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This work addresses the problem of blind image deblurring, that is, of recovering an original image observed through one or
more unknown linear channels and corrupted by additive noise. We resort to an iterative algorithm, belonging to the class of
Bussgang algorithms, based on alternating a linear and a nonlinear image estimation stage. In detail, we investigate the design of a
novel nonlinear processing acting on the Radon transform of the image edges. This choice is motivated by the fact that the Radon
transform of the image edges well describes the structural image features and the effect of blur, thus simplifying the nonlinearity
design. The effect of the nonlinear processing is to thin the blurred image edges and to drive the overall blind restoration algorithm
to a sharp, focused image. The performance of the algorithm is assessed by experimental results pertaining to restoration of blurred
natural images.
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1. INTRODUCTION

Image deblurring has been widely studied in literature be-
cause of its theoretical as well as practical importance in fields
such as astronomical imaging [1], remote sensing [2], med-
ical imaging [3], to cite only a few. Its goal consists in re-
covering the original image from a single or multiple blurred
observations.

In some application cases, the blur is assumed known,
and well-known deconvolution methods, such as Wiener fil-
tering, recursive Kalman filtering, and constrained iterative
deconvolution methods, are fruitfully employed for restora-
tion.

However, in many practical situations, the blur is par-
tially known [4] or unknown, because an exact knowledge of
the mechanism of the image degradation process is not avail-

able. Therefore, the blurring action needs to be character-
ized on the basis of the available blurred data, and blind im-
age restoration techniques have to be devised for restoration.
These techniques aim at the retrieval of the image of inter-
est observed through a nonideal channel whose characteris-
tics are unknown or partially known in the restoration phase.
Many blind restoration algorithms have been proposed in the
past, and an extended survey can be found in [5, 6].

In some applications, the observation system is able to
give multiple observations of the original image. In elec-
tron microscopy, for example, many differently focused ver-
sions of the same image are acquired during a single experi-
ment, due to an intrinsic tradeoff between the bandwidth of
the imaging system and the contrast of the resulting image.
In other applications, such as telesurveillance, multiple ob-
served images can be acquired in order to better counteract,
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Figure 1: Blurred image generation model and restoration stage.

in the restoration phase, possible degradation due to motion,
defocus, or noise. In remote sensing applications, by employ-
ing sensor diversity, different versions of the same scene can
be acquired at different times through the atmosphere that
can be modeled as a time-variant channel.

Different approaches have been proposed in the recent
past to face the image deblurring problem. In [7], it is
shown that, under some mild assumptions, both the filters
and the image can be exactly determined from noise-free
observations as well as stably estimated from noisy obser-
vations. Both in [7, 8], the channel estimation phase pre-
cedes the restoration phase. Once the channel has been es-
timated, image restoration is performed by subspace-based
and likelihood-based algorithms [7], or by a bank of finite
impulse response (FIR) filters optimized with respect to a de-
terministic criterion [8].

Different approaches resort to suitable image representa-
tion domains. To cite a few, in [9], a wavelet-based edge pre-
serving regularization algorithm is presented, while in [10],
the image restoration is accomplished using simulated an-
nealing on a suitably restricted wavelet space. In [11], the au-
thors make use of the Fourier phase for image restoration
[12] applying appropriate constraints in the Radon domain.

In [13, 14], the authors resort to an iterative algorithm,
belonging to the class of Bussgang algorithms, based on al-
ternating a linear and a nonlinear image estimation stage.
The nonlinear estimation phase plays a key role in the over-
all algorithm since it attracts the estimate towards a final re-
stored image possessing some desired structural or statisti-
cal characteristics. The design of the nonlinear processing
stage is aimed at superimposing the desired characteristics
on the restored image. While for class of images with known
probabilistic description, such as text images, the nonlinear-
ity design can be conducted on the basis of a Bayesian cri-
terion, for natural images, the image characterization and
hence the nonlinearity design is much more difficult. In [14],
the authors design the nonlinear processing in a transformed
domain that allows a compact representation of the image
edges—the edge domain.

In this paper, we investigate the design of the nonlinear
processing stage using the Radon Transform (RT) [15] of the
image edges. This choice is motivated by the fact that the RT
of the image edges well describes the structural image fea-
tures and the effect of blur, thus simplifying the nonlinearity
design.

The herein discussed approach shares some common
points with [16] since it exploits a compact multiscale rep-
resentation of natural images.

The structure of the paper is as follows. In Section 2, the
observation model is described. Following the recent litera-
ture, a multichannel approach is pursued. Section 3 recalls
the basic outline of the Bussgang algorithm, which is de-
scribed in detail in the appendix. Section 4 is devoted to the
description of the image edge extraction as well as to the
discussion of the nonlinearity design in the edge domain.
Section 5 presents the results of the blind restoration algo-
rithm and Section 6 concludes the paper.

2. THE OBSERVATION MODEL

The single-input multiple-output (SIMO) observation mod-
el of images is represented by M linear observation filters in
presence of additive noise. This model, depicted in Figure 1,
is given by

y0[m,n] = (x ∗ h0
)
[m,n] + v0[m,n],

y1[m,n] = (x ∗ h1
)
[m,n] + v1[m,n],

...

yM−1[m,n] = (x ∗ hM−1
)
[m,n] + vM−1[m,n],

(1)

where x denotes the whole image, x[n,m]represents either
the whole image or nth, mth pixels of the image x, depend-
ing on the context, and x∗h refers to the whole image result-
ing after convolution. Moreover, let vi[m,n], i = 0, . . . ,M −
1, be realizations of mutually uncorrelated, white Gaussian
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Figure 2: General form of the Bussgang deconvolution algorithm.

processes, that is,

E
{
vi[m,n]vj[m− r,n− s]

} = σ2
viδ[r, s] · δ[i− j]

=

σ

2
vi · δ[r, s] for i = j,

0 for i �= j.

(2)

Here, E{·} represents the expected value, δ[·] the unit sam-
ple, and δ[·, ·] the bidimensional unit sample.

3. MULTICHANNEL BUSSGANG ALGORITHM

The basic structure of one step of the iterative Bussgang al-
gorithm for blind channel equalization [17, 18, 19], or blind
image restoration [14, 20], consists of a linear filtering of the
measurements, followed by a nonlinear processing of the fil-
ter output, and concluded by updating the filter coefficients
using both the measurements and the output of the nonlin-
ear processor. The scheme of the iterative multichannel Buss-
gang blind deconvolution algorithm, as presented in [14],
is depicted in Figure 2. The linear restoration stage is ac-

complished using a bank of FIR restoration filters f (k)
i [m,n],

i = 0, . . . ,M−1, with finite support of size (2P+1)×(2P+1),
namely,

x̂(k)[m,n] =
M−1∑
i=0

(
yi ∗ f (k)

i

)
[m,n]

=
M−1∑
i=0

P∑
t,u=−P

f (k)
i [t,u]yi

[
m− t,n− u].

(3)

At each iteration, a nonlinear estimate x̃(k)[m,n] =
η(x̂(k)[m,n]) is then obtained from x̂(k)[m,n]. Then, the fil-
ter coefficients are updated by solving a linear system (nor-
mal equations) whose coefficients’ matrix takes into account

the cross-correlation between the observations yi[m,n], i =
0, . . . ,M−1, and the nonlinear estimate of the original image
x̃(k)[m,n]. A description of the algorithm is reported in the
appendix.

4. BUSSGANG NONLINEARITY DESIGN IN THE EDGE
DOMAIN USING THE RADON TRANSFORM

The quality of the restored image obtained by means of the
Bussgang algorithm strictly depends on how the adopted
nonlinear processing is able to restore specific characteris-
tics or properties of the original image. If the unknown im-
age is well characterized using a probabilistic description, as
for text images, the nonlinearity η(·) can be designed on
the basis of a Bayesian criterion, as the “best” estimate of
x[m,n] given x̂(k)[m,n]. Often, the minimum mean square
error (MMSE) criterion is adopted.

For natural images, we design the nonlinearity η(·) af-
ter having represented the linear estimate1 x̂[m,n] in a trans-
formed domain in which both the blur effect and the original
image structural characteristics are easily understood.

We consider the decomposition of the linear estimate
x̂[m,n] by means of a filter pair composed of the lowpass fil-
ter ψ(0)[m,n] and a bandpass filter ψ(1)[m,n] (see Figure 3)
whose impulse responses are

ψ(0)[m,n] = e−r
2[m,n]/σ2

0 ,

ψ(1)[m,n] = r[m,n]
σ1

e−r
2[m,n]/σ2

1 e− jθ[m,n],
(4)

where r[m,n]
def= √

m2 + n2 and θ[m,n]
def= arctann/m are

1To simplify the notation, in the following, we will drop the superscript
(k) referring to the kth iteration of the deconvolution algorithm.
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Figure 3: Multichannel nonlinear estimator η(·).

discrete polar pixel coordinates. These filters belong to the
class of the circular harmonic functions (CHFs), whose de-
tailed analysis can be found in [21, 22], and possess the in-
teresting characteristic of being invertible by a suitable filter
pair φ(0)[m,n],φ(1)[m,n].

For the values of the form factors σ0 and σ1 of interest, the
corresponding transfer functions can be well approximated
as follows:

Ψ(0)(e jω1 , e jω2
) � πσ2

0 e
−ρ2(ω1,ω2)σ2

0 /4,

Ψ(1)(e jω1 , e jω2
) � − jπσ3

1

2
ρ
(
ω1,ω2

)
e−ρ

2(ω1,ω2)σ2
1 /4e− jγ(ω1,ω2),

(5)

ρ(ω1,ω2)
def=
√
ω2

1 + ω2
2, and γ(ω1,ω2)

def= arctanω2/ω1, being
the polar coordinates in the spatial radian frequency domain.

The reconstruction filters φ(0)[m,n] and φ(1)[m,n] satisfy
the invertibility condition Ψ(0)(e jω1 , e jω2 ) · Φ(0)(e jω1 , e jω2 ) +
Ψ(1)(e jω1 , e jω2 ) ·Φ(1)(e jω1 , e jω2 ) = 1.

By indicating with (·) the complex conjugate operator, in
the experiments, we have chosen

Φ(0)(e jω1 , e jω2
) = Ψ(0)

(
e jω1 , e jω2

)
∣∣Ψ(0)

(
e jω1 , e jω2

)∣∣2
+
∣∣Ψ(1)

(
e jω1 , e jω2

)∣∣2 ,

Φ(1)(e jω1 , e jω2
) = Ψ(1)

(
e jω1 , e jω2

)
∣∣Ψ(0)

(
e jω1 , e jω2

)∣∣2
+
∣∣Ψ(1)

(
e jω1 , e jω2

)∣∣2

(6)

to prevent amplification of spurious components occur-
ring at those spatial frequencies, where Ψ(0)(e jω1 , e jω2 ) and
Ψ(1)(e jω1 , e jω2 ) are small in magnitude. The optimality of
these reconstruction filters is discussed in [23].

The zero-order circular harmonic filter ψ(0)[m,n] ex-
tracts a lowpass version x̂0[m,n] of the input image; the form
factor σ0 is chosen so to retain only very low spatial fre-
quencies, so obtaining a lowpass component exhibiting high
spatial correlation. The first-order circular harmonic filter
ψ(1)[m,n] is a bandpass filter, with frequency selectivity set
by properly choosing the form factor σ1. The output of this
filter is a complex image x̂1[m,n], which will be referred to
in the following as “edge image,” whose magnitude is related
to the presence of edges and whose phase is proportional to
their orientation.

Coarsely speaking, the edge image x̂1[m,n] is composed
of curves, representing edges occurring in x[m,n], whose
width is controlled by the form factor σ1, and of low mag-
nitude values representing the interior of uniform or tex-
tured regions occurring in x[m,n]. Strong intensity curves
in x̂1[m,n] are well analyzed by the local application of the
bidimensional RT. This transform maps a straight line into
a point in the transformed domain, and therefore it yields a
compact and meaningful representation of the image’s edges.
However, since most image’s edges are curves, the analysis
must be performed locally by partitioning the image into
regions small enough such that in each block, only straight
lines may occur. Specifically, after having chosen the region
dimensions, the value of the filter parameter σ1 is set such
that the width of the observed curve is a small fraction of
its length. In more detail, the evaluation of the edge image
is performed by the CH filter of order one ψ(1)[m,n] that
can be seen as the cascade of a derivative filter followed by a
Gaussian smoothing filter. The response to an abrupt edge of
the original image is a line in x̂1[m,n]. The line is centered
in correspondence to the edge, whose energy is concentrated
in an interval of ±σ−1

1 pixels and that slowly decays to zero
in an interval of ±3σ−1

1 pixels. Therefore, by partitioning the
image into blocks of 8 × 8 pixels, the choice of σ1 ≈ 1 yields
edge structures that are well readable in the partitions of the
edge image.

Then each region is classified as either a “strong edge”
region or as a “weak edge” and “textured” region. The pro-
posed enhancement procedures for the different kinds of re-
gions are described in detail in Section 4.2.

It is worth pointing out that our approach shares the lo-
cal RT as common tool with a family of recently proposed
image transforms—the curvelet transforms [16, 24, 25]—
that represent a significant alternative to wavelet representa-
tion of natural images. In fact, the curvelet transform yields a
sparse representation of both smooth image and edges, either
straight or curved.

4.1. Local Radon transform of the edge image: original
image and blur characterization

The edge image is a sparse complex image built by a back-
ground of zero or low magnitude areas, in which the objects
appearing in the original image domain are sketched by their
edges.
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We discuss here this representation in more detail. For a
continuous image ξ(t1, t2), the RT [15] is defined as

pξβ(s)
def=
∫∞
−∞

ξ
(

cosβ · s− sinβ · u, sinβ · s + cosβ · u)du,

−∞ < s <∞, β ∈ [0,π),
(7)

that represents the summation of ξ(t1, t2) along a ray at dis-
tance s and angle β.

It is well known [15] that it can be inverted by

ξ
(
t1, t2

) = 1
4π2

∫ π
0

∫∞
−∞

Pξβ( jσ)e jσ(σ cosβt1+σ sinβt2)|σ|dσdβ,

(8)

where Pξβ( jσ) = F {pξβ(s)} is the Fourier transform of the
RT. Note that F {·} represents the Fourier transform.

Some details about the discrete implementation of the RT
follows.

If the image ξ(t1, t2) is frequency limited in a circle of di-
ameter DΩ, it can be reconstructed by the samples of its RT
taken at spatial sampling interval ∆s ≤ 2π/DΩ,

pξβ[n] = pξβ(s)|s=n·∆s, n = 0,±1,±2, . . . . (9)

Moreover, if the original image is approximately limited in
the spatial domain, that is, it vanishes out of a circle of diam-

eter Dt, the sequence pξβ[n] has finite length N = 1 + Dt/∆s.
In a similar way, the RT can be sampled with respect to the
angular parameter β considering M different angles m∆β,
m = 0, . . . ,M − 1, with sampling interval ∆β, namely,

pξβm[n] = pξβm(s)|s=n·∆s,βm=m·∆β. (10)

The angular interval ∆β can be chosen so as to assure that

the distance between points pξβ[n] and pξβ+∆β[n] lying on ad-
jacent diameters remains less than or equal to the chosen spa-
tial sampling interval ∆s, that is,

∆β · Dt

2
≤ ∆s. (11)

The above condition is satisfied whenM ≥ (π/2)·N � 1.57·
N .

As long as the edge image is concerned, each region is
here modeled as obtained by ideal sampling of an original
image x1(t1, t2), approximately spatially bounded by a circle
of diameter Dt, and bandwidth limited in a circle of diameter
DΩ. Under the hypothesis thatN−1 ≥ Dt ·DΩ/2π, andM ≥
(π/2) ·N , the M, N samples

px1
βm

[n], m = 0, . . . ,M − 1, n = 0, . . . ,N − 1, (12)

of the RT px1
β (s) allow the reconstruction of the image

x1(t1, t2), and hence of any pixel of the selected region.

Figure 4: First row: original edges. Second row: corresponding dis-
crete Radon transform.

Figure 5: First row: blurred edges. Second row: corresponding dis-
crete Radon transforms.

In Figure 4, some examples of straight edges and their
corresponding discrete RT are shown.

We now consider the case of blurred observations. In the
edge image, the blur tends to flatten and attenuate the edge
peaks, and to smooth the edge contours in directions de-
pending on the blur itself. The effects of blur on the RT of
the edge image regions are primarily two. The first effect is
that, since the energy of each edge is spread in the spatial do-
main, the maximum value of the RT is lowered. The second
effect is that, since the edge width is typically thickened, it
contributes to different tomographic projections, enhancing
two triangular regions in the RT. This behavior is illustrated
by the example in Figure 5, where a motion blur filter is ap-
plied to an original edge.

Stemming from this compact representation of the blur
effect, we will devise an effective nonlinearity aimed at restor-
ing the original edge.
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4.2. Local Radon transform of the edge image:
nonlinearity design

The design of the nonlinearity will be conducted after hav-
ing characterized the blur effect at the output of a first-order
CHF bank. By choosing the form factor σ0 of the zero-order
CH filter ψ(0) small enough, in the passband, the blur transfer
function is approximately constant, and thus the blur effect
on the lowpass component is negligible.

As far as the first-order CH filter’s domain is concerned,
the blur causes the edges in the spatial domain to be spread
along directions depending on the impulse responses of the
blurring filters. After having partitioned the edge image into
small regions in order to perform a local RT as detailed in
Section 4.1, each region has to be classified either as a strong
edge area or a weak edge and textured area. Hence, the non-
linearity has to be adapted to the degree of “edgeness” of each
region in which the image has been partitioned. The deci-
sion rule between the two areas is binary. Specifically, an area
characterized as a “strong edge” region has an RT whose co-
efficients assume significant values only on a subset of direc-
tions βm. Therefore, a region is classified as a “strong edge”

area by comparing maxm
∑

n (pξβm[n])2 with a fixed thresh-
old. If the threshold is exceeded, the area is classified as a
strong edge area; otherwise, this implies that either no di-
rection is significant, which corresponds to weak edges, or
every direction is equally significant, which corresponds to
textured areas.

Strong edges

For significant image edges, characterized by relevant energy
concentrated in one direction, the nonlinearity can exploit
the spatial memory related to the edge structure. In this case,
as above discussed, we use the RT of the edge image. We con-
sider a limited area of the edge image x̂1[m,n] intersected by
an edge, and its RT px̂1

βm
[m,n], with m,n chosen as discussed

in Section 4.1.
The nonlinearity we present aims at focusing the RT both

with respect to m and n, and it is given by

px̃1
βm

[n] = px̂1
βm

[n] · gκg (βm) · f κ fβm
(n) (13)

with

g
(
βm
) = maxn

(
px̂1
βm

[n]
)−minβk ,n

(
px̂1
βk

[n]
)

maxβk ,n
(
px̂1
βk

[n]
)−minβk ,n

(
px̂1
βk

[n]
) , (14)

fβm(n) =
px̂1
βm

[n]−minn
(
px̂1
βm

[n]
)

maxn
(
px̂1
βm

[n]
)−minn

(
px̂1
βm

[n]
) , (15)

where maxn(px̂1
βm

[n]) and minn(px̂1
βm

[n]) represent the max-
imum and the minimum value, respectively, of the RT for
the direction βm under analysis, and maxβk ,n(px̂1

βk
[n]) and

minβk ,n(px̂1
βk

[n]), with k = 0, . . . ,M − 1, the global maxi-
mum and the global minimum, respectively, in the Radon
domain. Therefore, for each point belonging to the direc-
tion βm and having index n, the nonlinearity (13) weights the

Figure 6: First row, from left to right: original edge, blurred
edge, and restored edge. Second row: corresponding discrete Radon
transforms.

RT by two gain functions. Specifically, (14) assumes its max-
imum value (equal to 1) for the direction βMax, where the
global maximum occurs and it decreases for the other direc-
tions. In other words, (14) assigns a relative weight equal to 1
to the direction βMax whereas attenuates the other directions.
Moreover, for a given direction βm, (15) determines the rel-
ative weight of the actual displacement n with respect to the
others by assigning a weight equal to 1 to the displacement
where the maximum occurs and by attenuating the other lo-
cations. The factors κg and κ f in (14) and (15) are defined
as κg = κ0σ

2
w(k) and κ f = κ1σ

2
w(k) , σ2

w(k) being the deconvo-
lution noise variance and κ0 and κ1 two constants empiri-
cally chosen and set for our experiments equal to 2.5 and 0.5,
respectively. The deconvolution noise variance σ2

w(k) depends
on both the blur and on the observation noise, and it can be
estimated as E{|w(k)[m,n]|2} ≈ E{|x̃(k)[m,n] − x̂[m,n]|2}
when the algorithm begins to converge. The deconvolution
noise variance gradually decreases at each iteration which
guarantees a gradually decreasing action of the nonlinearity
as the iterations proceed.

The edge enhancement in the Radon domain is then de-
scribed by the combined action of (14) and (15), since the
first estimates the edge direction and the second performs a
thinning operation for that direction.

To depict the effect of the nonlinearity (13) on the edge
domain, in Figure 6, the case of a straight edge is illustrated.

The first columns of Figures 7 and 8 show some details
extracted from the edge images of blurred versions of the
“F16” (Figure 9) and “Cameraman” (Figure 10) images, re-
spectively. For each highlighted block of 8 × 8 pixels, the RT
is calculated by considering the block as belonging to a circu-
lar region of diameter 8

√
2 (circumscribed circle). The above

discussed nonlinearity is then applied. Then the inverse RT
is evaluated for the pixels belonging to the central 8× 8 pix-
els square. We observe that, although some pixels belong to
two circles, namely, the circle related to the considered block
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Figure 7: First column: details of the F16 blurred image in the edge
domain. Second column: corresponding restored details in the edge
domain.

Figure 8: First column: details of the Cameraman blurred image in
the edge domain. Second column: corresponding restored details in
the edge domain.

and the circle related to the closest block, for each pixel, only
the inverse RT relative to its own block is considered. The
restored details in the edge domain are shown in the second

Figure 9: F16 image.

Figure 10: Cameraman image.

columns. The edges are clearly enhanced and focused by the
processing.

Weak edges and textured regions

If the image is flat or does not exhibit any directional struc-
ture able to drive the nonlinearity, we use a spatially zero-
memory nonlinearity, acting pointwise on the edge image.
Since the edge image is almost zero in every pixel corre-
sponding to the interior of uniform regions, where small val-
ues are likely due to noise, the nonlinearity should attenu-
ate low-magnitude values of x̂1[m,n]. On the other hand,
high-magnitude values of x̂1[m,n], possibly due the presence
of structures, should be enhanced. A pointwise nonlinearity
performing the said operations is given in the following:

x̃1[m,n] =
(

1 +
1
α

)
· x̂1[m,n] · g(∣∣x̂1[m,n]

∣∣),
g(·) = 1 + γ · √1 + α · exp

[
− (·)2

2
· α

(1 + 1/α)

]
.

(16)

The magnitude of (16) is plotted in Figure 11 for different
values of the parameter α.

The low-gain zone near the origin is controlled by the pa-
rameter γ; the parameter α controls the enhancement effect
on the edges. Both parameters are set empirically. The non-
linearity (16) has been presented in [14], where the analogy
of this nonlinearity with the Bayesian estimator of spiky im-
ages in Gaussian observation noise is discussed.

To sum up, the adopted nonlinearity is locally tuned to
the image characteristics. When the presence of an edge is
detected, an edge thinning in the local RT of the edge image
is performed. This operation, which encompasses a spatial
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Figure 11: Nonlinearity given by (16), employed for natural images deblurring and parameterized with respect to the parameter α for
γ = 0.5.

Figure 12: Daughter image. From left to right: original image; linear estimation x̂(1)[m,n]; nonlinear estimation x̃(1)[m,n] after the first
iteration.

Figure 13: Daughter image.

memory in the edge enhancement, is performed directly in
the RT domain since the image edges are compactly repre-
sented in this domain. When an edge structure is not de-
tected, which may happen for example in textured or uni-
form regions, the adopted nonlinearity reduces to a point-
wise edge enhancement. It is worth pointing out that, as dif-
fusely discussed in [16], the compact representation of an
edge in the RT domain is related to the tuning between the

size of the local RT transform and the bandpass of the edge
extracting filter.

After the nonlinear estimate x̃1[m,n] has been computed,
the estimate x̃[m,n] is obtained by reconstructing through
the inverse filter bank φ(0)[m,n] and φ(1)[m,n], that is, (see
Figure 3)

x̃[m,n] = (φ(0) ∗ x̂0
)
[m,n] +

(
φ(1) ∗ x̃1

)
[m,n]. (17)

We remark that the nonlinear estimator modifies only the
edge image magnitude, leaving the phase restoration to the
linear estimation stage, performed by means of the filter bank

f (k+1)
i [m,n], i = 0, . . . ,M − 1. The action of the nonlinear-

ity on a natural image is presented in Figure 12, where along
with the original image, the linear estimation x̂(1)[m,n], and
the nonlinear estimation x̃(1)[m,n] obtained after the first it-
eration are shown.

5. EXPERIMENTAL RESULTS

In Figures 9, 10, and 13, some of the images we have used for
our experimentations are reported. The images are blurred
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Figure 14: F16 image. First column: details of the original image. Second, third, and fourth columns: blurred observations of the original
details. Fifth column: restored details (SNR = 20 dB).

Figure 15: F16 image. First column: details of the original image. Second, third, and fourth columns: blurred observations of the original
details. Fifth column: restored details (SNR = 40 dB).
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Figure 16: F16 image: mean square error versus the iterations num-
ber.

using the blurring filters having the following impulse re-
sponses:

h1[m,n] =




0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0


 ,

h2[m,n] =




0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0


 ,

h3[m,n] =




0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.5 0.86 0.95 1 0.95 0.86 0.5
0 0 0 0 0 0 0
0 0 0 0 0 0 0


 .

(18)

In Figure 14, some details belonging to the original image
shown in Figure 9 are depicted. The corresponding blurred
observations, affected by additive white Gaussian noise at
SNR = 20 dB, obtained using the aforementioned blurring
filters, are also shown along with the deblurred images. In
Figure 15, the same images are reported for blurred images
affected by additive white Gaussian noise at SNR = 40 dB. In
Figure 16, the MSE, defined as

MSE
def= 1

N2

N−1∑
i, j=0

(
x[i, j]− x̂[i, j]

)2
, (19)

is plotted versus the iterations number at different SNR val-
ues for the deblurred image.

Figure 17: Cameraman image. Left column, first, second, and third
row: observations. Fourth row: restored image (SNR = 20 dB).
Right column, first, second, and third rows: observations. Fourth
row: restored image (SNR = 40 dB).

Similar results are reported in Figure 17 for the image
shown in Figure 10 and the corresponding MSE is shown in
Figure 18.

Moreover, in Figure 19, along with the restored version of
the image depicted in Figure 13 obtained using the proposed
method, the corresponding restored images obtained using
the method introduced by the authors in [14] are reported.
Eventually, in Figure 20, the MSE versus the number of iter-
ations is plotted for both the proposed method and the one
presented in [14].
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Figure 18: Cameraman image: mean square error versus the itera-
tions number.

Note that the algorithm converges in few iterations to-
ward a local minimum and then may even diverge. In fact,
as well known [17], the global convergence of the Bussgang
algorithm cannot be guaranteed. The choice of the desired
restoration result can be made by visual inspection of the re-
stored images obtained during the iterations, which is, as also
pointed out in [6], typical of blind restoration techniques.

It is worth noting that the deblurring algorithm gives im-
ages of improved visual quality, thus significantly reducing
the distance, in the mean square sense, from the original un-
blurred image.

6. CONCLUSION

This work describes an algorithm for blind image restoration
that iteratively performs a linear and a nonlinear processing.
The nonlinear stage is based on a novel nonlinear process-
ing technique that is based on a compact representation of
the image edges by means of a local Radon transform. In or-
der to focus the blurred image edges, and to drive the over-
all blind restoration algorithm to a sharp, focused image, a
suitable nonlinear processing is designed in the Radon trans-
formed domain. The nonlinear processing is spatially vari-
ant, depending on the detection of strong edges versus uni-
form or textured regions.

The performance of the algorithm is assessed by a num-
ber of experiments showing the overall quality of the restored
images.

APPENDIX

MULTICHANNEL BUSSGANG ALGORITHM

The multichannel Bussgang blind deconvolution algorithm
outlined in [14] is here briefly summarized.

Figure 19: Daughter image. Left column, first, second, and third
row: observations. Fourth row: restored image using the method
proposed in [14] (SNR = 20 dB). Fifth row: restored image using
the proposed method (SNR = 20 dB). Right column, first, second,
and third rows: observations. Fourth row: restored image using the
method proposed in [14] (SNR = 40 dB). Fifth row: restored image
using the proposed method (SNR = 40 dB).
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Figure 20: Daughter image: comparison between the mean square
error of the old estimator [14] and of the proposed estimator (“RT
Estimator”) versus the iterations number.

With reference to Figure 2, the kth iteration of the blind
deconvolution algorithm is constituted by the following
steps.

(1) Linear estimation step. The deconvolved image
x̂(k)[m,n] is computed from the observations set
y0, . . . , yM−1 by filtering through a previous estimate

of the Wiener filter bank f (k−1)
i [m,n], i = 0, . . . ,M−1,

that is,

x̂(k)[m,n] =
M−1∑
i=0

(
f (k−1)
i ∗ yi

)
[m,n]. (A.1)

Since the original image can be retrieved except for an
amplitude scale factor, at each iteration, the Wiener fil-
ter bank is normalized to yield a unitary energy out-
put.

(2) Nonlinear estimation step. According to a suitable
stochastic model of the image x[m,n], the nonlinear
MMSE estimate x̃(k)[m,n] is computed through the
conditional a posteriori expectation:

x̃(k)[m,n] = η
(
x̂(k)) def= E

{
x[m,n]|x̂(k)}. (A.2)

In general, the nonlinear estimator η(·) exhibits non-
zero spatial memory.

(3) Wiener filter coefficients update step. The Wiener filter

bank f (k)
i [m,n], i = 0, . . . ,M − 1, is recomputed by

solving the M × (2P + 1)2 normal equations for the

determination of the M × (2P + 1)2 unknowns:

M−1∑
j=0

P∑
t,u=−P

Ryj yi[r − t, s− u] f (k)
j [t,u]

= Rx̃(k−1) yi[r, s] for


i = 0, . . . ,M − 1,

r, s = −P, . . . ,P,

(A.3)

where the cross-correlations functions Ryj ,yi[r, s]
def=

E{yj[m,n]yi[m − r,n − s]} and Rx̃(k−1),yi[r, s]
def=

E{x̃(k−1)[m,n]yi[m− r,n− s]} are substituted by their
sample estimates R̂yj yi[r, s] and R̂x̃(k−1) yi[r, s], respec-
tively. We must outline that in this step, only the cross-
correlations R̂x̃(k−1) yi[r, s] are computed since R̂yj yi[r, s]
are computed only once before starting the iterations.

(4) Convergence test step. Convergence is tested by a suit-
able criterion.

The algorithm is initialized by a suitable initial guess

f (0)
i [m,n], i = 0, . . . ,M − 1, of the Wiener filter bank.

As outlined in [17, 18], the iterative algorithm reaches

an equilibrium point, namely, f (k−1)
i [m,n] = f (k)

i [m,n],
when the cross-correlations between the deconvolved image
x̂(k)[m,n] and the measured images yi[m,n], i = 0, . . . ,M−1,
become proportional to the cross-correlations between the
estimate x̃(k)[m,n] and the observations, that is,

Rx̂(k) yi[r, s] = const ·Rx̃(k) yi[r, s]. (A.4)

Some of the authors have presented a discussion on the
convergence of the algorithm in [26], where the analysis is
conducted in an error energy reduction sense for the single-
channel case. The condition for convergence given in [26]
straightforwardly extends to the multichannel case since the
variables involved in the analysis (original image, decon-
volved image, and nonlinear estimate) do not change.
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