.522

27.226

27.226

26.693

26.071

25.804

NCSR

39.852

36.821

35.077

33.839

32.926

31.996

31.336

30.964

30.192

29.511

28.930

28.311

27.898

27.535

27.306

26.652

26.541

26.079

25.786

25.627

BM3D

39.767

36.749

34.942

33.774

32.796

32.014

31.428

30.738

30.166

29.592

29.169

28.816

28.475

27.925

27367

27213

26.817

26.475

26.228

26.033

K-SVD

39.308

35.981

34.312

33.077

32.078

31.185

30.431

29.503

28.639

28.032

27.334

26.854

26.324

25.582

25.187

25.044

24.473

23.907

23.793

23.835

Lena

DPLG

38.654

35.819

34.152

32.969

31.938

31181

30.540

29.959

29.545

29.070

28434

28.034

27719

27.284

26.954

26.831

26.525

26.069

25.811

25.706

NCSR

38.742

35.840

34.108

32973

31.888

31.089

30.594

29.983

29.413

28917

28.392

28.069

27.635

27.380

27.040

26.691

26.505

26.310

25.936

25.561

BM3D

38.729

35.929

34.240

32.998

32.077

31.266

30.531

29.793

29.441

28.986

28.515

28.221

27.805

27.534

27.138

26.817

26.621

26.307

26.189

25.900

K-SVD

38.625

35.519

33.737

32.377

31.364

30.475

29.711

29.015

28.316

27.789

27.233

26.871

26.481

26.094

25.734

25.459

25.166

24.841

24.713

24.434

DPLG

37.69%4

33.935

31.893

30.541

29.590

28.776

28.089

27.535

27.119

26.717

26.298

26.013

25.743

25.458

25.203

24.821

24.656

24.345

24.192

24.043

NCSR

37.836

33.975

31.922

30.542

29.584

28.744

28.047

27497

27.021

26.623

26.251

25.838

25.588

25314

25.071

24778

24.616

24432

24.050

23.950

BM3D

37.811

33.918

31.863

30.555

29.566

28.826

28.144

27.598

27.190

26.780

26.443

26.094

25.826

25.517

25.256

25.099

24.841

24.566

24.400

24212

K-SVD

37.516

33.526

31.467

30.101

29.129

28.314

27.568

27.031

26.534

26.060

25.675

25311

24957

24.674

24.446

24243

23.942

23.744

23.549

23411

Monarch
_full

DPLG

38.548

34.571

32.183

30.529

29.295

28.423

27412

26.919

26.159

25.653

25.433

24.966

24.603

24.229

23.890

23.364

23.128

22.754

22.503

22.374

NCSR

38.523

34.655

32367

30.722

29.401

28.565

27415

26.820

26.108

25.603

25.267

24.910

24.502

23.908

23712

23.248

23.016

22.520

22418

22.026

BM3D

38214

34.231

31.884

30.359

29.244

28319

27.762

26.758

26.258

25.713

25249

24763

24441

23.981

23.817

23.577

23.250

23.006

22.517

22.423

K-SVD

37.771

33.710

31.432

29.980

28.767

27.830

27.214

26.389

25.838

25.312

24.725

24.081

23.667

23.134

22.811

22.352

21.916

21.581

20.944

20.836

Peppers

DPLG

38.022

34.592

32.646

31.162

30.054

29217

28333

27.673

27.205

26.707

26.014

25712

25.410

24.886

24432

24282

23742

23.756

23.134

22.967

NCSR

38.070

34.650

32.824

31.212

30.082

29.139

28.355

21.521

27.238

26.428

25.967

25.342

25.182

24.582

24327

24.195

23.510

23.291

23.169

22.843

BM3D

38.081

34.707

32.803

31.245

30.232

29.329

28.479

27.897

27220

26.689

26.165

25.833

25.378

25.257

24.617

24.407

23.957

23.843

23.504

23.206

K-SVD

37.778

34.262

32.226

30.787

29.734

28.843

28.030

27.368

26.725

26.121

25.554

25.134

24.444

24.126

23.468

23.134

22.467

22.397

22.046

21.847

ChangE-3

DPLG

36.621

32.527

30.360

28.739

27.636

26.769

25.850

25.220

24.741

24.298

23.887

23.575

23.270

22.954

22.686

22.435

22.203

21.949

21.760

21.650

NCSR

36.786

32.596

30.420

28.746

27.588

26.678

25.740

25.109

24530

24113

23.762

23420

23.036

22.820

22.460

22285

22.047

21.847

21.676

21.428

BM3D

36.791

32.505

30.266

28.708

27.559

26.649

25.854

25.162

24.557

24.103

23.720

23.393

23.116

22.802

22.616

22.364

22.193

21.991

21.836

21.549

K-SVD

36.751

32.452

30.285

28.783

27.624

26.652

25.812

25.133

24.546

23.970

23430

23.064

22723

22354

22.041

21.776

21.571

21.296

21.143

20.830

Average

DPLG

37.923

34.329

32.330

30.907

29.878

29.049

28.283

27.674

27172

26.700

26.181

25.837

25.488

25.070

24.740

24.443

24.157

23.876

23.557

23.423

NCSR

38.005

34.381

32.383

30.950

29.858

28.965

28.203

27.568

27.026

26.481

26.060

25.587

25.251

24.871

24.59

24252

24.040

23717

23.469

23.227

BM3D

37.934

34317

32312

30.934

29.899

29.055

28.332

27.592

27.119

26.622

26.184

25.815

25458

25.135

24.779

24.576

24.238

24.012

23.774

23.544

K-SVD

37.719

33.917

31.866

30.437

29.331

28.422

27.638

26.950

26.311

25.704

25.158

24.688

24.232

23.787

23.410

23.149

22.743

22.482

22.233

22.061

1 T
005" o715}
071~ ™~
09 NS
0.705 N ~
RSN
085 T 0.7 I
+ 0.695 R
08 *
= N N 0.69
7] 4o
2 075 A kg2 4 76 7
+
07 + 4
+ S
+ ﬁﬁ\"\ﬁ_\ﬂ
065/ ——DPLG +
—+—-NCSR -
06| - & - BM3D +
+ K-SVD A
055 n T
0 10 20 30 40 50 60 70 80 90 100
noise variance G
(@

10 20 30 40 50 60 70 80 90 100
noise variance G

(b)

Fig. 5. The average SSIM values and average PSNR values of 11 denoised
images at different noise variance o. (a) Average SSIM values of 11 denoised
images. (b) Average PSNR values of 11 denoised images.

in columns 5-17 in Table II. From Table III, we can see
that when the noise level is not very high (seemly noise
variance o < 30), all of the four methods can achieve very
good denoised images. When the noise level is high (seemly
noise variance 30 < ¢ < 80), our DPLG method can obtain
basically the best denoising performance corresponding to
columns 9-13 in Table III. Moreover, Fig. 5 shows the plots
of the average PSNR and SSIM of the 11 images at different
noise corruption levels.

Regarding the structural similarity (SSIM) assessment
of restored images, our DPLG algorithm obtains the best
denoising results for 87 noisy images, the NCSR method
is best for 60 noisy images, the BM3D method is best
for 71 noisy images, and the K-SVD method is best
for 2 noisy images. Experiments show that the proposed
DPLG algorithm has the best average performance for
restoring the perceptual visual effect, as shown on the bottom
of Table II and Fig. 5 (a). Under the PSNR assessment, our
DPLG method obtains the best denoising results for 67 noisy
images, while the NCSR method is best for 31 noisy images,
the BM3D method is best for 105 noisy images, and the
K-SVD method is best for 18 noisy images. The DPLG also
has a competitive performance in reconstructing the pixel
intensity, as shown in Table II and Fig. 5 (b).

2) Comparing With External Denoising Methods: In this
experiment, we compare with several denoising methods
that exploit the statistics information of external, noise-free
natural images. Our DPLG method only exploits the internal
statistics information of the tested noisy image itself.

TABLE IV
COMPARISON OF DPLG WITH SEVERAL DENOISING METHODS
USING EXTERNAL TRAINING IMAGES

R Intemal External Combining PSNR (o=23)
viethoas
e Information | Information (In-Ex) Bo: House Average
DPLG yes no no 20.78 3313 31.16
SCLW [15] yes yes yes 3 3258 07
NSCDL [16] yes yes yes 30.83 2087 3299
SSDAT13] no yes no
SDAE[14] no yes no 2069 2995 3258
"House' image "House' image
2 T T 1 !
30 s o T —
f 08 “,C',,,,,,,,,,,:
B [
27 % 06} |
e 2|/ o |
| — oall Y
Ay - —NCSR ol - —NCSR
- — K-SVD - — K-SV
2 0.2
0 10 2 30 40 5 60 0 10 20 30 40 5 60
Iterations Iterations
"ChangE-3' image "ChangE-3' image
25 08
A e e R s o
4 [T =
v |/ ’f/
z) 7061 |
o) |
I ——DPLG | —DPLG
J
2ii — NeRR 0/ — NesR
- — K-SVD | - — K-SV
21 04
0 10 20 30 40 5 60 0 10 2 30 4 5 60
Iterations Iterations
(a) the plots of PSNR verus iterations (b) the plots of SSIM verus terations
Fig. 6. (a) The PSNR values versus iterations by using DPLG, NCSR and

KSVD when ¢ = 50; (b) The SSIM values versus iterations by using DPLG,
NCSR and KSVD when ¢ = 50.

The SCLW and NSCDL denoising methods all exploit
external statistics information from a clean training image
set and the internal statistics from the observed noisy image.
The SCLW learns the dictionary from external and internal
examples, and the NSCDL learns the coupled dictionaries from
clean natural images and exploits the non-local similarity from
the test noisy images. The SSDA and SDAE adopt the same
denoising technique, (i.e., learning a denoised mapping using a
stacked Denoising Auto-encoder algorithm with sparse coding
characteristics and a deep neural network structure [37]).
Their aims are to find the mapping relations from noisy image
patches to noise-free image patches by training on a large scale
of external natural image set. Table IV shows the comparison
of the DPLG with several internal-external denoising methods
and external denoising methods, in terms of characteristics
and the denoising performance on benchmark images. Our
experiments show that the joint utilization of external and
internal examples generally outperforms either stand-alone
method, but no method is the best for all images. For
example, our DPLG can obtain the best denoising result on
the House benchmark image by using only the smoothing,
sparseness and non-local self-similarity of the noisy image.
Furthermore, our DPLG still maintains a better performance
than the two external denoising methods SSDA and SDAE.

Noisy Image PSHR:14.1378, S5IH:0.21402

DPLG, PSKR:30.0423, SSIM:0.81602

DPLG, PSNR:24.2365, SSIM.0 67535

4

WCSR, PSNR:29.7374: SSIM:0.79692

E-SVD, PSNR:2B.05473 5S5IH:0.763086

Fig. 7. The performance of the denoised ‘House’ image and ‘ChangE-3’
image at noise variance = 50 by using three iteration algorithms: DPLG,
NCSR and K-SVD, which are iterated 60 times. Our DPLG method achieves
the best denoised results (with corresponding to the second row, the denoised
‘House’ image, PSNR: 30.042, SSIM: 0.81602, and the denoised ‘ChangE-3’
image, PSNR: 24.2365, SSIM: 0.67538) of the several methods.

3) Comparing With lIteration Denoising Methods: Our
DPLG method is an iterative method that allows the dictionary
pair to be updated using the last denoised result and then
obtains better 2D representations of the noisy patches from
the noisy image. Fig. 6 and Fig. 7 show the denoising
results of two typical noisy images (“House” and “ChangE-3")
with strong noise corruption (noise variance = 50) after
60 iterations. The experimental results empirically demonstrate
the convergence of the DPLG, as shown in Fig. 6. As the
number of iterations increases, the denoised results get better.
Fig. 6(a)-(b) display the plots of their PSNR values and SSIM
values versus iterations, respectively. Comparing with two
known iterative methods: K-SVD and NCSR, Fig.6 shows

D;mﬁé }”} Hil TR R
Tl
s

15 25 3% 45 55 BO YO BD 80 100
Noise variance ¢

X Hﬁﬂﬁ -
LT

15 25 35 45 55 EBO 7O 8O0 90 100
Noise variance ¢

(b)

Fig. 8. The distribution of the SSIM and PSNR values of denoising 100 noisy
images corrupted by different noises by using NCSR, BM3D, KSVD and our
DPLG algorithm. (a) The distribution of SSIM values. (b) The distribution of
PSNR values.

that our DPLG has a more rapidly increasing speed of
PSNR and SSIM versus the iterations. It shows that our
algorithm can achieve the best denoising performance among
several iterative methods. The DPLG has competitive perfor-
mance for reconstructing the smooth, the texture and the edge
regions, as shown in the second row of Fig. 7.

C. Experiments on BSD Test Images

To further demonstrate the performance of the proposed
DPLG method, the image denoising experiments were also
conducted on 100 test images from the public benchmark
Berkeley Segmentation Dataset [40]. Aiming at 10 different
noisy versions of these images, that is, corresponding to a
total of 1000 noisy images, the comparison experiments were
completed by respectively running the NCSR, BM3D, K-SVD
and our DPLG method. In the experiments, the parameter set-
tings for the DPLG are the same as in the above experiments.
Under the different Gaussian noise corruption, the average
PSNR and SSIM values of 100 noisy images are shown
in Fig. 8. Our DPLG method can achieve the best total per-
formance for restoring the perceptual visual effect, as shown
in the distribution of the SSIM values of 100 denoised images
by four methods in Fig. 8(a), and has competitive performance
for reconstructing pixel intensity, as shown in the distribution
of the PSNR values of 100 denoised images in Fig. 8(b).

V. CONCLUSION

In this paper, we proposed a DPLG algorithm which is a
novel 2D image denoising method working on Grassmann
manifolds and leading to state-of-the-art performance. The
DPLG algorithm has three primary advantages: 1) the adaptive
dictionary pairs are rapidly learned via subspace partitioning
and sub-dictionary pair merging on the Grassmann manifolds;
2) 2D sparse representations are notably easy to obtain;
and 3) a graph Laplacian operator makes 2D sparse code
representations vary smoothly for denoising. Moreover,
extensive experimental results achieved on the benchmark
images and the Berkeley segmentation datasets demonstrated
that our DPLG algorithm can obtain better-than-average
performance for restoring the perceptual visual effect than
the state-of-the-art internal denoising methods. In the future,
we would consider several potential problems, such as learning
3D multiple dictionaries for video denoising and exploring
the fusion of manifold denoising and multi-dimensional
sparse coding techniques.

APPENDIX A
THE PROOF OF THEOREM 1 IN SECTION III-A
We give a simple proof of Theorem 1.
Proof: - Ay and A, are two D x m-dimensional column-
orthogonal matrixes.
AITAQ is a m-dimensional matrix.
According to the SVD decomposition of the matrix AlTAz,
if A1, 42, ..., Ay are m eigen-values from the largest to the
smallest, and U, V are two m-dimensional orthogonal matrixes
corresponding to the eigen-values A1, 42, ..., Ay, then

UTAT AV =diag(l, 22, ...y Am)
And ‘' V is a m x m orthogonal matrix.

.. A2V is a rotation transformation of subspace A; by the
rotation matrix V, that is:

span(Az) = span(AyV)

Similarly, the same equation span(Ai) = span(A1U).
Let uy and v of Eq.(11) respectively be the k —th column
of matrixes A and A,, that is:

lug,up, ... up, ..., uy] = A1U
[01,02;-~-»Uk»~-~;vm] :AZV
then,
diag(cosby,...,cosb,...,cosby)

- [ul»MZ,~-~,uk,~-~,um]T[Ul,02,-~-,Uk»~-~,vm]

=UTAT AV

=diag(A1, A2, ..., Am).

O
APPENDIX B

THE PROOF OF THEOREM 2 IN SECTION III-B
Proof: Considering the first term of Eq. (14).
.~ X; is the corrupted image patch by noise N(0,), and
S; is the code of the corresponding clear patch.
And

E (1AL xi B — 5ill) = E (1A (Xi — AusiBL) Bl)

According to Eq.(18), A S; BkTi is the reconstruction of the
clear image patch, {Ay;, By} are the orthogonal dictionary
pair.

o E(IALXi By — Sil) = 02

As for the second term of Eq. (14). According to that the
Fi-norm ||S; — Sj|lF,1 obeys to the Laplacain distribution
in Eq. (6)

LEGQ Y wiillSi = Sillen) =y EQ wi E(ISi = SjlIF.1)
j =)’E(Z]: wij~207)
= yE(«}%i > wiy)

= yE(fza,-),j (o> wij=1)
B j

For preserving the scaling consistency, the ratio of two terms

should be equal to 1.
Lo _ _ V20
"y\/im_1©7’_az' O

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their help.

REFERENCES

[1] P. Chatterjee and P. Milanfar, “Is denoising dead?” IEEE Trans. Image
Process., vol. 19, no. 4, pp. 895-911, Apr. 2010.

[2] C. Sutour, C.-A. Deledalle, and J.-F. Aujol, “Adaptive regularization of
the NL-means: Application to image and video denoising,” IEEE Trans.
Image Process., vol. 23, no. 8, pp. 3506-3521, Aug. 2014.

[3] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for
image denoising and compression,” IEEE Trans. Image Process., vol. 9,
no. 9, pp. 1532-1546, Sep. 2000.

[4] C.-H. Xie, J.-Y. Chang, and W.-B. Xu, “Medical image denoising by
generalised Gaussian mixture modelling with edge information,” IET
Image Process., vol. 8, no. 8, pp. 464476, Aug. 2014.

[5] J.-L. Starck, E. J. Candes, and D. L. Donoho, “The curvelet transform
for image denoising,” IEEE Trans. Image Process., vol. 11, no. 6,
pp. 670-684, Jun. 2002.

[6] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2,
pp. 490-530, Feb. 2005.

[7] 1. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image
denoising using scale mixtures of Gaussians in the wavelet domain,”
IEEE Trans. Image Process., vol. 12, no. 11, pp. 1338-1351, Nov. 2003.

[8] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. CVPR, vol. 2. Jun. 2005,
pp. 60-65.

[9]1 A. Rajwade, A. Rangarajan, and A. Banerjee, “Image denoising using

the higher order singular value decomposition,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 35, no. 4, pp. 849-862, Apr. 2013.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising

by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.

Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.

M. Elad and M. Aharon, “Image denoising via sparse and redundant

representations over learned dictionaries,” IEEE Trans. Image Process.,

vol. 15, no. 12, pp. 3736-3745, Dec. 2006.

W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse

representation for image restoration,” IEEE Trans. Image Process.,

vol. 22, no. 4, pp. 1620-1630, Apr. 2013.

[13] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep

neural networks,” in Proc. Adv. NIPS, Dec. 2012, pp. 350-358.

H. Li, “Deep learning for image denoising,” Int. J. Signal Process.,

Image Process. Pattern Recognit., vol. 7, no. 3, pp. 171-180, Mar. 2014.

(10]

(11]

[12]

(14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Z. Y. Wang, Y. Z. Yang, J. C. Yang, and T. S. Huang, “Design-
ing a composite dictionary adaptively from joint examples,” in Proc.
IEEE Comput. Soc. Conf. CVPR, Jun. 2015. [Online]. Available:
http://arxiv.org/pdf/1503.03621.pdf

L. Chen and X. Liu, “Nonlocal similarity based coupled dictionary
learning for image denoising,” J. Comput. Inf. Syst., vol. 9, no. 11,
pp. 4451-4458, Nov. 2013.

S. Hawe, M. Kleinsteuber, and K. Diepold, “Analysis operator learn-
ing and its application to image reconstruction,” IEEE Trans. Image
Process., vol. 22, no. 6, pp. 2138-2150, Jun. 2012.

P. Chatterjee and P. Milanfar, “Clustering-based denoising with locally
learned dictionaries,” IEEE Trans. Image Process., vol. 18, no. 7,
pp. 1438-1451, Jul. 2009.

W. Zuo, L. Zhang, C. Song, and D. Zhang, “Texture enhanced image
denoising via gradient histogram preservation,” in Proc. IEEE Comput.
Soc. Conf. CVPR, Jun. 2013, pp. 1203-1210.

J. Ye, “Generalized low rank approximations of matrices,” Mach. Learn.,
vol. 61, nos. 1-3, pp. 167-191, Nov. 2005.

J. Yang, D. Zhang, A. F. Frangi, and J.-Y. Yang, “Two-dimensional
PCA: A new approach to appearance-based face representation and
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 1,
pp. 131-137, Jan. 2004.

S.-J. Wang, J. Yang, M.-F. Sun, X.-J. Peng, M.-M. Sun, and C.-G. Zhou,
“Sparse tensor discriminant color space for face verification,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 23, no. 6, pp. 876-888, Jun. 2012.
S.-J. Wang, J. Yang, N. Zhang, and C.-G. Zhou, “Tensor discriminant
color space for face recognition,” IEEE Trans. Image Process., vol. 20,
no. 9, pp. 2490-2501, Sep. 2011.

J. Liang, Y. He, D. Liu, and X. Zeng,“Image fusion using higher order
singular value decomposition,” IEEE Trans. Image Process., vol. 21,
no. 5, pp. 2898-2909, May 2012.

A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regu-
larization on weighted graphs: A framework for image and manifold
processing,” IEEE Trans. Image Process., vol. 17, no. 7, pp. 1047-1060,
Jul. 2008.

M. Hein and M. Maier, “Manifold denoising,” in Proc. Adv. NIPS,
Jun. 2006, pp. 561-568.

M. Zheng et al., “Graph regularized sparse coding for image represen-
tation,” IEEE Trans. Image Process., vol. 20, no. 5, pp. 1327-1336,
May 2011.

S.-J. Wang, S. Yan, J. Yang, C.-G. Zhou, and X. Fu, “A general expo-
nential framework for dimensionality reduction,” IEEE Trans. Image
Process., vol. 23, no. 2, pp. 920-930, Feb. 2014.

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Comput., vol. 15, no. 6,
pp. 1373-1396, Jun. 2003.

X. Wang, Z. Li, and D. Tao, “Subspaces indexing model on Grassmann
manifold for image search,” IEEE Trans. Image Process., vol. 20, no. 9,
pp. 2627-2635, Sep. 2011.

X. H. Zeng, S. W. Luo, J. Wang, and J. L. Zhao, “Geodesic distance-
based generalized Gaussian Laplacian eigenmap,” Ruan Jian Xue Bao/J.
Softw., vol. 20, no. 4, pp. 815-824, Apr. 2009.

J. Hamm, “Subspace-based learning with Grassmann manifolds,”
Ph.D. dissertation, Dept. Elect. Syst. Eng., Univ. Pennsylvania, Philadel-
phia, PA, USA, 2008.

P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa, “Sta-
tistical computations on Grassmann and Stiefel manifolds for image
and video-based recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 11, pp. 2273-2286, Nov. 2011.

G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, MD, USA: The Johns Hopkins Univ. Press, 1996.

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
mun. Pure Appl. Math., vol. 57, no. 11, pp. 1413-1457, Nov. 2004.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, no. 3, pp. 3371-3408, Mar. 2010.

K-SVD. [Online]. Available: http://www.cs.technion.ac.il/~elad/software/,
accessed Mar. 14, 2014.

Lander and Rover Capture Photos of Each Other. [Online].
Available: http://english.cntv.cn/20131215/104015_1.shtml, accessed
May 20, 2014.

Berkeley Segmentation DataSet (BSDS). [Online]. Available:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/fg/,
accessed Jun. 13, 2014.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2015

	Dictionary Pair Learning on Grassmann Manifolds for Image Denoising
	Xianhua ZENG
	Wei BIAN
	Wei LIU
	Jialie SHEN
	Dacheng TAO
	Citation

	untitled

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

