137 research outputs found

    Least 1-Norm Pole-Zero Modeling with Sparse Deconvolution for Speech Analysis

    Get PDF

    Maximum A Posteriori Deconvolution of Sparse Spike Trains

    Get PDF

    Guarantees of Riemannian Optimization for Low Rank Matrix Completion

    Full text link
    We study the Riemannian optimization methods on the embedded manifold of low rank matrices for the problem of matrix completion, which is about recovering a low rank matrix from its partial entries. Assume mm entries of an n×nn\times n rank rr matrix are sampled independently and uniformly with replacement. We first prove that with high probability the Riemannian gradient descent and conjugate gradient descent algorithms initialized by one step hard thresholding are guaranteed to converge linearly to the measured matrix provided \begin{align*} m\geq C_\kappa n^{1.5}r\log^{1.5}(n), \end{align*} where CÎșC_\kappa is a numerical constant depending on the condition number of the underlying matrix. The sampling complexity has been further improved to \begin{align*} m\geq C_\kappa nr^2\log^{2}(n) \end{align*} via the resampled Riemannian gradient descent initialization. The analysis of the new initialization procedure relies on an asymmetric restricted isometry property of the sampling operator and the curvature of the low rank matrix manifold. Numerical simulation shows that the algorithms are able to recover a low rank matrix from nearly the minimum number of measurements

    Blind Image Deblurring Driven by Nonlinear Processing in the Edge Domain

    Get PDF
    This work addresses the problem of blind image deblurring, that is, of recovering an original image observed through one or more unknown linear channels and corrupted by additive noise. We resort to an iterative algorithm, belonging to the class of Bussgang algorithms, based on alternating a linear and a nonlinear image estimation stage. In detail, we investigate the design of a novel nonlinear processing acting on the Radon transform of the image edges. This choice is motivated by the fact that the Radon transform of the image edges well describes the structural image features and the effect of blur, thus simplifying the nonlinearity design. The effect of the nonlinear processing is to thin the blurred image edges and to drive the overall blind restoration algorithm to a sharp, focused image. The performance of the algorithm is assessed by experimental results pertaining to restoration of blurred natural images

    Detection and restoration of click degraded audio based on high-order sparse linear prediction

    Get PDF
    Clicks are short-duration defects that affect most archived audio media. Linear prediction (LP) modeling for the representation and restoration of audio signals that have been corrupted by click degradation has been extensively studied. The use of high-order sparse linear prediction for the restoration of clickdegraded audio given the time location of samples affected by click degradation has been shown to lead to significant restoration improvement over conventional LP-based approaches. For the practical usage of such methods, the identification of the time location of samples affected by click degradation is critical. High-order sparse linear prediction has been shown to lead to better modeling of audio resulting in better restoration of click degraded archived audio. In this paper, the use of high-order sparse linear prediction for the detection and restoration of click degraded audio is proposed. Results in terms of click duration estimation, SNR improvement and perceptual audio quality show that the proposed approach based on high-order sparse linear prediction leads to better performance compared to state of the art LP-based approaches.&nbsp

    New Negentropy Optimization Schemes for Blind Signal Extraction of Complex Valued Sources

    Get PDF
    Blind signal extraction, a hot issue in the field of communication signal processing, aims to retrieve the sources through the optimization of contrast functions. Many contrasts based on higher-order statistics such as kurtosis, usually behave sensitive to outliers. Thus, to achieve robust results, nonlinear functions are utilized as contrasts to approximate the negentropy criterion, which is also a classical metric for non-Gaussianity. However, existing methods generally have a high computational cost, hence leading us to address the problem of efficient optimization of contrast function. More precisely, we design a novel “reference-based” contrast function based on negentropy approximations, and then propose a new family of algorithms (Alg.1 and Alg.2) to maximize it. Simulations confirm the convergence of our method to a separating solution, which is also analyzed in theory. We also validate the theoretic complexity analysis that Alg.2 has a much lower computational cost than Alg.1 and existing optimization methods based on negentropy criterion. Finally, experiments for the separation of single sideband signals illustrate that our method has good prospects in real-world applications

    Sparse deconvolution using support vector machines

    Get PDF
    Sparse deconvolution is a classical subject in digital signal processing, having many practical applications. Support vector machine (SVM) algorithms show a series of characteristics, such as sparse solutions and implicit regularization, which make them attractive for solving sparse deconvolution problems. Here, a sparse deconvolution algorithm based on the SVM framework for signal processing is presented and analyzed, including comparative evaluations of its performance from the points of view of estimation and detection capabilities, and of robustness with respect to non-Gaussian additive noise.Publicad
    • 

    corecore