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1. INTRODUCTION

The sparse deconvolution (SD) problem consists in the
estimation of an unknown sparse sequence which has been
convolved with a (known) time series (impulse response
of the system or source wavelet) and corrupted by noise,
producing the observed noisy time series. The nonnull sam-
ples of the sparse series contain relevant information about
the underlying physical phenomenon in each application.
After its first application to reflective seismology [1], SD
has been also used in a number of fields, such as ultrasonic
nondestructive evaluation, image restoration, or cancelation
of fractionated activity in intracardiac electrograms [2–
4].

There has been an intensive development of SD tech-
niques and algorithms. Since they are easy to compute, least
squares (LSs) methods [5] have been used to deconvolve
sparse seismic signals [6–9]. Some of the drawbacks of
LS methods are their lack of robustness (they are very
sensitive to non-Gaussian noise), and the ill-posing of the
problem when the number of unknowns is close to the
number of observations. Many complementary methods
have been presented, such as Tikhonov’s regularization [10]

(also known in the statistical literature as ridge regression
[11]), total LS [12], covariance shaping LS estimation [13],
or signal-adaptive constraints [14]. The L1 loss solution
to SD [7] offers advantage in terms of sparseness when
compared to the L2 loss solution, also known as mean
squared error (MSE) criterion technique. L1-penalized SD
was proposed later [15], by including an additional regular-
ization term which consists on the L1-norm of the unknown
signal, allowing to control the sparseness of the solution.
The Simplex algorithm was introduced as an optimization
method for L1-penalized SD in [2]. More recently, large scale
linear programming methods have been also presented [16].

Maximum-likelihood deconvolution (MLD) was first
developed by using state-variable models [17], but a more
widespread used convolutional model was presented in [1],
assuming that the sparse signal has a Bernoulli-Gaussian
(BG) distribution and that the impulse response can be
modeled as an autoregressive and moving average (ARMA)
signal model. The Gaussian mixture (GM) model for SD
assumes that the prior distribution of the sparse signal is
a mixture of a narrow and a broad Gaussian distributions
[18], and the BG distribution is a special case of the GM.
Based on an extensive work in robust estimation [13, 19–21],
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a minimax MSE estimation filter that minimizes some
measure of the worst case pointwise MSE was developed in
[22]. In [23], a double postprocessing was applied after an
inverse filtering of the observations, which corresponds to a
regularization in the Tikhonov sense and a subsequent noise
attenuation.

In general, the performance of SD algorithms can be
degraded by several causes. First, they can result in numer-
ically ill-posed problems [18], and regularization methods
are often required. Also when the knowledge about the noise
is limited, both LS deconvolution (suitable for a Gaussian
noise) and MLD can yield suboptimal solutions [24]. Finally,
if a nonminimum phase (known) sequence is used, some
SD algorithms can fail because the required inverse filtering
turns unstable.

During the last years, support vector machine (SVM)
algorithms have been shown to serve as a powerful frame-
work for many data processing problems, with emphasis
for classification and regression [25], and currently they
constitute a fundamental tool in different relevant appli-
cation domains [26]. SVM algorithms make use of several
powerful concepts, like the structural risk minimization
(SRM) principle, and they permit readily solving nonlinear
problems while avoiding local minima. Some of the main
advantages of SVM algorithms are (1) their solution is
expressed in terms of a subset of the observations, the so-
called support vectors (SVs), hence being intrinsically a
sparse solution; (2) they are regularized in a smart and
highly efficient way, as they follow the SRM principle; (3)
they show very good performance in ill-posed problems
(high-dimensional input features, low number of training
samples); (4) nonlinear versions of SV algorithms can be
readily obtained by means of the kernel trick, thus allowing a
simple geometrical interpretation [27]; and (5) the ε -Huber
cost, which is robust against impulse noise [28–30], can be
used.

Though many of the above advantages are related to
SD algorithms requirements, no attempt to develop an SV
algorithm for SD has been done so far. In this paper,
we propose an SVM-based SD algorithm, by conveniently
exploiting the properties of the SVM methodology. Our
approach follows two consecutive steps. First, we follow
the linear signal processing framework presented in [28] to
create a robust, linear SVM algorithm for SD. This approach,
called primal signal model (PSM) algorithm, does not ensure
sparseness in the estimated unknown signal, but it highlights
the implicit relationship between the impulse response
and its autocorrelation with Mercer’s kernels that are used
in SVM algorithms. Then based on a dual signal model
(DSM) formulation, similar to that previously proposed
for interpolation of time series [31], we present an SD
algorithm which uses an equivalent problem statement to
obtain a sparse solution. Given that the impulse response of
a deconvolution problem will not be always a valid Mercer
kernel, a filtered version of the observations is used, in such
a way that the autocorrelation of the impulse response can
be used as Mercer’s kernel in the equivalent problem. We call
this practical algorithm autocorrelation kernel signal model
(AKSM).

The rest of the paper is organized as follows. In Section 2,
the equations for the SD problem are introduced, together
with a brief description of the two representative SD algo-
rithms from the literature that will be used for benchmark-
ing. In Section 3, preliminary elements that are required for
the formulation of the practical SVM algorithm for SD are
summarized. In Section 4, the AKSM algorithm is developed
and analyzed in detail. In Section 5, we present experiments
showing the performance of the AKSM procedure. Finally,
some conclusions are drawn.

2. PROBLEM STATEMENT

Be y[n] a discrete-time signal which contains in its lags 0 ≤
n ≤ N a set of N + 1 observed samples of a time series that
is assumed to be the result of the convolution between an
unknown sparse signal x[n], whose samples in the lags 0 ≤
n ≤ M we want to estimate, and a time series h[n], whose
samples in the lags 0 ≤ n ≤ Q − 1 are known. Samples of
y[n], x[n], and h[n] are equal to zero outside the defined
limits, and also, N =M +Q + 1. Then the following analysis
model can be stated:

y[n] = x̂[n]∗h[n] + e[n] =
M
∑

j=0

x̂ [ j]h[n− j] + e[n], (1)

where ∗ denotes the discrete-time convolution operator;
x̂[n] is the estimation of the unknown input signal, and e[n]
is the estimation error accounting for the model residuals.
Equation (1) is required to be fulfilled for lags n = 0, . . . ,N
of observed signal y[n].

The solution is usually regularized [10] by minimizing
the qth power of the q-norm of estimate x̂[n], hence forcing
smooth solutions. The functional to be minimized should
take into account both this q-norm term and an empirical
error measurement term defined according to an a priori
determined pth power of the p-norm of residuals e[n].
Hence the regularized functional to be minimized can be
written as

JD =
N
∑

n=0

∥

∥e[n]
∥

∥

p
p + λ

N
∑

n=0

∥

∥x̂ [n]
∥

∥

q
q, (2)

where parameter λ tunes the tradeoff between model
complexity and the minimization of estimation errors. It is
worth noting that different norms can be adopted, involving
different families of models and solutions. For instance,
setting p = 2, λ = 0 yields the LS criterion, whereas setting
p = 2, λ /= 0, q = 2 yields the well-known Tikhonov-Miller
regularized criterion [10]; for p = 1, λ = 0, we obtain the
L1 criterion, and setting p = 1, λ /= 0, q = 1 provides the
L1-penalized method [2].

From the point of view of MLD [1, 17] or GM [18], SD
algorithms can be written as the minimization of the (power
of the) Lp norm of the residuals minus a regularization term
which consists of the log-likelihood of the sparse time series
for an appropriate statistical model, that is,

JMLD =
N
∑

n=0

∥

∥e[n]
∥

∥

p
p − λ

N
∑

n=0

log l
(

x̂[n]
)

, (3)
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where l(x̂[n]) denotes the likelihood, according to the
assumptions about the input signal statistics. White Lapla-
cian statistics lead to the L1-penalized criterion. Alternatively,
non-Gaussian input signal statistics have been proposed,
such as BG and GM distributions [1, 18]. Actually, the BG
distribution can be seen as a special case of a GM opti-
mization. SD with a GM assumes that the prior distribution
of the sparse signal can be approximated with a mixture
of two zero-mean Gaussians, one of them being narrow
(small variance) and the other being broad (larger variance)
[18]. Therefore, the functional to be minimized in GM
deconvolution is

JGM =
N
∑

n=0

∥

∥e[n]
∥

∥

2 − λgm

N
∑

n=0

log
2
∑

j=1

πj pj
(

x̂[n]
)

, (4)

where πj are the prior probabilities of each Gaussian
component, and

pj
(

x̂[n]
) = (σj

√
2π
)−1

exp

(

− x̂ [n]2

2σ2
j

)

(5)

are their probability densities.
These functionals contain a term that is intended to

minimize the training error of the solution plus a term that
can be viewed as a regularization term from the point of view
of Tikhonov. This is a term that controls the overfiting of the
obtained solution.

This term, often called stabilizer, can also be viewed as a
control of the smoothness of the solution. In other words, as
the function that we want to approximate must be smooth, a
good criterion consists of stablishing a tradeoff between the
minimization of an error term and the maximization of the
smoothness. As it has been stated in [32, 33], the stabilizers
used in equations to are smoothers as lower values of these
functions produce smoother solutions. We will use here an
SVM functional, which also contains a regularization term
that produces smooth solutions.

3. SVM FOR SD: PRELIMINARY CONSIDERATIONS

In this section, an algorithm for SD problems using a SVM
formulation is presented. For this purpose, several basic
elements of SVM algorithms are first introduced. Then, a
SVM formulation for SD is initially proposed by following
the SVM digital signal processing framework presented in
[28]. The purpose of this approach is to highlight the signal
structure which is implicit in the algorithm, in particular, the
autocorrelation of the impulse response. All elements that
are considered in this section will be used in Section 4 to
introduce the proposed algorithm.

3.1. Preliminary SVM elements for signal processing

3.1.1. Mercer’s kernels

Let us consider the nonlinear regression paradigm presented
in [31], in which a set of observations y[n] is modeled as a
nonlinear regression on time instants n. This signal model

uses a nonlinear transformation φ : t ∈ R → H , which
maps a real scalar to a feature space H . For a properly chosen
transformation φ, a linear regression model can be built in
H . This can be done through a theorem provided by Mercer
[34] in the early 1900s. Mercer’s theorem shows that there
exist a function φ : x ∈ Rn → H and a dot product:

K
(

xi, xk
) = φ

(

xi
)T
φ
(

xk
)

, (6)

if and only if K(·, ·) is a positive integral operator on a
Hilbert space, that is, if and only if for any function g(x) for
which

∫

g(x)dx <∞, (7)

the inequality
∫

K(x, y)g(x)g(y)dx dy ≥ 0 (8)

holds. Hilbert spaces provided with dot products that fit
Mercer’s theorem are often called reproducing kernel Hilbert
space (RKHS).

We use here a nonlinear transformation whose domain
is constrained to discrete time lags, φ : n ∈ (Z) ∈ R → H ,
that is, given that we are dealing with discrete time processes,
this mapping is particularized to integers, in order to fit later
into the deconvolution model equation. For this nonlinear
transformation φ, a linear regression model into the Hilbert
space will be given by

y[n] = υTφ[n] + e[n], (9)

where υ ∈ H is the vector with the regression weights and
e[n] are the residuals. Provided that υ lies in the subspace
spanned by a set of vectors φ[n], with n = 0, . . . ,N , one can
express this vector as

υ =
N
∑

m=0

ηmφ[m], (10)

where ηm ∈ R are the coefficients of the vector expansion in
that subspace, and then, the linear regression model can be
expressed as

y[n] =
N
∑

m=0

ηmφ[m]Tφ[n] + e[n] =
N
∑

m=0

ηmK[m,n] + e[n].

(11)

Therefore, we can use kernel function K(m,n) to com-
pute the dot products. For instance, in the widely used
Gaussian Mercer’s kernel, which is given by K[m,n] =
exp(−(m− n)2/2σ2), the explicit expression of nonlinear
transformation φ[·] is unknown, and the RKHS dimension
is infinite [35].

3.1.2. Shift invariant and autocorrelation kernels

A particular class of kernels are shift invariant kernels, which
are those fulfilling K[m,n] = K[m − n]. A necessary and
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sufficient condition for shift invariant kernels to be Mercer’s
kernels [36] is that their Fourier transform be non-negative.

Let s[n] be a discrete time, real signal with s[n] =
0∀n /∈ [0, S − 1], and let Rs[n] = s[n]∗s[−n] be its
autocorrelation. Then the following kernel can be built:

Ks[m,n] = Rs[m− n], (12)

which is called the autocorrelation-induced kernel (or just
autocorrelation kernel) of signal s[n]. It is well known that
the spectrum of an autocorrelation sequence is nonnegative,
and given that (12) is also a shift-invariant kernel, it will be
always a valid Mercer’s kernel.

3.1.3. Residual cost function

The SVM algorithms for SD that will be presented share a
common form for the driving criterion, which consists on
minimizing

JSVM =
M
∑

n=0

L
(

e[n]
)

+
∥

∥τ
∥

∥

2
2, (13)

where L(e[n]) is a loss function of the residuals, and τ is used
to build the penalization term, and it will be defined for each
SVM algorithm according to the signal model being used,
as described later. Equation (13) is similar to (2) (identical
if τ = x̂, with x̂ = [x̂ [0], . . . , x̂ [N]]T). For the purpose of
SVM formulation, the robust ε-Huber cost function of the
residuals [28] will be used here in (13), which will allow us
to deal with different kinds of noise. Its form is

LεH
(

e[n]
) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0,
∣

∣e[n]
∣

∣ ≤ ε

1
2γ

(∣

∣e[n]
∣

∣− ε)2
, ε <

∣

∣e[n]
∣

∣ ≤ eC

C
(∣

∣e[n]
∣

∣− ε)− 1
2
γC2,

∣

∣e[n]
∣

∣ > eC ,

(14)

where ε, C, and γ are the free parameters of the cost function
that have to be fixed according to some a priori knowledge
of the problem. The ε-insensitive zone discards errors lower
than ε, and, importantly, it allows to control the sparseness of
the SVM solution; the quadratic cost zone is appropriate for a
Gaussian noise; and finally, the linear cost zone is appropriate
for an impulse noise [28, 30].

Note that conventional SVM regression algorithm uses
Vapnik’s ε-insensitive residual cost, which is basically a linear
cost. However, this will not be adequate in the presence
of Gaussian noise, which is a usual situation in discrete
time signal processing. This fact was previously taken into
account in the formulation of least-squares SVM [37],
where a regularized quadratic cost is used for a variety
of signal processing applications. But in this case, non-
sparse solutions are obtained. The ε-Huber cost, proposed
in [29, 38], is just a combination of both the quadratic and
the ε-insensitive residual costs. In fact, it represents the ε-
insensitive cost when γC → 0, Huber’s robust cost when ε =
0 [30], and the quadratic cost when ε = 0, γC → ∞, thus
generalizing all of them.

3.2. A signal model in the primal for deconvolution

Using the convolutional model in (1), it is possible to build
an SVM algorithm that provides a robust estimation of the
unknowns. This PSM algorithm can be formulated as the
minimization of primal functional (13) when τ = x̂, that is,
we minimize

JPSM =
N
∑

n=0

LεH
(

e[n]
)

+
1
2

∥

∥x̂
∥

∥

2
2, (15)

constrained to (1).
Given that the derivation of this SVM algorithm uses

the convolutional signal model in (1), we will call it primal
signal model (PSM) algorithm. The optimization of (15) is
a constrained problem, which can be expressed into its dual
form by using the Lagrange theorem and the corresponding
Karush-Khun-Tucker (KKT) conditions. Appendix A con-
tains a brief derivation of this SVM algorithm, and here we
only stress the relevance of two sets of the KKT conditions,
as well as their interpretation in terms of signal processing
blocks, as this will be the basis of the proposed SD algorithm
in Section 4.

First, one of the KKT conditions yields the unknown
sparse signal being given by

x̂[n] =
N
∑

i=0

(

αi − α∗i
)

h[i− n] =
N
∑

i=0

ηih[i− n], (16)

where αn,α∗n are the Lagrange multipliers accounting for
positive and negative residuals in (1), respectively, and each
of their pairs can be grouped into a single model coefficient
ηi ∈ R, i = 1, . . . ,N . Second, a well-known relationship
between model residuals e[n] and the corresponding model
coefficient ηn is

ηn = ∂LεH(e)
∂e

∣

∣

∣

∣

e=e[n]
= L′εH

(

e[n]
)

, (17)

which can be also shown by using the appropriate set of KKT
conditions [28], and states that the model coefficients are a
piecewise linear, yet simple function of the model residuals.

We can define a discrete time signal containing the model
coefficients, as η[n] = ηn, for n = 0, . . . ,N , and being zero
otherwise. Then we can express KKT conditions in (16) and
(17) as follows:

x̂[n] = η[n]∗h[−n]∗δ[n +Q],

η[n] = L′εH
(

e[n]
)

,
(18)

respectively, where δ[n] is the Kronecker delta sequence (1
for n = 0 and zero elsewhere). On the one hand, the
estimated sparse signal is expressed in terms of a linear,
time-invariant system, as the convolution between the model
coefficient signal and the shifted, time-reversed impulse
response of the system. On the other hand, the model
coefficients and the residuals are related by a nonlinear, static
system. Taking (1) into account, we can consider a joint
system that contains the three previously expressed signals
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and systems relations. Several facts can be observed from
these equations. First, according to the scheme, estimated
signal x̂[n] should not be expected to be sparse in general,
because similarly to SVM regression algorithm, it is the
sparseness of η[n] that can be controlled with ε parameter,
and there is a convolutional relationship between x̂[n] and
η[n] that will depend on the (modified) impulse response,
which in general does not have to be sparse. Second, note
that there is no Mercer’s kernel appearing explicitly in this
formulation, as it should be expected in an SVM approach
but, instead, there is an implicitly present autocorrelation
kernel given by

Rh[n] = h[n]∗h[−n], (19)

if we associate the two systems containing the original system
impulse response and its reversed version. However, the
solution signal is embedded between them, which precludes
the convenient use of this autocorrelation kernel in this PSM
formulation. Third, the role of delay system δ[n + Q] can be
interpreted as just an index compensation that makes causal
the global system.

In summary, it can be said that the PSM algorithm yields
a regularized solution, in which an autocorrelation kernel is
implicitly used, but it does not allow to control the sparseness
of the estimated signal.

4. A SUITABLE SVM FOR SD

An SVM algorithm for SD can be proposed which overcomes
the limitations of the PSM algorithm. As described next, this
algorithm uses a convenient transformation of the observed
signal, as well as a different signal model as a starting
point, namely, the nonlinear regression model presented
in Section 3. These two modifications will lead us to work
with an alternative convolutional model in which the new
impulse response is given by the autocorrelation of the
impulse response in the original problem, hence allowing
us to explicitly use Mercer’s kernels that are autocorrelation
kernels. Additionally, in the new signal model the sparse
unknown sequence can be straightforwardly identified by
the Lagrange multipliers, and its sparseness can be readily
controlled by means of parameter ε in the SVM algorithm.

Provided that the impulse response of the convolutional
signal model in (1) is not necessarily an autocorrelation
sequence, we start by making a previous filtering of obser-
vations y[n] as follows:

z[n] = y[n]∗(h[−n]∗δ[n +Q]
) = ẑ[n] + e′[n], (20)

where e′[n] = e[n]∗(h[−n]∗δ[n + Q]) are the modified
residuals. Note that the signals that we use here for filtering,
that is, a reversed impulse response filter and a Q samples
time shift, are present in the PSM algorithm. Under these
conditions,

ẑ[n] = x̂[n]∗(h[n]∗h[−n]∗δ[n +Q]
)

= x̂[n]∗Rh[n]∗δ[n +Q],
(21)

and the transformed signal follows a signal model which is
similar to the original one, that is, a convolution between the

same unknown sparse signal and the autocorrelation of the
impulse response.

We call (21) the autocorrelation kernel signal model.
Instead of the convolutional relationship for the observations
and the data in (1), we start by the nonlinear regression SVM
formulation between modified observations z[n] and time
instants n given in (9), that is, the SVM nonlinear regression
model for the modified observations is here stated as

z[n] = υTφ[n] + e′[n], (22)

where υ is the coefficient vector in the RKHS. Accordingly,
the penalization term to be used in the generic SVM criterion
in (13) is obtained by making τ = υ, and the SVM
optimization functional is given in this case by

JAKSM =
N
∑

n=0

LεH
(

e′[n]
)

+
1
2

∥

∥υ
∥

∥

2
2. (23)

The complete derivation of the dual problem is not
presented here, but only the relevant conditions to be
taken into account are highlighted. Appendix B contains
further details on the corresponding dual problem, and
the interested reader is addressed to [31] for the case of
interpolation of discrete time series, which has a formally
similar SVM dual problem derivation. Note that despite the
derivation of SVM algorithms for interpolation and for SD
may be formally similar, these two digital signal processing
procedures are quite different.

The nonlinear relationship between the residuals and the
new-model coefficients still holds, that is,

ηn = L′εH
(

e′[n]
)

, (24)

where ηn are the new-model coefficients corresponding
to the positive and negative residuals given by (22). This
relationship can be easily shown by examining the KKT
conditions (see, e.g., [31]). Then the following expansion for
the weight vector υ can be obtained from the corresponding
KKT condition as follows:

υ =
N
∑

n=0

ηnφ[n]. (25)

We can avoid to work explicitly in the RKHS by introducing
this equation into the nonlinear regression signal model in
(22), which yields

ẑn =
N
∑

i=0

ηiφ[i]Tφ[n]
N
∑

i=0

ηiK[i,n] =
N
∑

i=0

ηiRh[i− n], (26)

where we have replaced generic Mercer’s kernel K(i,n)
by autocorrelation kernel Rh[i − n] generated by impulse
response h[n].

Using again signal η[n] as previously to account for the
model coefficients, it is clear that (26) can be seen as the
following convolutional model:

ẑ[n] = η[n]∗Rh[n] = x̂ [n]∗Rh[n], (27)
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where unknown sparse signal x̂ [n] can be straightforwardly
assigned to model coefficients in η[n]. Thus x̂ [n] sparseness
can be now controlled by just tuning ε to obtain a sparse
set of model coefficients. If we consider a block diagram of
the joint system, the effect of transforming the observations
and using an appropriate dual signal model, instead of the
primal signal model in the preceding algorithm, is the obten-
tion of an autocorrelation kernel and the straightforward
assignment of the sparse unknown sequence to the model
coefficients.

In conclusion, we can build a model from modified
observations z[n], which is described as the convolution
between the original unknown signal and the autocorrelation
of the impulse response, allowing us to control sparseness
and to use a Mercer’s kernel, hence keeping two of the major
advantages of the SVM algorithms.

5. SIMULATION EXAMPLES

We will evaluate the performance of the proposed AKSM
algorithm and compare it with other previously proposed
algorithms. We have made extensive simulations with syn-
thetic signals, both deterministic and BG distributed. Given
that the results are qualitatively similar, only the results
from a representative case (a deterministic unknown signal)
are reported here. Among the wide number of available
SD techniques in the literature, we choose L1-penalized
(minimizing (II)) and GM (minimizing (II)) algorithms for
comparing their performances with that of the proposed
AKSM algorithm. Finally, a real-data example is included
applying the above SD methods to ultrasonic data.

5.1. Experimental setup

A deterministic sparse signal with 128 samples and five
nonzero values (x20 = 8, x25 = 6.845, x47 = −5.4, x71 = 4,
and x95 = −3.6) [39] was used for simulations. Peaks at
samples 20 and 25 are close in order to test the algorithm
resolution, whereas peak x95 is small in order to test detection
capabilities. The other time series consists on the first 15
samples of the impulse response of

H(z) = z − 0.6
z2 − 0.414z + 0.64

. (28)

A noise sequence was added, with a variance corresponding
to a signal-to-noise ratio (SNR) from 4 to 20 dB. Perfor-
mance was studied for three different kinds of additive noise:
Gaussian, Laplacian, and uniform.

The free parameters for the L1-penalized and for the
GM algorithms are λ and λgm, respectively, whereas the free
parameters for the AKSM algorithm are initially {C, γ, ε}.
Taking into account that parameter ε in the AKSM algorithm
controls the sparseness of the solution, the impact of
changing {C, γ} in SVM algorithms was first analyzed,
previous to the performance analysis, which allowed to fix
their values to C = 100, γ= 10−3 for all the subsequent
performance experiments, as we will explain later. Note
that parameters λ,αgm, and ε have different meanings and

purposes, therefore, different ranges need to be explored for
each of them in the performance analysis.

The merit figures were obtained by averaging the results
of the algorithms in 100 realizations. The same set of 100
realizations was used for each SNR and for each tested
tradeoff parameter, in order to analyze their impact on the
solution.

Performance was evaluated in terms of both estimation
and detection capabilities of the algorithms. On the one
hand, estimation quality was quantified by using

MSE = 1
N + 1

N
∑

n=0

(

x̂[n]− x[n]
)2

,

F =
∑

x[n] /=0

(

x̂[n]− x[n]
)2

,

Fnull =
∑

x[n]=0

(

x̂[n]− x[n]
)2 =

∑

x[n]=0

x̂2[n],

(29)

where MSE denotes mean-squared error, which measures
the global estimation capabilities, and F (Fnull) represents
the particularized estimation capabilities for spikes (for null
samples) in the true sparse signal [2]. On the other hand,
detection capabilities were measured by using the sensitivity
(Se) and the specificity (Sp) of spike detection, given by

Se = V+

V− + F−
, Sp = V−

V− + F+
, (30)

whereV (F) represents the number of true (false) detections,
and subindex + (−) represents positive or detected spike
(negative or null) samples. The presence of a peak in the
signal is determined by finding either local positive maxima
or negative minima with an amplitude threshold equal to
1/100 times the absolute maximum of the signal.

5.2. AKSM-free parameters

A highly relevant issue in SVM algorithms is often the
requirement of determining appropriate values for all the
SVM-free parameters, which is usually addressed either by
theoretical considerations [40, 41] or by computationally
expensive cross-validation search using a validation data set
[25]. Therefore, we started our analysis by studying the effect
of free parameters C and γ on the AKSM algorithm.

For different examples of SNR values, we explored a grid
of values for parameters γ, C, and ε, given by 100 points
in a rank for each parameter, and obtained the MSE with
respect to the true sparse signal. Figure 1 shows two examples
of MSE curves for SNR = 16 dB and 4 dB. In the first case
(panels (a) and (b), SNR = 16 dB) the experimentally best
value of ε = 0.9 was fixed, and each MSE curve was obtained
by fixing the value of the other free parameter, and averaging
MSE in 100 realizations. It can be seen that, in average, there
is a wide range for both C and γ that can be considered as
appropriate. A qualitatively similar result can be observed for
SNR = 4 dB, panels (c) and (d), obtained with fixed ε = 2.4,
which was shown to be the experimentally best value for this
case.
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Figure 1: MSE of the AKSM algorithm as a function of free parameters γ and C in the ε-Huber cost function, with SNR = 16 dB (a,b) and
SNR = 4 dB (c,d).

Therefore, aiming not to give SVM more information
than to the other methods by means of its larger number of
free parameters, C= 102 and γ= 10−3 were fixed for all the
simulations of the performance analysis.

5.3. Estimation performance

Figure 2 (panels (a), (b), and (c)) presents the MSE results for
all the SD algorithms with different SNR, as a function of the
free parameter of the algorithm, that is, λ for L1-penalized,
αgm for GM, and ε for AKSM. It can be seen that the
optimum value for the free parameter depends of SNR in all
cases. The L1-penalized and the AKSM algorithms show low
performance with extremely low (λ, ε → 0) and high (λ, ε >
3) values of the free parameter, the optimum value being at
some intermediate point. Lower values of the free parameter
yielded less-sparse solutions for all algorithms. Higher values
of the free parameter in L1-penalized and AKSM lead to
a constant value solution, clearly reached in L1-penalized
algorithm, called the zero solution [2], which corresponds
to a null-estimated sparse signal, and hence a value of MSE
proportional to the norm of the true sparse signal. The GM

Table 1: Averaged MSE ± its standard deviation (×102) for
optimally chosen free parameters for each SD algorithm (best in
boldface, second in italic).

Method 4 dB 10 dB 16 dB 20 dB

L1-pen. 23.9±8.9∗× 6.8± 2.9∗ 1.5±0.6∗× 0.6±0.3∗

GM 117.2± 197.6∗ 5.2±6.5 3.3± 2.0∗ 1.5± 0.3∗

AKSM 12.2± 4.5 3.2± 1.3 0.7± 0.2 0.3± 0.1
∗

Denotes p < .01 for AKSM versus GM and for AKSM versus L1 compar-
isons.
×Denotes p < .01 for GM versus L1 comparison.

algorithm showed a stabilization for high values of the free
parameter. The qualitatively different behavior of the GM
algorithm for high values of αgm is due to the fact that, in
most cases, there was at least one detected peak. Hence the
zero solution was not reached on average with this algorithm.

Mean and standard deviation of the MSE for each
algorithm are summarized in Table 1, showing that the
highest global estimation capabilities are always reached
by the AKSM, followed by the L1-penalized and the GM
procedures. A Wilcoxon-paired test was made to check for
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Figure 2: Performance analysis for the L1-penalized algorithm (left), the GM algorithm (middle), and the AKSM algorithm (right). (a,b,c)
estimation performance: averaged MSE for SNR = 4, 8, 12, and 20 dB (solid, dashed, dotted, and dash-dotted, resp.). (d,e,f) estimation
performance: averaged F (solid) and Fnull (dashed) with SNR = 4 dB. (g,h,i) detection performance: averaged Se (solid) and Sp (dashed) for
SNR = 4 dB.

statistical significance in the observed differences (∗ denotes
p < .01 for AKSM versus GM and for AKSM versus
L1 comparisons, × denotes p < .01 for GM versus L1
comparison).

In Figure 2 (panels (d), (e), and (f)), averaged F and Fnull

are depicted separately for each algorithm, for SNR = 4 dB. In
general, it can be observed that the higher the free parameter,
the higher F and the lower Fnull. Also saturation effects are
present in GM for Fnull. The cross-point between both curves
represents a good indicator of the tradeoff between both
merit figures, and it appears for values of the free parameter

close to the optimum in the MSE sense (i.e., for global
estimation) in all the algorithms, independently of the SNR.
This suggests that the global estimation performance was not
biased towards neither of the two kinds of samples (nonnull
and null) in the sparse signal.

5.4. Detection performance

Figure 2 (panels (g), (h), and (i)) shows the detection
capabilities in terms of Se and Sp for all the algorithms.
As expected, Sp (Se) increases (decreases) with the free
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Figure 3: An example of SD results versus data with SNR = 4 dB for: (a) the L1-penalized algorithm; (b) the GM algorithm; (c) the AKSM
algorithm.

Table 2: Averaged MSE ± its standard deviation (×102) for each SD algorithm (best in bold, second in italic) under Laplacian and uniform
additive noises.

Laplacian noise Uniform noise

Method 4 dB 10 dB 16 dB 20 dB 4 dB 10 dB 16 dB 20 dB

L1-pen. 18.3 ± 8.8∗ 4.6 ± 2.6∗ 1.2 ± 0.7∗× 0.5 ± 0.3∗ 3.7 ± 1.4∗× 1.0 ± 0.4∗× 0.2 ± 0.1∗ 1.0 ± 0.03∗

GM 94.1± 108.3∗ 8.8± 13.1 3.1± 2.4∗ 2.7± 1.4∗ 12.5± 5.1 3.4± 1.2∗ 2.7± 0.5∗ 2.6± 0.3∗

AKSM 13.0± 5.6 3.6± 1.6 0.9± 0.5 0.3± 0.2 1.6± 0.6 0.4± 0.2 0.1± 0.04 0.04± 0.01

parameter, and again, the cross-point between both curves
represents a good working point for applications where both
detection rates are similarly relevant. From this point of view,
the detection performance of the algorithms is qualitatively
similar to their estimation performance, that is, the highest
for AKSM (close to 100% for Se and Sp simultaneously),
and for the L1-penalized and the GM methods. The value of
the free parameter for optimal detection was again close, but
not identical, to the value of the free parameter for optimal
estimation in all the algorithms.

Records of estimated signals show a high variability, but
in Figure 3, we present some representative results of those
corresponding to previously presented performance figures.
Optimum values of the free parameters in this example were
used. It can be observed that L1-penalized deconvolution
detects almost all the peaks, but it produces a number of
low amplitude spurious peaks. In the example, the GM
procedure reaches a high estimation performance and a low
number (yet high amplitude) of spurious peaks, as well as
a misdetection of a large peak. Finally, the main drawback
that could be observed for AKSM is the systematic error in
the peak amplitude detection, due to a collateral effect of
insensitivity caused by using ε /= 0 for yielding sparseness
on the ε-Huber cost function, but total detection was often
attained with almost no spurious detection.

With respect to sparseness of the tested algorithms, it
can be analyzed from the merit figures for estimation and
for detection. The values of Fnull can be seen as an averaged
measurement of sparseness of each SD method, taking
into account that similarly high values of this parameter
can be given either by a large number of spurious peaks
with low amplitude or by a lower number of spurious
peaks with high amplitude. Note that, in any case, the

AKSM algorithm reaches much better values, specially when
compared to GM. Similar conclusions with respect to
sparseness were obtained from the sensitivity and specificity
results.

5.5. Robustness with respect to non-Gaussian noise

Table 2 shows the estimation performance of the compared
algorithms for Laplacian and uniform noise sources added
to the deterministic signal instead of a Gaussian noise.
Optimal-free parameters were previously estimated for all
the algorithms. Again, Wilcoxon-paired test was used (∗
denotes p < .01 for AKSM versus GM and for AKSM
versus L1 comparisons, × denotes p < .01 for GM versus
L1 comparison). In general, estimation capabilities of each
algorithm are similar for Gaussian and Laplacian noises, and
dramatically higher for uniform noise. The L1-penalized and
the AKSM algorithms still exhibits good performance in the
presence of non-Gaussian noise, whereas the GM algorithm
shows slightly poorer performance, specially for low SNR.
It can be seen that in the presence of both Laplacian and
uniform noise, MSE is lower for ASKM in all cases.

5.6. An application example with real data

We analyze a B-scan given by an ultrasonic transducer
array from a layered composite material. An A-scan is the
ultrasound echo signal received by a single element in the
transducer array, and the set of A-scans obtained by each
of the elements of the array is known as B-scan. Hence
each A-scan is a time-varying signal, whereas B-scan is a
spatiotemporal representation of the ultrasound. Scan data
are available at http://www.signal.uu.se/Toolbox/DT/ and

http://www.signal.uu.se/Toolbox/DT/
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Figure 4: Real data application: deconvolution of the impulse response of a ultrasound transducer in the analysis of a layered composite
material. (a) Example of deconvolution of a single A-scan line with each algorithm: left, sparse estimated signal; right, estimated A-line. (b)
Deconvolution of the B-scan data.
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details on this application can be found elsewhere [42].
Figure 4(a) shows a signal example (A-scan) of the sparse
signal estimated by each of the tested methods, using as
impulse response a prototype obtained from the B-scan in
a single line where clearly only one reflection was present.
The same panel also shows the reconstructed observed signal.
Noise level in the data was relatively low, and free parameters
of each algorithm were adjusted accordingly to the results
obtained with the synthetic signal example (for this purpose,
a normalization of the B-scan is previously made). It can be
seen a behavior qualitatively similar to the previously seen
for each algorithm, that is, the L1 algorithm yields a good-
quality solution with a noticeably number of spurious peaks,
the AKSM algorithm yields a good-quality solution with less
spurious peaks, and the GM algorithm fails at detecting the
low amplitude peaks that are clearly present in this A-scan
signal. Figure 4(b) shows the reconstruction of the complete
B-scan data, with similar behavior for all the A-scan lines.

6. CONCLUSIONS

A fully practical algorithm for SD using SVM principles,
which we call the AKSM algorithm, has been introduced
and evaluated. It works with the convolution of the observed
sequence with the time-reversed impulse response, this way
creating an implicit autocorrelation kernel problem. The
use of an ε-Huber cost function in the proposed algorithm
provides a high degree of robustness against the presence
of non-Gaussian additive noises. The solution is sparse as
a consequence of the support vector formulation, and the
implicit regularization of all SVM algorithms helps us to
obtain interesting results. These advantages can be observed
in illustrative simulation setups, which serves to compare
the new algorithm performance with those of two well-
known procedures, the L1-penalized and the GM model
deconvolution algorithms. The proposed algorithm presents
an advantage in terms of both estimation and detection
capabilities in most the situations, and there is no difficulty
in finding appropriate values for its hyperparameters.

Further effort will be devoted to expand the SVM princi-
ples presented here to obtain improved algorithms in other
relevant signal and image-processing problems, specially
those useful for spectral analysis and image denoizing and
deblurring.

APPENDICES

A. PSM DUAL PROBLEM

Instead of making the full derivation of the PSM algorithm
in (15), a fast method can be used from the linear signal-
processing framework in [28]. In brief, be {y[n]} a discrete
time series, observations with noise, and be {zp[n], p =
0, . . . ,N} a vector basis of the reconstruction signal space.
Then the general linear model can be expressed as

y[n] =
N
∑

p=0

wpzp[n] + e[n]. (A.1)

The linear framework for SVM linear signal models requires
to determine, at the begining, the transversal vector of the
signal space basis, given by vs = [z0[s], z1[s], . . . , zN [s]]T ;
then, to obtain the elements of the SV algorithm is
straightforward. In our case, we can see from (1) that the
signal space is generated by the time-shifted versions of the
impulse response, that is, zp[n] = h[n − p], and then, the
pth coefficient vector of the linear model is just the pth
sample of the unknown sparse signal, that is, wp = x̂[p].
Therefore, the transversal vector is just vs = [h[s],h[s −
1],h[s − 2], . . . ,h[s − N]]T , so that the dot product matrix
is given by R(i, l) = vTi , vl =

∑P
k=0h[i − k]h[l − k] for

this problem statement, and the unknown signal is given by
(16).

Then the dual problem consists on maximizing

−1
2

(

α−α∗)T(R + γI
)(

α−α∗) +
(

α−α∗)Ty − ε1T
(

α+α∗
)

(A.2)

constrained to 0 ≤ α(∗) ≤ C, where 1 denotes an all ones
column vector, I denotes the identity matrix, α[n], α[n]∗

are the Lagrange multipliers associated to the positive and
negative parts of residuals e[n] as usual in SVM, α(∗) =
[α(∗)

0 , . . . ,α(∗)
N ]T , and y = [y[0], . . . , y[N]]T . This is a

quadratic programming (QP) problem, from which solution
(16) is obtained.

B. AKSM DUAL PROBLEM

As usual in SVM regression algorithms, the optimization
of (23) leads to a dual problem to be optimized, which
yields model coefficients η[n] from Lagrange multipliers
α[n], α[n]∗, that are associated to residuals e[n]. In this case,
the elements of the Gram matrix of the problem are found to
be

T(i, l) = φ(i)Tφ(l) = K(i, l) = Rh[i− l], (B.1)

and accordingly, the dual problem can be easily shown to
consist on the maximization of

−1
2

(

α− α∗
)T

(T + γI)
(

α− α∗
)

+
(

α− α∗
)T

z− ε1T
(

α + α∗
)

(B.2)

subject to 0 ≤ α(∗) ≤ C, which is formally identical to the QP
problem in (A.2). A detailed derivation of the dual problem
can be seen in [31] for the signal-processing application of
discrete time series interpolation.
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