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ABSTRACT 

Clicks are short-duration defects that affect 
most archived audio media. Linear 
prediction (LP) modeling for the 
representation and restoration of audio 
signals that have been corrupted by click 
degradation has been extensively studied. 
The use of high-order sparse linear 
prediction for the restoration of click-
degraded audio given the time location of 
samples affected by click degradation has 
been shown to lead to significant restoration 
improvement over conventional LP-based 
approaches. For the practical usage of such 
methods, the identification of the time 
location of samples affected by click 
degradation is critical. High-order sparse 
linear prediction has been shown to lead to 
better modeling of audio resulting in better 
restoration of click degraded archived 
audio. In this paper, the use of high-order 
sparse linear prediction for the detection 
and restoration of click degraded audio is 
proposed. Results in terms of click duration 
estimation, SNR improvement and 
perceptual audio quality show that the 
proposed approach based on high-order 
sparse linear prediction leads to better 
performance compared to state of the art 
LP-based approaches. 

Index Terms: Click degradation, Missing 
sample estimation, High-order sparse linear  

Prediction, linear prediction, Backward 
prediction 

INTRODUCTION 

According to [1] click degradation refers to 
“localized artifacts which occur at random 
positions in an audio signal”. These are 
often due to physical damages on medium 
and annoying to listen to. Clicks can be 
modeled as additive or as replacement 
degradation. An additive model, where the 
click degradation is assumed to be added to 
the underlying audio signal, has been shown 
to be acceptable for most surface defects in 
recording media, such as dust, dirt and small 
scratches [1]. A replacement model, where 
the degradation replaces the signal entirely 
for some short period of time, maybe 
applicable for breakages and large surface 
scratches which may completely destroy the 
underlying signal information. Generally, 
restoration of click-degraded audio can be 
seen as missing sample estimation if the 
underlying signal during the occurrence of 
the click is assumed to be lost and the time 
location of the click degradation is known. 
A method used for the restoration of click-
degraded audio should only modify samples 
that are affected by click degradation by 
utilizing properties of the underrated signal 
before and after the degraded signal 
segment. To avoid unnecessary distortion of 
the sample values that are not degraded a 
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detection stages first carried out to locate 
samples that are affected by click 
degradation. Restoration is then carried out 
only for the samples on these detected 
sample locations. 

The detection of click degraded samples, in 
short, click detection, can be cast in a 
statistical framework as the detection of 
samples that are not generated from the 
same random process as the underrated 
audio signal [1]. From this perspective, click 
detection becomes equivalent to outlier 
detection which is a widely researched 
problem in the field of statistical data 
analysis. Some of the most widely used click 
detection methods are based on linear 
filtering and autoregressive modeling. 

x Highpass Filtering: This approach is 
based on the assumption that most audio 
signals contain little energy at high 
frequencies (greater than 10 kHz), while 
clicks have spectral content at all 
frequencies. Therefore, by using a high 
pass filter, clicks can be enhanced relative 
to the underlying signal [1]. Time domain 
power thresholding can be used after the 
filtering to detect those segments of the 
audio signal degraded by clicks. This 
method is one of the earliest click 
detection methods used in both analog and 
digital audio equipment [1]. It is simpleton 
implement with only the filter cutoff 
frequency and the detection threshold as 
parameters. The method will fail if the 
clicks are band-limited or if the signal has 
high frequency content, such as high-
pitched musical instruments. 

x Autoregressive (AR) model-based 
click detection: Model-based click 
detection methods use prior information 
about the underrated signal and the clicks 
into the detection procedure in the form of 
hypothesized signal models. In this 
approach, the underrated audio signal is 
assumed to be drawn from a short-term 

stationary process while the clicks are 
assumed to behave as impulsive noise. This 
AR modeling is very effective for human 
speech representation and is the basis for 
different audio signal representation 
schemes ranging from audio encoding, 
audio compression and audio feature 
extraction [2]. 

 
For AR modeling of an underrated audio 
signal, the prediction error is expected to 
take on small values while the prediction 
error will be large if an impulsive noise that 
is not correlated with the underrated audio 
signal replaces the signal. Therefore, clicks 
can be detected by inverse filtering an 
audio signal using an AR model prediction 
error filter (PEF) and by thresholding the 
prediction error [1], [3], [4], [5], [6]. The 
limitations of this approach and researches 
conducted to address these are discussed 
below. 

The PEF will spread a single impulse over 
future samples thereby creating interference 
with other impulses located in close 
proximity. This may make detection 
threshold selection problematic. 

It is difficult to estimate the end time of a 
click due to the forward smearing effect of 
the PEF. Backward prediction has been used 
successfully to resolve this problem [1]. 

If the underlying audio signal is not 
produced by an AR process, the AR model 
may not well represent the signal and the 
prediction error may be large. In this case, 
false positives may be reported. This maybe 
the case for voiced speech and high-pitched 
musical notes where the AR model order 
may not be large enough. Autoregressive 
moving average (ARMA)modeling and 
high-order linear prediction have been 
proposed to better represent musical signals 
[1], [2],[7]. 
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Several methods have been proposed for the 
restoration of click-degraded audio. The 
Least Squares (LS) estimation of the AR 
model coefficients, in the sequel referred to 
as linear prediction (LP) minimizes the 
square error (MSE) criterion assuming that 
the AR model excitation signal has a 
Gaussian distribution. It assumes that the 
underrated audio signal is generated by 
passing a white noise excitation through an 
all-pole filter and that the click-degraded 
samples are mutually independent and 
drawn from a Gaussian zero-mean process. 
The click-degraded samples can then be 
restored by LP-based interpolation from a 
priori knowledge of the LP coefficients of 
the undegraded audio signal, of the 
undegraded samples and of the time location 
of the click-degraded samples. 

One of the limitations of the LP-based 
interpolator is the unavailability of the LP 
coefficients of the underrated signal. An iterative 
procedure for estimating the LP coefficients and 
then interpolating the missing samples was 
proposed by Janssen et al. [8] applying the 
Levinson-Durbin recursion in each iteration. 
Even though this approach works well for 
unvoiced speech [7], it is not suitable for music 
and voiced speech, where the AR model 
excitation is quasi-periodic and spiky [8]. For 
voiced speech and music, the minimization of 
the MSE, i.e., the l2-norm of the LP vector 
residual puts more emphasis on the periodic 
spikes of the residual [2].This problem could be 
resolved by including a pitch predictor in the AR 
model to estimate long-term correlation. 
However, this ignores the interaction between 
the long-term and short-term predictors, leading 
to a sub-optimal result. Joint optimization of the 
long-term and short-term predictors was 
proposed in [9]. Recently a method for the joint 
detection and restoration of click-degraded 
archived audio that uses a joint evaluation of 
signal prediction errors and leave-one-out signal 
interpolation errors was proposed [6]. It is based 
on thresholding the prediction error for click 
detection followed by multi-step ahead signal 
prediction. In this approach, the LP 

coefficients are estimated by the Levinson-
Durbin recursion and restorations done by 
LS interpolation. The use of the 
conventional LP, i.e., short-term LP may 
limit the performance of this approach. 

A better decoupling between the LP-based 
modeling of spectral envelope and pitch 
harmonics has been reported by using high-
order sparse linear prediction (HOSpLP) 
[7],[10], [11]. In our previous work [12], 
[13] the use of l1-norm regularized and l0-
norm regularized HOSpLP for the 
restoration of click-degraded audio given the 
time location of the click degradations has 
been investigated. Extensive simulations 
showed that the use of HOSpLP results in 
improved restoration performance compared 
to [8] in terms of signal-to-noise ratio (SNR) 
and perceptual evaluation of audio quality 
(PEAQ). In this paper the use of HOSpLP 
coefficients for the detection of click-
degraded samples and restoration of these 
samples that works for both speech and 
music without priori on the type of audio is 
proposed. This will significantly decrease 
the need for manual annotation (speech vs. 
music) and segmentation (undegraded vs. 
degraded segments) needed for practical 
application. 

The contribution of this paper is twofold. 
First, we extend the use of HOSpLP, 
proposed in [12], [13] for the restoration of 
click-degraded audio, to click detection. 
Second, a unified detection and restoration 
method based on HOSpLP coefficients is 
proposed. Simulation results are included to 
show the superior performance of the 
proposed HOSpLP coefficients for detection 
as well as restoration of click-degraded 
audio in comparison to state-of -the-art LP-
based approach. The organization of the 
paper is as follows. Section informally 
discusses the HOSpLP coefficients 
considering both l1-norm and l0-norm 
regularization to induce sparsity. Section III 
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discusses the problem of click detection and 
proposes two click detection approaches 
based on HOSpLPcoefficients. Section IV 
unifies the detection and restoration 
problem. Section V discusses the data, the 
artificial click degradation and the 
performance measures used in the 
simulations. Section VI presents simulation 
results on click detection and restoration and 
a comparative performance evaluation to 
state-of-the-art approaches. Finally, Section 
VII concludes the paper. 

HIGH-ORDER SPARSE LINEAR 
PREDICTION 

Linear prediction (LP) is a well-understood 
and widely used method for the analysis, 
modeling, and coding of speech signals [2]. 
Its success is due to its alignment with the 
source filter model of the speech generation 
process [14]. It has been shown that a slowly 
time-varying, low-order all-pole filter can be 
used to model the vocal tract. The glottal 
excitation is modeled as either an impulse 
train for voiced sounds or a white noise 
sequence for unvoiced sounds. The purpose 
of all-pole modeling through LP is to obtain 
a short-term predictor that characterizes the 
spectral envelope of the vocal tract response. 

The LP coefficient vector a can be estimated 
for a frame of observed samples x by 
solving the following optimization problem 
[7] 

𝒂 = argmin𝒂 𝒙 − 𝑿𝒂 𝑝
𝑝 + 𝛾 𝒂 𝑘

𝑘  (1) 

Where 

𝑿 =  
𝑥𝑁1−1 … 𝑥𝑁1−𝑃

⋮ ⋱ ⋮
𝑥𝑁2−1 … 𝑥𝑁2−𝑃

  

𝒂 =  𝑎1  …  𝑎𝑃  
𝒙 =  𝑥𝑁1  …  𝑥𝑁2  
P is the order of the LP model 
𝑁1 are the start and end indices of the 

and 
𝑁2 

frame under consideration. 

γ is a regularization parameter 
 

The lp-norm operator ||.||p is defined as 

=    𝑥𝑛 𝑝𝑁2
𝑛=𝑁1  

1
𝑝                                       (2)  

For conventional LP solved via the 
Levinson-Durbin algorithm, the l2-norm is 
used, p = 2, and no structure on the 
coefficient vector is imposed, γ = 0. 
Furthermore, the prediction order is usually 
set to a small value corresponding to twice 
of the number of formant frequencies to be 
modeled. Even though such modeling works 
well for unvoiced speech where the 
excitation can be modeled as white noise 
[7], it is not a good model for music and 
voiced speech, where the excitation is quasi-
periodic and spiky [8]. For voiced speech, 
the excitation is appropriately modeled as 
periodic pulse train corresponding to the 
glottal output. As such the minimization of 
the l2-norm of the residual puts more 
emphasis on the periodic spikes of the 
residual [2].As a result, it tradeoff short-term 
prediction, i.e., spectral envelope, estimation 
accuracy against the long-term prediction, 
i.e., pitch estimation accuracy [2]. As the 
aim of conventional LP is to model the vocal 
tract and not the glottal excitation, this leads 
to a suboptimal solution. 

For musical sounds or tonal audio for which 
the signal contains a finite number of 
dominant frequency components, the LP 
model is much less popular than in speech 
analysis as the generation of musical sounds 
is dependent on the instruments used [2]. 
This makes it hard to use a generic audio 
signal generation model [2]. In addition, 
each polyphonic audio signal should be 
modeled using multiple source-filter models 
[2], [14]. In the absence of noise, by using a 
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model order which is twice the number of 
tonal components, LP can be used to 
estimate the spectral peaks. In practice, 
noise is always present that may be due to 
imperfections in the tonal behavior, or lack 
of tonal behavior, finite precision arithmetic, 
finite-length data windowing or background 
or sensor noise. Therefore, such LP signal 
estimates are very often poor. In [2] 
extensive simulations were conducted to 
assess the performance of conventional and 
alternative LP models for tonal audio 
analysis in the presence of noise. It was 
reported that high-order all-pole models are 
better suited to the audio LP problem albeit 
being impractically complex in many 
applications due to the excessive number of 
LP coefficients. 

One of the most recent approaches to LP is 
sparse linear prediction (SpLP), which takes 
into consideration the sparsity of the residual 
and the LP coefficients. When applied to 
high-order all-pole models, SpLP is referred 
to as high-order sparse linear prediction 
(HOSpLP). A better decoupling between the 
spectral envelope and pitch estimation has 
been reported by using HOSpLP [7], [10], 
[11], [12], [13]. While the high-order all-
pole method used in [2] minimize the l2-
norm of the residual to obtain the LP 
coefficients, the HOSpLP methods impose 
sparsity of the residual and the coefficient 
vector in the optimization problem. 

A. l1-norm regularized HOSpLP 

By imposing sparsity of the residual in the 
LP problem formulation the emphasis on 
outliers in the solution to (1) can be 
decreased [7]. That is by considering a 
sparsity-inducing norm of the residual 
vector instead of the l2-norm. The convex 
relaxation of the „l0-norm‟ cardinality 
problem has been proposed to lead to a 
sparser residual [7] 

In addition, by using a high-order all-pole model 
and imposing sparsely of the coefficient vector 
in (1), by setting γ=0 and k = 1, joint estimation 
of the short-term predictor and the long-term 
predictor can be achieved [7] as in (3). 

𝒂 = argmin𝒂 𝒙 − 𝑿𝒂 1                               (3)  

This results from the observation that a 
cascade of a long-term and short-term 
predictor results in a filter that has few non-
zero coefficients [14]. Therefore, the 
sparsity of the coefficient vector can be used 
to regularize the solution. The purpose of the 
HOSpLP coefficients obtained by solving 
(4) is to model the whole spectrum, i.e., the 
pitch related harmonics and the spectral 
envelope. 

= argmin𝒂 𝒙 − 𝑿𝒂 11 + 𝛾 𝒂 11                  (4)  

The problem in (4) is convex but not 
differentiable. However, it can be solved via 
splitting methods such as the alternating 
direction method of multipliers (ADMM) by 
reformulating the problem as a basis pursuit 
problem [15]. The regularization parameter, γ, 
determines the trade-off between the sparsity of 
the predictor coefficients and the sparsity of the 
residual. The modified L-curve [16] has been 
used to obtain an optimum value for the 
regularization parameter in[11]. In [11] an 
adaptive algorithm was proposed for estimating 
the regularization parameter based on the 
observation that the optimal γ is related to the 
pitch gain. 

To solve the problem of obtaining the short-
term and long-term predictors from a 
HOSpLP coefficient vector, a, the first few, 
Nf, coefficients of the HOSpLP coefficient 
vector been used to represent the short-term 
predictor in [7]. After this, a polynomial 
factorization can be carried out to obtain the 
long-term predictor after selection of the 
number of taps in the long-term predictor, 
typically Np= 1 or Np= 3. 
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The use of the l1-norm in HOSpLP has been 
shown to outperform conventional LP in the 
estimation of spectral envelope, sparse LP 
coefficients and sparse residual [7]. With 
regards to stability of the obtained short-
term filters, it has been shown in [7] that the 
percentage of unstable filters is very low 
(around 2%) with “mild” instability. 

B. l0-norm regularized HOSpLP 

The prior knowledge of the structure of the 
coefficient vector resulting from cascading a 
long-term and short-term predictors can also 
be incorporated in the HOSpLP optimization 
problem as (5) [13], 

𝒂 = argmin𝒂 𝒙 − 𝑿𝒂 2
2s.t. 𝒂 0 ≤ Ψ   (5) 

   

Where Ψ is the sum of the filter order of the 
long-term and short-term predictors. 

This formulation does not impose a 
restrictive structure on the coefficient vector 
except that the coefficient vector has a fixed 
maximum number of non-zero coefficients. 
As such, it can give emphasis to the formant 
filter coefficients if the signaling the frame 
is composed of unvoiced speech and to the 
pitch or tonal components if the frame is 
composed of voiced speech or music. In [13] 
it was shown that the coefficients obtained 
by solving (5) correspond to the short-term 
and long-term predictor. As the location of 
the non-zero coefficients is neither 
incorporated into (5) nor dependent on a 
pitch predictor, prior information regarding 
the type of signal is not needed. In addition, 
the structure of the coefficient vector can 
change from frame to frame if the signal is 
composed of both speech and music. 

It should be mentioned that the use of the l1-
norm of the residual in (5) is expected to 
lead to better results as compared to l2-
norm. However, l1-norm of the residual in 

(5) is difficult to solve efficiently. 
Problem (5) is non-convex [17] which 
means that it a may have several local 
minima and its convex relaxation, the least 
absolute shrinkage and selection operation 
(LASSO), obtained with p=2 and k=1 in (1), 
is typically solved instead [17],[18]. 
Nevertheless, proximal gradient methods 
can efficiently solve (5) if a good 
initialization is given, e.g., the solution of 
LASSO [18]. In recent work, Antonello et. 
al [18] developed the Structured 
Optimization package for the Julia 
programming language that can solve (5) in 
a reasonable time. This package is used in 
this work to obtain l0-norm regularized 
HOSpLP coefficient vector. 

CLICK DETECTION 

In practice the time location of the click 
degradation is not known a priori, therefore 
click detection methods are needed. One of 
the most widely used click detection 
approaches consists in energy thresholding 
of the LP residual [1]. This approach is 
based on the assumption that the click 
degradations not generated from the same 
AR random process as the undegraded audio 
signal. Therefore, in the presence of click 
degradation the energy of the LP residual in 
that time frame will be much larger than the 
energy of the residual when click 
degradation is not present. It has been shown 
in other applications that significant 
improvement in noise detectability can be 
achieved by transforming the noisy speech 
to the excitation domain of the speech signal 
[19].  

In LP-based click detection methods, the 
energy of the LP residual at each sample is 
compared with an average residual energy of 
the frame as follows, 
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Where 

σe
2 is the variance of the LP residual, 

K  is a detection threshold, 

N is the frame length, 

i is a vector representing the presence 
or absence of click degradation at 
each sample value, in= 1 represents 
presence and in=0 represents absence 
of click degradation at the nth 

sample. 
In this approach the start of click degradation 
is accurately estimated [1]. However, the end 
of a click degradation cannot be accurately 
estimated due to the forward smearing effect 
over P + 1 samples, where P is the order of 
the AR model .To detect the end of a click, a 
moving average filter can be applied to see 
when the residual variance in a local window 
has energy lower than the threshold (or some 
scaled version of the threshold). However, 
this requires a precise tuning o the threshold 
and local window size to detect the end of a 
click degradation.  

When impulses are present in close vicinity 
to each other their impulse responses 
resulting from filtering with the PEF may add 
constructively to give a false detection or 
cancel one another out [1].In general, 
threshold selection is difficult when impulses 
of differing amplitudes are present.   The use 
of the backward prediction error for the 
detection of clicks has been proposed in [1], 
[20].  

This method takes advantage of the accurate 
LP-based start click identification. In this 
approach, once a click is detected and its start 
location identified, the backward prediction 
error is then used to detect the end of the 
click. By assuming that the time-reversed 

signal can be reasonably modeled as an AR 
process, the energy of the LP residual of the 
time-reversed signal near the identified click 
start location is evaluated to detect the end of 
the click degradation. The backward 
prediction error is defined as 

𝜖𝑛𝑏 = 𝑥𝑛 −  𝑏𝑖𝑥𝑛+𝑖𝑃
𝑖=1         (6) 

When these coefficients are obtained by 
using the conventional LP, the backward 
prediction error is composed of spikes due 
to the quasi-periodic excitation for voiced 
speech and music. This makes it difficult to 
select a threshold for the detection of the end 
of clicks without incorrectly selecting spikes 
due to the quasi-periodic excitation. 

In this paper, the HOSpLP coefficients are 
used in click detection, see Algorithm 1, by 
exploiting the fact that the short-term and 
the long-term predictors can be jointly 
estimated using HOSpLP leading to a 
residual that has less spiky nature due to the 
quasi-periodic excitation [7].  

As such, the backward prediction error in a 
local window near the identified click start 
can be used to estimate the end of the click 
without significantly being affected by a 
spiky residual. To avoid mislabeling un 
degraded samples between two click 
degradations that are close together, the 
backward prediction error is checked to be 
greater than the threshold in local window 
around the detected click start.  
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Where, 

x  is the click degraded signal vector; 

𝒙𝑩 is the time-reversed click degraded signal 
vector; 

I  is the estimated location of click; 
K  is the threshold value; 
N  is the number of samples in each frame; 
R  is the maximum number of ADMM 

iterations for l1-norm HOSpLP; 
W  is a local window size; 
γ is the regularization parameter for l1-norm 

HOSpLP; 

ζ  
is the residual stopping criterion for 
ADMM algorithm in l1-norm HOSpLP. 

 

The function COEFFICIENTS(x, P, R, γ) 
obtains the LP coefficients as follows. The 
function RESIDUE(x,â) obtains the residual 
error by inverse filtering the signal with a AR 
filter with coefficients â. 

• l1-norm regularized HOSpLP: the ADMM 
algorithm for solving the l1-norm regularized 
problem [15] is used to obtain the HOSpLP 
coefficients [12]. 

• l0-norm regularized HOSpLP: the l0-norm 
regularized problem (5) is solved via the 
Structured Optimization Julia package to obtain 
the HOSpLP coefficients [18]. 

IV. UNIFIED APPROACH FOR DETECTION 
ANDRESTORATION OF CLICK-
DEGRADEDAUDIO 
In this section, a unified approach is 
proposed that detects the location of click 
degraded-samples and restores these 
samples by using the HOSpLP coefficients 
without a prior knowledge on the type of 
audio and the time location and duration of 
the click degradation. 

A. Detection and restoration by using backward 
prediction and Janssen iteration 

Initially, the backward prediction based on 
l0-norm regularized HOSpLP coefficients is 
used to detect samples degraded by click 
degradation. Then these samples are restored 
by an iterative algorithm, see Algorithm 2, 
similar to the Janssen iteration [8], [17] but 
using l0-norm regularized HOSpLP for the 
restoration as this is shown to provide the 
best signal restoration performance [13]. 

 

Where 
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B. Benchmark method incorporating HOSpLP 
coefficients 

As a comparison, a recently proposed 
method by Ciołeket.al. [6] for the joint 
detection and restoration of click-degraded 
archived audio that uses a joint evaluation of 
signal prediction errors and leave-one-out 
signal interpolation errors is used. It is based 
on thresholding the forward prediction error 
for click detection followed by multi-step-
ahead prediction for restoration. 

A click start is detected when the absolute 
prediction error is larger than and a click end 
is detected if the residual at k0iteration is 
smaller than a threshold and consecutive 
residuals are smaller than same threshold. In 
this approach, the LP coefficients are 
estimated by the Levinson-Durbin recursion 
and restoration is done by LS interpolation 
[21]. The use of the conventional LP may 
limit the performance of this approach due 
to the limited capability to model pitch and 
tonal components. We propose to use 
HOSpLP coefficients in this method by 
using the l1-norm regularized HOSpLP 
coefficients instead of using the 
conventional LP coefficients solved via the 
Levinson-Durbin recursion. Algorithm 3 
shows a simplified algorithm to illustrate 
where the HOSpLP coefficients to be used. 
The code for the original implementation is 
available in [22]. The reason the l1-norm 
regularized HOSpLP is used instead of l0-
norm regularized HOSpLP is due to the fact 
that the l0-norm regularized HOSpLP 
coefficients are solved by using the 
Structured Optimization package of Julia 
programming language, whereas the original 
code for Ciołek‟s method is in MATLAB. It 
should be mentioned that the use of 
HOSpLP coefficients in this method leads to 
significant computational cost as it yields to 
a solution to an iterative problem nested in 
another iterative problem, i.e., re-estimating 
the HOSpLP coefficients. The restoration is 

done by using the LS interpolation method 
as used in their original work. 

The function COEFFICIENTS(𝒙 , P, M, γ, ζ) 
obtains the LP coefficients using Levinson-
Durbin in the original method[6] and using 
ADMM in our proposed l1-norm regularized 
HOSpLP variation of [6]. 

 

SIMULATION SETUP 

A. Data used 

To fairly assess the detection and restoration 
performance of the proposed methods, the 
experiments were conducted using speech (male 
and female) and music (singing voice and 
instrumental) from the Archimedes dataset [23]. 
In order to have comparable degradations among 
all signals, each signal is normalized so that the 
maximum amplitude is 1.Five male and five 
female speech from different speakers are taken. 
For each speech simulation is done on 100 
frames each 32.5 ms. The result is then averaged 
among these. Similarly, for music 2 male 
singing voices, 2 female singing voice, 
2instrumental audio and 4 audio consisting of 
singing voice and instrument are used. 

B. Click Degradation Model 

Usually, the start, duration and amplitude of 
each click degradation is modeled 
probabilistically. Different probability 
distributions for the time between impulses and 
for their amplitudes can be used [1], [24]. In this 
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work, the time location of click degradation was 
assumed to be uniformly distributed as the 
causes of click degradation are not correlated 
with the audio signal. As such, click 
degradations can occur at any location 
irrespective of previous click degradation 
location and the samples during the occurrence 
of click were replaced with zero-mean Gaussian 
noise to obtain a click degraded signal. The 
standard deviation of the click degradation is set 
as twice the standard deviation of the audio 
signal. The impact of the click degradation 
variance on the detection and restoration 
performance of the various methods is 
investigated in Section VI. 

C. Performance Measures 

To evaluate click detection accuracy, the 
normalized MSE in click duration estimation for 
each data set and for a given click duration as 
shown in (7) is used. 

𝑁𝑀𝑆𝐸 =   𝑇𝑐𝑙𝑖𝑐𝑘  ℎ −𝑇 𝑐𝑙𝑖𝑐𝑘  ℎ  2

 𝑇𝑐𝑙𝑖𝑐𝑘  ℎ  2
𝐻
ℎ=1  (7) 

where 
Tclick is the actual click duration; 

𝑇 click  is the estimated click 
duration; 

H  is the total number of audio 
files for each dataset. 

To evaluate the restoration performance, the 
Signal-to-noise ratio (SNR) and perceptual 
evaluation of audio quality (PEAQ)are used. The 
SNR is evaluated over the entire duration of the 
signal to also take into account unnecessary 
interpolation that may result from incorrect click 
detection. 
𝑆𝑁𝑅 =  10 log10

 𝒙 ℎ  2

 𝒙 ℎ −𝒙  ℎ  2
𝐻
ℎ=1   

  (8) 
Where 𝒙is a vector of the undegraded audio and 
𝒙 is a vector of the restored audio. 

PEAQ is used to assess the subjective quality of 
the restored audio signal [25]. It predicts the 
basic audio quality of a signal with respect to a 
reference signal by modeling the psychoacoustic 
properties of the human auditory system. It has a 
range of 0 to -4: 0 representing imperceptible 

distortion while -4 means very annoying 
distortion. PEAQ has been used for the 
assessment of click-degraded audio restoration 
in [5]and [6]. The PEAQ implementation in [26] 
is used in this research. 

RESULTS AND DISCUSSION 

The backward prediction and iterative forward 
prediction methods are based on thresholding 
the absolute value residual, backward prediction 
error and forward prediction error respectively, 
where the threshold values is not signal 
dependent and does not require rigorous tuning. 
In both cases, different threshold values were 
tested and a value of K = 3 led to the best results 
in agreement with the “3-sigma” rule [6]. The 
parameters used during the simulations are 
shown in Table I. 

Table I: Simulation Parameters 

No  Description  Value 

1  Sampling frequency  44.1kHz and 
8kHz 

2  Frame size  32.5 ms 
3  Conventional LP order  12 

4  HOSpLP order  half of frame 
size 

5  
Number of non-zero l0-
norm regularized 
HOSpLP coefficients 

20 

6  Artificial click duration  0.4536ms - 
2.268ms 

7  Local window size, kmax 5 
 

A. Click Detection Performance 

1) Estimation of start of click: The backward 
prediction based click detection is heavily 
dependent on correct estimation of the start of 
the click degradation. To evaluate the 
performance of the backward prediction based 
click detection in the estimation of the start of 
the click, average absolute error in estimating 
the click start is shown in Figure 1 by using 
conventional LP and HOSpLP coefficients in the 
backward prediction method. The method 
proposed by Ciołek et.al. is also taken as a 
benchmark. 
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It is seen that Ciołek‟s method leads to the 
best estimation of the start of the click. 
However, note that at 44.1 kHz sampling 
frequency, 0.0227 ms is 1 samples, as such 
the backward prediction method on average 
leads to click start error of 1 samples only. 
The conventional LP and HOSpLP 
coefficients perform similarly in the 
estimation of the start of the click. The 
absolute error of estimation is on average 
0.0227 ms, i.e. 1 sample at 44.1 kHz 
sampling frequency, for click degradation of 
duration up to 2.268 ms or 100 samples. 

2) Estimation of click duration: Figure 2 
shows the NMSE for click duration 
estimation for speech and music by using 
backward prediction based on conventional 
LP and HOSpLP coefficients and by using 
Ciołek‟s method. It is observed that for click 
duration less than 1 ms, the backward 
prediction based click detection fails 
entirely. However, for longer click durations 
the backward prediction based on HOSpLP 
leads to superior click duration estimation 
performance for music. 

 This is in agreement with the modeling 
assumption made regarding the HOSpLP 
coefficients for music. It is noted that for 
music at 44.1 kHz sampling frequency, even 
though Ciołek‟s method leads to superior 
identification of the click start, its estimation 
of the click duration is inferior to the 
backward prediction based method for both 
conventional LP and HOSpLP coefficients. 

 

Figure 1: Absolute error in click start 
estimation using backward prediction using 
HOSpLP coefficients. 

To see the impact of the sampling frequency 
on the click estimation of the methods, 
similar experiments were conducted for 
audio sampled at 8 kHz. Figure 3 shows the 
NMSE for click duration estimation for 
speech and music by using backward 
prediction based on conventional LP and 
HOSpLP and by using Ciołek‟s method for 
a wide range of click durations.  
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 It is observed that for long click durations 
(longer than 4 ms), all methods yield similar 
detection performance. However, as the 
click duration decreases, the conventional 
LP and l1-norm regularized HOSpLP 
accuracy decreases significantly.  

 

The use of backward prediction with l0-
norm regularized HOSpLP coefficients leads 
to the best click duration estimation results 
for all click durations, except for very short 
click durations (less than 1 ms) where all 
methods fail. For music, it is seen that the 
l1-norm regularized HOSpLP performs best 
for long click durations. This performance of the 
backward prediction 

 
Figure 2: Performance of click duration 

estimation at 44.1 kHz sampling frequency. 
 

method with HOSpLP is consistent at both 
sampling frequencies where as Ciołek‟s 
method leads to inferior performance as the 
sampling frequency is increased. 

B. Detection and Restoration performance 

To measure the unified detection and 
restoration performance, the artificially click 
degraded audio was restored by using the 
proposed Algorithm 2 and state-of-the-art 
Algorithm 3 then the SNR was computed 
and averaged for each dataset. No 
information regarding the location and 
duration of the click degradation is used in 
any of the methods. Figure 4 shows the 
results of the detection and restoration for 
audio sampled at 44.1 kHz. 

For audio sampled at frequency of 44.1 kHz 
the backward prediction method with 
HOSpLP coefficients leads to superior 
restoration performance as compared to 
Ciołek‟s method. This is attributed to the 
superior click duration estimation 
performance of the proposed backward 
prediction method with HOSpLP 
coefficients as compared to Ciołek‟s 
method. 

 It is also noted that the use of HOSpLP 
coefficients in Ciołek‟s method leads to 
improvement in restoration performance as 
compared to conventional LP in Ciołek‟s 
method. The improvement in SNR by the 
HOSpLP based methods is observed to be 
higher in music as compared to speech.  

This can also be attributed to the superior 
modeling capability of HOSpLP coefficients 
in the case of music. This has been also seen 
to be the case in HOSpLP coefficient based 
restoration methods as reported in our 
previous works [13] and [12]. 
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Figure 3: Performance of click duration 
estimation at 8 kHzsampling frequency. 

 

Figure 4: SNR of restored audio by using 
detection and restoration without any a 
priori knowledge on location and duration of 
click degradation. 

Figure 5 show the SNR improvement 
obtained by using the backward prediction 
method with HOSpLP coefficients and 
Ciołek‟s method for the detection and 
restoration of click degraded audio sampled 
at 44.1 kHz. This is the difference between 
the SNR of the restored audio and the SNR 
of the click-degraded audio.  

It is seen that all restoration methods 
achieve significant SNR improvement over 
the click-degraded audio. The proposed 
backward prediction method with HOSpLP 
coefficients for click detection and 
restoration is observed to lead to SNR 
improvement up to 4.5dB over Ciołek‟s 
method using conventional LP. On average 
both backward prediction and Ciołek‟s 
method performs similarly when using 
HOSpLP coefficients. This seems to indicate 
that the use of HOSpLP coefficients in both 
approaches is the reason for the 
improvement in restoration performance. 

 

Figure 5: SNR improvement by detection 
and restoration without any a priori 
knowledge on location and duration of click 
degradation.  
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To see the impact of the sampling frequency 
on the restoration performance of the 
backward prediction method with HOSpLP 
and Ciołek‟s method, similar experiments 
were conducted for audio sampled at 8 kHz. 
Figure 6 shows the results of the detection 
and restoration for audio sampled at 8 kHz. 
At this sampling frequency the backward 
prediction method with HOSpLP 
coefficients leads to higher SNR for most 
click durations. The use of HOSpLP 
coefficients in Ciołek‟s method is observed 
to lead to better SNR as compared to 
conventional LP for higher click durations. 
This also shows the superior 

C. Perceptual evaluation of audio quality 

PEAQ was used to estimate the subjective 
quality of the audio signal that is restored by 
using the proposed backward prediction 
method with HOSpLP coefficients and 
Ciołek‟s method. The PEAQ was calculated 
for each audio fragment as the original clean 
signal is available.  

The result of each fragment was then 
averaged for each type of audio. Table III 
and III show the PEAQ evaluation obtained 
for by using the backward prediction method 
with HOSpLP, Ciołek‟s method and 
Ciołek‟s method with HOSpLP for music 
and speech respectively. 

 

 

Figure 6: SNR of restored audio sampled at 
8 kHz by using detection and restoration 
without any a priori on location and duration 
of click degradation. 

It is seen that, the use of l0-norm and l1-
norm regularized HOSpLP coefficients in 
the backward prediction click detection and 
then restoration leads to better PEAQ results 
as compared to conventional LP. However, 
it is noted that the l1-norm regularized 
HOSpLP coefficients lead to higher PEAQ 
results as compared to l0-norm regularized 
HOSpLP coefficients even though in terms 
of SNR l0-norm regularized HOSpLP 
coefficients lead to better results. This may 
be attributed to the better modeling 
capabilities of l1-norm regularized HOSpLP 
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coefficients especially for music. For 
speech, the use of HOSpLP coefficients in 
Ciołek‟s method is not observed to lead to 
significant improvement in PEAQ as 
compared to conventional LP Ciołek‟s 
method. However, for music the use of 

HOSpLP coefficients in Ciołek‟s method 
leads to significant improvement in PEAQ 
as compared to conventional LP. This again, 
shows the better modeling capability of 
HOSpLP coefficients for music. 

Table II: PEAQ evaluation for Music 

Method  Click duration in ms 
0.454 0.907  1.361 1.814  2.268 

Backward prediction with Conventional LP -0.84  -1.13  -0.98  -1.29  -1.55 
Backward prediction with l1-norm HOSpLP -0.67  -0.99  -0.85  -1.24  -1.34 
Backward prediction with l0-norm HOSpLP -0.68  -0.81  -0.97  -1.27  -1.47 
Ciolek‟s method  -1.13  -1.14  -0.93  -0.90  -0.95 
Ciolek‟s method with l1-norm HOSpLP -0.65  -0.75  -0.62  -0.68  -0.91 
 

Table III: PEAQ evaluation for speech 

Method  Click duration in ms 
0.454 0.907  1.361 1.814  2.268 

Backward prediction with Conventional LP -0.54  -0.64  -0.76  -0.79  -0.89 
Backward prediction withl1-norm HOSpLP -0.37  -0.65  -0.75  -0.60  -0.77 
Backward prediction with l0-norm HOSpLP -0.44  -0.56  -0.68  -0.76  -0.81 
Ciolek‟s method  -0.67  -0.41  -0.49  -0.57  -0.59 
Ciolek‟s method with l1-norm HOSpLP -0.38  -0.47  -0.46  -0.49  -0.54 
D. Impact of amplitude of click degradation 

A challenge for the click detection that has 
not been discussed is the amplitude of the 
click degradation, represented here by the 
variance of the assumed click generating-
random process, 𝜎𝑐2. As the causes of click 
degradation are very diverse it is quite 
difficult to assume a single value for the 
variance of the click-generating random 
process. As such, even in a single recording, 
click degradation with very different 
amplitudes will be present. To evaluate the 
performance of the proposed HOSpLP-
based click detection and restoration method 
for click degradations of different variance, 
the SNR improvement is evaluated by 
degrading the audio with click degradations 
having variance the same as the audio signal 
(𝜎𝑐2 = 𝜎𝑠2) andquarter of the audio signal 
(𝜎𝑐2 = 𝜎𝑠2

4 ). 

Figure 7 shows the SNR improvement by 
the backward prediction method with 
HOSpLP and Ciołek‟s method with 
HOSpLP when the variance of the click 
generating random process is varied for 
speech and audio sampled at 8 kHz. It is 
seen that the three methods achieve 
significant SNR improvement. For click 
durations more than 0.5 ms, the proposed 
backward prediction method with HOSpLP 
and Ciołek‟s method with HOSpLP lead to a 
much better SNR improvement as the 
variance of the click-generating process 
decreases. However, for very short click 
durations, the backward prediction method 
with HOSpLP is inferior to Ciołek‟s 
method. It is also noted that as the variance 
of the click-generating random process 
decreases, Ciołek‟s method with HOSpLP 
leads to significant improvement as 
compared to the other two. 
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Figure 7: SNR improvement by detection and 
restoration without any a priori knowledge on 
location and duration of click degradation for 
music for different click degradation variance. 

CONCLUSIONS 

In this paper, the use of high-order sparse 
linear predictions proposed for the detection 
of clicks and restoration of audio corrupted 
by click degradation. The use of the 
HOSpLP coefficients is suitable for both 
speech and tonal audio without a prior 
knowledge about the type of signal or click 
degradation. Several experiments were 
conducted to assess the performance of the 
proposed method in terms of click detection, 
restoration performance and robustness to 
the degrading click variance. The proposed 
methods achieved an improvement in SNR 
over conventional LP and a recently 
proposed method that also jointly detects 
and restores click degraded audio for speech 
and music. Even though both l1-norm and 

l0-norm regularized HOSpLP-based 
methods are not real-time, by using efficient 
ADMM and proximal gradient algorithm, 
the computation time can be limited to 2-3 
times the duration of the frame under 
consideration on current general purpose 
computer. Considering the application at 
hand is for the restoration of archived audio 
media, the computational time is not 
expected to be a significant limitation. 

Only artificial click degradation was 
considered in our experiments. A next step 
is to evaluate the proposed methods under 
real-life click degradation conditions. 
However, as the click-degraded samples are 
first discarded before restoration, working 
with real click degradations will only affect 
the detection and not the restoration 
performance. 
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