3,549 research outputs found

    LambdaOpt: Learn to Regularize Recommender Models in Finer Levels

    Full text link
    Recommendation models mainly deal with categorical variables, such as user/item ID and attributes. Besides the high-cardinality issue, the interactions among such categorical variables are usually long-tailed, with the head made up of highly frequent values and a long tail of rare ones. This phenomenon results in the data sparsity issue, making it essential to regularize the models to ensure generalization. The common practice is to employ grid search to manually tune regularization hyperparameters based on the validation data. However, it requires non-trivial efforts and large computation resources to search the whole candidate space; even so, it may not lead to the optimal choice, for which different parameters should have different regularization strengths. In this paper, we propose a hyperparameter optimization method, LambdaOpt, which automatically and adaptively enforces regularization during training. Specifically, it updates the regularization coefficients based on the performance of validation data. With LambdaOpt, the notorious tuning of regularization hyperparameters can be avoided; more importantly, it allows fine-grained regularization (i.e. each parameter can have an individualized regularization coefficient), leading to better generalized models. We show how to employ LambdaOpt on matrix factorization, a classical model that is representative of a large family of recommender models. Extensive experiments on two public benchmarks demonstrate the superiority of our method in boosting the performance of top-K recommendation.Comment: Accepted by KDD 201

    On the adequacy of untuned warmup for adaptive optimization

    Full text link
    Adaptive optimization algorithms such as Adam are widely used in deep learning. The stability of such algorithms is often improved with a warmup schedule for the learning rate. Motivated by the difficulty of choosing and tuning warmup schedules, recent work proposes automatic variance rectification of Adam's adaptive learning rate, claiming that this rectified approach ("RAdam") surpasses the vanilla Adam algorithm and reduces the need for expensive tuning of Adam with warmup. In this work, we refute this analysis and provide an alternative explanation for the necessity of warmup based on the magnitude of the update term, which is of greater relevance to training stability. We then provide some "rule-of-thumb" warmup schedules, and we demonstrate that simple untuned warmup of Adam performs more-or-less identically to RAdam in typical practical settings. We conclude by suggesting that practitioners stick to linear warmup with Adam, with a sensible default being linear warmup over 2/(1β2)2 / (1 - \beta_2) training iterations.Comment: AAAI 202

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    A Hit-and-Run approach for generating scale invariant Small World networks

    Full text link
    Hit-and-Run is a well-known class of Markov chain algorithms for sampling from essentially arbitrary distributions over bounded regions of the Euclidean space. We present a class of Small World network models constructed using Hit-and-Run in a Euclidean ball. We prove that there is a unique scale invariant model in this class that admits efficient search by a decentralized algorithm. This research links two seemingly unrelated areas: Markov chain sampling techniques and scale invariant Small World networks, and may have interesting implications for stochastic search methods for continuous optimization. © 2008 Wiley Periodicals, Inc. NETWORKS, 2009Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/61434/1/20262_ftp.pd
    corecore